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Learning Dynamic Tactile Sensing with Robust
Vision-based Training

Oliver Kroemer, Christoph H. Lampert, and Jan Peters

Abstract—Dynamic tactile sensing is a fundamental ability for
recognizing materials and objects. However, while humans are
born with partially developed dynamic tactile sensing and master
this skill quickly, today’s robots remain in their infancy. The
development of such a sense requires not only better sensors,
but also the right algorithms to deal with these sensors’ data.
For example, when classifying a material based on touch, the
data is noisy, high-dimensional and contains irrelevant signals as
well as essential ones. Few classification methods from machine
learning can deal with such problems.

In this paper, we propose an efficient approach to inferring
suitable lower-dimensional representations of the tactile data. In
order to classify materials based on only the sense of touch,
these representations are autonomously discovered using visual
information of the surfaces during training. However, accurately
pairing vision and tactile samples in real robot applications is a
difficult problem. The proposed approach therefore works with
weak pairings between the modalities. Experiments show that the
resulting approach is very robust and yields significantly higher
classification performance based on only dynamic tactile sensing.

I. INTRODUCTION

The sense of touch has a fundamental role in most human
manipulation tasks, where it serves a variety of purposes.
A particularly important type of tactile sensing is dynamic
tactile sensing. The impressive abilities of this sense are
straightforward to observe [1]. For example, when a blind-
folded person has an object placed in the palm of their hand,
and they do not move their hand nor the object, it is very
difficult to recognize the object. The size and weight of the
object can be determined, but important properties such as
the object’s material and precise shape cannot. If one instead
slides the object over the skin, one can quickly determine the
object and the material [1]. Developing this ability for robots
offers many future possibilities.

Dynamic tactile sensing relies on the motion between the
skin and the object to induce vibrations and deformations
in the skin, which it then uses to infer object and material
properties [2]. This type of sensing can be used to determine
various properties of a surface, including texture, hardness,
roughness, and friction [3], [4]. These properties can be used
for tasks such as object identification and determining suitable
contact points for grasps.
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Dynamic tactile sensing also obtains information about the
manipulation task. Vibrations are induced in the finger when
it makes or breaks contact with objects, or when incipient
slip occurs [5]. These signals help coordinate the fingers, and
allow humans to finely regulate the contact forces depending
on the object’s surface properties [4]. One can also detect the
vibrations created when a held object is in contact with another
object. Such signals are crucial for dexterously using tools.
Humans can even use rigid objects as probes to determine the
fine texture of surfaces [6].

Figure 1. Robot learning about mate-
rials by stroking and visually inspect-
ing different surfaces

The sense of touch should
however not be seen in com-
plete isolation, but rather as
part of a multimodal system.
When recognizing materials
and objects, humans often
combine touch with vision
and even audition [7], [6].
Several studies have shown
that the human brain even
employs multisensory mod-
els of objects [7]. By us-
ing such a shared model,
humans can transfer knowl-
edge about an object from
one sensory modality to an-
other [8]. This sharing of in-
formation is especially use-
ful when one sense can not
be used. For example, ex-
periments with both vision
and touch have shown that
humans rely more on touch
when the texture has small
details that are difficult to
see [6]. Dynamic tactile sensing can thus be combined with
other senses for more accurate information and additional
robustness [9].

Given the various benefits of using tactile information in
manipulation tasks, there is a considerable interest in equip-
ping robots with such capabilities [10], [11], [12]. The need for
robust manipulation skills is especially important for service
robots in unstructured environments [13]. A variety of tactile
sensors are required to create a complete tactile sensor suite,
as discussed in the review paper of Dahiya et al. [14]. As
one part of tactile sensing, a dynamic tactile sensor usually
only mimics the fast afferent nerves (FA) in human fingers.
Human fingers have two types of fast afferent nerves in their
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fingers, i.e., FA-I and FA-II. Type I afferents have a well-
localized receptive field and are densely spaced on the skin
[15]. Examples of sensors that mimic type I afferents are tactile
arrays [12], [16]. Type II afferents have a larger receptive
field, and therefore cannot localize the source of the vibrations
as well. FA-II afferents are used to sense the vibrations in
held objects during manipulation tasks, and are particularly
important for tool usage [14]. Due to their large receptive
fields, FA-II sensors often struggle to differentiate between
various sources of vibrations. Apart from the contact with the
object, vibrations also come from other sources [17], [11],
such as the robot’s own vibrations and deformations of the
skin as the finger flexes.

A crucial ability of FA-II nerves is sensing temporal char-
acteristics, such as those involved in recognizing a surface
by stroking it. In this paper, we want to reproduce this
ability to recognize materials. As a testbed for our proposed
algorithms, we have created a basic sensor that represents a
primitive technical counterpart to an FA-II type mechanore-
ceptor. The design is based on a microphone with a probe on
its membrane, and was inspired by the work on haptography
of Kuchenbecker et al. [18].

The raw time-series data received from the dynamic tactile
sensor consists of the detected vibrations. This signal will
usually serve as the input for a classifier with task-specific
labels. However, classification of tactile data is a difficult
task, since a time-series needs to be represented as a high-
dimensional data point to capture the details of the signal.
Classification in high-dimensional spaces is however prone to
overfitting, due to “the curse of dimensionality” [19]. The
overfitting results in the classifier often performing poorly
when applied to new data. This problem can be addressed
using dimensionality reduction approaches which project the
data into lower-dimensional feature spaces. The goal is to
discard information that is not relevant, such as noise or
redundant information.

As previously discussed, additional sources of vibrations
are often present in the signal together with the desired tactile
signal. For good performance, the classifier needs to automat-
ically determine the relevant parts of the signal. We therefore
take a human-inspired approach and transfer knowledge from
the vision modality.

In this paper, we present approaches for combining vision
and tactile information to improve the performance of dynamic
tactile sensors. The focus of this paper is on service robots
that need to perform assorted tasks. However, the proposed
approach is applicable to a wide range of robots with hand-
eye systems. The proposed approach is based on Maximum
Covariance Analysis (MCA) [20], which is a machine learning
method for dimensionality reduction using sets of paired data.
The MCA method is described in Section II-B. However, MCA
requires perfect pairings between tactile and visual samples,
which is often a problem for robot systems in unstructured en-
vironments [21], [22]. We therefore propose Mean Maximum
Covariance Analysis (µMCA) and using Weakly-paired Max-
imum Covariance Analysis (WMCA) for robotic applications.
These methods are more robust and only require weak pairings
between the modalities. After learning, the tactile sensor can

be used independently of the vision system, while retaining its
improved performance. Thus, the resulting system can be used
even when conditions are not suitable for visual inspection,
e.g., dim lighting, occluded surfaces, perspective distortion,
and even damaged cameras.

