
A Flexible Hybrid Framework for Modeling
Complex Manipulation Tasks

Oliver Kroemer, Jan Peters

Abstract—Future service robots will need to perform a wide

range of tasks using various objects. In order to perform complex

tasks, robots require a suitable internal representation of the task.

We propose a hybrid framework for representing manipulation

tasks, which combines continuous motion planning and discrete

task-level planning. In addition, we use a mid-level planner

to optimize individual actions according to the task plan. The

proposed framework incorporates biologically-inspired concepts,

such as affordances and motor primitives, in order to efficiently

plan for manipulation tasks. The final framework is modular, can

generalize well to different situations, and is straightforward to

expand. Our demonstrations also show how the use of affordances

and mid-level planning lead to improved performance.

I. INTRODUCTION

Autonomous robots will need to deal with a wide range
of different tasks and encounter many different objects in
unstructured environments. In order to perform such complex
tasks, robots must have a representation of the tasks that can
be adapted to task variations autonomously.

Given a model of a task, a robot can begin to plan which
actions to execute to achieve the specified goals. However,
modeling arbitrary manipulation tasks is not trivial. A suitable
modeling framework must be sufficiently flexible for repre-
senting a wide range of tasks, while simultaneously keeping
the problem tractable. To handle new tasks and new objects it
needs to be modular and straightforward to extend.

In this paper, we present a first attempt at a modeling
framework for representing robot manipulation tasks. The
proposed framework combines concepts from hybrid systems
[9], [1] with insights into human manipulation and action
sequence determination.

Neuroscience experiments indicate that humans appear to
use forward models to predict the outcomes of their actions,
and plans accordingly [14]. Models of manipulation tasks offer
similar benefits for robots. However, rather than considering
complex tasks as a single action, people apparantly divide
these tasks into discrete segments. Such segmenting of actions
can be observed in the changing responses to stimulii during
a manipulation task [13], [4], as well as on a neurological
level[6]. We can model these discrete phases of continuous
actions using a hybrid system framework [9], [1].

The concept of motor primitives also considers actions as
being formed from a discrete library of elementary behaviors
[5], [28], [11]. Such motor primitives are flexible actions that
can be easily adapted to new situations. In this manner, only
a few motor primitives are needed to perform a wide range
of tasks. The proposed framework uses motor primitives to

Max Planck Institute, Spemannstraße 38, 72076 Tubingen
{oliverkro, jan.peters}@tuebingen.mpg.de

Figure 1. Robot with an optimal grasp of hammer for subsequent pushing
and striking actions.

reduce the number of actions that need to be represented. The
framework also incorporates a mid-level planner to optimize
the motor primitive’s hyperparameters according to the task
plan.

The theory of affordances is another fundamental aspect
of human manipulation skill[7], [23]. A central concept of
this theory is that objects are classified by the actions that
can be performed with them. For example, a sharp edge
affords cutting, and a chair and a table both afford holding
up objects. In this manner, humans can directly determine the
resources available for performing actions and generalize their
manipulation plans between similar objects. In this paper, we
adopt an affordance-based representation of objects and their
corresponding actions.

II. MODELING OF MANIPULATION TASKS

The proposed framework uses a hierarchical structure to
keep the planning problem tractable. In this section, we
describe the proposed framework in a bottom-up manner. We
begin by representing the objects involved in the task as tokens
(see Section II-A). These tokens contain the parameters that
define the objects and their state. The objects’ actions and
interactions are defined as continuous systems controlled by a
small set of hyperparameters (see Section II-B). Each action
of these actions requires a suitable set of affordance-bearing
objects to be executed.

These action representations are incorporated into a plan-
ning framework in order to perform more complex tasks (see
Section II-C). Given the structured nature of manipulation
actions, we can define a network of possible transitions
between actions. Once a task plan has been determined, we use
a mid-level planner to optimize the actions’ hyperparameters

accordingly (see Section II-D). In Section III, we demonstrate
a few key aspects of the framework on two manipulation
examples.

A. Objects as Object Tokens

Before describing the manipulation of objects and their
interaction, we must first define how the objects themselves
are represented in our framework. Every object involved in
a manipulation task is represented by an object token. An
object token is an abstract representation of a single object,
which defines the properties and state of the object. Using
concepts from the theory of affordances, we structure these
object tokens’ properties according to the actions that the
object affords.

