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Abstract—The direct perception of actions allows a robot
to predict the afforded actions of observed objects. In this
paper, we present a non-parametric approach to representing
the affordance-bearing subparts of objects. This representation
forms the basis of a kernel function for computing the similarity
between different subparts. Using this kernel function, together
with motor primitive actions, the robot can learn the required
mappings to perform direct action perception. The proposed
approach was successfully implemented on a real robot, which
could then quickly learn to generalize grasping and pouring
actions to novel objects.

I. INTRODUCTION

In order to plan complex manipulation tasks, a robot
must know which actions it can perform with the available
objects. In unstructured environments, such as in homes
or service industry settings, the potential manipulations of
objects will not be pre-specified. Hence, the robot must
autonomously determine the possible actions, and adapt these
actions according to the specific object being manipulated.

Physically interacting with objects helps an agent to learn
object affordances [1], which can then be predicted for novel
objects by learning direct mappings from the object’s visual
features to specific actions. This approach is known as direct
perception of actions, and differentiates itself from indirect
methods by not requiring intermediate representations, such
as object classes [2], [3]. Direct action perception is a
fundamental concept in J. J. Gibson’s theory of affordances
[2], which proposes that agents regard objects in their envi-
ronment according to the actions that these objects allow, or
“afford”, the agent to perform.

The three main components of an affordance are: 1)
the perception of an object entity, 2) the action behavior
performed by the agent, and 3) the resulting effect of the
action on the object [4], [5]. In this manner, the affordances
predicted from visual features can be verified by performing
the action and observing the resulting effects. The experience
gained from such physical interactions can subsequently be
used to predict affordances more accurately in the future.
Other physical properties, such as friction and weight distri-
bution, also factor into whether an object affords a particular
action. However, this additional data is usually only acquired
once the robot has begun manipulating the object. The focus
of this paper is on predicting affordances from only vision
data.

In this paper, we propose an example-based approach for
robots to learn direct mappings from object point clouds
to motor primitive actions. The proposed approach is based
on two key insights: 1) the perception of objects and the

Figure 1. The image on the left shows a human demonstrating a pouring
action to the robot using a watering can. The image on the right shows how
the robot has learned to generalize the action to a cup using the kernelized
direct action perception framework.

interactions between objects are based largely on the objects’
surface geometries [2], and 2) the affordances of objects are
often related to only subparts of objects and not the whole
object [6]. For example, wedge-shaped subparts can be used
for cutting, bowl-shaped subparts can be used for holding
fluids, and handle-shaped subparts can be used for grasping.
Given these two insights, we propose that the robot should
generalize between objects by searching for subparts with
similar geometries to those that have previously afforded an
action.

One of the main challenges of the direct action percep-
tion approach is finding a set of suitable visual features
for representing objects. If the features do not differentiate
between objects that afford an action and those that do not,
then it is impossible for the robot to learn the affordance.
However, using many features increases the dimensionality
of the learning problem and, hence, requires more samples to
learn. We propose a non-parametric representation of objects,
which is based directly on the point clouds perceived by
the robot. In this manner, the robot does not rely on hand-
designed features and can learn to discriminate between any
objects that are not visually identical. This representation
forms the basis of a kernel function, which allows the robot
to compute the similarity between subparts. Given this kernel
function, kernel-based machine learning methods [7] can be
used to learn the shapes of affordance-bearing subparts. The
actions are represented using motor primitives, which are
flexible and straightforward to adapt to different situations
[8], [9].

The kernel function forms the basis for predicting the



probability that applying the motor primitive to a particular
subpart will result in the desired effect. This probabilistic
prediction is based on kernel logistic regression, and can be
initialized with a single demonstration of a successful action.
After initialization, the robot can autonomously learn to
predict suitable actions for new objects through interactions
with other objects in its environment. The proposed approach
is called kernelized direct action perception (K-DAP). The K-
DAP method was implemented on a real robot, as shown in
Fig. 1, which was then able to quickly generalize grasping
and pouring actions from single demonstrations to various
novel objects.

II. KERNELIZED DIRECT ACTION PERCEPTION

In order to accurately learn direct action perception, the
robot requires versatile representations of both the observed
objects and its own actions. Suitable representations for
objects and actions are presented in Section II-A and II-B
respectively. In Section II-C, we explain how the robot can
learn to predict the success probability of applying an action
to a specific subpart of an object. We discuss how the
proposed approach relates to previous work on affordance
learning in Section II-D.