Our initial work and evaluations of the WMCA algorithm
were presented in [23]. The novel contributions of this paper
include the µMCA method and a more robust implementation
of WMCA based on concepts from deterministic annealing
[24]. These methods are presented in Section III and compared
through a series of benchmarking experiments in Section
IV. The experiments show that the proposed methods are
robust and allow the robot to accurately discriminate between
materials by only stroking them.

II. FORMALIZATION IN A MULTIMODAL DIMENSIONALITY
REDUCTION SETTING

In this section, we formulate the problem in a machine
learning framework (Section II-A) and give a brief review of
multimodal dimensionality reduction methods (Section II-B).

A. Problem Statement
Our goal is to have a robot accurately discriminate between

different surfaces by only stroking them. We initially allow
the robot to learn about textures by both stroking and visually
inspecting them. The robot should subsequently transfer the
additional visual information to improve its knowledge of
tactile sensing. As a result, the tactile sensor’s independent
performance should also improve.

We now repose the problem in a general machine learning
framework. The problem involves reducing the dimensionality
of a sensor’s data such that the relevant tactile information is
retained. Not all dimensionality reduction methods are suitable
for our robot application. We must therefore first select an
appropriate type of method.

Dimensionality reduction algorithms are either inductive or
non-inductive. Inductive methods create a function f that can
map the data X onto a lower dimensional representation X̂.
Inductive methods include PCA [25], kernelPCA [26] and
autoencoder networks [27]. Non-inductive methods, such as
probabilistic latent semantic analysis (pLSA) [28], and Isomap
[29], also compute a lower-dimensional representation X̂ from
X , but do not provide a mapping function f .

Robots continue to collect more data as they explore their,
often changing, environments. The mapping function f of
inductive methods can be used to reduce the dimensionality
of the sensor’s data as it is received. We therefore require an
inductive method.

Definition 1 (Inductive Dimensionality Reduction) Let
X = (x1, . . . ,xn) ⊂ Rd×n be a set of data vectors. Inductive
dimensionality reduction procedures take the input X, and out-
put a functional mapping f : Rd → Rq with q < d. The lower
dimensional representation of X is given by X̂ = (x̂1, . . . , x̂n),
i.e., x̂i = f(xi).

We can further divide inductive dimensionality reduction
techniques into discriminative and generative methods. Dis-
criminative techniques, such as linear discriminant analysis
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(LDA) [30] and canonical correlation analysis (CCA) [31],
[32], identify lower-dimensional representations that are suit-
able for one specific task, e.g. classification into a predefined
set of classes. These techniques discard all information that is
irrelevant for this particular task. While the new representa-
tions X̂ are very good for this task, they tend to be unsuitable
for other tasks. In contrast, generative dimensionality reduction
techniques find lower-dimensional data representations that
are suited for various subsequent tasks. Intuitively, generative
dimensionality reduction techniques are a form of lossy data
compression methods.

Service robots will face a large range of tasks, which
makes it difficult to predefine a set of suitable labels. The
robots will also encounter new objects and materials as they
explore their unstructured environments. If the robot discards
information based only on its current set of labels, it may
discard information pertinent to new materials and objects.
We therefore focus on generative methods.

Having decided on using generative inductive methods, we
must determine how to transfer the visual information into
the tactile domain. The key to combining visual and tactile
information is that both contain spatial data, such as texture,
about objects and materials [7]. The senses of vision and
touch are otherwise very distinct, and thus the additional
sources of vibrations and noise in the tactile modality will be
excluded from the visual data. We can therefore use the visual
information to determine which parts of the tactile signal are
relevant to the textured surface.

Audio signals can also be used to distinguish between
textured surfaces [6]. Therefore, an alternative approach would
be to combine the tactile sensing with hearing. However, a
robot’s audio sensors may also detect other vibrations, such
as those from the robot’s motors. These vibrations would then
be present in both sensing modalities, and would therefore be
incorrectly regarded as relevant for tactile sensing. To avoid
this error, we use vision as our second sensor modality.

In order to automatically extract the relevant information
from the vision data, we make use of multimodal dimension-
ality reduction. The general goal of multimodal dimensionality
reduction is to compute new representations of the high-
dimensional data samples that lie in lower-dimensional feature
spaces. In comparison to unimodal dimensionality reduction,
we expect the availability of multiple data representations to
give a better indication of the relevant parts of the signal, and
which parts can be suppressed. We formalize this concept in
the following definition.

Definition 2 (Multimodal Dimensionality Reduction)
Let X1 = (x1

1, . . . ,x1
n1) ⊂ Rd1×n1

, . . . ,Xm =
(xm

1 , . . . ,xm
nm) ⊂ Rdm×nm

be m different data sets from
potentially different spaces. Inductive dimensionality reduction
techniques are multimodal if they take inputs X1, . . . ,Xm,
and output functions f1 : Rd1

→ Rq, . . . , fm : Rdm
→ Rq for

all data domains.

Each of the m different modalities must have its own
independent mapping function f based only on the modality’s
own data. This part of the definition is crucial, as it will allow

the tactile sensor to be used on its own. Thus, if the robot
is in a dark room or cannot position the object to allow for
visual inspection, the robot can still use the transferred visual
information for improved tactile sensing.

The canonical way to construct multimodal algorithms is to
use the dependencies between paired samples. Two samples
are strongly paired if their sensors acquired them from the
same source. For example, consider a tactile sensor moving
a short distance across a textured surface. The tactile reading
acquired during this motion would be strongly paired with
an image of the surface area swept by the tactile sensor.
Acquiring perfectly paired samples across modalities is often
problematic in practice, especially in unstructured environ-
ments. Any inaccuracies in moving the object or the cameras
for visual inspection will result in incorrect pairings. The
different sensors may also have different numbers of samples
that need to be paired. For example, while cameras can quickly
acquire data from large surface areas, tactile sensors obtain
information from their relatively small contact region with the
surface. We therefore only assume weakly-paired data [23].

