
Active Exploration for Robot Parameter Selection in
Episodic Reinforcement Learning

Oliver Kroemer and Jan Peters
Max Planck Institute for Biological Cybernetics

38 Spemannstr. Tuebingen, Germany, 72012
email: {oliverkro, jan.peters}@tuebingen.mpg.de

Special session on Active Reinforcement Learning

Organizers: Lucian Buşoniu, Damien Ernst, Robert Babuška
SSCI Symposium: Adaptive Dynamic Programming and Reinforcement Learning

Abstract—As the complexity of robots and other autonomous

systems increases, it becomes more important that these systems

can adapt and optimize their settings actively. However, such

optimization is rarely trivial. Sampling from the system is

often expensive in terms of time and other costs, and excessive

sampling should therefore be avoided. The parameter space

is also usually continuous and multi-dimensional. Given the

inherent exploration-exploitation dilemma of the problem, we

propose treating it as an episodic reinforcment learning prob-

lem. In this reinforcement learning framework, the policy is

defined by the system’s parameters and the rewards are given

by the system’s performance. The rewards accumulate during

each episode of a task. In this paper, we present a method

for efficiently sampling and optimizing in continuous multi-

dimensional spaces. The approach is based on Gaussian process

regression, which can represent continuous non-linear mappings

from parameters to system performance. We employ an upper

confidence bound policy, which explicitly manages the trade-off

between exploration and exploitation. Unlike many other policies

for this kind of problem, we do not rely on a discretization of

the action space. The presented method was evaluated on a real

robot. The robot had to learn grasping parameters in order to

adapt its grasping execution to different objects. The proposed

method was also tested on a more general gain tuning problem.

The results of the experiments show that the presented method

can quickly determine suitable parameters and is applicable to

real online learning applications.

I. INTRODUCTION

Parameter tuning represents a fundamental challenge in
robotics and autonomous systems. In order to perform op-
timally, both task parameters and low-level control parameters
must be selected correctly. The number of parameters, and
their effect on performance, depends on the robot and the
task it is performing. Robots are becoming more complex, and
need to function autonomously in changing task environments.
Therefore, there is an increasing need for robots to adapt their
parameters autonomously. In order to achieve this goal, the
robot must evaluate different parameter settings to determine
their effects on performance. The robot must then use these
experiences to optimize the parameters.

Given the multi-dimensional nature of the parameter tuning
problems, applying a grid search to the entire parameter space
will be highly inefficient due to the “curse of dimensional-
ity” [5]. Instead, the space needs to be actively explored for

Figure 1. The robot consists of a Barrett hand, a Mitsubishi PA-10 arm,
a pan-tilt unit, and a Videre stereo camera. The robot has just grasped a
table tennis racket and lifted it from its stand, resulting in a successful grasp
attempt.

optimal settings. Active exploration involves using the current
knowledge of the system to select the next parameter setting
to evaluate. The goal is not to explore the entire parameter
space, but rather to focus on regions that lead to good
performance. Therefore, the searching system must balance
exploring new regions and exploiting its current knowledge of
high-performance regions.

The autonomous tuning of parameters can be modeled as
an episodic reinforcement learning task. Within each episode,
the robot performs a task according to a parametrized policy
π(a|s;θ), where a is the action performed given that we are
in state s, and θ is the vector of parameters. As the robot
performs the task, it receives rewards r(s,a) at each time
step, which indicate its performance. The sum of these rewards
over an episode is known as the return R =

�T
t=0 r(st,at)

where T is the finite horizon length of an episode. By changing
the parameters θ, we create new policies π that will obtain
different returns. The search through the parameter space
should therefore try to maximize the return.

For discrete and finite sets of parameter configurations,



strategies that always evaluate the setting with the maximal
upper confidence bound of the return have been highly suc-
cessful [2, 3, 19]. The current methods designed to solve
these problems in continuous spaces are largely based on
discretizing the space [4, 9]. For high-dimensional domains,
such as parameter tuning, any discrete segmenting will be
affected by the “curse of dimensionality” [5] and hence scale
badly. The hard segmentation will also result in unnatural
borders and the use of prior knowledge becomes unnecessarily
difficult. Hence, we propose a sample-based approach in this
paper.

