
Reinforcement Learning to Adjust Robot Movements to New Situations

Jens Kober
MPI Tübingen, Germany

jens.kober@tuebingen.mpg.de

Erhan Oztop
ATR, Japan

erhan@atr.jp

Jan Peters
MPI Tübingen, Germany

jan.peters@tuebingen.mpg.de

Abstract
Many complex robot motor skills can be repre-
sented using elementary movements, and there ex-
ist efficient techniques for learning parametrized
motor plans using demonstrations and self-
improvement. However, in many cases, the robot
currently needs to learn a new elementary move-
ment even if a parametrized motor plan exists
that covers a similar, related situation. Clearly, a
method is needed that modulates the elementary
movement through the meta-parameters of its rep-
resentation. In this paper, we describe how to
learn such mappings from circumstances to meta-
parameters using reinforcement learning, namely a
kernelized version of the reward-weighted regres-
sion. We show two robot applications of the pre-
sented setup; i.e., the generalization of throwing
movements in darts, and of hitting movements in
table tennis. We demonstrate that both tasks can
be learned successfully using simulated and real
robots.

1 Introduction
In robot learning, motor primitives based on dynamical sys-
tems [Ijspeert et al., 2003; Schaal et al., 2007] allow acquir-
ing new behaviors quickly and reliably both by imitation and
reinforcement learning. Resulting successes have shown that
it is possible to rapidly learn motor primitives for complex
behaviors such as tennis-like swings [Ijspeert et al., 2003], T-
ball batting [Peters and Schaal, 2006], drumming [Pongas et
al., 2005], biped locomotion [Nakanishi et al., 2004], ball-
in-a-cup [Kober and Peters, 2010], and even in tasks with
potential industrial applications [Urbanek et al., 2004]. The
dynamical system motor primitives [Ijspeert et al., 2003] can
be adapted both spatially and temporally without changing
the overall shape of the motion. While the examples are im-
pressive, they do not address how a motor primitive can be
generalized to a different behavior by trial and error with-
out re-learning the task. For example, if the string length
has been changed in a ball-in-a-cup [Kober and Peters, 2010]
movement, the behavior has to be re-learned by modifying
the movements parameters. Given that the behavior will not
drastically change due to a string length variation of a few

centimeters, it would be better to generalize that learned be-
havior to the modified task. Such generalization of behav-
iors can be achieved by adapting the meta-parameters of the
movement representation1.

In reinforcement learning, there have been many attempts
to use meta-parameters in order to generalize between tasks
[Caruana, 1997]. Particularly, in grid-world domains, sig-
nificant speed-up could be achieved by adjusting policies by
modifying their meta-parameters (e.g., re-using options with
different subgoals) [McGovern and Barto, 2001]. In robotics,
such meta-parameter learning could be particularly helpful
due to the complexity of reinforcement learning for complex
motor skills with high dimensional states and actions. The
cost of experience is high as sample generation is time con-
suming and often requires human interaction (e.g., in cart-
pole, for placing the pole back on the robots hand) or super-
vision (e.g., for safety during the execution of the trial). Gen-
eralizing a teacher’s demonstration or a previously learned
policy to new situations may reduce both the complexity of
the task and the number of required samples. For example,
the overall shape of table tennis forehands are very similar
when the swing is adapted to varied trajectories of the in-
coming ball and a different targets on the opponent’s court.
Here, the human player has learned by trial and error how he
has to adapt the global parameters of a generic strike to vari-
ous situations [Mülling et al., 2010]. Hence, a reinforcement
learning method for acquiring and refining meta-parameters
of pre-structured primitive movements becomes an essential
next step, which we will address in this paper.

We present current work on automatic meta-parameter
acquisition for motor primitives by reinforcement learning.
We focus on learning the mapping from situations to meta-
parameters and how to employ these in dynamical systems
motor primitives. We extend the motor primitives (DMPs)
of [Ijspeert et al., 2003] with a learned meta-parameter func-
tion and re-frame the problem as an episodic reinforcement
learning scenario. In order to obtain an algorithm for fast re-
inforcement learning of meta-parameters, we view reinforce-
ment learning as a reward-weighted self-imitation [Peters and
Schaal, 2007; Kober and Peters, 2010].