Definition 3 (Weakly-Paired Multimodal Data) A col-
lection of data sets X1, . . . ,Xm is weakly paired, if each Xi is
split into g groups as

Xi = (Xi
1, . . . ,X

i
g) ∈ Rdi×ni

,

where each group of samples is given by

Xi
h = (xi

h,1, . . . ,x
i
h,ni

h
) ∈ Rdi×ni

h ,

with ni =
�g

l=1 ni
l . When ni

l = 1 for all i = 1, . . . ,m and
l = 1, . . . , g the data sets are fully paired with strong pairings.
When g = 1, all samples are weakly paired together, which
means that they are all unpaired.

A weak pairing implies that a group of samples from one
modality is paired to a group of samples in another modality.
While strong pairings require samples to be obtained from the
same source, weak pairings only require the samples to be
acquired from similar sources. Hence, the robot can acquire
samples from various regions of a textured surface and group
these together. Alternatively, a robot could weakly pair one
tactile sensor reading to multiple images of the nearby surface.
In both of these examples, the samples can subsequently be
used to infer suitable strongly-paired data. Ultimately, the
condition of weakly-paired data is a relaxation of the standard
fully-paired requirement, and is therefore easier for robots to
fulfill.

The samples used for learning the dimensionality reductions
should be acquired under conditions suitable for both visual
inspection as well as tactile sensing. The conditions for visual
inspection can be ignored only after the mapping functions
have been learned.

Although our focus is on combining visual and tactile infor-
mation, the described problem framework is quite common in
robotics. The algorithms described in this paper were therefore
designed to work with weak pairings between a variety of
sensors. However, different mapping functions are obtained for
a sensor when it is combined with different types of sensors.
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MAXIMUM COVARIANCE ANALYSIS
INPUT:

Data covariance matrix XX�T ∈ Rd×d�

Desired output dimensionality q
COMPUTE MAPPINGS:

Compute Singular Value Decomposition of X̄X̄�T

USVT = svd(X̄X̄�T ) where U ∈ Rd×d, V ∈ Rd�×d�

Find q largest elements in S ∈ Rd×d�

Set W to corresponding q columns of U
Set W� to corresponding q columns of V

OUTPUT:
Projection matrices W and W�

Figure 2. Implementation of MCA algorithm

The features regarded as relevant are those that both sensors
observe of the source, and any features found only in one of
the modalities will usually be suppressed.

B. Introduction to Multimodal Dimensionality Reduction
This section gives a brief review of linear multimodal

dimensionality reduction methods, including MCA. To sim-
plify the notation, we restrict the discussion to two sensor
modalities, i.e., X ∈ Rd×n and X�

∈ Rd�×n� .
Linear dimensionality reduction functions can be written

as f(x) = WT x for a matrix W ∈ Rd×q, and f �(x�) =
W�T x� for a matrix W�

∈ Rd�×q. The lower dimensional
representations are thus X̂ = WT X and X̂

�
= W�T X�. The

orthogonal matrices W and W� contain the basis vectors of
the q-dimensional subspaces.

A popular generative dimensionality reduction technique
is principal component analysis (PCA). PCA finds a lower-
dimensional representation that retains as much of the original
signal’s variance as possible. Given that other sources of
vibrations may also have large variances, PCA is not a suitable
approach for our purposes. The multimodal counterpart to
PCA is maximum covariance analysis (MCA) [20].

MCA assumes that the data is fully paired, i.e., for every
sample in X there is exactly one strongly paired sample in X�.
The data sets X and X� are centered by subtracting their means
from all of their samples. MCA then optimizes the objective
function maxW,W� tr

�
WT XX�T W��, where tr[.] is the stan-

dard matrix trace operator, to determine suitable projection
matrices W and W�. The objective function can be rewrit-
ten with tr

�
WT XX�T W�� =

�q
p=1

�
WT X

�T

p

�
W�T X��

p
,

where the operator [.]p extracts the pth column of the matrix,
and q ≤ n. Thus MCA maximizes the covariances between
the low dimensional representations X̂ and X̂

�
. The standard

MCA method requires strong one-to-one pairings between the
modalities, and therefore n = n�. An implementation of MCA
is given in Fig. 2.

MCA comes from the same family of standard statistical
methods as PCA, LDA, and CCA. It also forms the basis
for partial least squares (PLS) regression [33]. The PCA,
LDA, CCA, and PLS techniques have all been kernelized into
nonlinear versions [34], [35], [26]. The methods presented
in this paper can also be kernelized (Section III-C). Kernel

canonical correlation analysis (kernelCCA) [36] is amongst
the most common methods for multimodal dimensionality
reduction, but it is not generative. Furthermore, kernelCCA
requires the tuning of a regularization parameter for each
modality. Alternative approaches include multimodal pLSA
[37] and Hilbert-Schmidt dependence maximization [38], but
these require more careful experimental setups and are compu-
tationally more demanding. In contrast, the classical methods,
and our proposed methods, can be implemented with standard
matrix operations.

Even though MCA is a strong method for multimodal di-
mensionality reduction, robots in unstructured scenarios often
cannot provide the required fully-paired data. In the following
section, we show how to overcome this limitation, and make
use of weakly-paired data.

III. MAXIMUM COVARIANCE ANALYSIS ALGORITHMS
FOR MULTIPLE ROBOT SENSOR MODALITIES

In this section, we explain µMCA and WMCA for robot
applications. These methods incorporate vision information to
create an improved representation of the tactile data. Sensor
fusion is another process that combines data from multiple
sensors to improve performance and the accuracy of mea-
surements [39], [9]. The data from sensors can be combined
directly using data fusion, or classified separately and then
combined with classifier fusion [40]. These approaches rely
on always having access to both sensor modalities, while the
methods proposed in this section only require both modalities
during the learning phase. After learning with the proposed
methods, the sensors can be used independently. Hence, tactile
sensing performance is improved even when the conditions
are unsuitable for visual inspection, or when the camera is
currently allocated to performing another task. A fundamental
problem of combining tactile and vision data is self-occlusion;
i.e., the hand used for tactile sensing blocks visual inspection.
The proposed methods are well-suited for such situations.

Self-supervised learning is another framework that only
requires both sensor modalities during the learning phase.
In self-supervised learning, the robot uses one modality to
generate the labels for the classification problem of another
sensor modality [41], [42]. A large amount of information
from the supervising modality is lost during these procedures,
as the data is reduced to a single value. The methods proposed
in this section use the entire signal of both sensors to improve
the classification performance. In this manner, the proposed
methods can share information between different materials at
the level of individual features.