The method suggested in this paper comprises (i) a con-
tinuous approximation of the return’s upper confidence bound
using Gaussian process regression, and (ii) a technique for
finding maxima of this approximation. The idea of using
function approximation in this context was inspired by the
work of [1]. Determining the maximum of the function is
not trivial as it is nonlinear and has multiple local maxima.
However, a mean-shift inspired algorithm can be used to
find the local maxima of the function approximation, which
represent suitable candidates for the next parameter setting to
evaluate.

In Section II, we explain the proposed algorithm and discuss
its properties and implementation. In the subsequent Section
III, we evaluate the proposed algorithm through a series of
experiments.

II. UPPER CONFIDENCE BOUND POLICY SEARCH FOR
EPISODIC REINFORCEMENT LEARNING

In this section, we present a method for optimizing a policy,
over a series of episodes, using an upper confidence bound
strategy. The first steps in developing the method are to
model the expected returns for our policies (Section II-A) and
determine a procedure for selecting the next policy to evaluate
(Section II-B). In Sections II-C and II-D, we give information
on the implementation of the method and show that the system
is guaranteed to select a local maximum in every episode.

A. Gaussian Process Regression of Merit Function

We begin by modeling the expected return, and its upper
confidence bound, as a function of the continuous policy
parameters. An approach that satisfies these requirements is
Gaussian process regression (GPR), see [15], which is a
kernel-based non-parametric method. GPR also incorporates a
prior, which keeps the mean and variance bounded in regions
of no data. We employ standard Gaussian kernels of the form
k (x, z) = σ2

a exp(−0.5(x − z)TW (x − z)) where W is
a diagonal matrix of kernel widths, and x and z define the
parameters of two policies. The hyperparameter σa affects how
quickly the search converges, with a greater value leading to
more exploration, and sets the amplitude k (x,x) = σ2

a.
The search strategy will actively select the next policy

to attempt using the merit function defined as M (x) =
µ(x) + σ(x), where µ (x) and σ (x) are the expected return
and its standard deviation for the parameter configuration x
respectively. This value is sometimes also called the upper

Algorithm 1 Parameter Tuning
Initialize: Store the N initial points in Y and t

Loop: Calculate coefficients α and γ
Mbest = 0
for j = 1 to N

xo = yj

while not converged
Calculate update step s
xn+1 = s+ xn

end

if M(x) > Mbest
xbest = xn

Mbest = M(xbest)
end

end

Attempt and evaluate xbest
Store results in y� and t�

N = N + 1

confidence bound, but we introduce the term “merit” to avoid
any ambiguities in meanings. The GPR model is then

µ (x) = k (x,Y )T
�
K + σ2

sI
�−1

t,

σ (x) =
�
v (x),

where v (x) is the variance of the process v (x) = k (x,x)−
k (x,Y )T

�
K + σ2

sI
�−1

k (x,Y ), matrix [K]i,j = k(yi,yj)
is the Gram matrix, the kernel vector decomposes as
[k(x,Y )]j = k(x,yj), and the N previous data points
are stored in Y = [y1, . . . ,yN ] with corresponding returns
t = [R1, ..., RN ]T [15]. The hyperparameter σ2

s regularizes the
result. Both the mean and variance equations can be rewritten
in a simpler form as the weighted sum of Gaussians, giving

µ (x) =
�N

j=1k
�
x,yj

�
αj ,

v (x) = k (x,x)−
�N

i=1

�N
j=1k

� �x, 0.5
�
yi + yj

��
γij ,

where k� (x,y) = σ2
a exp(−(x − y)TW (x − y)), and

the constants are defined as αj = [(K + σ2
sI)

−1t]j and
γij = [(K + σ2

sI)
−1]i,j exp(−0.25(yi − yj)

TW (yi − yj)).
The variance indicates the system’s uncertainty regarding

the expected return, and not the variation of individual returns
about the mean. A similar merit function has previously
been employed for multi-armed bandits in metric spaces,
wherein GPR was used to share knowledge between discrete
bandits [18].

