
Playing Catch and Juggling
with a Humanoid Robot

Jens Kober∗†, Matthew Glisson∗, and Michael Mistry∗‡
∗Disney Research, Pittsburgh, 4720 Forbes Ave., Ste. 110, Pittsburgh, PA 15213, USA

†Bielefeld University & TU Darmstadt, Germany
‡University of Birmingham, UK

jkober@cor-lab.uni-bielefeld.de, matt.glisson@disneyresearch.com, m.n.mistry@bham.ac.uk

Abstract—Entertainment robots in theme park environments
typically do not allow for physical interaction and contact
with guests. However, catching and throwing back objects is
one form of physical engagement that still maintains a safe
distance between the robot and participants. Using a theme
park type animatronic humanoid robot, we developed a test bed
for a throwing and catching game scenario. We use an external
camera system (ASUS Xtion PRO LIVE) to locate balls and a
Kalman filter to predict ball destination and timing. The robot’s
hand and joint-space are calibrated to the vision coordinate
system using a least-squares technique, such that the hand can
be positioned to the predicted location. Successful catches are
thrown back two and a half meters forward to the participant,
and missed catches are detected to trigger suitable animations
that indicate failure. Human to robot partner juggling (three
ball cascade pattern, one hand for each partner) is also achieved
by speeding up the catching/throwing cycle. We tested the
throwing/catching system on six participants (one child and
five adults, including one elderly), and the juggling system on
three skilled jugglers.

I. INTRODUCTION

For nearly five decades, animatronic robots have provided
entertainment to theme park guests by reproducing natural
human or animal motion. These robots add to storytelling
domains a sense of physical presence and realism not pos-
sible by graphics or video. Most animatronic systems in
place today, however, offer little in terms of interaction.
The robots in theme parks generally play back pre-scripted
motion, with no possibility of adaptation or reaction to the
environment or guests. In order to increase levels of both
realism and story engagement, we want to be able to establish
a physical connection between animatronic characters and
theme park guests, and change the guest’s role in the story
from mere observer to participant. Throwing and catching
objects from guests to robots is one way of accomplishing
such interaction, while still maintaining a safe distance. With
this objective in mind, we undertook the development of a
test bed for real-world human-robot physical interaction by
means of throwing and catching balls between a human and
humanoid robot.

Taking the scenario of “playing catch” with a robot to
a further level, we also examined human to robot partner
juggling. Here ball exchange must continually take place
with at least one ball always in the air. While robots have
been made to juggle before, we are particularly interested

Fig. 1. Sky, a Disney A100 Audio-Animatronics hydraulic humanoid robot

in the tight and highly dynamic interaction required between
the human and robot. A robot that can juggle by itself or with
other robots can be very impressive, but merely showcases
the repeatability and precision expected in robotic motion.
Juggling with a human partner demonstrates an ability to re-
act and respond to human inconsistency, potentially resulting
in more life-like motion and an increased sense of realism.

Robots capable of catching and throwing have been in-
vestigated previously. One of the first ball catching robots
applications was based on fitting a parabola to the vision data
and matching the robot trajectory to the ball trajectory [1].
Catching a ball with a humanoid wearing a baseball glove has
been studied by Riley and Atkeson [2]. The movements were
generated using movement primitives. Catching balls is also
possible without reconstructing the 3D ball position by visual
servoing [3], [4]. A robot tossing a cellphone and catching
it again has been studied at the University of Tokyo [5].
The approach is based on high-speed sensory-motor fusion.
Nonprehensile Ball Catching has been studied in [6] where
the ball trajectory is predicted using recursive least squares.
Catching a ball thrown towards a robot has been achieved
by planning [7] and supervised learning [8] at DLR. The
corresponding perception system are based on background
subtraction [9] or circle detectors [10], [11] and Kalman
Filters. The complete DLR system is discussed in [12].

Robot juggling has been studied by Aboaf et al. [13], [14].
The juggling task here corresponds to hitting a ball with a



2.5
m

2.2m42cm

60cm
1.8m

2.0m

Robot

Human

Cameras

Fig. 2. Graphical overview of our experimental setup for catching and
throwing with a humanoid robot. The participant stands on a stool to be
at equal level with the robot. A ASUS Xtion PRO LIVE camera system
acquires the 3D position of the ball. Both the camera and the robot can
only be used indoors.

paddle. Rizzi et al. [15], Yu et al. [16], as well as Schaal
et al. [17]–[19] studied similar tasks. Juggling balls with a
single arm and a funnel shaped hand has been studied by
Sakaguchi et al. [20], [21]. Atkeson et al. studied juggling
three balls in a cascade pattern with a Sarcos humaoid robot
[22]. We believe we are the first to demonstrate human to
robot partner juggling.

