
Point Cloud Completion Using Extrusions
Oliver Kroemer, Heni Ben Amor, Marco Ewerton, and Jan Peters

Intelligent Autonomous Systems
Technische Universitaet Darmstadt

Email: {oli, amor, peters}@ias.tu-darmstadt.de

Abstract—In this paper, we propose modelling objects using
extrusion-based representations, which can be used to complete
partial point clouds. These extrusion-based representations are
particularly well-suited for modelling basic household objects
that robots will often need to manipulate.
In order to efficiently complete a partial point cloud, we

first detect planar reflection symmetries. These symmetries are
then used to determine initial candidates for extruded shapes
in the point clouds. These candidate solutions are then used
to locally search for a suitable set of parameters to complete
the point cloud. The proposed method was tested on real
data of household objects and it successfully detected the
extruded shapes of the objects. By using the extrusion-based
representation, the system could accurately capture various
details of the objects’ shapes.

I. INTRODUCTION

In the future, service robots working in everyday envi-
ronments will need to grasp and manipulate a wide range
of different objects. Given these unstructured environments,
many of the encountered objects will be novel to the robot,
and their complete shapes will initially be unknown. This
shape information is however vital for successfully and
efficiently manipulating the objects. Hence, the robot will
need to autonomously determine the shapes of novel objects.
One approach to acquiring a suitable 3D model is to scan

the object from different perspectives by either shifting the
object or moving around the object [1]. The information from
these multiple perspectives can then be accumulated to form
a 3D model. Although this approach can acquire accurate
object models, the process of acquiring multiple images is a
time-consuming and non-trivial task.
Alternatively, the robot can attempt to predict the shape

of an object from only a single perspective. The partial
model acquired from one perspective can be completed by
detecting patterns in the observed shape and extending these
patterns into the occluded regions [2]. For example, planes
of symmetry can be detected and, subsequently, used to
complete the point cloud accordingly [3].
In this paper, we show how the partial point clouds of

objects can be completed by detecting extruded shapes.
Extruded 3D shapes are 2D shapes that have been extended
into the third dimension along a particular path, such as a line
segment (linear extrusion) or circle (rotational extrusion). For
example, a cube is a linearly extruded square, and a sphere
is a rotationally extruded circle.
Our overall approach to detecting extruded shapes is simi-

lar to the shape from symmetry framework proposed by Thrun
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Figure 1. The top left image shows a heart-shaped box. The top right
image shows the depth data collected from the heart-shaped box. The bottom
images show the object models obtained using the extrusion-based approach
to point cloud completion.

and Wegbreit [4]. The robot first searches for planes of sym-
metry in the partial point cloud, which are entailed by both
linear and rotational symmetries. The detected symmetries
are then used to initialize local searches for suitable extrusion
parameters. Finally, the detected extrusions are evaluated
according to a scoring system, and used to complete the point
cloud when applicable. The main contribution of this paper is
therefore the use of extrusion-based, rather than symmetry-
based, representations.
Extrusion-based representations are well-suited for robots

working in everyday environments, wherein many objects are
manufactured. Not only are linear and rotational extrusions
often used to design objects, but they are also common in the
manufacturing process. As a result, many everyday objects
have basic extruded shapes. In this paper, we will be focusing
on completing the point clouds of basic objects that can be
described by single extrusions.
Although the proposed approach is similar to the shape

from symmetry method, extrusion-based representations can
complete some point clouds that the symmetry-based repre-
sentations cannot. For example, the extrusion-based approach
can complete surfaces by extruding edges, as illustrated in
Fig. 1. The heart-shaped box has two curved surfaces that
were not visible in the original point cloud. However, by



extruding the curved edges observed along the top of the
box, the extrusion-based approach could complete these parts
of the point cloud. The symmetry-based approach relies on
projecting observed surfaces into occluded regions. Given
that all of the observed surfaces are flat, this approach cannot
complete the curved surfaces.
A similar problem can occur when completing the point

cloud of a rectangular box when only two of the six sides
are observed. The extrusion-based approach can extrude one
surface according to the other in order to complete the entire
box. The symmetry-based approach would, however, have
problems completing the third pair of opposing surfaces.
There are obviously also situations in which a symmetrical
object cannot be modeled by an extrusion-based representa-
tion. Thus, these two representations complement each other
and could be used together.
The proposed method is explained in Section II, which

also includes an overview of related work in completing
point clouds for robot applications. The applicability of
the extrusion-based approach is demonstrated in Section
III, wherein the robot successfully completes the shapes of
various household objects from a single perspective.