The affordances of an object are indicated by the object’s
token being a member of a corresponding affordance class.
For example, if an object can be rolled, then the corresponding
object token is a member of the ROLLABLE affordance class.
This affordance class contains the properties relevant to the
affordance; e.g., the ROLLABLE affordance class includes the
AXIS OF ROTATION and RADIUS OF ROTATION properties. The
properties of an object are thus inherited from its affordance
classes. Since most objects afford assorted actions, most tokens
will be members of multiple affordance classes. The properties
of the object are given by the union of the affordance classes’
properties; i.e., if two affordance classes have the same prop-
erty, then the object only has one instance of the property.

The use of affordance classes does not only link similar
objects, but also creates a modular representation of the
object’s properties. This modularity allows many properties
of an object to be defined, but only the few relevant to the
current action to be employed. Each affordance class can also
be associated with a set of characteristic visual features [22],
[8].

The object tokens do not only represent the manipulated
objects, but also the parts of the robot used to perform the
manipulations. For example, a bimanual robot would have two
tokens to represent its two arms and hands. Removing one arm
and hand would remove one token.

These tokens represent the capabilities of the robot, and are
therefore associated to capability classes. Capability classes
have all properties of affordance classes but in addition also
define basic actions such as move the hand up, down, left,
and right. The robot has direct access to these basic actions.
Examples of capability classes include STATIC ENDEFFECTOR,
which can push objects, and 2-VIRTUAL-FINGERED HAND,
which can additionally perform basic grasps. Affordance
classes and object classes are collectively referred to as object
classes.

The concept of object tokens was originally inspired by the
use of tokens in Petri nets [2], [21]. In Petri nets, tokens do
not only allow for an infinite state space, but represent the
resources available within the system. Similarly, the proposed
object tokens represent the available affordances as resources
for performing manipulation tasks.

B. Actions and Interactions as Action Blocks

Having individually modeled objects, the next aim has
to be representing higher level behaviors, actions, and the
interactions between objects. In the proposed framework, each
type of action is represented by an action block. Example
action blocks include RESTING, PUSHING, ROLLING, and
CARRYING. In order to perform an action, the robot must have
access to objects that afford the actions. The affordances and
capabilities available to the robot are given by the current set
of object tokens. The affordances and capabilities required to
perform an action are defined by the set of object slots of the
action block. Each slot is associated with one object class,
which defines the type of object needed to perform the action.
In order to execute an action, each of its slots must be assigned
exactly one object token. The token assigned to a slot must be
a member of the object class associated with that slot. In this
manner, only the objects that afford a certain action can be
assigned to the corresponding action block. Action blocks can
have one or multiple slots depending on the requirements of
the action. By associating the slots to affordance classes, these
symbolic classes become grounded and can even be tested for
new objects [18], [3], [8].

Each action block also incorporates a continuous system,
which defines how the properties of the assigned objects
behave. The continuous system is a function mapping the
current states and basic actions of the objects to a new set of
states. This mapping is applied to the assigned objects at every
time step. This mapping function is only defined for the states
and objects associated with this action; i.e., we only include
the properties and action of the object classes associated to the
object’s slots. Thus, we use of the object tokens’ structure to
focus on the relevant properties of the objects. The continuous
system allows the state and basic actions of one object to affect
the states of other objects. Object tokens must be assigned to
all slots of an action block, or else the continuous system is
ill-defined.

As the action blocks define the behaviors of the objects,
all tokens must be assigned to an action. Objects not being
manipulated will often be assigned to the RESTING block. The
robot may generate any number of identical copies of an action
block. The number of actions that can actually be performed
in parallel is limited by the availability of the required object
tokens.

If an action block contains one or more slots associated to
capabilty classes, then the system incorporates basic actions. In
order to define a higher level action, we must define a policy
for these basic actions. A policy is a function mapping the
current state of the continuous system to the execution of basic
actions; i.e., they are a form of feedback law. By incorporating
these policies into the continuous system, the resulting system
becomes more autonomous. Assigning objects to an action
block will thus result in the desired action on the objects.