II. SYSTEM DESCRIPTION

An overview of our experimental setup for throwing and
catching is shown in Fig. 2. A description of the robot
hardware is in Section II-A. The vision system is discussed
in Sections II-B and II-C, and the robot software in Sec-
tions II-D through II-G.

A. Robot Hardware

We use Sky, a Walt Disney Imagineering A100 Audio-
Animatronics figure (Fig. 1) with 39 degrees-of-freedom,
38 of which are driven by hydraulic actuators. This type
of robot platform is currently commonly employed in the
theme parks. The robot stands on a 60cm base containing its
hydraulic valve manifold, pressure transducers, and computer
connections. Its feet are fixed to the base so stability and
balance are not a concern. For throwing and catching we
use the left arm, which has seven degrees of freedom plus
five fingers with one degree of freedom each. For additional
motions such as orienting the robot towards the participant,
simulating ball following, and acknowledging catching fail-
ure, we additionally use the pelvis, torso, shoulder shrugs,
neck and eyes. The control system allows for the update of
desired joint position set-points at 30Hz, a rate considered
quite slow for reactive control. However, as this robot was
designed only for pre-recorded trajectory playback, it is a
limitation we must cope with. Lower level hydraulic valve
controllers realize the desired positions of each actuator at

Fig. 3. Detail of the robot’s catching hand. The palm of the hand is
approximately 10cm square.

a control loop of 1kHz. The maximal hand velocities is
approximately 1.5m/s. We augmented the left hand of the
robot with a plate to cover and protect the finger actuators
and a foam rim to provide a more cup-like shape suitable
for catching (Fig. 3). Our goal was to maintain as much of
a human-like appearance as possible.

B. Vision System

As the robot has no onboard cameras in its eyes or
elsewhere, we use an external camera system to acquire
the 3D position of the balls. We employ a low cost off-
the-shelf ASUS Xtion PRO LIVE, which contains both a
depth and color camera, and does not require internal and
external calibration of a stereo camera setup. This camera
is almost identical to the Microsoft Kinect but supports
hardware synchronization of the color and depth stream. The
camera runs at 30Hz, the same as the control rate of the robot,
thus avoiding aliasing. Ball detection is done with OpenCV,
which obtains the registered color and depth images from the
Xtion via OpenNI. The color image is a standard 640x480
8bit RGB image.

An overview of our vision pipeline is shown in Fig. 4. The
first step is to remove the foreground and the background by
creating a mask based on a thresholded depth image. The
color image is then masked and converted to HSV space.
HSV is a convenient space to threshold on color while being
invariant to illumination. Small false positives are removed
by morphological operations. We run a Hough circle detector
on the resulting image, which rejects larger false positives
and yields the centers of the balls in the image plane in
pixels.

We average the depth value of the pixels that are active
both in the color and the depth mask to obtain the depth of
the balls1. From the pixel position, focal length, and depth
value, the complete Cartesian position can be reconstructed.
The whole processing takes approximately 30ms.

Using the same camera, but a separate processing pipeline,
we additionally track the user’s location via the OpenNI
skeleton tracker. From the skeleton information, we can
isolate the 3D position of the user’s head, which we use
to orient the robot towards the user and set its gaze to be
looking at the participant.

1The resulting offset in camera direction is negligible and would be
compensated by the data-driven calibration.



Fig. 4. Overview of the processing steps in the vision system.

C. Ball Filtering and Prediction

The vision system obtains the Cartesian positions of the
balls. In order to predict the catching position for the hand,
we also need ball velocities. As the distance is short and the
balls are relatively heavy (approx. ø 7cm, 100g), modeling
the air drag did not improve the prediction and the balls can
be modeled as point masses, i.e.:

x (t) = x0 + v0t+ a0t
2, (1)

where t is the time, x0 the initial position, v0 the ini-
tial velocity, and a0 the initial acceleration. In order to
predict the ball trajectory, we need to estimate the initial
values. We evaluated keeping the initial acceleration fixed
to a0 = [0 0 − 9.81]m/s2 but found that the prediction is
better if we keep this parameter open as the camera may
not be precisely aligned to gravity. Using all previously
seen ball positions and estimating the parameters in a least
squares sense, required too many samples to converge and
the robot did not manage to catch reliably as the initial
predictions were too far off. We use a linear Kalman filter
instead that is re-initialized every time a new ball is thrown.
The initialization values are obtained by finite difference. A
standard deviation of 5cm and 5mm for the measurement
and process noise respectively worked well in practice.