1Note that the tennis-like swings [Ijspeert et al., 2003] could only
hit a static ball at the end of their trajectory, and T-ball batting [Pe-
ters and Schaal, 2006] was accomplished by changing the policy’s
parameters.

Figure 1: This figure illustrates a table tennis task. The sit-
uation, described by the state s, corresponds to the positions
and velocities of the ball and the robot at the time the ball is
above the net. The meta-parameters γ are the joint positions
and velocity at which the ball is hit. The policy parameters
represent the backward motion and the movement on the arc.
The meta-parameter function γ(s), which maps the state to
the meta-parameters, is learned.

As it may be hard to realize a parametrized representa-
tion for meta-parameter determination, we reformulate the
reward-weighted regression [Peters and Schaal, 2007] in or-
der to obtain a Cost-regularized Kernel Regression (CrKR)
that is related to Gaussian process regression [Rasmussen and
Williams, 2006]. We evaluate the algorithm in the acquisition
of flexible motor primitives for dart games such as Around the
Clock [Masters Games Ltd., 2010] and for table tennis.

2 Meta-Parameter Learning for DMPs
The goal of this paper is to show that elementary movements
can be generalized by modifying only the meta-parameters
of the primitives using learned mappings. In Section 2.1, we
first review how a single primitive movement can be repre-
sented and learned. We discuss how such meta-parameters
may be able to adapt the motor primitive spatially and tem-
porally to the new situation. In order to develop algorithms
that learn to automatically adjust such motor primitives, we
model meta-parameter self-improvement as an episodic rein-
forcement learning problem in Section 2.2. While this prob-
lem could in theory be treated with arbitrary reinforcement
learning methods, the availability of few samples suggests
that more efficient, task appropriate reinforcement learning
approaches are needed. To avoid the limitations of parametric
function approximation, we aim for a kernel-based approach.
When a movement is generalized, new parameter settings
need to be explored. Hence, a predictive distribution over the
meta-parameters is required to serve as an exploratory policy.
These requirements lead to the method which we employ for
meta-parameter learning in Section 2.3.

2.1 DMPs with Meta-Parameters
In this section, we review how the dynamical systems motor
primitives [Ijspeert et al., 2003; Schaal et al., 2007] can be
used for meta-parameter learning. The dynamical system mo-
tor primitives [Ijspeert et al., 2003] are a powerful movement

representation that allows ensuring the stability of the move-
ment, choosing between a rhythmic and a discrete movement.
One of the biggest advantages of this motor primitive frame-
work is that it is linear in the shape parameters θ. Therefore,
these parameters can be obtained efficiently, and the resulting
framework is well-suited for imitation [Ijspeert et al., 2003]
and reinforcement learning [Kober and Peters, 2010]. The re-
sulting policy is invariant under transformations of the initial
position, the goal, the amplitude and the duration [Ijspeert et
al., 2003]. These four modification parameters can be used as
the meta-parameters γ of the movement. Obviously, we can
make more use of the motor primitive framework by adjust-
ing the meta-parameters γ depending on the current situation
or state s according to a meta-parameter function γ(s). The
state s can for example contain the current position, veloc-
ity and acceleration of the robot and external objects, as well
as the target to be achieved. This paper focuses on learning
the meta-parameter function γ(s) by episodic reinforcement
learning.

Illustration of the Learning Problem: As an illustration
of the meta-parameter learning problem, we take a table ten-
nis task which is illustrated in Figure 1 (in Section 3.2, we
will expand this example to a robot application). Here, the
desired skill is to return a table tennis ball. The motor prim-
itive corresponds to the hitting movement. When modeling a
single hitting movement with dynamical-systems motor prim-
itives [Ijspeert et al., 2003], the combination of retracting and
hitting motions would be represented by one movement prim-
itive and can be learned by determining the movement pa-
rameters θ. These parameters can either be estimated by im-
itation learning or acquired by reinforcement learning. The
return can be adapted by changing the paddle position and
velocity at the hitting point. These variables can be influ-
enced by modifying the meta-parameters of the motor primi-
tive such as the final joint positions and velocities. The state
consists of the current positions and velocities of the ball and
the robot at the time the ball is directly above the net. The
meta-parameter function γ(s) maps the state (the state of the
ball and the robot before the return) to the meta-parameters γ
(the final positions and velocities of the motor primitive). Its
variance corresponds to the uncertainty of the mapping.