Self-supervised methods are sensitive to errors in the pair-
ings between modalities [21], [22]. The µMCA and WMCA
methods overcome this problem by automatically inferring
strong pairings from the weakly-paired groups. The lower
dimensional representations found by self-supervised methods
are usually only suited for the task they were trained on [41].

In the remainder of this section, we present the proposed
µMCA (Section III-A) and a robust implementation of WMCA
(Section III-B) for robotic applications, as well as extensions to
nonlinear problems (Section III-C) and multiple sensor modal-
ities (Section III-D). We present straightforward algorithms for
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MEAN MAXIMUM COVARIANCE ANALYSIS
INPUT:

Weakly-paired data from sensors one X and two X�

X has nh samples xh,1...nh in group h = 1 . . . g
X� has n�h samples x�h,1...n�h

in group h = 1 . . . g

Desired output dimensionality q ≤ min({g, d, d�})
INITIALIZATION:

X̄ = (x̄1, . . . , x̄g) ⊂ Rd×g with means x̄1...g = 0
X̄� = (x̄�1, . . . , x̄�g) ⊂ Rd�×g with means x̄�1...g = 0

COMPUTE MAPPINGS:
for h = 1 to g

for i = 1 to nh

Update x̄h ⇒ x̄h + (xh,i − x̄h)(i + 1)−1

for i = 1 to n�h
Update x̄�h ⇒ x̄�h + (x�h,i − x̄�h)(i + 1)−1

Obtain W and W� from MCA(X̄X̄�T
, q)

OUTPUT:
Projection matrices W and W�

Figure 3. Implementation of µMCA algorithm

both µMCA and WMCA to guide the reader through using
these methods. These algorithms can be implemented with
standard matrix toolboxes.

A. Mean Maximum Covariance Analysis (µMCA)
When using different types of sensors, it is common to

obtain different numbers of samples from them. For example,
vision sensors can easily obtain information about large parts
of a surface, while tactile sensors are limited to the regions
they make contact with. Thus, there will usually be many
visual samples weakly-paired to a few tactile samples. Rather
than selecting a single visual sample for each tactile sample,
µMCA combines the information from all of these samples.

The µMCA method assumes that each of the g groups, as
specified in Definition 3, represents a series of observations
of the same surface. The variations within each group can
then be modeled as a standard Gaussian model, i.e., xi,j ∼

N(x̄i, (σi)2) and x�i,j ∼ N(x̄�i, (σ�
i)2). The mean values x̄i ∈

Rd and x̄�i ∈ Rd� are thus suitable representations of the ith
surface group, and can be strongly paired together.

Service robots should generally be autonomous and auto-
matically gather the information they require. We therefore
assume that additional prior information is not available. Given
a set of collected samples, the robot should fit a model of the
surface that best represents this data. We therefore propose a
maximum likelihood estimation to determine the values of x̄i

and x̄�i that best represent the collected samples.
Given the centered and weakly-paired data X and X�, the

µMCA method solves

maxW,W� tr
�
WT X̄X̄�T W��, (1)

where X̄ = (x̄1, . . . , x̄g) ⊂ Rd×g with group means x̄h =
(nh)−1

�nh

j=1 xh,j , and X̄� = (x̄�1, . . . , x̄�g) ⊂ Rd�×g with
group means x̄�h = (n�h)−1

�n�h
j=1 x�i,j . This problem can be

solved using the µMCA algorithm shown in Fig. 3. When q

is small, the singular value decomposition can be efficiently
computed using techniques based on random projections [43].
Intuitively, µMCA uses the groups of samples to estimate
archetypes that are more representative of the surface than any
one sample. Since the rank of the X̃X̃

�T
matrix is limited by

the number of groups g, the output dimensionality is limited to
q ≤ g. The µMCA algorithm has a computational complexity
of O(g3).

The sequential updates of the group means in Fig. 3
allows new data to be easily incorporated. Hence, the memory
requirements of µMCA depend on the number of groups and
not the number of samples. The µMCA approach is therefore
suitable for large amounts of data.

B. Weakly-Paired Maximum Covariance Analysis (WMCA)
While µMCA combined samples into more informative

representations, WMCA’s approach is to infer strong pairings
between individual samples in a weakly-paired group. Infer-
ring strong pairings is done by including a n×n� pairing matrix
Π. The elements of the pairing matrix are either one or zero
Π ∈ {0, 1}n×n� . A one in the ith row and the jth column
implies a pairing between the ith sample of the first modality
and the jth sample of the second modality. Each sample is
only paired to at most one sample in the other modality, i.e.,�n

i=1 Πi,j ≤ 1 for all j = 1, . . . , n� and
�n�

j=1 Πi,j ≤ 1
for all i = 1, . . . , n. Assuming that the samples are ordered
according to their weakly-paired groups, the pairing matrix
will have a block diagonal structure Π = diag(Π1, . . . ,Πg).
This structure ensures that samples are only paired within their
own group.

Given the described pairing matrix, WMCA optimizes

maxW,W�,Π tr
�
WT XΠX�T W��, (2)

to determine projection matrices W and W�, where the trace
operator tr[.] sums the diagonal elements of the matrix. The
optimization of (2) requires both continuous optimization for
W and W�, and combinatoric optimization for Π. There is
therefore no single closed form solution to this optimization.
Furthermore, it is a high-dimensional non-convex problem,
such that finding the global optimum with a numeric procedure
is usually impossible. We can, however, efficiently find a
locally optimal solution by alternating maximization, as shown
in Fig. 4. Step one can be efficiently solved using the same
singular value decomposition methods used for µMCA. To
efficiently solve the linear assignment problem in step two, we
suggest using the Hungarian algorithm [44] or LAPJV [45].
In this manner, we can apply WMCA to data with thousands
of dimensions. The computational complexity of WMCA is
given by O(min({nn�2, n2n�})).