The robot always attempts to catch the ball on a predefined
horizontal plane. Using Eq. (1), the time at which the
ball trajectory intersects this plane is calculated. Then the
corresponding intersection position can be determined.

D. Robot State Machine

For our catching game, the robot continually waits for
a ball to catch, and throws it back soon after catching. We
implement this behavior as a state machine (Fig. 5). Catching
(Section II-E) and throwing (Section II-F) are two distinct
states and we additionally include two states to handle the
smooth transitions in between catching and throwing. If the
robot does not catch the ball, we transit to a missed ball state
(Section II-G2) and return to the waiting position for a new
ball. Switching from the catching state to the transition or
the missed ball state is tied to the predicted catching time
and the ball position. All other transitions occur after a fixed
amount of time has elapsed.

E. Catching Algorithm

The robot receives the predicted catching position as well
as the predicted time until the catch from the vision system. If
the predicted catching position is within the robot’s catching
region, the hand is moved to the new position. Due to the
low control frequency, we employ filtered step functions as
desired trajectories for this task. At the time of predicted
catch the fingers are closed as much as possible to trap the
ball, however, the fingers are not capable of fully enclosing
the ball and preventing it from escape. Other than our vision
system, we have no means to detect success of a caught
ball (e.g. no contact sensor or switch on the palm). Because
the vision system sometimes sees the ball in the hand, it
can lead to strange behaviors if the robot continues to try to
catch the ball even if it is already caught. Consequently we
stop updating the predicted catching position and catch time
if there is less than 66ms until catch (two control cycles).
This cutoff also prevents very fast movements when the ball
is landing in the hand, which sometimes led to the robot
hitting the ball and having it bounce off.

1) Inverse Kinematics Algorithm: Inverse kinematics is
required to map the desired hand catching position to joint
commands. Most inverse kinematics approaches work in
the reference frame of the robot. Thus we would have

Fig. 5. The robot’s state machine and transition diagram. Photos indicate
the end positions of each state.



−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

x in [m]

y
 i
n

 [
m

]

 

 

good

transit

joint limit

Fig. 6. This figure illustrates top-down view of the feasible catching region
of the robot. The robot stands at position (0,0) and is facing to the left. The
region is determined by the workspace of the hand before hitting a joint limit
(blue). The linear inverse kinematics algorithm performs well (position error
less than size of catching hand) in almost the whole region (red). IK error
increases in the cyan region but the robot manages nevertheless to catch
reliably in the lower left-hand region, see Fig. 7. The average error in the
red area is 3cm and 15cm in the cyan area. Slight overlap between red and
blue regions is due to joint limits effectively forcing the hand to move out
of the sampling plane.

to additionally calibrate the robot’s reference frame to the
camera’s. Instead we decided to use a single local linear
model that combines both the vision-to-robot calibration and
the inverse kinematics. Because catching always occurs on
the same horizontal plane in a fairly limited region, the
mapping from Cartesian positions to joint angles can be
approximated as linear. The position θi of joint i is expressed
as a function of the Cartesian position (x, y, z) in the
following form:

θi (x, y, z) = αi,xx+ αi,yy + αi,yz + αi,o,

where αi,{x,y,z} are constants corresponding to the Cartesian
positions and αi,o is a constant offset.