In the next sections, we derive and apply an appropriate
reinforcement learning algorithm.

2.2 Kernalized Meta-Parameter Self-Improvement
The problem of meta-parameter learning is to find a stochastic
policy π(γ|x) = p(γ|s) that maximizes the expected return

J(π) =
ˆ

S
p(s)
ˆ

G
π(γ|s)R(s,γ)dγ ds, (1)

where R(s,γ) denotes all the rewards following the selection
of the meta-parameter γ according to a situation described by
state s. The return of an episode is R(s,γ) = T−1

∑T
t=0 r

t

with number of steps T and rewards rt. For a parametrized
policy π with parameters w it is natural to first try a policy
gradient approach such as finite-difference methods, vanilla
policy gradient approaches and natural gradients2. Reinforce-

2While we will denote the shape parameters by θ, we denote the
parameters of the meta-parameter function by w.

Algorithm 1: Meta-Parameter Learning
Preparation steps:

Learn one or more DMPs by imitation and/or
reinforcement learning (yields shape parameters θ).

Determine initial state s0, meta-parameters γ0, and
cost C0 corresponding to the initial DMP.

Initialize the corresponding matrices S,Γ,C.
Choose a kernel k,K.
Set a scaling parameter λ.

For all iterations j:
Determine the state sj specifying the situation.
Calculate the meta-parameters γj by:

Determine the mean of each meta-parameter i
γi(sj) = k(sj)T (K + λC)−1 Γi,

Determine the variance
σ2(sj) = k(sj , sj)−k(sj)T (K + λC)−1 k(sj),
Draw the meta-parameters from a Gaussian

distribution
γj ∼ N (γ|γ(sj), σ2(sj)I).

Execute the DMP using the new meta-parameters.
Calculate the cost cj at the end of the episode.
Update S,Γ,C according to the achieved result.

ment learning of the meta-parameter function γ(s) is not
straightforward as only few examples can be generated on the
real system and trials are often quite expensive. The credit as-
signment problem is non-trivial as the whole movement is af-
fected by every change in the meta-parameter function. Early
attempts using policy gradient approaches resulted in tens of
thousands of trials even for simple toy problems, which is not
feasible on a real system.

Dayan and Hinton [1997] showed that an immediate re-
ward can be maximized by instead minimizing the Kullback-
Leibler divergence D(π(γ|s)R(s,γ)||π′(γ|s)) between the
reward-weighted policy π(γ|s) and the new policy π′(γ|s).
Williams [Williams, 1992] suggested to use a particular pol-
icy in this context; i.e., the policy

π(γ|s) = N (γ|γ(s), σ2(s)I),

where we have the deterministic mean policy γ(s) =
φ(s)Tw with basis functions φ(s) and parameters w as
well as the variance σ2(s) that determines the exploration
ε ∼ N (0, σ2(s)I). The parameters w can then be adapted
by reward-weighted regression in an immediate reward [Pe-
ters and Schaal, 2007] or episodic reinforcement learning sce-
nario [Kober and Peters, 2010]. The reasoning behind this
reward-weighted regression is that the reward can be treated
as an improper probability distribution over indicator vari-
ables determining whether the action is optimal or not.