Having chosen to use an upper confidence bound framework
and a GPR merit model, the implementation of the policy
search has to be adapted to the merit function.

B. Upper Confidence Bound Strategy for Selecting Next Policy
Given a model of the merit function, the system requires

a suitable method for determining the policy with the highest
merit from the infinite available ones. The merit function will
most likely not be concave and will contain an unknown
number of maxima with varying magnitudes [15].



Determining the global maximum of the merit function
analytically is usually intractable [15]. However, numerically,
we can determine a set of locally optimal points. This set of
points will contain many of the maxima of the merit function,
especially near the previous data points. Given the set of local
maxima, the merit of each candidate is evaluated and the robot
executes the policy with the highest merit.

The method for finding the local maxima was inspired by
mean-shift [7], which is commonly used for both mode detec-
tion of kernel densities and clustering. Mean-shift converges
onto a local maximum of a given point by iteratively applying

xn+1 =

�N
j=1 yjk

�
xn,yj

�

�N
j=1 k

�
xn,yj

� , (1)

where k(xn,yj) is the kernel function, and yj are the N

previously tested maxima candidates as before. The monotonic
convergence via a smooth trajectory can be proven for mean-
shift [7]. To find all of the local maxima, mean-shift initializes
the update sequence with all previous data points. The global
maximum is then determined from the set of local maxima,
which is guaranteed to include the global maximum [12].

However, mean-shift is limited to kernel densities and is
not directly applicable for regression, because the αj and γi,j
weights are not always positive [7]. In particular, the standard
update rule (1) cannot be used, nor can we guarantee that the
global maximum will be amongst the detected local maxima.
However, global maxima often do have a positively weighted
point in their proximity, which would include them in the set
of detected local maxima.

Due to Eq. (1) not being applicable to our regression
framework, a new update step is required, which would
monotonically converge upon the local maximum of our merit
function.

C. Local Maxima Detection for Gaussian Process Regression
Given the model in Section II-A, the merit func-

tion now takes the form M (x) =
�N

j=1k(x,yj)αj +�
k (x,x)−

�N
i=1

�N
j=1k

�
�
x, 0.5

�
yi + yj

��
γij . To use the

policy described in Section II-B with this merit function, one
requires a monotonically converging update rule, similar to
that of mean-shift. To determine the local maxima of the merit
function, we propose the iterative update rule

xn+1 =
∂xµ+ ∂xσ

q (µ) + q(v)√
p(v)

+ xn = s+ xn, (2)

where ∂xµ =
�N

j=1 W
�
yj − xn

�
k
�
xn,yj

�
αj and

∂xσ =
N�

i=1

N�

j=1

2

σ
γijW

�
yi + yj

2
− xn

�
k
�
�
x,

yi + yj

2

�
.

The function q(·) returns a local upper bound on the absolute
second derivative of the input within the xn to xn+1 range.
Similarly, p(·) returns a local lower bound on the absolute
value of the input.

The update step described in Eq. (2) can be viewed as
the current gradient of the merit function, divided by a local

upper bound of the second derivative. This form of update
rule displays the desired convergence qualities, as shown in
Section II-D. The rule is only applicable because the Gaussian
kernels have bounded derivatives resulting in finite q (µ) and
q (v), and any real system will have a positive variance giving
a real non-zero

�
p (v).

To calculate the local upper and lower bounds, we first
define a region of possible xn+1 values to consider. Therefore,
we introduce a maximum step size m > 0, where steps with
larger magnitudes must be truncated; i.e., �xn+1 − xn� ≤ m.
Having defined a local neighborhood, q (µ), q (v), and p (v)
need to be evaluated.

In Section II-A, µ and v were represented as the linear
weighted sums of Gaussians. Given a linear sum, the rules of
superposition can be applied to evaluate q (µ), q (v), and p (v).
Thus, the upper bound of a function in the region is given by
the sum of the local upper bounds of each Gaussian, i.e.,

qm

��
N
j=1k

�
x,yj

�
αj

�
≤

�
N
j=1qm

�
k
�
x,yj

�
αj

�
.