II. EXTRUSION-BASED POINT-CLOUD COMPLETION
In this section, we explain how the observed point clouds

can be completed by detecting extruded shapes in the partial
point cloud. We begin by giving a brief overview of methods
used in robotics applications to complete partial point clouds.
In Section II-B, we detail the extrusion-based representation,
which is flexible enough to model a wide range of objects
shapes. Sections II-C to II-F explain how one can search for
extrusions in a partial point cloud.
The proposed method assumes that the robot’s vision

system acquires structured point clouds; i.e., each point cloud
corresponds to a pixel in a 2D grid. This form of data can be
acquired from dense stereo, time-of-flight camera, Kinect, or
other active stereo cameras.

A. Point Cloud Completion in Robotics
Determining the shape of an object from a single view is

a common problem in robotics. One approach to solving this
problem is to provide the robot with a library of previously
scanned models, which it can then fit into the observed scene
[5, 6, 7, 8]. This approach allows the robot to accurately
reconstruct the scene. However, it also relies on the robot
having a model of the object, and requires searching through
a large library of known objects. In the field of computer
vision, Pauly et al. [9] presented a method for completing
the shape of objects using the models of objects with similar
shapes. Hence, a smaller library of objects could be used, as
the objects generalize to novel objects.
Another approach is to fit primitive shapes, such as cubes

and cylinders or superquadrics, to the partial view [10].
Primitive shapes cannot only be used to represent simple
objects, but also parts of more complex objects [11]. The
primitive shapes are generally parameterized such that they
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Figure 2. The figure illustrates how the initial extrusion hypotheses are
generated. The top row corresponds to rotational extrusions, and the bottom
row demonstrates linear extrusions. (A) The 3D objects of a tube and a box
are shown. (B) A top view of the objects, as well as the detected plane of
symmetry indicated by the dashed line. (C) The point clouds are divided
into two regions, indicated by red and green. The arrows in the top image
indicate the observed surface normals for these regions, which are used to
divide the points. (D) The ICP algorithm is used to slide one region into
the other. The rigid body transformation found by the ICP algorithm is then
used to compute the extrusion parameters.

can be adapted to model a range of similar object parts. The
ability to adapt the primitives in this manner is important, as
the additional flexibility allows the model to capture more
details of the object.
Point cloud completion can also be performed by pre-

dicting the full shape of an object from symmetry [4, 3].
As already mentioned, this approach is the most similar
to the one presented in this paper. Thrun and Wegbreit
proposed a hierarchy of symmetries that can be detected
from a partial view and, subsequently, used to complete the
point cloud [4]. They begin by performing a grid search over
the entire object for valid local symmetries, followed by a
local optimization of the symmetry parameters using the hill
climbing algorithm. The resulting candidate symmetries are
evaluated using a scoring system based on the probability of
observing the completed point cloud. The symmetry-based
approach to point cloud completion was extended to robot
manipulation by Bohg et al. [3].

B. Extrusion-based Object Representations
The goal of the work presented in this paper is to detect

extruded shapes of objects from a single perspective. In this
manner, the robot can attempt to complete the shapes of the
objects in occluded region, such that the model can be used
for manipulating the object.
An extruded shape consists of two components: the profile

and the path. The profile is the basic 2D shape that the 3D
extruded shape is based on. The path is the line indicating
how the profile is extended into the third dimension. In this
paper, we focus on paths defined by straight line segments
(linear extrusions) and circles (rotational extrusions). This
family of shapes allows us to represent a wide range of
different primitive shapes, including spheres, rectangular
prisms, cylinders, and cones.



However, the robot will also encounter more complex
extruded shapes. Hence, we need the representation to be
flexible enough to capture these shapes in detail. We achieve
this goal by representing the profile of the object as a 2D
point cloud. This low-dimensional point cloud can be used
to represent a wide range of shapes. The profile can, thus,
also be directly obtained from the observed 3D point cloud.
The path of a linear extrusion is defined by a 3D coordinate

system and the length of the extrusion. The direction of the
extrusion is always in the coordinate frame’s z-direction, and
the 2D profile defines the shape in the x-y plane. For a
rotational extrusion, we define the axis of rotation as a 3D
line. The 2D profile points define the location along the axis
of rotation, as well as the radial distance from this axis.