Designing good basis functions is challenging. A non-
parametric representation is better suited in this context. We
can transform the reward-weighted regression into a Cost-
regularized Kernel Regression

γ̄i = γi(s) = k(s)T (K + λC)−1 Γi,

where Γi is a vector containing the training examples
γi of the meta-parameter component, C = R−1 =
diag(R−1

1 , . . . , R−1
n) is a cost matrix, λ is a ridge factor, and

k(s) = φ(s)TΦT as well as K = ΦΦT correspond to a ker-
nel where the rows of Φ are the basis functions φ(si) = Φi of
the training examples. Please refer to [Kober et al., 2010] for
a full derivation. Here, costs correspond to the uncertainty
about the training examples. Thus, a high cost is incurred
for being further away from the desired optimal solution at a
point. In our formulation, a high cost therefore corresponds
to a high uncertainty of the prediction at this point. In order to
incorporate exploration, we need to have a stochastic policy
and, hence, we need a predictive distribution. This distribu-
tion can be obtained by performing the policy update with
a Gaussian process regression and we directly see from the
kernel ridge regression

σ2(s) = k(s, s) + λ− k(s)T (K + λC)−1 k(s),

where k(s, s) = φ(s)Tφ(s) is the distance of a point to itself.
We call this algorithm Cost-regularized Kernel Regression.

The algorithm corresponds to a Gaussian process regres-
sion where the costs on the diagonal are input-dependent
noise priors. If several sets of meta-parameters have simi-
larly low costs the algorithm’s convergence depends on the
order of samples. The cost function should be designed to
avoid this behavior and to favor a single set. The exploration
has to be restricted to safe meta-parameters.

2.3 Reinforcement Learning of Meta-Parameters
As a result of Section 2.2, we have a framework of motor
primitives as introduced in Section 2.1 that we can use for re-
inforcement learning of meta-parameters as outlined in Sec-
tion 2.2. We have generalized the reward-weighted regression
policy update to instead become a Cost-regularized Kernel
Regression (CrKR) update where the predictive variance is
used for exploration. In Algorithm 1, we show the complete
algorithm resulting from these steps.

The algorithm receives three inputs, i.e., (i) a motor prim-
itive that has associated meta-parameters γ, (ii) an initial ex-
ample containing state s0, meta-parameter γ0 and cost C0,
as well as (iii) a scaling parameter λ. The initial motor
primitive can be obtained by imitation learning [Ijspeert et
al., 2003] and, subsequently, improved by parametrized rein-
forcement learning algorithms such as policy gradients [Pe-
ters and Schaal, 2006] or Policy learning by Weighting Explo-
ration with the Returns (PoWER) [Kober and Peters, 2010].
The demonstration also yields the initial example needed for
meta-parameter learning. While the scaling parameter is an
open parameter, it is reasonable to choose it as a fraction of
the average cost and the output noise parameter (note that
output noise and other possible hyper-parameters of the ker-
nel can also be obtained by approximating the unweighted
meta-parameter function).

Illustration of the Algorithm: In order to illustrate this
algorithm, we will use the example of the table tennis task in-
troduced in Section 2.1. Here, the robot should hit the ball ac-
curately while not destroying its mechanics. Hence, the cost
corresponds to the distance between the ball and the paddle,

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3
(a) Intial Policy based on Prior: R=0

state

go
al

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3
(b) Policy after 2 updates: R=0.1

state

go
al

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3
(c) Policy after 9 updates: R=0.8

state

go
al

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3
(d) Policy after 12 updates: R=0.9

state

go
al

mean prediction

variance

training points/cost

Gaussian process regression

Figure 2: This figure illustrates the meaning of policy improvements with Cost-regularized Kernel Regression. Each sample
consists of a state, a meta-parameter and a cost where the cost is indicated the blue error bars. The red line represents the
improved mean policy, the dashed green lines indicate the exploration/variance of the new policy. For comparison, the gray
lines show standard Gaussian process regression. As the cost of a data point is equivalent to having more noise, pairs of states
and meta-parameter with low cost are more likely to be reproduced than others with high costs.