The parameters αi = [αi,x αi,y αi,z αi,o] are fitted using
linear regression (least squares). We attach a ball to the
robot’s open hand and run a predetermined calibration trajec-
tory that moves the hand to span the expected catching area.
The joint angles and the corresponding Cartesian positions
are stored. At the end of the trajectory the parameters for
each degree of freedom i are calculated

αi =
(
XTX + λI

)−1
XTΘi,

where the rows of X contain [xt yt zt 1], i.e., the Cartesian
positions at time-step t and an offset, Θi is a vector with the
corresponding joint positions, I is the identity matrix, and λ
is a small ridge factor. This type of approximated inverse
kinematics works sufficiently well in the catching region of
the robot. We tested the inverse kinematics in the work-space
of the robot by executing a reference trajectory and compar-
ing the desired hand position to the positions measured by the
vision system. We picked the height with maximum coverage
as the horizontal catching plane. Fig. 6 illustrates the region
the robot’s hand can cover without hitting joint-limits and
where the error in the inverse kinematics approximation is

x in [m]

y
 i
n

 [
m

]

 

 

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 7. This figure illustrates the catching performance of the robot. The
view is identical to Fig. 6. The color-scale indicates the success rate at a
given location. The black outline marks the feasible catching region (red
region in Fig. 6) and the black star indicates the default hand position. The
figure shows average results for 200 throws by novice users and 400 throws
by expert users. Within the feasible catching region the success rate is 75%.
The data was smoothed and normalized regionally to produce this plot. Due
to the shape of the hand and having balls always fly predominantly in a
positive x-direction, the robot also performs well catching balls to the right
and below the feasible catching region.

less than the variance compensated by the size of the hand
(<5cm).

The data-driven approach allows for quickly modifying
the setup, e.g., by moving the camera. At the same time,
the learned model automatically compensates inaccuracies
in the camera’s depth perception. Additionally, the A100
figures are highly modular and their kinematics can be exten-
sively reconfigured. After such a change, only the calibration
procedure needs to be run again in order to estimate new
parameters. The linear model also provides a unique mapping
from Cartesian positions to joint angles and does not require
any iterative steps.

F. Throwing Approach

After a successful catch, the robot will transition to throw-
ing back the ball. The arm moves to a predefined position
from which the throw starts. To throw, the robot moves its
hand on a forward arc using the shoulder, elbow and wrist
joints. At the same time the fingers open to release the ball.
As the maximum velocity of the robot is too limited to get
a good throw only by releasing the ball, we need to stop the
movement as abruptly as possible to make the ball detach
from the hand. We use a step-function that accelerates the
robot to its maximum velocity and then brakes abruptly.
Currently we only have a single fixed throwing movement.
The maximum distance we could achieve was approx. 2.5m.
Possible improvements include making the throw dependent
on how far away the user stands.

G. Interactive Cues and Animation

We found that adding subtle motions in addition to the
functionality required for catching or throwing, generally
made the system more appealing. For example, an early
version of the system could not detect whether the ball had
been caught successfully or not. Users appeared irritated



Fig. 8. An example sequence of playing catch. Green circles highlight the location of the ball. The participant throws the ball to the robot, and after
catching, the robot tosses the ball back.

when the robot did not react appropriately to a missed ball
and attempted to throw back empty handed. We therefore
use the vision system to detect ball catching failures, and
acknowledge them with an appropriate animation. Addition-
ally, head motions were added to give the appearance of ball
and participant tracking, as opposed to unnaturally staring
out into space.

1) Head and Body Orientation: As discussed in [23],
a realistic gaze behavior is essential to render catching
animations believable. The robot appears to track the ball
with its head and eyes while the ball is thrown towards it
and it is attempting to catch. At the time of throw initiation,
we reset the head and eye position such that it always looks
directly at the user. The head motion was subtle, but generally
added to the robot’s appeal. While waiting for a new ball,
the gaze tracks the user and additionally the body turns to
face the user.

The user tracking is based on the OpenNI skeleton tracker.
In order to achieve a natural looking movement we assigned
different priorities to the eye, head, and body movement. The
robot’s eyes only degree of freedom, eye pan, is allowed
to move at its maximum velocity. The movement of the
head (nod and turn) is low-pass filtered in order to simulate
moving the eyes quickly while the head does not follow
every high frequency movement of the user. The body turning
movement employs a low-pass filter with an even lower cut-
off frequency and, hence, the robot always tracks the user
with its eyes and head while only turning “lazily” during the
waiting phase.

2) Missed Ball Detection and Acknowledgment: Unfortu-
nately we cannot detect reliably if a ball is in the hand using
visual or tactile feedback. If the ball is held in the hand it
is partially occluded by the fingers and the detection by the
vision system is unreliable. Alternatively, using the position
sensors of the fingers, we could try to detect if the fingers
are blocked by the ball when trying to close. As the fingers
can only curl approximately 90° and the balls can deform
significantly, this option also proved futile.