As Gaussians monotonically tend to zero with increasing
distance from their mean, determining an upper bound value
for them individually is trivial. In the cases of q (µ) and q (v),
the magnitudes of the second derivatives can be bounded by
a Gaussian; i.e.,

�∂2
xk

�
x,yj

�
� < σ2

a exp
�
−6−1(x− yj)

TW (x− yj)
�
,

which can then be used to determine the local upper bound.
When working in multiple dimensions, it is advisable to

first rescale the space of data points, such that the weight
W is the identity matrix I . In this manner, the Gaussians
become isotropic, and the magnitude is only a function of the
displacement from its center yj . Finding an upperbound for
this form is straightforward.

We have thus defined an update step and its implementation,
which can be used to detect the modes of a Gaussian process
in a regression framework. The final algorithm is of order
O(N3), as are all exact GPR methods [6]. However, this
complexity scales linearly with the number of dimensions,
while discretization methods scale exponentially, making the
proposed GPR method computationally simpler when the
problem dimensionality is greater than three. The mode de-
tection algorithm can be easily parallelized for efficient im-
plementations on multiple computers or GPUs as an anytime
algorithm. Different upper confidence intervals σ, including
heteroscedastic ones, can be implemented by simply modeling
them with a second non-zero-mean GPR and neglecting the
standard variance terms.

This concludes the implementation details of our proposed
method, which is outlined in Alg. 1. The following section
gives an analysis of the mode detection method’s behavior.

D. Convergence Analysis
Given the proposed update rule, Lyapunov’s direct method

can be used to show that it converges monotonically to
stationary points. The underlying principle is that an increased
lower bound on the merit reduces the set of possible config-
urations, and therefore a continually increasing merit leads to



convergence. The following 1D analysis will show that only
an upper bound on the magnitude of the second derivative is
required for a converging update rule near a maximum.

The increase in merit is given by M(xn+1)−M(xn). Given
an upper bound u of the second derivative between xn and
xn+1, and the gradient g = ∂xM (xn), the gradient in the
region can be linearly bounded as

g − �x− xn�u ≤ ∂xM (x) ≤ g + �x− xn�u.

Considering the case where g ≥ 0 and therefore xn+1 ≥ xn,
the change in merit is lower bounded by

M (xn+1)−M (xn) =
� xn+1

xn
∂xM (x) dx

≥
� xn+1

xn
g − (x− xn)u dx.

This integral is a maximum when the integrand reaches zero;
i.e, g − (xn+1 − xn)u = 0. This limit results in a shift of the
form s = xn+1−xn = u−1g, as was proposed in Eq. (2). The
same update rule can be found by using a negative gradient
and updating x in the negative direction. The merit has thus
been shown to always increase, unless the local gradient is
zero or u is infinite. A zero gradient indicates that a stationary
point has been found, and variable u is finite for any practical
GPR. The update rule guarantees that the gradient cannot shift
sign within the update step, and thus ensures that the system
will not overshoot nor oscillate about the stationary point.
The update rule xn+1 = u−1g + xn therefore guarantees that
the algorithm monotonically converges on the local stationary
point.

III. EXPERIMENTS

In this section, we investigate the proposed method through
a series of experiments. In the first experiment, we focus on
a 1D benchmark problem. Using this benchmark problem, we
compare the proposed method to other approaches.

The second and third experiments show applications of
the proposed system. The second experiment demonstrates
how the method can be used to tune the low level control
of a robot in simulation. The system must actively tune
parameters is an eight dimensional space. The final experiment
investigates optimizing a grasping action for an object, and was
performed on a real robot. The grasping problem is posed as
a six dimensional problem. Therefore, both of the application
experiments test the system if multi-dimensional spaces.

A. Immediate Reward Benchmark Experiment
In this experiment, we focus on a 1D benchmark ex-

ample with immediate rewards. In this manner, we can
compare our proposed method to standard methods for the
continuum-armed bandits problem, a framework closely re-
lated to episodic reinforcement learning.