as well as the squared torques. The initial policy is based on
a prior, illustrated in Figure 2(a), that has a variance for ini-
tial exploration (it often makes sense to start with a uniform
prior). This variance is used to enforce exploration. To return
a ball, we sample the meta-parameters from the policy based
on the current state. After the trial the cost is determined and,
in conjunction with the employed meta-parameters, used to
update the policy. If the cost is large (e.g., the ball was far
from the racket), the variance of the policy is large as it may
still be improved and therefore needs exploration. Further-
more, the mean of the policy is shifted only slightly towards
the observed example as we are uncertain about the optimal-
ity of this action. If the cost is small, we know that we are
close to an optimal policy (e.g., the racket hit the ball off-
center) and only have to search in a small region around the
observed trial. The effects of the cost on the mean and the
variance are illustrated in Figure 2(b). Each additional sam-
ple refines the policy and the overall performance improves
(see Figure 2(c)). If a state is visited several times and dif-
ferent meta-parameters are sampled, the policy update must
favor the meta-parameters with lower costs. Algorithm 1 ex-
hibits this behavior as illustrated in Figure 2(d).

In the dart throwing example (Section 3.1) we have a cor-
respondence between the state and the outcome similar to a
regression problem. However, the mapping between the state
and the meta-parameter is not unique. The same height can be
achieved by different combinations of velocities and angles.
Averaging these combinations is likely to generate inconsis-
tent solutions. The regression must hence favor the meta-
parameters with the lower costs. CrKR could be employed as
a regularized regression method in this case. In the dart set-
ting, we could choose the next target and thus employ CrKR
as an active learning approach by picking states with large
variances.

3 Evaluation
In Section 2, we have introduced both a framework for meta-
parameter self-improvement as well as an appropriate rein-
forcement learning algorithm used in this framework. In
[Kober et al., 2010] we have shown that the presented rein-
forcement learning algorithm yields higher performance than
the preceding reward-weighted regression and an off-the-
shelf finite difference policy gradient approach on a bench-

mark example. The meta-parameter learning framework can
be used in a variety of settings in robotics. We consider two
scenarios here, i.e., (i) dart throwing with a simulated robot
arm, a real Barrett WAM and the JST-ICORP/SARCOS hu-
manoid robot CBi, and (ii) table tennis with a simulated robot
arm and a real Barrett WAM. Some of the real-robot experi-
ments are still partially work in progress.

3.1 Dart-Throwing

0 200 400 600 800 1000

0.2

0.4

0.6

0.8

1

1.2

1.4

number of rollouts

av
er

ag
e

co
st

Cost−regularized Kernel Regression

Reward−weighted Regression

Figure 3: This figure shows the cost func-
tion of the dart-throwing task for a whole
game Around the Clock in each rollout.
The costs are averaged over 10 runs with
the error-bars indicating standard devia-
tion.

Now, we turn
towards the
complete
framework,
i.e., we in-
tend to learn
the meta-
parameters
for motor
primitives
in discrete
movements.
We compare
the Cost-
regularized
Kernel Re-
gression
(CrKR) al-
gorithm to the reward-weighted regression (RWR). As a
sufficiently complex scenario, we chose a robot dart throwing
task inspired by [Lawrence et al., 2003]. However, we take
a more complicated scenario and choose dart games such
as Around the Clock [Masters Games Ltd., 2010] instead of
simple throwing at a fixed location. Hence, it will have an
additional parameter in the state depending on the location
on the dartboard that should come next in the sequence.
The acquisition of a basic motor primitive is achieved using
previous work on imitation learning [Ijspeert et al., 2003].
Only the meta-parameter function is learned using CrKR or
RWR.

The dart is placed on a launcher attached to the end-effector
and held there by stiction. We use the Barrett WAM robot
arm in order to achieve the high accelerations needed to over-
come the stiction. The motor primitive is trained by imitation

(a) The dart is placed
in the hand.

(b) The arm moves
back.

(c) The arm moves
forward on an arc.

(d) The arm contin-
ues moving.

(e) The dart is re-
leased and the arm
follows through.

(f) The arm stops
and the dart hits the
board.