Rather than detecting catching successes, we look for fail-

ures. The robot stops briefly after the catch, before moving
to the throwing position. At this time, we can detect whether
the ball is below the catching plane, and is therefore a miss.
Additionally, we can detect whether the ball is behind the
robot, which also constitutes a miss. As a proof of concept,
we implemented three simple animations when the ball drops
below the catching plane: a shoulder shrug, shaking the head,
and looking down. The animation is picked randomly when
such a miss is detected. When the ball is detected behind the
robot, we implemented an animation where the robot looks
backwards towards the floor.

The vision-based missed ball detection works correctly for
approximately 90% of the throws. We have roughly the same
number of false positives and negatives. As the camera does
not see a lot of area behind the robot and the robot can
occlude the ball when it is between its arm and body, throws
going behind the robot are sometimes not detected. Adding
a ball contact sensor to the palm of the hand would allow
more reliable detection.

H. Juggling

Juggling is achieved by speeding up the throwing/catching
cycle. The state machine remains the same as in Fig. 5,
however we remove the missed ball animations. Additionally,
we trigger the start of the throwing state based on the timing
of the incoming ball, leaving just enough time to release
the ball in hand and catch a new one. The transition from
catching a ball to moving to a throwing position originally
left some time for the caught ball to settle in the hand.
However, as speed is critical, we eliminated this delay and
also shortened the original throwing pattern.

As tracking multiple balls simultaneously in the air con-
fused the prediction algorithm, we developed a switching
color mask. We used three different colored balls and fixed
the pattern for throwing balls to the robot, for example green-
red-yellow-green, etc. We then switched the vision system’s
color mask to the color of the next expected ball in the
pattern. In this way, only the incoming ball is detected and
the returning ball does not interfere with the prediction.



Fig. 9. Sequence showing three ball partner juggling. Balls are highlighted with colored circles. The robot starts with a green ball in hand, and tosses it
up just before receiving the red. Red is thrown back as the yellow comes down, and so on.

III. RESULTS

In order to quantify catching performance, we repeatedly
tossed balls at the robot, recorded the anticipated catching
position, and marked the success or failure of each catch. For
each toss, the thrower stands on a 42cm stool, 2.5m away
from the robot, and is asked to throw underhand to the robot’s
left hand. The stool was required to put the participants
roughly at the same level as the robot, otherwise it was fairly
hard to throw in the robot’s catching region and the robot was
“looking down” on the users. Fig. 7 visualizes the cumulative
catching performance of 600 tosses. Four novice users (those
with no prior experience with the robot), threw 200 of the
tosses. Two experienced throwers, threw 400 balls attempting
to cover the full catching region as much as possible. When
the ball was thrown in the feasible catching region (red area
of Fig. 6), catching success rate was 75% for both novice and
experienced users. Overall success rate for all 600 throws
was 47%, however many of these tosses were intended to
sample the complete catching region, and not necessarily
hit the robot’s hand. Failures where usually caused by a
combination of factors: low control frequency, low maximal
velocities and accelerations, delays and low frame rate in the
vision system, initially inaccurate predictions, and the linear
model for the inverse kinematics.

To test the interactivity of our robot, we additionally
invited six naive participants to “play catch” with our system,
including an 11 year old child and 70+ year old elderly
adult. Participants again stood on a stool, 2.5m away from
the robot2. We handed them a ball and asked them to throw
underhand to the robot’s left hand. After roughly 5 to 15
initial tosses, all participants had figured out the catching
region of the robot. All participants were also able to catch
the incoming ball when it was thrown back, except for our
elderly subject who did not even attempt catching as she
was worried about her balance on the stool. All participants
said the experience was fun and enjoyable. Some participants

2The distance is limited by the robot’s throwing capabilities as well as
by the field of view and resolution of the camera.

complained about standing on the stool, a limitation we hope
to remove by lowering the robot into the floor or building
a larger platform for participants. Some attempted the task
without the stool, which was possible, but generally throwing
was easier when on the same level as the robot.