Along with our proposed method, we also tested UCBC [4],
CAB1 [9], and Zooming [10], as described below. The tested
methods were compared on the same set of 100 randomly
generated 7th order spline reward functions. The rewards were
superimposed with uniform noise of width 0.1, but restricted
to a range of [0, 1]. The space of parameters was also restricted

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trial

E
x
p

e
c
te

d
 R

e
w

a
rd

 

 

Upper Confidence Bound Continuum (UCBC)
Continuum Armed Bandits 1 (CAB1)
Zooming Algorithm
Proposed Method

Figure 2. The expected rewards over 100 experiments are shown for the four
compared methods. The results were filtered for clarity. Due to the differences
in experiment lengths, the x-axis uses a logarithmic scale. The magenta line
represents the maximum expected reward given the noise. The large drops in
the green and blue plots indicate the resetting points of the respective policies.
The error bars represent one standard deviation.

to a range between 0 and 1. For a fair comparison, evaluating
the initialization points counted towards the total number of
attempts. Additionally, none of the policies were informed of
the length of the experiment in advance, and efforts were made
to tune the parameters of each policy to achieve high mean
rewards.

1) Compared Methods: A key issue for any policy that
uses discretizations is selecting the number of discrete bandits
to use. Employing a coarser structure will lead to faster
convergence, but the expected rewards upon convergence are
also further from the optimal.

The UCBC policy divides the bandits into regular intervals
and treats each interval as a bandit in a discrete upper
confidence bound policy. After choosing an interval, a uniform
distribution over the region selects the bandit to attempt. The
number of intervals sets the coarseness of the system, and was
tuned to 10.

Instead of using entire intervals, the CAB1 policy selects
specific bandits at uniform grid points. A discrete policy is
then applied to this subset of bandits, for which the original
paper [9] proposed UCB1 [3]. The discretization trade-off is
dealt with by resetting the system at fixed intervals with larger
numbers of bandits, thus ensuring that the grid of bandits
become denser as the experiment continues.

The Zooming algorithm also uses a grid structure to dis-
cretize the bandits. In contrast to CAB1, the grid is not uniform
and additional bandits are introduced in high rewarding regions
to increase the density in these regions. A discrete policy is
then applied to the set of active bandits. Similar to CAB1, the
Zooming algorithm updates its grid sizes over time.

Our proposed method was initialized with 4 equispaced
points before using the standard methodology, with a kernel
width of W−1 = 0.01. All four methods were initially run
for 50 trials, as shown in Fig. 2. The proposed method was
subsequently run for an additional 5 trials to show that it



had successfully converged, while the other methods were
extended by 950 trials to demonstrate their convergence.

2) Results: The expected rewards for the four UCB
policies during the experiment can be seen in Fig. 2, where
our proposed method is displayed in black. The mean rewards
over the initial 50 trials are:

UCBC CAB1 Zoom Proposed
0.6419 0.4987 0.6065 0.9122

Using a fixed set of bandits gave UCBC an advantage
over CAB1 and Zoom during the first 50 trials. However,
Zooming was the most successful of the competitors over the
1000 trials at achieving high rewards, due to its ability to
adapt its grid to the reward function. Due to its continuous
representation, the proposed GP-based method was the most
adaptive approach and was capable of converging on maximal
points of the reward functions.

The low dimensionality of this benchmark scenario puts the
proposed GPR-based method at a disadvantage in terms of
computational complexity. Implementations of GPR for large
data sets do exist (e.g., Sparse GP [17]), which reduce this
complexity. The loss of accuracy incurred by such imple-
mentations is comparable to the accuracy limits inherent to
discretization methods, making these methods suitable alter-
natives to standard GPR. Ultimately, our proposed method
was able to find suitable parameter configurations within a
reasonable number of trials, and the standard GPR method
was well within its limits.