Figure 4: This figure shows a dart throw on the real JST-ICORP/SARCOS humanoid robot CBi.

learning with kinesthetic teach-in. We use the Cartesian coor-
dinates with respect to the center of the dart board as inputs.
The parameter for the final position, the duration of the mo-
tor primitive and the angle around the vertical axis are the
meta-parameters. The popular dart game Around the Clock
requires the player to hit the numbers in ascending order, then
the bulls-eye. As energy is lost overcoming the stiction of the
launching sled, the darts fly lower and we placed the dart-
board lower than official rules require. The cost function is
the sum of ten times the squared error on impact and the ve-
locity of the motion. After approximately 1000 throws the
algorithms have converged but CrKR yields a high perfor-
mance already much earlier (see Figure 3). We again used a
parametric policy with radial basis functions for RWR. De-
signing a good parametric policy proved very difficult in this
setting as is reflected by the poor performance of RWR.

This experiment is also being carried out on two real, phys-
ical robots, i.e., a Barrett WAM and the humanoid robot
CBi (JST-ICORP/SARCOS). CBi was developed within the
framework of the JST-ICORP Computational Brain Project at
ATR Computational Neuroscience Labs. The hardware of the
robot was developed by the American robotic development
company SARCOS. CBi can open and close the fingers which
helps for more human-like throwing instead of the launcher
employed by the Barrett WAM. See Figure 4 for a throwing
movement. Parts of these experiments are still in-progress.

3.2 Table Tennis
In the second evaluation of the complete framework, we use
it for hitting a table tennis ball in the air. The setup consists
of a ball gun that serves to the forehand of the robot, a Barrett
WAM and a standard sized table. The movement of the robot
has three phases. The robot is in a rest posture and starts to
swing back when the ball is launched. During this swing-back
phase, the open parameters for the stroke are predicted. The
second phase is the hitting phase which ends with the contact
of the ball and racket. In the final phase the robot gradually
ends the stroking motion and returns to the rest posture. See
Figure 6 for an illustration of a complete episode. The move-
ments in the three phases are represented by motor primitives
obtained by imitation learning.

The meta-parameters are the joint positions and velocities
for all seven degrees of freedom at the end of the second
phase (the instant of hitting the ball) and a timing parame-
ter that controls when the swing back phase is transitioning
to the hitting phase. We learn these 15 meta-parameters as

a function of the ball positions and velocities when it is over
the net. We employed a Gaussian kernel and optimized the
open parameters according to typical values for the input and
output. As cost function we employ the metric distance be-
tween the center of the paddle and the center of the ball at
the hitting time. The policy is evaluated every 50 episodes
with 25 ball launches picked randomly at the beginning of
the learning. We initialize the behavior with five successful
strokes observed from another player. After initializing the
meta-parameter function with only these five initial examples,
the robot misses ca. 95% of the balls as shown in Figure 5.
Trials are only used to update the policy if the robot has suc-
cessfully hit the ball. Figure 5 illustrates the costs over all
episodes. Preliminary results suggest that the resulting policy
performs well both in simulation and for the real system. We
are currently in the process of executing this experiment also
on the real Barrett WAM.

4 Conclusion & Future Work

0 200 400 600 800 1000

0.1

0.3

0.5

0.7

0.9

number of rollouts

av
er

ag
e

co
st

/s
u

cc
es

s

Success

Cost

Figure 5: This figure shows the cost func-
tion of the table tennis task averaged over
10 runs with the error-bars indicating stan-
dard deviation. The red line represents the
percentage of successful hits and the blue
line the average cost.

In this paper,
we have
studied the
problem
of meta-
parameter
learning for
motor prim-
itives. It is
an essential
step towards
applying mo-
tor primitives
for learning
complex
motor skills
in robotics
more flexibly.
We have
discussed an appropriate reinforcement learning algorithm
for mapping situations to meta-parameters. We show that
the necessary mapping from situation to meta-parameter
can be learned using a Cost-regularized Kernel Regression
(CrKR) while the parameters of the motor primitive can still
be acquired through traditional approaches. The predictive
variance of CrKR is used for exploration in on-policy

(a) The robot is in the rest
posture.

(b) The arm swings back. (c) The arm strikes the
ball.

(d) The arm follows
through and decelerates.

(e) The arm returns to the
rest posture.