C. Detecting Planes of Symmetry
One important characteristic of both linear and rotational

extrusions is that they result in symmetric shapes; i.e. the ex-
trusions entail a mirror symmetry. Therefore, to find extruded
shapes in the point cloud, we begin by first searching for
planar reflection symmetries. Instead of using a grid search
to detect these symmetries [4, 3], we adopt the fast voting-
based approach proposed by Mitra et al. [12].
First, the normal vector and curvature are computed for

each point in the point cloud. The normal vector can be
obtained by computing the eigenvectors for a local neighbor-
hood of points. The normal direction is given by the eigen-
vector with the smallest eigenvalue, which points towards the
camera. The eigenvectors can then be computed for the local
neighborhood of normal directions. The resulting two largest
eigenvalues are used to approximate the local curvature.
Subsequently, each point is compared with every other

point in the cloud in order to find pair-wise symmetries. The
plane of symmetry for two points xa and xb is located at
the midpoint 0.5(xa + xb), with a normal aligned with the
direction xb−xa. However, this pair-wise symmetry is only
considered valid if the points’ normals are also reflected in
this plane, and the difference in curvature values between the
two points is below a given threshold.
The parameters of each valid plane of symmetry are treated

as one vote. The goal is therefore to find parameter settings
with many votes, which correspond to large symmetric
regions in the point clouds. In order to find these planes of
symmetries, the distribution of symmetry plane parameters
is modelled as a kernel density estimate [12]. All of the
modes of this distribution can then be found using mean-shift
clustering [13]. The corresponding symmetry parameters
form the basis for local searches for extruded shapes.

D. Computing Initial Extrusion Parameters using ICP
Given a plane of symmetry, a set of extrusion parameters

needs to be computed. The steps used to perform this
computation are outlined in Fig. 2.
We begin by dividing the point cloud into two parts

according to the plane of symmetry. To detect extrusions,
we divide the points according to which side of the plane of

symmetry the point lies on. To detect rotations, we separate
the points according to their normals n and the symmetry
plane’s normal p. If the inner product pTn is greater than
zero, the point is assigned to the first region and otherwise
it is assigned to the second region. The dividing of the point
cloud into two regions is illustrated in Fig. 2C.
Once the point cloud has been divided into two parts,

we need to find a rigid-body transformation that shifts one
of the parts to the pose of the other. We use the iterative
closest point (ICP) algorithm to compute this transformation
[14]. The computed transformation should have the same
effect as sliding the part along the extrusion’s path. Hence, a
linear extrusion should result in a translation, and a rotational
extrusion should result in a rotation about an axis (see Fig.
2D). Given the transformation computed using ICP, we can
compute the direction of the path for the linear extrusions,
and the axis of rotation for rotational extrusions.
It should be noted that the symmetry-detection algorithm

proposed by Mitra et al. [12] also uses ICP to detect sym-
metries more accurately. However, their approach searches
for symmetries, and then uses ICP to find the same type
of symmetry more accurately. Instead, our approach first
detects planar reflection symmetries, and then uses ICP to
find extrusions, which are a different type of pattern. In this
manner, we exploit the self-similarity property of extruded
shapes.

E. Local Search
Given an initial hypothesis for an extrusion, the parameter

and profile can usually be further improved using a local
search. The 2D point cloud for representing the extrusion’s
profile also needs to be determined at this stage.
For linear extrusions, the profile will be a plane of points

that is orthogonal to the path of the extrusion. Hence, we
must align the direction of the path d with the normal of
the profile plane. We perform this local alignment using an
iterative procedure. We first define the set of profile points
as those points that have a normal n such that −dTn > τ ,
where 1 > τ > 0 is a threshold value. Given this set of
profile points, the direction of the path is updated as the
negative mean of the profile points’ normals. The set of
profile points can then again be updated according to the
update path direction. In order to improve the robustness
of this process, we begin with a low threshold value, e.g.,
τ = 0.5, and increase the value in each iteration up to a
maximum value, e.g. τ = 0.95. After the path direction has
been aligned with the normal of one of the object’s sides, we
need to fit a plane to this side. We first find the location of
this plane along the path direction by computing the position
of the current profile points in this direction and selecting
the mode. The points that are near to this plane are then
used to define the final set of profile points. The direction of
the extrusion path is given by the normal of this plane. The
length of the extrusion path is set according to the length
of the surfaces that are orthogonal to the direction of the
extrusion.