B. Controller Parameter Tuning Evaluation
In this experiment, we demonstrate how the proposed

method can be used to tune the parameters of a robot’s
controller. The robot is a simulated four degree of freedom
arm, consisting of a ball-and-socket shoulder joint and an
elbow joint. The simulation is based on the Mitsubishi PA-
10 shown in Fig. 1.

1) Controller Experiment Setup: The robot’s task involves
following a 2Hz sinusoidal trajectory in the joint space. In
order to ensure that the episodes are independent, the robot
comes to rest at a home position between each trial. At each
time step during the task, the robot receives a cost, or negative
reward, proportional to its tracking error. However, the robot
should avoid using excessively high gains and incurs a cost
for using larger gains. The negative returns are mapped to the
space [0, 1] using an exponential function.

The robot is controlled using proportional-derivative (PD)
controllers for each of the four joints. These controllers
represent the parametrized policy. The robot must therefore
tune eight parameters; i.e. proportional and derivative gains
for each joint. Approaches based on discretizing this 8D space
suffer from the “curse of dimensionally” [5].

The system is initialized by evaluating 30 initial parameter
configurations. These initial configurations are distributed as
small clusters in different regions of the parameter space.
In this manner, we can seed the search in multiple regions.
The maximal return that the robot can achieve in practice is
unknown. Achieving the highest return of one is impossible, as
it would require perfect tracking with the gains set to zero. We

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Trial

E
x
p

e
c
te

d
 R

e
w

a
rd

Figure 3. The expected rewards for each trial, or episode, during the
PD controller tuning experiment. The rewards are averaged over the three
experiments. The error bars represent a range of one standard deviation in
each direction. The initialization trials are not shown. The highest reward
obtained during initialization was only 0.393.

therefore set the hyperparameter σ2
a = 0.5 to avoid excessive

exploration of low-performance regions.
The experiment was run three times, with 100 episodes

each. The highest rewards acquired during the initialization
phase were 0.393, 0.367, and 0.379 for the three experiments
respectively. The results of the experiments are shown in Fig.
3.

2) Controller Experiment Results: The results show that the
automatic tuning method consistently found regions of high-
performance parameters. Whether the global maximum was
found is unfortunately not known. However, the final returns
are approximately double the return acquired by the best
initialization point, and represent a significant improvement
in performance.

The majority of the performance improvement occurred
during the first 30 trials. Although the rewards seem to have
converged towards the end of the experiment, the system
is actually continuing its search. The rewards remain high
because the system is focusing on parameter configurations
near the high-performance regions, and avoiding the low-
performance regions. Therefore, the system is successfully
executing the desired active exploration behavior for parameter
tuning. This experiment also shows that the proposed method
is applicable to multi-dimensional problems.

C. Robot Grasping Evaluation
In the previous section, we investigated how the proposed

method can be used to tune the parameters of a low-level
controller. In this section, we will demonstrate how the pro-
posed approach can be used to tune task-level parameters.
In particular, the robot will determine the parameters for
successfully grasping an object.

Previous works on active learning for robot grasping have
used K-nearest-neighbor [13] and classification tree [16] al-
gorithms to determine areas where the model of grasping



points needs to be improved. As the focus was on gathering
entire models of the object, the systems could rely on purely
exploratory policies. However, the task of actively learning
a good grasp of a given object is one of exploration vs.
exploitation, wherein the robot needs to find and use good
grasps without excessive exploration of the object.

1) Grasping Experiment Setup: The robot consists of a 7
degrees of freedom Mitsubishi PA-10 arm, a Barrett hand, a
pan-tilt unit, and a Videre stereo camera, as shown in Fig. 1.
Only stereo-vision and joint encoders are used as feedback in
this experiment. The robot’s task is to learn good grasps of a
table tennis paddle through attempting and evaluating grasps,
without the aid of a physics model.

The grasping action is defined by the six dimensional pose
(3D position and 3D orientation) of the hand in the object’s
reference frame. During the experiment, the robot will be
actively tuning these six parameters.

Each trial begins by computing the position and orientation
of the object to be grasped. In this manner, the grasps
can be defined relative to the object, and the object may
be shifted between grasps. The stereo camera extracts the
required information using the Early Cognitive Vision system
of Pugeault [14] and Kraft et al. [11] with the pose estimation
method by Detry et al. [8].