Rather than specifying fixed policies, the policies can be
defined with respect to a small set of hyperparameters. For
example, a PUSH block’s policy can be fixed to push an object
10cm forward. However, the uses of this action block would
be extremely limited. A more efficient approach would be to

define DISTANCE and DIRECTION hyperparameters, and adjust
the policy accordingly. By using the parameterized policies,
the robot can handle the same range of situations using fewer
action blocks.

In biology, such flexible policies are known as motor
primitives [5], [28], and represent building blocks of move-
ment generation in animals. Motor primitives have also been
studied for robot applications [12], [27]. These robot motor
primitives generalize well to different situations and can be
easily acquired from human demonstrations using imitation
learning [11]. Individual motor primitives can also be learned
and optimized to improve the performance of the action [16].

Once a motor primitive’s policy has been defined, the
continuous system can autonomously perform the action. The
actions are therefore ready to be sequenced using a planner.

C. High-level Task Planning

To perform complex manipulation tasks, the robot must plan
a suitable sequence of action blocks. In particular, it must
determine how to reassign object tokens from one set of action
blocks to another. Each block requires a set of entry and exit
conditions in order to use them in a planning framework. The
entry conditions define the states that objects are allowed to
be in when assigned to the action block. Similarly, the exit
conditions define the states that objects must be in when
they are unassigned from the action block. These entry and
exit conditions correspond to the pre- and post- conditions
of actions used in planning frameworks [20]. A planner can
generate plans by chaining together actions with overlapping
entry and exit conditions, while generally disregarding the
inner workings of the action blocks [17].

When an action begins or ends, it must do so for all objects
involved. Therefore, a reassignment can only occur when the
entry and exit conditions are fulfilled for all of the action
block’s slots. Objects must also always be assigned to an
action block. Hence, a reassignment of tokens is only possible
when both the current exit conditions and the subsequent entry
conditions are met. However, these constraints do not require
that all of the objects from one action block are reassigned
to the same next action block. Therefore, the tokens from
multiple blocks can be reassigned to a single block, and tokens
from a single block can be reassigned to multiple blocks.

Given the entry and exit conditions, the action blocks
could potentially be used for planning. However, manipulation
tasks have underlying structures that can be exploited when
planning. In particular, actions are often preceded by specific
actions, and not all actions can be performed sequentially. For
example, an object cannot be held without being grasped first.
These underlying structures can be treated as partial plans,
and allow for additional levels of abstraction in hierarchical
planning [20].

In order to represent the structure of manipulation tasks, we
utilize concepts from the hybrid systems literature. Hybrid sys-
tems can be modeled as a set of continuous systems connected
together as the nodes of a discrete automatum [1]. Similar
as inhybrid systems approaches, the object tokens perform
discrete reassignments between the continuous systems of the

action blocks. Therefore, we define a discrete network of
allowed token reassignments between slots.

The reassignment network is defined as a set of nodes
and edges. The nodes correspond to the slots of the various
action blocks. An edge between two nodes indicates that a
reassignment between the corresponding slots is valid. An
edge may be directed if a reassignment is not reversible.
The allowed reassignments of tokens also define the allowed
transitions between action blocks. When action blocks are in
series, without branching, they represent discrete phases of
a larger action [4]. These serial actions do not increase the
planning complexity any more than a single action would.

The network of action blocks will grow as the robot learns to
perform new action and tasks. The additional complexity of a
large network will usually result in slower planning. However,
the size of the network can be reduced by only considering
the parts of the network associated with the affordances of
the objects that need to be manipulated. If the task cannot
be accomplished with the reduced network, the network can
be expanded by incorporating other available object as tools.
In this manner, the robot can effectively generate a network
tailored to the current task.

D. Mid-Level Planner

Planning tasks entirely at the level of basic actions is
generally infeasible for complex tasks. Similarly, high-level
task planning is also inefficient if vast numbers of actions are
available. In order to reduce the number of discrete actions, we
use motor primitives to create a small set of actions controlled
by hyperparameters. Since we are using motorprimitives, we
also incorporate a mid-level planner. The mid-level planner
is responsible for optimizing the hyperparameters used by the
action blocks’ policies, according to the plan set by the task
planner.