Figure 3. The columns correspond to the results for a cup, a funnel, a pot, a heart-shaped box, a roll of toilet paper, and a box respectively. The first
row shows a picture of each object. The second row shows the depth image taken of the object, which corresponds to the partial point cloud. Darker
red regions are further away than yellow regions, and blue regions have a depth of zero. The bottom two rows show the reconstructed object shape from
different angles. These reconstructions were made from one perspective of the object and the 3D meshes were not post-processed.

For rotational extrusions, we want to set the rotational
axis such that many of the profile points are mapped onto
each other. We begin by projecting the data into the 2D
profile space according to the initial hypothesis, and marking
points in dense regions as profile points. For each of the
m profile points, located at 3D points x1:m, we compute
the position along the rotation axis a1:n and the distance
from the rotation axis r1:m to the point. We also compute
the normalized direction d1:m from each point to the closest
point on the axis. For the ith data point, we now compute the
locally weighted mean radius r̂i =

∑m
j=1

wijrj/
∑m

k=1
wik

where the weight wij is given by wij = exp(−(ai−aj)2/v2)
and v is a length scale parameter. This radius value r̂i is an
approximation of the desired radius at this point along the
axis. Using this desired radius, we create a new 3D point
yi = xi + r̂idi. Once all y1:n have been computed, we fit
a line to these points, which then becomes the new axis of
rotation. Note that the point yi will be closer to xi than the
axis of rotation if ri > r̂i and, thus, will draw the axis of
rotation closer to xi. Similar to the linear extrusion case, we
iterate over these steps multiple times to acquire a suitable
axis of rotation. The final profile for the rotational extrusion
can be smoothed by using local averaging over the radii
component.

F. Visibility Score
In the final stage of the extrusion detection process, we

assign each candidate extrusion a score in order to select
the one that best represents the robot’s observations. Similar
to the scoring systems used in symmetry-based approaches
[4, 3], the score is defined according to how well the

completed point cloud matches the observed scene. Our basic
scoring system is based on the depth images obtained from
the camera, such as the one shown in Fig. 3. This data
structure is similar to a z-buffer in computer graphics, and
indicates which regions in space are occluded. Using the 3D
positions of the observed points, and their pixel location in
the z-buffer, we can compute a projection matrix P between
the 3D camera space and the 2D z-buffer pixel space.
The partial point cloud is first completed according to the

extrusion parameters currently being evaluated. In order to
compare different extrusions in a fair manner, each point in
the profile should be used to generate the same number of
extruded points. The completed point cloud is then projected
into the z-buffer space using the projection matrix P . Each
projected point is assigned to the nearest pixel in the z-buffer.
A projected point is assigned a score according to its

z value in the camera coordinate frame zc and the depth
value of the assigned z-buffer pixel zp. We also define
a length scale parameter h. If the depth values are close
together ‖zp − zc‖ < 2h, then the point provides evidence
for the extrusion and, hence, is assigned a positive score of
exp(−0.5(zp − zc)2/h2). If the point has a depth greater
than the z-buffer zp − zc > 2h, its location corresponds to
an occluded region and, hence, it is assigned a score of zero.
Finally, if the point has a depth that is less than the z-buffer
zp − zc < −2h, then it contradicts the observed scene and,
hence, it is assigned a negative score, e.g. −3. The score
for the entire point cloud is given by the sum of the scores
obtained by the individual points, divided by the number of
points in the profile.
The extrusion with the largest score is used to complete



the partial point cloud, which can then be used to create a
3D model for manipulating the object.

III. EXPERIMENT
The proposed method was implemented and applied to a

set of common household objects. The results show that the
method can detect the extruded shapes in the point clouds,
and even capture details of the objects’ shapes.

A. Setup and Results
In this experiment, we evaluated the accuracy of the

extrusion paths found by the proposed method. In particular,
we measured the errors in the radii of rotational extrusions
and the path lengths of linear extrusions.
Using a standard Kinect camera, we collected 30 partial

point clouds of common household objects. The objects were
placed individually on a table, and the table was segmented
out of the point cloud. The segmented point cloud was then
subsampled to obtain around 3000 points. The approach
presented in Section II was then used to complete each of
the partial point clouds. The desired type of extrusion was
pre-specified for each object.
The actual lengths and radii of the extrusions were also

measured manually using the point cloud. By measuring
these distances directly from the point clouds, camera-
specific calibration errors do not affect our results. The
measured distances were then compared to those found by
the point cloud completion method.
The robot found suitable extrusions for 28 of the 30