A. Non-parametric Representations of Surface Structures

In this section, we present a non-parametric representation
of surface geometries, as well as how the similarity between
two subparts of objects can be computed. The proposed
representation is based directly on the point clouds acquired
from 3D vision systems, such as dense stereo, time-of-flight
cameras, and LADAR.

A subpart S is defined by the tuple (O,w, P ), where
O is the subpart frame, w(x) is the weighting function,
and P is a 3D point cloud describing the surface of the
object. The subpart frame O is a coordinate system defined
relative to the real object, which specifies the location and
orientation of the subpart in the task frame. The point cloud
P can then be defined as a set of n points at positions
pi ∈ R3; i ∈ {1, ..., n} relative to the subpart frame O.
The weighting function w(x), where x ∈ R3 is also defined
relative to O, gives weights to those regions of the point
cloud that pertain to this particular subpart. Given the point
cloud P of a whole object, the weighting function defines
the points that are relevant for describing the subpart. For
the experiments in Section III, the weighting function was
defined as an isotropic Gaussian function centered on the
subpart frame O.

The surface distribution of subpart S can, thus, be repre-
sented by the surface function f(x), which has a high value
when x is close to the subpart’s surface, and a lower value
when it is further away. This function can be represented non-
parametrically by centering a weighted Gaussian distribution
on each of the points pi from the point cloud. Hence, the
surface distribution of the subpart is represented as

f(x) =
n
∑

i=1

w(pi) exp(−h−2 ‖x− pi‖
2).

where h ∈ R is a length scale parameter, which can be
automatically set using methods such as leave-one-out cross-
validation [10]. This non-parametric representation preserves
the original vision data and is sufficiently flexible to model
any perceivable differences in shape.

In the K-DAP framework, the robot learns to predict the
potential actions for an object based on how similar its sub-
parts are to previous subparts. The robot, therefore, requires
a similarity measure for comparing the surface distributions
of different subparts. The similarity measure, for comparing
subpart Sα = (Oα, wα, Pα) and subpart Sβ = (Oβ , wβ , Pβ),
is given by the non-parametric surface kernel (NSK):

k (Sα, Sβ) =

´

R3 fα(x)fβ(x)dx
√

´

R3 fα(x)fα(x)dx
√

fβ(x)fβ(x)dx
.

This kernel represents the normalized inner product of the
two surface distribution functions, and is closely related to
probability product kernels [11]. The value of the kernel has
a range from 0 to 1 and the maximal value of 1 is obtained
iff the normalized surface distributions of the two objects are
identical; i.e. the shapes of the subparts are perceived to be
the same. Higher kernel values are achieved when there is
more correlation between the surface distribution functions.
When comparing two subparts Sα and Sβ , both subparts
usually use the same weighting function; i.e., wα(x) =
wβ(x)∀x ∈ R3. Therefore, we exclude the subscript for the
weighting function in the remainder of this paper. This kernel
function allows the robot to use kernel methods [7] from
machine learning to predict from a subpart’s shape whether
it affords an action.

As the cloud points are represented by Gaussians, the
kernel value is straightforward to compute analytically. The
terms in the denominator need to only be computed once for
each subpart. Computing the numerator requires integrating
over nαnβ Gaussians. This computation can be performed
efficiently by first pruning out points with low weights
w(pi) ≈ 0, and only considering pairs of points that are
near each other according to the length scale parameter h.

B. Linking Visual Features to Action Parameters

Rather than only predicting whether a specific action
is applicable to an object, the robot must also adapt its
actions according to the subpart it is manipulating. Therefore,
rather than using fixed actions, the robot should use motor

primitives. A motor primitive represents a continuous range
of similar actions that an agent can perform [12]. The specific
execution of a motor primitive is defined by a small set of
meta-parameters, which are selected according to the context
of the action.