Selecting suitable hyperparameters for individual motor
primitives has been previously studied [15], [19]. However,
humans are known to adapt their actions depending on the
following actions [6], [24]. We therefore propose applying
similar approaches for optimizing the hyperparameters of
entire sequences of motor primitives.

Selecting hyperparameters can generally be considered as an
optimization or reinforcement learning problem [15], [16]. The
main optimization is the minimization of the distance between
the final state of the plan and the desired goal state. The
by optimizing over hyperparameters, the optimization problem
has a smaller dimensionality than when optimizing the entire
low level trajectory. Additionally, some hyperparameters will
not affect the final goal state and may be selected arbitrarily,
thus further reducing the hyperparameter space.

In addition to optimizing the final goal state, individual
actions can also be assigned performance measures and, thus,
optimized. The performance measure of an action effects not
only the optimal hyperparameters of that action, but also
the hyper parameters of previous actions. An example of
using performance measures for individual actions is given
in Section III-B.

E. Perspectives on Affordances
In the proposed framework, the affordances of objects

are treated as resources for performing actions. In this sec-
tion, we explain how this approach incorporates the different
perspectives of affordances. The three main interpretations
of affordances are the environmental perspective, the agent
perspective, and the observer perspective [26].

The environmental perspective treats affordances as a set of
properties inherent to the objects being manipulated. Thus, a
ball affords throwing. This view of affordances is incorporated
by the affordance classes of the object tokens. The observer
perspective considers pairs of agents and objects as having
affordances. Thus, a ball and a robot arm together afford
throwing. The slots of the action blocks define the required
pairings between objects and agent capabilities. Hence, the
proposed framework incorporate the observer’s perspective of
affordances. The agent perspective is similar to the observer
perspective, but only incorporates the affordances specific to
that agent. Thus, for a robot arm, a ball affords throwing. These
agent-specific affordances are given by the action blocks that
can be used with the agent’s capability tokens.

The proposed framework also models special cases of these
perspectives. One special case of the observer perspective is
when the observer has similar capabilities to the observed
agent; e.g. a humanoid robot observing a human, or a child
observing an adult. Due to their similar capability tokens,
it is straightforward to infer that the actions afforded to the
acting agent are also afforded to the observer. This special case
of the observer perspective is the bases of imitation learning
and programming-by-demonstration [11]. In neuroscience, this
learning ability is generally attributed to mirror neurons [25].

The agent perspective can also be expanded to incorporate
multiple agents. An agent may have insufficient capability
tokens to perform certain actions; e.g., lifting a heavy object.
However, a group of agents can pool their capability tokens
together in order to perform these more demanding actions.
Thus, the affordances apply to a group of agents rather than
individual agents. This situation is important for scenarios
wherein robots must cooperate to efficiently perform a task.

III. EXAMPLE MANIPULATION TASKS

In this section, we demonstrate key concepts of the proposed
framework through two exemplary case studies. The first
example focuses on the use of tokens to represent available
affordances. The second one demonstrates the use of the mid-
level planner in the context of grasping objects.

A. Rolling and Tumbling
In this experiment, we demonstrate how the proposed frame-

work incorporates the concepts of affordances as resources.
The robot’s task is to move heavy objects in a controlled
manner. Some objects, such as cylinders, can be rolled. The
rolling action can be performed with a single motor primitive.
It is therefore represented in Fig. 2 as a single action block
D1 with one slot for the hand and another for the object
being rolled. Other objects, such as rectangular boxes, must
be tumbled using two hands. This tumbling action involves

Figure 2. The diagram shows the tumbling and rolling system. Each of the
dark gray blocks represents an action block, with the index given next to it.
The circles in the blocks represent their slots. The colors of the slots indicate
the class they are associated with. The arrows show the allowed reassignments
of tokens between slots. In the bottom left is the list of tokens. The colored
circles next to the token names mark the classes that the objects are members
of. The concave box P5 does not have a complete circle as its membership to
the ROLLING (green) and the TUMBLING (blue) classes is initially unknown.
D1 is ROLLING, D2 to D4 are TUMBLING, D5 REACHING, and D6 is
RESTING.