images (93% success rate). In one of the failed trials, the
robot extruded an incorrect surface. In the other failed
trial, the robot did not find a suitable axis of rotation for
describing the shape of the object. In the successful trials,
the error in the computed distances could be measured. The
distribution over these errors is shown in Fig. 4. The mode
and mean of the distribution are at −1.36 mm and −1.19
mm respectively. The standard deviation of the distribution
is 2.23 mm. Detecting the planar symmetries for each object
in the experiments took on average 19.9 seconds.
Fig. 3 shows a set of models obtained using the proposed

method. For the rotationally extruded objects, a stochastic
optimization was used to improve the alignment of the axis
of rotation and increase the visibility score. The 3D models
were generated from the completed point clouds using the
ball-pivot algorthim [15]. Some of the objects may seem
shorter than the actual object, which is a result of the table
segmentation. Standard post-processing methods, such as
smoothing, were not applied to the point clouds, in order
to display the quality of the profiles more clearly. For a real
application, we recommend post-processing the 3D model.

B. Discussion
The results show that the extrusion-based approach could

accurately complete the objects’ shapes in most of the trials.
In practice, the accuracy of the model would decrease due
to other sources of error, such as the camera calibration.
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Figure 4. The distribution over errors in extrusion lengths and radii. The
distribution was modelled using a kernel density estimate with a Gaussian
kernel with a width of σ = 0.1cm. A negative value indicates that the
extruded shape found by the proposed method was smaller than the actual
size.

However, the computed models should still be suffficiently
accurate for performing coarse manipulations with the ob-
jects.
The results also show that the voting-based symmetry

detection method performs well even when applied to noisy
data. The detected planes of symmetry allowed the robot
to find valid extrusions in most of the objects used in this
experiment.
The computed extrusions are slightly biased towards being

too small. This may be a result of the relatively large
penalization for overestimating the size of the extrusion.
However, a slight bias is also to be expected for some objects,
such as the cup. The point cloud of the cup contains points
from both the outside and the inside of the cup. Hence, a
rotational extrusion that maps the front-outer points onto the
back-inner points would achieve a higher visibility score,
but would also result in a smaller cup radius than the actual
radius.
The models in Fig. 3 show the importance of using a

flexible profile representation. The extrusions are capable of
modelling details, such as the lip of the pot and the hole in
the middle of the toilet paper roll. The quality of the profiles
could be improved by reincorporating more points from the
original point cloud, once a valid set of extrusion parameters
has been found. Fine details, such as the texture of the cup,
are obviously lost due to noise in the data.
One shortcoming of the current method is that it can some-

times detect degenerate extrusions when a linear extrusion is
applied to a rotationally extruded object, or vice versa. For
example a rotational extrusion applied to a box may detect a
cylinder that fits into the shape of the box. We plan to address
this problem in the future in order to render the method more
robust.
The method is also able to cope with additional parts of



Figure 5. The top left image show the watering can. The top right image
shows the depth image taken of the watering can. Darker red regions are
further away than yellow regions, and blue regions have a depth of zero.
The bottom images show the results of applying the proposed point cloud
completion approach to the watering can’s partial point cloud. The watering
can is an example of an object that consists of multiple extruded parts.

the object that are not extruded, as shown by the handle
of the cup. In the future, we will investigate how a robot
can robustly decompose more complex objects into multiple
extruded parts, using the method proposed by Mitra et al.
[12]. An early result of this approach applied to a watering
can is shown in Fig. 5. Although the system failed to
complete the top handle, and incorrectly completed the side
handle, these initial results are promising.
Overall, the experiment has demonstrated that the pro-

posed method could detect most of the extruded shapes and,
thus, accurately complete the point clouds.

IV. CONCLUSION
In this paper, we investigated how point clouds of basic

objects can be represented and completed by linear and
rotational extrusions. These extrusions are represented in
a flexible manner, which allows them to accurately model
a wide range of shapes. By detecting local symmetries in
partial point clouds, we can search for extrusions in an
efficient manner, and use these extrusions to complete the
point cloud. In the experiment, the proposed method was
applied to point clouds obtained from real household objects,
and successfully completed most of the partial point clouds.
In the future, we plan to use the proposed method in order
to plan grasps on novel objects. In particular, the proposed
method allows us to compute contact points for occluded
regions of the object.
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