For the robot, we propose using dynamic systems motor
primitives (DMPs) [8], [9], which have been successfully
used to allow robots to perform a wide range of motor skills
[13], [14], [15]. A DMP can be learned from a single, or
multiple [15], demonstrations of an action and defined such
that the only open meta-parameters are the movement’s initial
state ys and goal state yg [8]. In the K-DAP framework,
the motor primitives are used to define the trajectory of the



Algorithm 1 K-DAP Learning Procedure

INITIALIZATION FROM A SINGLE DEMONSTRATION:

1 Observe example object to obtain point cloud P0

2 Define example subpart S0 = (P0, w,O0):
O0 defines location of subpart in task frame
w(x) defines region of P0 relevant to subpart

3 while human is demonstrating action:
Record the trajectory τ of O0 within the task frame

4 Set start state and goal states:
ys = τ(t = 0) and yg = τ(t = end)

5 Learn DMP action A(ys, yg) from τ
6 Set result of demonstration as successful E0 = 1
7 Compute maximum-likelihood estimate of P (E|S,A)

FOR EACH NEW SUBPART Sm:

1 Observe new object to obtain point cloud Pm

2 Search Pm for subpart frame Om:
Om = argmaxO P (Em = 1|(Pm, w,O), A)

3 Set start state ys = current pose of Om in task space
4 Robot executes DMP action A(ys, yg)
5 if action was successful Em = 1, else Em = −1
6 Compute maximum-likelihood estimate of P (E|S,A):

v = argmaxṽ
∑m−1

i=0
− ln

(

1 + exp(−Eiṽ
Tk(Si))

)

OUTPUT:

Affordance-bearing subpart predictor:

P (E = 1|S,A) =
(

1 + exp(−vTk(S))
)

−1

subpart frames, e.g. Oγ , relative to the task’s reference frame.
As a result, the robot always moves the selected subparts of
objects in a similar manner when performing a specific task.

From a developmental viewpoint, 7-10 months old in-
fants can acquire skills quicker when a caregiver provides
a single demonstration of the task [16], and draws the
infant’s attention to task-relevant features and sub-goals [17].
Similarly, the robot’s actions may be learned from a human
demonstration of the task. This demonstration provides the
agent with an example of an affordance-bearing subpart
S0, as well as the trajectory τ of this subpart frame O0

during the task. This trajectory can then be used to learn
the movement parameters of the DMP. The initial and final
states are given by the start of the trajectory ys = τ(t = 0)
and its termination state yg = τ(t = end). We denote the
learned DMP action, and its hyper-parameters, as A(ys, yg).

Given the point cloud Pγ of a novel object to manipulate,
the action selection process involves searching the point
cloud for a new subpart frame Oγ on which to execute
the DMP. The robot selects the subpart frame corresponding
to the subpart with the highest probability of affording the
action. The probability of a subpart being affordance-bearing
is computed using the robot’s previous interactions with
similar objects. In Section II-C, we will discuss in detail
how the robot can compute these probabilities.

Once the new subpart frame Oγ has been chosen, the initial
state of the motor primitive is defined by the initial state of

the subpart frame ys = Oγ . The goal state yg , which is
also defined relative to the task frame, is assumed to be the
same as the one used in the demonstration. For tool usage
and similar tasks, the goal state can be defined relative to
another object’s subpart Sε by defining the task frame as
Oε. The selection of the new subpart frame Oγ thus sets the
necessary meta-parameters of the DMP and, hence, defines
a specific action that the robot can execute A(ys, yg).

When selecting a subpart frame Oγ , the robot is defining a
new subpart Sγ = (Pγ , w,Oγ). In this manner, each choice
of action becomes linked to a specific set of visual features.

C. Learning to Predict Affordance-bearing Subparts

The DMP behaviors in Section II-B are defined for all
possible subparts. However, the action will only be success-
ful, and result in the desired manipulation, if the selected
subpart affords the action. The final part of the K-DAP
framework is therefore to predict whether applying the motor
primitive A(ys, yg) to a subpart will result in the desired
manipulation. We will assume that the effects corresponding
to successful E=1 and unsuccessful E=−1 action executions
are predefined. The effect classes can also be learned in an
unsupervised manner [1], [18], but this is beyond the scope
of this paper.