In both steps of the algorithm, we maximize the same
objective function, which will thus increase monotonically
with the number of iterations. Given that the objective function
has an upper bound, the algorithm is guaranteed to converge
to a local maximum. Unfortunately, the objective function
will often have multiple local maxima. Hence, WMCA may
converge to a local maximum with a relatively low covariance.
In order to avoid many local maxima of poor quality, we
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WEAKLY-PAIRED MAXIMUM COVARIANCE ANALYSIS
INPUT:

Weakly-paired data from sensors one X and two X�

Desired output dimensionality q ≤ min({n, n�, d, d�})
INITIALIZATION:

η = 1
Π̂ = diag(Π̂

1
, . . . , Π̂

g
) and Π→ Π̂ wherein

[Π̂
h
]i,j = min(nh, n�h)−1∀i = 1, . . . , nh, j = 1, . . . , n�h

ANNEALING WMCA:
while η ≥ 0

Run Alternating Maximization
Reduce η

ALTERNATING MAXIMIZATION:
while trace value of WtXΠX�tW� increases

Step 1) Maximize with respect to W and W�:
Obtain W and W� from MCA(XΠX�T , q)

Step 2) Maximize with respect to Π:
Set all elements of Π to zero
for h = 1 to g

Compute the cost matrix C = [X�t
hW�WtXh]t

Solve linear assignment problem for C
Set elements of Π to 1 for assigned pairings

Anneal) Relax pairings:
Π→ ηΠ̂ + (1− η)Π

OUTPUT:
Projection matrices W and W�

Figure 4. Implementation of WMCA with annealing

propose incorporating concepts from deterministic annealing
[24].

The annealing process for WMCA is shown in Fig. 4. The
annealing introduces the mean pairing matrix Π̂, which pairs
together the groups’ means. The pairing matrix Π is a mix
between the assignments found in step 2 and this mean pairing
matrix Π̂. The mixing is controlled by parameter η, which is
initially set to one and monotonically decreases to zero.

Intuitively, a larger value for the parameter η makes the
data points within each group more correlated. When η = 1,
all of the data points are effectively equal to their respective
group’s mean. Applying the alternating maximization results
in the globally optimal W and W� when η = 1. The manner
in which η decreases is known as the cooling schedule. The
additional local maxima gradually emerge as η decreases.
Since the results of each maximization are used to initialize
the next one, the alternating maximization continuous to track
the best local maximum as η decreases. When η = 0, the
true objective function is recovered. The annealing does not
guarantee that the global maximum is recovered. However,
the annealing process is a systematic and efficient approach to
avoiding many poor local maxima.

The idea of treating unknown correspondences as latent
variables and optimizing over them has been used in previous
applications, including the classical k-means [46] algorithm
and the optimization in [38]. However, in both of these cases
the assignments are between sample and clusters, not between
samples in different data modalities.

PROCESSING OF NEW TACTILE DATA
Input:

Tactile sensor data Y
Labels L of training data OR the number of clusters c

Learning:
Determine W with WMCA or µMCA

Processing:
Project Y using Ŷ = WtY
If labels L are given, supervised learning:

Sort Ŷ with labels into Ŷtrain, and rest into Ŷtest

Train Nearest Neighbor classifier with L and Ŷtrain

Apply classifier to Ŷtest

Else, unsupervised learning:
apply k-means clustering with c clusters

Output:
Labels for Ŷtest OR cluster assignments for Ŷ

Figure 5. Example method for applying learned mappings to new data

Given the projection matrices W and W� from either
µMCA or WMCA, we apply them to new tactile data, as
suggested in Fig. 5.

C. Kernelization for Nonlinear Problems
Nonlinear dimensionality reduction techniques are often

more powerful than linear ones, as they can create more di-
verse dimensionality reduction functions. µMCA and WMCA
can be made into nonlinear techniques by kernelization, and
thus applied to problems in robotics that cannot be solved
using linear representations. As the necessary steps are very
similar to those for deriving kernelPCA [47] from PCA, we
only outline them here. We refer the reader to [26] for a more
detailed description of kernelization.

For kernelization, we require positive definite and sym-
metric similarity measures between samples, called kernel
functions, that we denote by k : Rd × Rd → R and
k� : Rd� ×Rd� → R. Any such kernel function corresponds to
an inner product in a latent Hilbert space, and induces a latent
feature map from the original data domain to this space [26].
The kernelized methods thus consist of mapping the input data
into the latent Hilbert spaces and performing the corresponding
linear method on the resulting data sets.

For example, the kernelized form of (2) becomes

maxA,A�,Π tr
�
AK̄ΠK̄�A�T �

, (3)

where K̄ and K̄� are the centered kernel matrices. K̄ is
computed by forming the kernel matrix K ∈ Rn×n as
[K]ij = k(xi,xj) and then centering it using the formula
K̄ = K− 1

n1nK− 1
nK1n + 1

n2 1nK1n, where 1n denotes the
n×n matrix in which all elements are 1. K̄� is computed from
kernel k� in the analogous way. Centering the kernels ensures
that the implicitly defined feature vectors have zero mean in
the latent feature space. One can solve (3) with an alternating
optimization similar to the one described in Section III-B. In
contrast to W,W�, the matrices A ∈ Rn×q and A�

∈ Rn�×q

are not orthogonal matrices, but are orthogonal in the latent
feature space, i.e., AT KA = I and A�T K�A� = I, where I
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is the identity matrix of size q × q. We obtain the rows of A
and A� from a generalized eigenvalue problem:

�
0 KΠK�

K�ΠtK 0

� �
a
a�

�
= λ

�
K 0
0 K�

� �
a
a�

�
. (4)

Equation (4) can be efficiently solved for q eigenvectors
using the power method [48]. Ultimately, the kernelized
methods provide reduction functions f : Rd → Rq and
f � : Rd� → Rq by setting f(x) = AT K(x) with K(x) =
(k(x,x1), . . . , k(x,xn))T and f �(x�) = A�T K�(x�) with
K�(x�) = (k�(x�,x�1), . . . , k�(x�,xn�))T .

Kernelization usually requires more computation time, but
can also reduce them in certain situations. When solving for
A and A�, the matrix KΠK is of size n × n� instead of
d × d�. Thus, if the number of samples is less than the input
dimensionalities, the computation is faster in the kernelized
form. To perform the optimization, one uses linear kernels
k(x, x̃) = xT x̃ and k�(x�, x̃�) = x�T x̃� and obtains the linear
solutions as W = AT X and W� = A�T X�.

D. Incorporating Additional Sensor Modalities
To keep the notation simple, we have been describing

µMCA and WMCA for only two sensor modalities. An
extension to more than two data sources is straightforward
by reformulating the objective function as the sum of all pair-
wise covariances between the modalities. The linear µMCA
objective function thus becomes

max
W1,...,Wm

tr
� m�

i,j=1

WiX̄iT X̄jWjT �
, (5)

which can be solved as an eigenvalue problem. For WMCA,
(2) becomes

max
W1,...,Wm

Π1,2,...,Πm−1,m

tr
� m�

i,j=1

WiXiT Πi,jXjWjT �
, (6)

with the convention that Πi,i = 0 and Πi,j = Πj,iT .
The WMCA problem can again be solved by an alternating
maximization approach. The step of finding the projection
directions is solvable as an eigenvalue problem. Finding the
sample pairings requires solving 0.5m(m − 1) linear assign-
ment problems. The quadratic scaling in the number of modal-
ities m does not pose a practical problem. Unless the sensor
suite is highly redundant, usually only a few sensor modalities
will produce related samples. Using multiple modalities to
supervise one sensor also suffers from diminishing returns.