As juggling requires greater skill, we brought in three
skilled jugglers (members of Carnegie Mellon University’s
juggling club). This task proved to be more difficult as
throws to the robot had to be fairly consistent and sufficiently
high to allow the robot enough time to catch after a throw.
We asked the jugglers to both throw and catch with only
their right hand, while throwing to the robot’s left hand.
We also instructed the jugglers to throw the balls in a fixed
color sequence (see Section II-H). After approximately 10-20
minutes of practice, all three jugglers were able to achieve
at least three successful robot catches in a row with a three
ball cascade pattern. One juggler managed to achieve four
robot catches in a row. All three jugglers commented that
the robot’s limited catching region was the main difficulty
in accomplishing the task, but felt they could improve their
performance with additional practice.

An example sequence of throwing to the robot, catching
and throwing back is shown in Fig. 8. Additionally, a cycle of
juggling is shown in Fig. 9. Please see the video attachment
for a complete visualization.

IV. CONCLUSIONS

We developed a platform for exploring human-robot phys-
ical interactions at a safe distance. As a test scenario, we
use the context of a simple ball throwing and catching
game. Our platform allows us to begin examining various
storytelling scenarios within theme park or entertainment
venues where guests can interact physically, but safely, with
animatronic characters. Guests will be able to obtain a
physical connection with characters and become participants
in story events, creating a greater sense of immersion within
fantasy environments.

Areas for improving our system include expanding the
region where the robot is able to catch a ball. We used only



arm and finger degrees-of-freedom for catching, but adding
torso twisting and/or bending would expand the hand’s
range of motion. Adding more degrees of freedom and not
restricting the region to a plane will require more complex
models of the robot and proper motion planning. It would
also be helpful to modify the catching hand such that the
thumb or fingers can properly clasp and hold onto the ball,
to minimize ball dropping after contact. A contact sensor
or switch located on the palm would help to detect catch
successes and failures, so we would not have to rely on the
vision system for this purpose. The robot’s throwing motion
is currently predetermined and assumes the participant is two
to three meters away. In the future, we hope to be able to
adapt throwing to a variety of target locations and distances.

We found that subtle motion or animation cues signifi-
cantly added to the participants’ interaction with the robot.
For example, simple head movements, to simulate ball and
to look directly at the face of the participant, made the robot
appear more natural and engaged with the task. Originally,
we did not detect catching failures and it was quite jarring
when the robot would throw back with an empty hand. We
added four basic animations to acknowledge failed catches.
It was a way to turn a failure into something unexpected
and entertaining, as well as create an opportunity for new
interaction. For example, after viewing an animation, two
of our participants apologized to the robot for throwing so
poorly, while two others scolded the robot. We are currently
conducting an empirical study to evaluate the influence of
such animations on the level of enjoyment of the interaction.
We would like to further explore this type of interaction,
perhaps by detecting if the catching failure was a result of
a poor human throw or a robot error. Additional animations
that convey encouragement, apology, goading, etc., could fur-
ther enhance the engagement and entertainment experience.
Perhaps the robot could talk or give instructions.

Juggling with our platform was an experiment that pushed
both the physical and software limits of our system. Com-
pared to existing high-performance robots, our robot is
mechanically slow and has low bandwidth control. Delays
from the vision system further compound the challenge.
However, we observed interesting and unique human-robot
interactions, where the human significantly adapted in re-
sponse to the robot’s limitations. When our skilled jugglers
realized the robot would react more slowly than expected of
a human partner, and could not complete throwing in time to
catch a new ball, they would throw higher to give the robot
more time.

We believe our platform affords further areas to examine
new and unique real-world human-robot interaction, partic-
ularly in physical yet safe domains.

ACKNOWLEDGMENT

We thank Kareem Patterson and Ian MacVittie of Walt
Disney Imagineering for setup and support of the A100
figure. We also thank Mouse Silverstein and Ross Stephens

of Walt Disney Parks and Resorts for guidance on the soft-
ware and control system interface. Sharon Hoosein, Moshe
Mahler, and Rachel Maran assisted us on creating the art and
video.

REFERENCES

[1] B. Hove and J.-J. E. Slotine, “Experiments in robotic catching,” in
Proc. American Control Conf., 1991.

[2] M. Riley and C. G. Atkeson, “Robot catching: Towards engaging
human-humanoid interaction,” Auton. Robots, vol. 12, no. 1, pp. 119–
128, 2002.

[3] R. Mori, K. Hashimoto, and F. Miyazaki, “Tracking and catching of 3D
flying target based on GAG strategy,” in Proc. Int. Conf. on Robotics
and Automation, 2004.