Rather than using a classifier to directly predict the out-
come class E, we propose using kernel logistic regression
(KLR) to learn the probability of a subpart affording a
specific motor primitive. The action A on subpart S is then
predicted to be successful; i.e., E = 1 if p(E = 1|S,A) >
p(E = −1|S,A). A continuous probabilistic representation
is useful for selecting a suitable action, as it allows the robot
to differentiate between multiple subparts that are labeled as
successful. The KLR approach is based on the maximum
entropy principle, and will assign probabilities close to 50%
to subparts that are dissimilar to all previous subparts. Using
KLR, the predicted probability of successfully applying an
action A to a subpart S is given by

p(E = 1|S,A) =
(

1 + exp(−vTk(S))
)

−1
,

where the ith vector element of k(S) is given by [k]i =
k(S, Si−1) , the S0...m−1 are the m previously encountered
subparts, and v ∈ Rm is a learned weight vector. One KLR
is learned for each affordance. The logistic sigmoid function
ensures that the probability is valid and p(E = 1|S,A) +
p(E = −1|S,A) = 1.0.

The weight vector v is computed by finding the maximum
likelihood solution

v = argmax
ṽ

[

m−1
∑

i=0

ln
(

(

1 + exp(−Eiṽ
Tk(Si))

)

−1
)

]

,

where Ei ∈ {−1, 1} indicates whether subpart Si had
afforded the action A. This optimization problem is convex
and, therefore, the global maximum can be found using the
Newton-Raphson method. In practice, this optimization is
usually computed with a small amount of regularization,
which penalizes large values for v. Regularization avoids
over-fitting v to the previous examples and results in better



Figure 2. The picture shows the four objects used in the pouring task
experiment. The robot was initially shown how to pour with the large
watering can on the left. The robot then had to autonomously learn to
generalize this demonstrated action to the three objects on the right: a plastic
cup, a different watering can, and a small jug.

generalization to new subparts. Once the weight vector v has
been learned, the robot can predict the success probability of
applying the motor primitive to novel objects.

D. Related Work

The direct action perception and affordance learning
frameworks have been receiving an increasing amount of
interest from the robotics community [4]. However, previous
work in this area has largely focused on learning the af-
fordances related to entire objects, such as lifting and rolling
[19], [3]. Learning affordances at the subpart level has usually
only been studied in the context of learning visual cues for
specific actions, such as grasping [20], [21], [22]. These
approaches use predefined parametric features to represent
objects and their subparts. Instead, the K-DAP approach uses
a more flexible non-parametric representation that is based
directly on the robot’s observations. Our previous work on
learning affordances through self-exploration [1] and parental
scaffolding [23] has also usually used a fixed set of pre-
programmed behaviors. The proposed approach uses DMPs
in order to learn actions from a single human demonstration,
and adapts these actions to different subparts.

The direct linking of point clouds and actions, as used
in the K-DAP framework, was inspired by the work of J.J.
Gibson on optical flow for affordances [2]: When the DMP
trajectory of a subpart frame O is combined with the relative
position of the point cloud P , the robot actually defines a
3D trajectory for each point in the point cloud. Therefore, if
two subpart frames Oα and Oβ follow the same trajectory,
and two points are located at the same positions relative
to their subpart frames pαi = pβj , then these two points
will also have the same trajectory. If many points match
between the subparts, then these points would induce the
same optical flow for the two objects. Therefore, a high
NSK value between two subparts k(Sγ , Sβ) ≈ 1 effectively
predicts that the same action on the two subparts will result
in a similar optical flow.

III. EXPERIMENTS

The proposed method was realized on the robot shown
in Fig. 1. The robot consists of a seven degrees-of-freedom
Motoman robot arm, a five-fingered Gifu robot hand, and a
Swiss Ranger time-of-flight camera.

The robot was given the tasks of generalizing grasping
and pouring actions from one object to various other objects
that afforded these actions. A key goal of these experiments

was to test whether the K-DAP framework can be initialized
with a single demonstration. The experiments show that the
robot can autonomously learn to generalize the demonstrated
actions to new objects.

The general framework of the experiments is explained in
Section III-A. The grasping experiment is detailed in Section
III-C, and the pouring experiment is explained further in
Section III-D.

A. Learning Initial Affordances from Demonstration

Inspired by infant development [23], a parental scaffolding
approach is used to teach the robot new motor-skills. First,
a human provides an initial demonstration of how the task
is performed. Afterwards, the robot is allowed to learn by
interacting with similar objects, using the demonstration as
an initialization point. The grasping and pouring actions
were demonstrated to the robot using kinesthetic teach-in,
as shown in the left image of Fig. 1. By guiding the robot
through the required movements, the demonstrator could
transfer their knowledge of the motor skill, to the robot, in
an intuitive manner.