Once the object’s pose is detected, our algorithm determines
the grasp with the highest merit, which the robot subsequently
executes. If it successfully grasps the object, the robot attempts
to lift the object from the table, to ensure that the table is
not applying additional support to the object. The result is
evaluated and stored in the merit function for subsequent trials.

Although this trial structure is suitable for actively learning
grasps, determining a good grasp in six dimensions without
any prior knowledge is still an infeasible task. The system
was therefore initialized with a search region defined by
25 demonstrated grasps. The width parameters W of the
Gaussian kernel were optimized on these initial poses, while
σs and σa were tuned using data from previous grasping
experiments.

The return of an episode corresponds to the success of
the grasp. Successful trials are given a reward depending
on how little the fingers and object move while lifting the
object, thereby encouraging more stable grasps. The values are
restricted to the range zero to one, but are not deterministic
due to errors in pose estimation and effects caused by the
placement of the object. A reward of 0.7 or higher is generally
suitable for standard pick and place tasks.

2) Grasping Experiment Results: The experiment was run
until the robot had reliably converged upon a region, giving 55
trials. The experiment was performed five times to show the
repeatability of the method. After terminating the experiment,
the system had reached an overall success rate of 76.4% and
a mean immediate reward of 0.701. These values would be
expected to improve if the experiments were continued further.

The 25 imitation trials represented three distinct grasp areas:
at the handle, at the edge of the paddle, and orthogonal to the
plane of the paddle. This prior was intentionally chosen to
contain only a few good robot grasps, to test for robustness.
Despite the prior, the method converged upon a region with

high rewards in each experiment. The majority of the success-
ful grasps originate from the side of the paddle, even though
only 20% of the imitation grasps recommended this region.
No successful grasps were found in the region perpendicular
to the paddle’s plane. The handle had the most imitation data,
as this is where a human would hold the object. This region
yielded a few successful grasps, but of low reward due mainly
to the hand’s relatively large size.

Figure 4 shows the average rewards acquired over the course
of the experiment and the exploration/exploitation trade-off.
The system steadily shifts from exploration to exploitation,
with the returns displaying a similar trend. A rapid change
from exploration to exploitation could have caused premature
convergence and a lower final reward. The uncertainty also
steadily increases until trial 30, reflecting that small differences
at the beginning of the experiment can have large effects on
the system’s overall development. However, once good grasps
have been confidently determined, this uncertainty rapidly
diminishes and increased exploitation confines the exploration
to smaller regions.

The larger moves between attempted grasps, shown in
Fig. 4(B), indicate shifting exploration between different grasp
areas. All experiments began with trying the different regions.
Some experiments failed to quickly ascertain high rewards, and
continued to shift between the areas until trial 30, as can be
seen by the large uncertainty bars. Beyond this trial, the system
only displays decreasing amounts of shifting. Successes in
a region increase exploitation, leading to a more localized
search in the area. Some experiments initially succeeded at the
handle, but the low rewards in this region made it unsuitable.
Hence, exploration returned to finding higher rewarding areas.
This funneling of shift sizes indicates that the system is
converging onto smaller areas of higher expected gains. In this
manner, the active policy search focuses on searching through
high-performance regions.

IV. CONCLUSIONS
The episodic reinforcement learning method suggested in

this paper was implemented for robot grasping and controller
tuning, and consistently found good solutions. Accomplishing
these multi-dimensional task was made possible by using
a sample-based approach rather than a discretization of the
continuous space. The method also performed well compared
to standard approaches in a benchmark experiment.

Gaussian process regression was utilized by the algorithm
to model the upper confidence bounds, which also allowed
for prior knowledge to be easily incorporated into the system.
By using local maxima, the policy can quickly converge
onto higher rewarding regions. The usage of local maxima is
feasible because of the mean-shift-inspired search technique
described in this paper.