1) D2(P1,P2,P3) 2) D2(P1,P2,P3)

3) D3(P1,P3)D5(P2) 4) D4(P1,P2,P3)

5) D4(P1,P2,P3) 6) D3(P2,P3)D5(P1)

7) D2(P1,P2,P3) 8) D2(P1,P2,P3)

Figure 3. The images show the system in different stages of the two-handed
tumbling procedure. The two blue cylinders are the hands P1 and P2. The
green object is the box P3. Under each image is the step number, and the
allocation of tokens to the continuous systems.

Figure 4. The diagram shows the pushing and striking system. Each of
the dark gray blocks represents a continuous system, with the index given
next to it. The circles in the blocks represent their slots. The colors of the
slots indicate the class they are associated with. The arrows show the allowed
reassignments of tokens between slots. At the bottom is the list of tokens. The
colored circles next to the token names mark the classes that the objects are
members of. D5 and D6 are identical to those in Fig. 2. D7 is GRASPING.
D8 is STRIKING. D9 is PUSHING. D10 is CARRYING. D11 is RELEASING.

tipping the box onto an edge, repositioning the hands, and then
tipping the box over completely. An example of this procedure
is shown in Fig. 3.

The reassignment network of this model is visualized in
Fig. 2, including the allowed reassignments of tokens. The
tumbling action is divided into three action blocks. Action
block D2 represents tipping the box on its edge using two
hands on opposite sides of the box. Action block D4 represents
a similar tipping movement, but with the hands on adjacent
sides of the box. Finally, action block D3 represents tilting
the box with one hand on a side adjacent to the pivotal edge.
Action block D3 has a slot for the hand, and another for the
tumbling object. Blocks D2 and D4 have additional slots for
the second hand. The RESTING action is given by action block
D6, and a curved reaching movement is given by action block
D5. This figure also shows the tokens used in the initial setup,
including a box P3 and a cylindrical object P4. The box with
concave sides P5 is novel, and its membership to the ROLLING
and TUMBLING affordance classes is unknown.

A key contribution of this paper is the concept of robot
capabilities as a complement to object affordances. We will
therefore first demonstrate how the affordances of objects
change depending on the object capabilities. Given only one
hand token, the robot cannot access the tumbling actions even
if a suitable box is available. Thus, the boxes do not afford any
interaction for the one-handed robot. However, if we supply
the robot with a second hand-arm system, then the number of
hand tokens is increased to two. From the perspective of this
bimanual robot, the box affords being tumbled, as described by
Fig. 3. If we further increase the available number of hands to
four, we can tumble two boxes simultaneously. Alternatively,
the robot can use the four hands to tumble the box faster.
Rather than repositioning the hands on the box with action
blocks D3 and D4, the robot can tilt the box using D2

and switch between the pair of hands holding the box. This

Figure 5. The hammer P9 used in the experiment. The blue marking defines
the part of the handle that affords grasping. The red marking defines the
impact point used for striking objects. The green marking is the region of the
hammer’s head used for pushing objects. The black and gray circle indicates
the center of mass.

exchanging of hands is similar to jumping from stage 2 to
stage 7 in Fig.3.

The robot can also use its knowledge of classes to label new
objects, such as the box with convex sides P5. By morphing
the geometry of the labeled objects P3 and P4 to the new
object P5 [10], we can predict suitable hand placements for
the new object. The affordances can then be tested by applying
the corresponding actions. When tested, P5 will not roll, but
can be tumbled. Thus, the robot can determine the affordances
of new objects.

B. Task-specific Grasping

In this demonstration, we focus on using the mid-level
planner to determine the optimal grasps of a hammer, given
different tasks. While most objects afford a range of grasps,
only a few may be suitable for the subsequent actions. The
system of action blocks is shown in Fig. 4, wherein D5 and
D6 are the same as in Fig. 2. The relevant actions for this
experiment are grasping D7, striking D8, and pushing D9.
The dexterous hand is a member of two classes, since it has
additional grasping capabilities.

In this experiment, we use the hammer P9 shown in Fig.
5. The striking action is a standard hammering movement.
The corresponding hyperparameters include the target point
to strike. The pushing action uses the head of the hammer
to push the object in a straight line, with variable initial
and final states. The grasping policy consists of a reaching
motion and a closing of the hand. The graspable points of an
object define the exit conditions of the grasping action. The
grasping action’s hyperparameters define the grasp location.
The hammer affords being grasped along the length of its
handle, as shown by Fig. 5 in blue.