The demonstrations for both the grasping and the pouring
actions were performed using the large watering can shown
in Fig. 2. An important part of the demonstration is defining
the relevant subpart. For many tools, the subpart frame can
be defined at the main point of contact between the tool
and the object that the tool is manipulating. The subpart
frames were therefore positioned on the points pi closest
to the other object being manipulated. For grasping, the
subpart was positioned on the handle, closest to the hand
frame, and aligned with the approach direction of the hand.
For pouring, the subpart frame was positioned on the lip
of the spout, closest to the container being poured into, and
aligned with the tipping axis of the pouring motion. Given the
demonstration of the task and the subpart frame, a suitable
DMP could be learned.

The point clouds of the objects were acquired from a
single perspective of the objects using the robot’s time-of-
flight camera. The object’s point cloud was automatically
segmented from the background and the robot’s arm. The
points were weighted according to an isotropic 3D Gaussian
weighting function w(x) = exp(−ĥ−2x2). The width pa-
rameter ĥ was set to match the size of the subpart; i.e., the
size of the handle for grasping, and the head of the spout for
pouring.

B. Searching for Affordance-bearing Subparts

After initializing the system with a human demonstration,
the robot had to learn to predict affordance-bearing subparts
through interactions with novel objects. For each attempt at
the task, the robot evaluated the subpart that it found to
be the most likely to succeed Om = argmaxO P (Em =
1|(Pm, wm, O), A). The robot started each trial by acquiring
a new point cloud Pm for the current object. The objects
were shifted between attempts, but always positioned such
that an affordance-bearing subpart was perceivable and the
action could be executed.
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Figure 3. The top left image shows the grasp demonstrated to the robot by
a human teacher. Using the K-DAP approach, the robot learned to generalize
the demonstrated grasp two five other objects. The other five images show the
final grasps learned for these objects. The fraction below each image indicate
the number of successful grasps that the robot executed while learning to
grasp this object. A 5/5 indicates that the robot could immediately generalize
the demonstrated action to these objects

The search for the new subpart frame consisted of two
stages. In the first stage, the likelihood of success is evaluated
for each point in the object point cloud. The orientations
of the subpart frames were set by aligning the principle
component directions of the weighted point clouds. The
point with the highest success probability was then used
to initialize the second stage of the search. This second
stage used a stochastic local optimization procedure to find
a suitable subpart frame, which could then be evaluated.
The entire searching process required on average only two
seconds per previous subpart.

After executing the DMP on the subpart, the results of the
attempt were evaluated and the learned success probabilities
were updated. Although we hand-coded the effect classes
for this experiment, the robot could have also discovered
them by monitoring and categorizing the created effects
autonomously [1], [18]. The updated KLR was then used
to determine the subpart for the next attempt. In order
to maintain independent experiments, the learning process

was reinitialized before the robot began interacting with a
new object. In a real world setting, the robot would not
reinitialize between objects, and would instead accumulate
the knowledge gained from multiple objects. The K-DAP
approach for learning affordances from physical interactions
is summarized in Alg. 1, including the initialization from a
human demonstration.

C. Grasping

In the first experiment, the robot was given the task of
generalizing a grasping action to five novel objects. The
ability to grasp objects is an important prerequisite to many
other manipulation actions. All of the objects had handles,
but of varying shapes and sizes. The robot was given only
five attempts to grasp each of the test objects, resulting in 25
grasps overall. An attempt was considered a success E = 1
if the robot placed its fingers such that it could lift the object
afterwards. Otherwise, the attempt was a failure E = −1.

The results of the experiment are shown in Fig. 3. A total
of 21 of the 25 attempted grasps were successful (84%), and
the robot was able to immediately determine a suitable grasp
for three of the five objects.

The most difficult object to grasp was the small jug shown
in Fig. 2; i.e., Test Object 2 in Fig. 3. The reason for this
relatively low score is due to the opening on the top of the
container. When viewed from above, the concave sides of the
opening result in self-occlusions, and its rim is perceived as a
ring floating in space. This ring structure has a similar shape
to a handle. After a couple of failed grasps in this region,
the robot learned how to correctly grasp the object by the
handle.