Figure 6: This figure shows a table tennis stroke on the real Barrett WAM.

meta-parameter reinforcement learning. To demonstrate the
system, we have chosen the Around the Clock dart throwing
game and table tennis implemented both on simulated and
real robots.

Future work will require to sequence different motor prim-
itives by a supervisory layer. This supervisory layer would
for example in a table tennis task decide between a fore-
hand motor primitive and a backhand motor primitive, the
spatial meta-parameter and the timing of the motor primitive
would be adapted according to the incoming ball, and the mo-
tor primitive would generate the trajectory. This supervisory
layer could be learned by an hierarchical reinforcement learn-
ing approach [Barto and Mahadevan, 2003] (as introduced
in the early work by [Huber and Grupen, 1998]). In this
framework, the motor primitives with meta-parameter func-
tions could be seen as robotics counterpart of options [Mc-
Govern and Barto, 2001].

References
[Barto and Mahadevan, 2003] A. Barto and S. Mahadevan.

Recent advances in hierarchical reinforcement learning.
Discrete Event Dynamic Systems, 2003.

[Caruana, 1997] R. Caruana. Multitask learning. Machine
Learning, 1997.

[Dayan and Hinton, 1997] P. Dayan and G. E. Hinton. Us-
ing expectation-maximization for reinforcement learning.
Neural Computation, 1997.

[Huber and Grupen, 1998] M. Huber and R. A. Grupen.
Learning robot control using control policies as abstract
actions. In NIPS’98 Workshop: Abstraction and Hierar-
chy in Reinforcement Learning, 1998.

[Ijspeert et al., 2003] A. J. Ijspeert, J. Nakanishi, and
S. Schaal. Learning attractor landscapes for learning mo-
tor primitives. In NIPS, 2003.

[Kober and Peters, 2010] J. Kober and J. Peters. Policy
search for motor primitives in robotics. Machine Learn-
ing, 2010.

[Kober et al., 2010] J. Kober, E. Oztop, and J. Peters. Rein-
forcement learning to adjust robot movements to new sit-
uations. In R:SS, 2010.

[Lawrence et al., 2003] G. Lawrence, N. Cowan, and S. Rus-
sell. Efficient gradient estimation for motor control learn-
ing. In UAI, 2003.

[Masters Games Ltd., 2010] Masters Games
Ltd. The rules of darts, online
http://www.mastersgames.com/rules/darts-rules.htm,
July 2010.

[McGovern and Barto, 2001] A. McGovern and A. G. Barto.
Automatic discovery of subgoals in reinforcement learning
using diverse density. In ICML, 2001.

[Mülling et al., 2010] K. Mülling, J. Kober, and J. Peters.
Learning table tennis with a mixture of motor primitives.
In HUMANOIDS, 2010.

[Nakanishi et al., 2004] J. Nakanishi, J. Morimoto, G. Endo,
G. Cheng, S. Schaal, and M. Kawato. Learning
from demonstration and adaptation of biped locomotion.
Robotics and Autonomous Systems, 2004.

[Peters and Schaal, 2006] J. Peters and S. Schaal. Policy gra-
dient methods for robotics. In IROS, 2006.

[Peters and Schaal, 2007] J. Peters and S. Schaal. Reinforce-
ment learning by reward-weighted regression for opera-
tional space control. In ICML, 2007.

[Pongas et al., 2005] D. Pongas, A. Billard, and S. Schaal.
Rapid synchronization and accurate phase-locking of
rhythmic motor primitives. In IROS, 2005.

[Rasmussen and Williams, 2006] C.E. Rasmussen and C.K.
Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006.

[Schaal et al., 2007] S. Schaal, P. Mohajerian, and A. J.
Ijspeert. Dynamics systems vs. optimal control – a uni-
fying view. Progress in Brain Research, 2007.

[Urbanek et al., 2004] H. Urbanek, A. Albu-Schäffer, and
P. v.d. Smagt. Learning from demonstration repetitive
movements for autonomous service robotics. In IROS,
2004.

[Williams, 1992] R. J. Williams. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine Learning, 1992.