The performance measure of the grasping action is linear
in the amount of contact between the hand and the object that
is compliant. The striking action has a performance that is
quadratic in the final velocity of the tool’s impact point (see
Fig. 5), minus a linear term for the final velocity of the hand.
The performance measure of the pushing reward function is
quadratic in the torque applied to the hand, multiplied by the
distance pushed.

The system has been tried out with three different plans
following grasping: pushing only, striking only, and pushing
then striking. The goal state of the object has been varied

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

20

Final Object Location (m)

O
p
tim

a
l G

ra
sp

 L
o
ca

tio
n
 (

cm
)

Push + Strike
Striking
Pushing

Figure 6. The plot shows how the optimal grasp of the hammer varies on
the following actions. As the final object location increases, the object had
to be pushed further from its initial 0.1m position. The length of the handle
limits the grasp location to 15cm.

between 0.1m and 1m from the origin. When the plan involved
pushing, the object started at a distance of 0.1m from the
origin and had to be pushed to the final location. When only
striking, the object started at the final location. Due to the low
dimensionality of the hyperparameter space, we could perform
the optimization by directly sampling from the space. More
complex systems may require more advanced methods.

The results are shown in Fig. 6. The results show that the
hammer is held closer to its center of gravity when used for
pushing, and closer to the end of the handle for striking.
The optimal grip depends on how far the object will be
pushed. When multiple actions are performed, the grasp is
automatically selected to suit the entire set of actions. Thus, the
system adapts its grasps depending on the subsequent actions.
The rewards can be easily transferred to other objects with
the same class memberships. This ability to adapt grasps is
only possible because of the flexibility of the motor primitive
policies and the mid-level planner.

IV. CONCLUSION

The framework proposed in this paper represents manip-
ulation tasks in a modular manner. Objects are represented
as interchangeable tokens, which allows actions to be com-
pactly represented as continuous systems. These actions form
the foundation of an hierarchical, and hybrid, representation
of tasks. By representing objects as tokens, the resources
available for manipulating are straightforward to define. The
experiments indicate that the framework may be applicable to
assorted manipulation tasks and adaptive to variations in the
task.

REFERENCES

[1] Michael S. Branicky. Introduction to hybrid systems. In Dimitrios
Hristu-Varsakelis and William S. Levine, editors, Handbook of Net-
worked and Embedded Control Systems, pages 91–116. Birkhäuser,
2005.

[2] Christos G. Cassandras and Stephane Lafortune. Introduction to Discrete
Event Systems. Springer-Verlag New York, Inc., NJ, USA, 2006.

[3] Paul Fitzpatrick, Giogio Metta, Lorenzo Natale, Sajit Rao, Giulio
Sandini, and Giulio S. Learning about objects through action - initial
steps towards artificial cognition. In In Proceedings of the 2003 IEEE
International Conference on Robotics and Automation, pages 3140–
3145, 2003.

[4] J. R. Flanagan, M. C. Bowman, and R. S. Johansson. Control strategies
in object manipulation tasks. Curr Opin Neurobiol, 16(6):650–659,
December 2006.

[5] Tamar Flash and Binyamin Hochner. Motor primitives in vertebrates
and invertebrates. Current Opinion in Neurobiology, 15(6):660 – 666,
2005. Motor sytems / Neurobiology of behaviour.

[6] Leonardo Fogassi, Pier Francesco Ferrari, Benno Gesierich, Stefano
Rozzi, Fabian Chersi, and Giacomo Rizzolatti. Parietal Lobe: From Ac-
tion Organization to Intention Understanding. Science, 308(5722):662–
667, 2005.

[7] James J. Gibson. The Ecological Approach To Visual Perception.
Lawrence Erlbaum Associates, new edition edition, September 1986.

[8] Shane Griffith, Jivko Sinapov, Matthew Miller, and Alexander Stoytchev.
Toward interactive learning of object categories by a robot: A case
study with container and non-container objects. In Proc. IEEE 8th
International Conference on Development and Learning, pages 1–6,
Washington, DC, USA, 2009. IEEE Computer Society.