IV. ROBOT EXPERIMENTS WITH DYNAMIC TOUCH AND
VISION

Three experiments were performed to show that the µMCA
and WMCA methods are useful for learning dynamic tactile
sensing. The first experiment tests the robot’s performance on
the supervised classification and the unsupervised clustering
of tactile data. The second experiment evaluates the system’s
ability to generalize between materials, and involves classify-
ing materials that it had not encountered during the learning
phase. The final experiment investigates the robustness to

A. Tactile Sensor B. Human FA-II

Figure 6. A) The robot’s tactile sensor. B) Diagram of how type II fast
afferent nerves obtain tactile information (based on [2]). Both the sensor’s
pin and the human skin are compliant and move along the surfaces. When
making and breaking contact with the surface, vibrations are created at the
human’s epidermal ridges and the tip of the sensor’s pin. These vibrations
are transferred through the skin and the pin respectively. When the vibrations
reach the pacinian corpuscle, this mechanoreceptor transfers the signal to
the human nervous system. Similarly, when the pin’s vibrations reach the
microphone’s membrane, the microphone transfers the signal to the robot.

incorrectly paired data. In all of these experiments, we assume
that both tactile and visual information is available for learning
the dimensionality reduction, but only the tactile sensor is
available during the testing stage.

A. Tactile Sensor and Surface Materials
In order to explore various textured surfaces, we equipped

a Mitsubishi PA-10 robotic arm with a single basic tactile
sensor. The experimental setup is shown in Fig. 1. The aim of
the experiments is to test the data processing procedure. We
therefore used a straightforward oscillator-based design for the
sensor. The dynamic tactile sensor consists of a compliant
pin that makes contact with the surface, and a capacitor
microphone that can detect the pin’s vibrations at 44.1 kHz.
Mechanisms in the human finger tip resemble this structure,
as shown in Fig. 6. In particular, the sensor acts similar to
an FA-II afferent, and the pin can be seen as either a part
of the finger or as an object held by the robot. Given the
compliance of the plastic pin, the location of the contact point
with the surface could not be precisely determined. This sensor
design is similar to other dynamic tactile sensors, such as
the “whisker” sensor [49], [50]. The resulting apparatus is a
suitable platform for testing the proposed WMCA and µMCA
algorithms and showing that they can be applied to dynamic
tactile sensors. Given that humans can discriminate between
textures by probing them with a stylus [6], a single dynamic
tactile sensor should be sufficient to perform the task.

The experiments were run on a set of 26 surfaces of 17
different materials. A common trait of these surfaces is that
they have rich multi-scale textures. For example, a mosaic has
the coarse texture set by the placement of the tiles, as well as
the fine texture created by the surface of the tiles and cement
(see Fig. 7, the supplementary information contains additional
information on the materials). The data set includes materials
that are similar and thus difficult to discriminate, as well as
materials that are distinct and thus hard to generalize between.

The robot acquired samples by sliding the tactile sensor in a
straight line across the surfaces. In this manner, each textured
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Figure 7. Examples of the multimodal data. The top images show the vision
data while the bottom images show the corresponding time series of the tactile
sensor signals. The x-axes of the tactile sensor plots represent time, while
the y-axes represent the signal’s magnitude. The samples for the plots were
recorded over a four second time span.

surface was probed in five different regions. The robot used
similar task-space movements for each region. If very different
movements had been used, the data would require additional
preprocessing to compensate for the different velocity profiles.
Experiments have shown that humans also need to take into
account the relative velocity between the finger and surface
to accurately discriminate between textured surfaces [51].
After the robot had explored a surface with the tactile sensor,
the object was repositioned 20 cm in front of the robot’s
camera for visual inspection. Four pictures were taken of
each surface with different in-plane-rotations. The resulting
grayscale images have resolutions of 512× 768, as shown in
Fig. 7. The pictures were taken in a well lit room.

B. Tactile and Visual Features
The information from both the tactile sensor and the camera

were preprocessed to obtain suitable feature spaces. The robot
probed five different surface regions from each of the 26
surfaces, resulting in 130 time series of tactile data. Textures
are characterized by repeated local features. We therefore
propose using a bag-of-features model [52], [53], which
represents each region by a normalized histogram of local
features. Local features are found by dividing each time series
into 450 segments of 50ms, with 12.5ms overlaps between
segments. In order to make the local features invariant to
changes in phase and amplitude, each time segment was
centered and its cepstrum was computed. The power cepstrum
of a signal z is given by C(z) = |F (log(|F (z)|2))|2, where
the function F is the Fourier transform, and describes the
harmonic structure of the signal. It is often used to discriminate
between different sources of acoustic signals [54]. Intuitively,
the cepstrum represents the differences in the sound made by a
brass and a string instrument playing the same note. In order
to generate the desired histograms, we need to partition the
cepstrum space. Hence, we partition the cepstrums into 1000
groups using k-means clustering. By using 1000 clusters, we
ensure that the resulting feature vectors are sparse. Each of
the n = 130 probed regions in X is thus represented as a
normalized histogram of d = 1000 partitions, which indicate
the relative occurrences of local cepstrum features.

The vision data was obtained by segmenting each of the
104 images into 32 equally-spaced strips. Each strip is three
pixels wide. Similar to the regions probed by the tactile sensor,

Figure 8. The 58 vision filters used to represent the textured images. Each
3× 3 box represents a uniform binary pattern. The grey middle pixel defines
the threshold value of the patch. A black pixel indicates that it is darker than
the threshold, while a white pixel indicates that it is lighter or identical.

each strip is represented using a bag-of-features model. Along
each strip, we compute local binary patterns over 3× 3 pixel
regions using uniform patterns, as suggested by Ojala et al.
[55]. These 58 local features, shown in Fig. 8, are invariant
to shifts in grayscale and rotations. Each of the n� = 3328
strips in X� is thus represented by a normalized histogram of
d� = 58 partitions, which indicate the relative frequency of the
local binary patterns.