[4] K. Deguchi, H. Sakurai, and S. Ushida, “A goal oriented just-in-time
visual servoing for ball catching robot arm,” in Proc. Int. Conf. on
Intelligent Robots and Systems, 2008.

[5] T. Senoo, Y. Yamakawa, S. Mizusawa, A. Namiki, M. Ishikawa, and
M. Shimojo, “Skillful manipulation based on high-speed sensory-
motor fusion,” in Proc. Int. Conf. on Robotics and Automation (ICRA),
2009.

[6] G. Bätz, A. Yaqub, H. Wu, K. Kühnlenz, D. Wollherr, and M. Buss,
“Dynamic manipulation: Nonprehensile ball catching,” in Proc.
Mediterranean Conf. on Control and Automation, 2010.

[7] B. Bäuml, T. Wimböck, and G. Hirzinger, “Kinematically optimal
catching a flying ball with a hand-arm-system,” in Proc. Int. Conf.
on Intelligent Robots and Systems (IROS), 2010.

[8] R. Lampariello, D. Nguyen-Tuong, C. Castellini, G. Hirzinger, and
J. Peters, “Trajectory planning for optimal robot catching in real-time,”
in Proc. Int. Conf. on Robotics and Automation, 2011.

[9] U. Frese, B. Bäuml, S. Haidacher, G. Schreiber, I. Schaefer, M. Hähnle,
and G. Hirzinger, “Off-the-shelf vision for a robotic ball catcher,” in
Proc. Int. Conf. on Intelligent Robots and Systems, 2001.

[10] O. Birbach, U. Frese, and B. Bäuml, “Realtime perception for catching
a flying ball with a mobile humanoid,” in Proc. Int. Conf. on Robotics
and Automation, 2011.

[11] O. Birbach and U. Frese, “Estimation and prediction of multiple flying
balls using probability hypothesis density filtering,” in Proc. Int. Conf.
on Intelligent Robots and Systems, 2011.

[12] B. Bäuml, O. Birbach, T. Wimböck, U. Frese, A. Dietrich, and
G. Hirzinger, “Catching flying balls with a mobile humanoid: System
overview and design considerations,” in Proc. Int. Conf. on Humanoid
Robots (HUMANOIDS), 2011.

[13] E. Aboaf, C. Atkeson, and D. Reinkensmeyer, “Task-level robot
learning,” in Proc. Int. Conf. on Robotics and Automation (ICRA),
1988.

[14] E. Aboaf, S. Drucker, and C. Atkeson, “Task-level robot learning:
juggling a tennis ball more accurately,” in Proc. Int. Conf. on Robotics
and Automation (ICRA), 1989.

[15] A. A. Rizzi, L. L. Whitcomb, and D. E. Koditschek, “Distributed real-
time control of a spatial robot juggler,” Computer, vol. 25, no. 5, pp.
12–24, 1992.

[16] L. Yu and H. Ammar, “Analysis of real-time distributed systems: a
case study,” in Proc. Midwest Symp. on Circuits and Systems, 1992.

[17] S. Schaal and C. G. Atkeson, “Open loop stable control strategies for
robot juggling,” in Proc. Int. Conf. on Robotics and Automation, 1993.

[18] ——, “Robot juggling: An implementation of memory-based learn-
ing,” Control Systems Magazine, vol. 14, no. 1, pp. 57–71, 1994.

[19] S. Schaal, D. Sternad, and C. G. Atkeson, “One-handed juggling: A
dynamical approach to a rhythmic movement task,” Journal of Motor
Behavior, vol. 28, no. 2, pp. 165–183, 1996.

[20] T. Sakaguchi, Y. Masutani, and F. Miyazaki, “A study on juggling
tasks,” in Proc. Int. Workshop on Intelligent Robots and Systems, 1991.

[21] T. Sakaguchi, M. Fujita, H. Watanabe, and F. Miyazaki, “Motion
planning and control for a robot performer,” in Proc. Int. Conf. on
Robotics and Automation, 1993.

[22] C. G. Atkeson. (2002) Humanoid robot juggling. [Online]. Available:
http://www.sarcos.com/highperf videos.html

[23] S. H. Yeo, M. Lesmana, D. R. Neog, and D. K. Pai, “Eyecatch:
Simulating visuomotor coordination for object interception,” in ACM
Transactions on Graphics (SIGGRAPH), 2012.