One possible solution to the problem of self-occlusions is
to use full, rather than partial, point clouds of objects. Such
point clouds could either be accumulated from multiple view
points of the scene, or by predicting the shape of occluded
regions [24]. This extension of the K-DAP framework is
beyond the scope of this paper, but will be investigated
further in the future.

D. Pouring

The second experiment focused on a pouring task. In order
to avoid damage to the robot, the robot learned the pouring
action with rubber balls instead of a fluid. The robot had
to learn to generalize the pouring action to three different
objects: a small jug, a small watering can, and a plastic
cup. These three objects are shown in Fig. 2, next to the
large watering can used for demonstrating the action. For the
pouring experiment, the grasps of the objects were selected
such that large parts of the objects’ surfaces were visible,
including many subparts that did not afford the pouring
action. Therefore, the cup was grasped from below rather
than the side, as shown in Fig. 1. The robot ran five trials
on each object. Each trial consisted of the robot repeatedly
attempting the pouring task until it had successfully poured
the ball into the plastic container 3 times.

The results of the experiment are shown in Fig. 4. The
average number of attempts required to complete the task
were 4.6, 3.8, and 4.0 for the small jug, watering can,
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Figure 4. The number of attempts required to successfully pour three
times from an object. Each bar indicates one trial, in which the robot is
initializes with a single demonstration of grasping a different object. The
red line indicates the three successful grasps required to complete the task.
The number of grasps above the red line indicates the number of failed
grasps that the system used to learn the correct action.

and plastic cup respectively. Given that each trial contained
exactly three successful attempts, the robot failed on average
1.2 attempts per trial while learning.

In four of the five experiments with the plastic cup, the
robot was able to immediately generalize the pouring action
from the large watering can. This is largely due to the fact that
the basic shape and rotational-symmetry of the cup tended
to result in similar visual features across trials. In the trial
that required eight attempts, the first trial found a subpart
that resulted in the cup not being tilted enough for the ball
to fall out. The robot subsequently tried a few other regions
of the cup before learning to use the opening properly. Most
of the failures of the watering can corresponded to attempts
to pour the ball using the opening on the top. However, this
opening did not allow the ball to be poured in a controlled
manner and, hence, these trials were regarded as failures.

IV. CONCLUSION

The direct action perception framework presents an effec-
tive approach for a robot to generalize manipulations between
different objects. In this paper, we presented a non-parametric
approach to representing the surfaces of object subparts. This
representation forms the basis of a kernel function, which is
used to learn the shapes of affordance-bearing subparts. In
order to adapt to different subparts, the robot’s actions are
defined as motor primitives.

The proposed framework was implemented on a real robot.
The robot was initialized with a single demonstration from
a human, and subsequently learned through interactions with
other objects in its environment. As a result, the robot could
quickly generalize both grasping and pouring actions to new
objects.

V. ACKNOWLEDGMENTS

The project receives funding from the European Commu-
nity’s Seventh Framework Programme under grant agreement
no. ICT- 248273 GeRT. The project received funding as part
of the JSPS Summer Program 2011.

REFERENCES

[1] E. Ugur, E. Sahin, and E. Oztop, “Unsupervised learning of object
affordances for planning in a mobile manipulation platform,” in ICRA,
pp. 4312–4317, 2011.

[2] J. J. Gibson, The Ecological Approach To Visual Perception. Lawrence
Erlbaum Associates, new edition ed., September 1986.

[3] T. Hermans, J. M. Rehg, and A. Bobick, “Affordance prediction via
learned object attributes,” in International Conference on Robotics
and Automation: Workshop on Semantic Perception, Mapping, and
Exploration, 2011.

[4] E. Sahin, M. Cakmak, M. R. Dogar, E. Ugur, and G. Ucoluk,
“To Afford or Not to Afford: A New Formalization of Affordances
Toward Affordance-Based Robot Control,” Adaptive Behavior, vol. 15,
pp. 447–472, December 2007.

[5] N. Krüger, C. Geib, J. Piater, R. Petrick, M. Steedman, F. Wörgötter,
A. Ude, T. Asfour, D. Kraft, D. Omrčen, A. Agostini, and R. Dillmann,
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