For both the image and tactile data, the feature dimensions
were normalized to have zero mean and unit variance. This
normalization step reduces the artifacts caused by having some
histogram partitions being more populated than others.

C. Testing Performance, Ability to Generalize, and Robustness

Three experiments were run to compare the proposed
µMCA and WMCA algorithms. The experiments’ tasks were
also performed with the standard PCA approach as well as
the naive approach of not using any dimensionality reduction.
The PCA method gives a baseline for using dimensionality
reduction without the multi-modal data. The WMCA method
used a ten step cooling schedule to reduce η from one to zero.
The dimensionality reduction methods’ only hyperparameter
is the number of output dimensions q. The experiments were
repeated for each output dimensionality in the range 1 to 55.

Each experiment consists of a learning phase and a testing
phase. The learning phase corresponds to a robot exploring
different object surfaces in a setting that allows for both
visual and tactile inspection. The robot subsequently learns a
mapping matrix W using one of the dimensionality reduction
methods. The set of data used during the learning phase is
known as the learning set.

The testing phase corresponds to a robot sorting different
materials using only data from the tactile sensor. Visual inspec-
tion is not possible during the testing phase. The classification
and clustering of the surfaces is performed, as described in
Fig. 5, with the mappings W from the learning phase. The
set of data used during the testing phase is known as the testing
set. The classification tasks were evaluated using a leave-one-
out scheme, i.e., we removed a data vector xi from the testing
set, trained a classifier on the remaining data, classified the
removed vector xi, and then reinserted the data vector into the
testing set. We repeated this procedure for each data vector in
the testing set. The leave-one-out scheme makes efficient use
of the available data and gives confident classification results.
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Figure 9. An illustration of the three experimental setups. The top row
shows how the data was structured for the learning phase. Each small square
represents the data from one surface region, and adjoining squares are grouped
together. The shading of the squares indicates the materials that the sample was
obtained from. The arrows indicate groups of samples that are weakly paired
together between tactile and vision modalities. The bottom row indicates the
materials that the learned system was tested on. Each square represents a
type of material tested in the classification and clustering tasks. Testing data
is limited to tactile data and, therefore, does not contain any groups or weak
pairings. This figure does not show the true number of samples and materials
used in the experiments.

The labels used for classification are defined as the material
from which the data was obtained.

The materials and groupings used to generate the learning
and testing sets were altered for each of the three experiments
in order to test different aspects of the dimensionality reduc-
tion algorithms. An overview of how the data was allocated
to the learning and testing sets is shown in Fig. 9.

The first experiment investigates the performance at clas-
sifying and clustering surfaces. The learning set is generated
by randomly selecting half of the tactile and visual data for
each of the 17 materials. All of the data taken from the
same textured surface is weakly paired together such that
g = 17. The testing set consists of the other half of the
tactile data. Thus, the learning and training sets both include
examples from all 17 materials. For the clustering experiment,
the number of clusters is set to the number of materials c = 17,
and would otherwise need to be estimated from the data [56].
Additionally, the time required to learn the dimensionality
reduction was recorded for each method.

The second experiment tests the ability to generalize to new
materials. The learning set consists of the tactile and visual
data from 10 randomly selected materials. All of the data taken
from the same textured surface is weakly paired together such
that g = 10. The testing consists of the tactile data from the
seven materials excluded from the learning set. Hence, the
learning and training sets consist of different materials. This
experiment demonstrates how information can be transferred
between related tasks using dimensionality reduction [57].

The third experiment tests the robustness to incorrectly
paired data, which is a common problem for self-supervised
approaches [21], [22]. Similar to the first experiment, the
learning set is generated by randomly selecting half of the
tactile and visual data for each of the 17 materials. However,
rather than forming groups of the same material, the data
is randomly allocated to the g = 17 groups. Hence, each
weakly-paired group contains a mix of different materials. The
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B. UNSUPERVISED CLUSTERING

Figure 10. The performance of the tested methods for different numbers of
output dimensions. Plot A shows the results from a classification problem.
This plot uses a log scale for the y-axis. Plot B shows the results from
a clustering experiment. In both plots, a lower value indicates a better
performance. Error bars are also plotted, indicating +/- two standard errors of
the mean.

testing set is the same as in the first experiment, and consists
of the other half of the tactile data. Thus, the learning and
training sets both include examples from all 17 materials. This
situation is contrived and represents a worst case scenario that
is unlikely to occur in practice.

Each experiment was run 500 times for each output dimen-
sionality. For each run, A different seed value was used to
initialize the randomization.

D. Results
The first experiment’s classification and clustering results

are shown in Fig. 10A and Fig. 10B respectively. The condi-
tional entropy indicates how much information about the true
material label is given by the cluster it has been assigned to. It
is therefore a suitable measure of clustering performance [58].
The µMCA method achieved the best performance in both the
supervised classification task, with an accuracy of 95.15%, and
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Figure 11. The graph shows the classification error incurred when classifying
seven textures that were excluded from the learning set. The error bars indicate
+/- two standard errors of the mean.

the unsupervised clustering task, with a conditional entropy
of 0.262. The WMCA method achieved a similar classifica-
tion accuracy, but a conditional entropy of only 0.335 for
the clustering task. The unimodal PCA approach performed
considerably worse than the multimodal approach with a best
classification accuracy of 90.85% and a conditional entropy
of 0.520. The naive approach gives a benchmark accuracy
72.14% of and a conditional entropy of 0.900. Both WMCA
and µMCA display plateau structures of similar performance
for a wide range of output dimensions.

The mean times required to compute matrix W are
WMCA µMCA PCA Naive
1617ms 22ms 19ms 0ms

when run on a 3.0 GHz Intel Duo Core processor in python.
The time required by µMCA can be decomposed into 7ms
for computing the group means, and 15ms for computing the
mapping matrix W from these means.

The results of the second experiment are shown in Fig. 11.
These error rates are lower than in the first experiment, as
this classification task only uses seven classes rather than
17. The WMCA, µMCA, and PCA approaches achieved
similar classification accuracies of approximately 96.5%. The
naive approach obtained an accuracy of 92.0%. The standard
deviations in this experiment are approximately one and a half
times as great as in the first experiment.

The results of the robustness experiment are shown in Fig.
12. The µMCA method’s classification accuracy is similar to
that of PCA. The WMCA method, with annealing, achieves
performance levels similar to those of the first experiment.