[9] T. A. Henzinger. The theory of hybrid automata. In LICS ’96:
Proceedings of the 11th Annual IEEE Symposium on Logic in Computer
Science, page 278, Washington, DC, USA, 1996. IEEE Computer
Society.

[10] Ulrich Hillenbrand. Non-parametric 3d shape warping. In Proc.
International Conference on Pattern Recognition, 2010.

[11] A. Ijspeert, J. Nakanishi, and S. Schaal. learning attractor landscapes for
learning motor primitives. In advances in neural information processing
systems 15, pages 1547–1554. cambridge, ma: mit press, 2003.

[12] A. Ijspeert, J. Nakanishi, and S. Schaal. learning attractor landscapes for
learning motor primitives. In advances in neural information processing
systems 15, pages 1547–1554. cambridge, ma: mit press, 2003.

[13] Roland S. Johansson and J. Randall Flanagan. Coding and use of
tactile signals from the fingertips in object manipulation tasks. Nat
Rev Neurosci, 10(5):345–359, 2009.

[14] Mitsuo Kawato. Internal models for motor control and trajectory
planning. Current Opinion in Neurobiology, 9(6):718–727, 1999.

[15] J. Kober, E. Oztop, and J. Peters. reinforcement learning to adjust robot
movements to new situations. In proceedings of robotics: science and
systems (r:ss), 2010.

[16] J. Kober and J. Peters. practical algorithms for motor primitive learning
in robotics. (2):55–62, 2010.

[17] George Konidaris and Andrew Barto. Skill discovery in continuous
reinforcement learning domains using skill chaining. In Y. Bengio,
D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors,
Advances in Neural Information Processing Systems 22, pages 1015–
1023. 2009.

[18] Dirk Kraft, Nicolas Pugeault, Emre Baseski, Mila Popovic, Danica
Kragic, Sinan Kalkan, Florentin Wörgötter, and Norbert Krüger. Birth
of the object: Detection of objectness and extraction of object shape
through object-action complexes. I. J. Humanoid Robotics, 5(2):247–
265, 2008.

[19] O. Kroemer, R. Detry, J. Piater, and J. Peters. combining active learning
and reactive control for robot grasping. (9):1105–1116, 2010.

[20] S. M. LaValle. Planning Algorithms. Cambridge University Press,
Cambridge, U.K., 2006. Available at http://planning.cs.uiuc.edu/.

[21] Drighiciu Mircea, Manolea Gheorghe, Petrisor Anca, and Popescu Mar-
ius. On hybrid systems modeling with petri nets. In Proc. international
conference on System science and simulation in engineering, pages
73–78, Stevens Point, Wisconsin, USA, 2008. World Scientific and
Engineering Academy and Society.

[22] Luis Montesano and Manuel Lopes. Learning grasping affordances from
local visual descriptors. In Proc. IEEE 8th International Conference on
Development and Learning, pages 1–6, Washington, DC, USA, 2009.
IEEE Computer Society.

[23] Erhan Oztop, Hiroshi Imamizu, Gordon Cheng, and Mitsuo Kawato. A
computational model of anterior intraparietal (aip) neurons. Neurocom-
puting, 69(10-12):1354–1361, 2006.

[24] Jennifer Randerath, Yong Li, Georg Goldenberg, and Joachim Herms-
dörfer. Grasping tools: Effects of task and apraxia. Neuropsychologia,
October 2008.

[25] Giacomo Rizzolatti and Laila Craighero. The mirror-neuron system.
Annual Review of Neuroscience, 27:169–192, 2004.

[26] Erol Sahin, Maya Cakmak, Mehmet R. Dogar, Emre Ugur, and Gokturk
Ucoluk. To Afford or Not to Afford: A New Formalization of Affor-
dances Toward Affordance-Based Robot Control. Adaptive Behavior,
15(4):447–472, December 2007.

[27] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert. learning movement
primitives. In Proc. of International Symposium on Robotics Research.
Springer, 2004.

[28] K. A. Thoroughman and R. Shadmehr. Learning of action through
adaptive combination of motor primitives. Nature, 407(6805):742–7,
|2000|.