During the experiments, the system demonstrated the de-
sired gradual shift from exploration to exploitation. The search
regions also became more localized and refined, with a focus
on regions of high-performance parameters. Although the fo-
cus of this paper has been on robot applications, the proposed
method is suitable for a wide range of applications that require
parameter tuning.



5 10 15 20 25 30 35 40 45 50 55
0

0.5

1

Re
wa

rd

5 10 15 20 25 30 35 40 45 50 55
0

5

10

15

20

Gr
as

p 
Sh

ift 
Di

sta
nc

e

5 10 15 20 25 30 35 40 45 50 55
0

0.5

1

Trial Nr.

%
 E

xp
lor

at
ion

Figure 4. The graphs show the development of the attempted grasps over the run of the experiment. All values are averaged over the 5 runs of the experiment,
with error bars of +/- two standard deviations. Plot A shows the immediate reward of the trials. The horizontal black line indicates the upper confidence
bound of a point at infinity. Plot B shows the size in shift between subsequent grasps, with distances normalized by their respective width parameters. Plot

C shows the percent of the selected grasp’s merit induced by the confidence term. The horizontal black line indicates the 50% mark, below which grasps are
usually classified as exploitative rather than exploratory.

REFERENCES

[1] Rajeev Agrawal. The continuum-armed bandit problem,
1995.

[2] Peter Auer. Using upper confidence bounds for online
learning. In FOCS Proceedings, 2000.

[3] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer.
Finite-time analysis of the multiarmed bandit problem,
2002.

[4] Peter Auer, Ronald Ortner, and Csaba Scepesvari. Im-
proved rates for the stochastic continuum-armed bandit
problem. In COLT 2007 Proceedings, 2007.

[5] R. Bellman. Adaptive Control Processes: A Guided Tour.
Princeton University Press, 1961.

[6] Christopher M. Bishop. Pattern Recognition and Ma-
chine Learning. Springer, 2007.

[7] D. Comaniciu and Peter Meer. Mean shift: A robust
approach toward feature space analysis. In Transactions
on Pattern Analysis and Machine Intelligence, 2002.

[8] R. Detry, N. Pugeault, and J. Piater. Probabilistic pose
recovery using learned hierarchical object models. In
ICV Workshop, 2008.

[9] Robert Kleinberg. Nearly tight bounds for the
continuum-armed bandit problem. In NIPS Proceedings,
2004.

[10] Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal.
Multi-armed bandits in metric spaces. In ACM STOC
Proceedings, 2008.

[11] D. Kraft, N. Pugeault, E. Baeski, M. Popovic, D. Kragic,
S. Kalkan, F. Woergoetter, and N. Krueger. Birth of the
object: Detection of objectness and extraction of object
shape through object action complexes. International
Journal of Humanoid Robotics, pages 247–265, 2008.

[12] Ruben Martinez-Cantin. Active Map Learning for
Robots: Insights into Statistical Consistency. PhD thesis,
University of Zaragoza, 2008.

[13] A. Morales, E. Chinellato, A. H. Fagg, and A. P. Pobil.
An active learning approach for assessing robot grasp
reliability. In IRS Proceedings, 2004.

[14] N. Pugeault. Early Cognitive Vision: Feedback Mecha-
nisms for the Disambiguation of Early Visual Represen-
tation. Vdm Verlag Dr. Mueller, 2008.

[15] C.E. Rasmussen and C.K.I. Williams. Gaussian Pro-
cesses for Machine Learning. MIT Press, 2006.

[16] M. Salganicoff, L.H. Ungar, and R. Bajcsy. Active learn-
ing for vision-based robot grasping. Machine Learning,
1996.

[17] E. Snelson and Z. Ghahramani. Sparse gaussian pro-
cesses using pseudo-inputs, 2005.

[18] Niranjan Srinivas, Andreas Krause, Sham M. Kakade,
and Matthias Seeger. Gaussian process bandits with-
out regret: An experimental design approach. CoRR,
abs/0912.3995, 2009.

[19] Yizao Wang, Jean-Yves Audibert, and Remi Munos.
Algorithms for infinitely many-armed bandits. In NIPS
Proceedings, 2008.