E. Discussion
The results show that the use of visual data in the dimen-

sionality reduction significantly improves the performance of
the system. When the number of output dimensions increases,
each method is selecting additional directions in the input
space to keep. If the signals in these directions contain infor-
mation relevant for tactile sensing, the performance improves.
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Figure 12. This graph shows the effects on classification performance when
WMCA and µMCA are trained on incorrectly-paired data. Each weakly-paired
group consists of a mix of materials, rather than a single material. The error
bars indicate +/- two standard errors of the mean.

When the performance of a method decreases, it is including
signals that are irrelevant to the tactile sensing, even though
they have a high variance. Such signals could be caused by
additional factors in the tactile modality, such as the vibrations
of the robot [17], [11].

The PCA approach performs the best around q = 16
output dimensions. Deviations from this value lead to worse
performance. In contrast, the WMCA method uses the vision
information to determine which dimensions are relevant. By
actively trying to exclude irrelevant signals, WMCA creates
a plateau of good performance around the optimal q value.
Hence, the WMCA method is less sensitive to changes in q
and easier to tune.

By performing MCA on the group means x̄ and x̄�, the
µMCA method automatically omits the dimensions describing
variations within the groups. The resulting low-dimensional
representations therefore contains less noise, which leads to
better performance. These representations are especially well-
suited for representing cluster centers, as shown by the clus-
tering task’s results. The µMCA method’s plateau structure is
the result of its limited output dimensionality q ≤ g. Similar to
WMCA, the µMCA method uses the vision data to include the
relevant dimensions first. Hence, the final dimensions added
tend to be the worst and decrease performance levels.

Both WMCA and µMCA perform well in the classification
and clustering tasks of the first experiment. However, the
standard errors of the mean, as shown in Fig. 10, indicate
that µMCA’s performance is significantly better. The WMCA
method also requires considerably more computation time than
µMCA and PCA. However, most applications will not require
the learning to be performed in real time.

The second experiment shows that the abilities of µMCA
and WMCA to generalize to new materials is similar to that
of PCA. The good performance in this experiment suggests
that the dimensionality reductions keep most of the pertinent
information. The additional vision samples that WMCA did
not find a pairing for may therefore be removed to save
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memory. The standard deviations are larger in this experiment
because the performance is affected by the similarity between
the learning and testing data sets. If the learning set includes
materials similar to those in the testing set, the methods
perform better.

Although the groups in the third experiment contained
large amounts of incorrect data, the WMCA automatically
found good pairings between samples. This result suggests that
WMCA can be used with more complicated vision data and
still find good pairings. Unlike WMCA, the µMCA method
could not find suitable low-dimensional representations due to
the incorrect data.

Since µMCA is less robust to incorrect data, it requires
a more structured environment for the learning phase. The
environment should allow for surfaces to be easily inspected
through both vision and touch. The inspected surfaces should
be easy to identify in the images and should ideally be large
and flat. Since the µMCA method only requires weakly-
paired samples, the objects may be freely manipulated by
the robot between the tactile and vision inspections. Given
these conditions, the environment should effectively resemble
an infant’s playpen.

The additional robustness of WMCA allows it to learn in
more complicated environments. The experiments suggest that
WMCA can handle situations such as having multiple objects
in an image, and visually inspecting surfaces from multiple
angles. The images must still contain some good data, but
the robot is also allowed to collect some incorrect data while
exploring. The WMCA may therefore be able to learn in
everyday environments, as long as the conditions allow for
both tactile and visual inspection of surfaces. The ability to
learn by inspecting everyday objects is however beyond the
scope of this paper, and will need to be thoroughly tested in
the future.

In the future, the tactile data will also need to be prepro-
cessed to take into account the velocity of the tactile sensor.
Currently, moving the sensor at a different velocity has the
same effect as scaling the textured surface. A similar problem
occurs in the vision modality when a surface is observed at
an angle. By preprocessing the data to make it invariant to
such changes, the robot will be able to learn in even more
complicated situations.

Once the dimensionality reduction has been learned with
either µMCA or WMCA, the tactile sensor can be used in a
wide range of situations. The tactile sensing will still benefit
from the multimodal learning phase, even if the conditions do
not allow for visual inspection.

V. CONCLUSION

Dynamic tactile sensing represents an important form of
feedback when performing manipulation tasks. These sensors
will therefore be vital for the many tasks that service robots
may encounter. However, the data from tactile sensors is usu-
ally high dimensional and can contain vibrations from spurious
sources. Hence, the data is difficult to use for discriminating
between different surfaces.

In this paper, we presented the µMCA and WMCA methods
for using tactile sensors to accurately and robustly clas-

sify textured surfaces. These methods use a second sensor
modality, i.e. vision, during the learning phase to determine
suitable lower-dimensional representations of the tactile data.
The proposed approach relies on both sensors observing the
relevant information from the environment, i.e. the texture of
a surface. Any additional information is only observed by
one of the modalities. For example, the surface’s color is
only seen by the camera and the robot’s vibrations are only
detected by the tactile sensor. Hence, the relevant part of the
data is correlated between the modalities. A common problem
when using multimodal data is the need to perfectly pair the
data samples across modalities. The proposed methods were
therefore designed to work with groups of weakly-paired data.

The µMCA method uses a maximum likelihood estimate to
create a model of each group from its samples. The estimated
means of the tactile data are paired with those of the vision
data for each group. Subsequently, a maximum covariance
analysis is applied to recover the relevant dimensions. The
experiments show that the µMCA approach performs well in
both classification and clustering tasks. The mapping to lower-
dimensions can also be quickly learned from a set of samples.

The WMCA method uses an iterative maximization proce-
dure to automatically determine suitable pairings within the
groups. The final pairings lead to a dimensionality reduction
mapping that is guaranteed to locally maximize the covariance
between the modalities. In order to systematically converge on
a good local maximum, the proposed WMCA implementation
uses concepts from deterministic annealing. The experiments
show that this approach is very robust and can even handle
heavily mixed groups.

After learning a mapping to a lower dimensionality, the
vision modality is no longer required. The tactile sensor can
therefore be used in conditions where visual inspection in not
possible, while still benefiting from the multimodal learning.

The experiments have shown that the methods can learn
good dimensionality reduction mappings from only weakly-
paired data obtained in semi-structured environments. The
proposed algorithms can also be used with a variety of
other sensors that acquire related samples. For example, a
camera could be trained with a laser scanner to determine
visual features that indicate depth-of-view, or a microphone to
determine vision features related to audio sources. Therefore,
the µMCA and WMCA methods are widely applicable in the
field of robotics.
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