
Laplacian Mesh Editing for
Interaction Learning
Laplace’sche Polygonnetz Editierung für Interaktions Lernen
Bachelor-Thesis von Hong Linh Thai
März 2014

Laplacian Mesh Editing for Interaction Learning
Laplace’sche Polygonnetz Editierung für Interaktions Lernen

Vorgelegte Bachelor-Thesis von Hong Linh Thai

1. Gutachten: Prof. Dr. Jan Peters
2. Gutachten: Dr. Heni Ben Amor
3. Gutachten: M.Eng. Oliver Kroemer

Tag der Einreichung:

Erklärung zur Bachelor-Thesis

Hiermit versichere ich, die vorliegende Bachelor-Thesis ohne Hilfe Dritter und nur mit den ange-
gebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen entnommen
wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder ähnlicher Form noch
keiner Prüfungsbehörde vorgelegen.
In der abgegebenen Thesis stimmen die schriftliche und elektronische Fassung überein.

Darmstadt, den 4. März 2014

(Hong Linh Thai)

Thesis Statement

I herewith formally declare that I have written the submitted thesis independently. I did not use
any outside support except for the quoted literature and other sources mentioned in the paper.
I clearly marked and separately listed all of the literature and all of the other sources which I
employed when producing this academic work, either literally or in content. This thesis has not
been handed in or published before in the same or similar form.
In the submitted thesis the written copies and the electronic version are identical in content.

Darmstadt, March 4, 2014

(Hong Linh Thai)

Abstract
For motion editing of close interactions between one or multiple people, such as handing over objects or punching,
it is necessary to preserve the implicit spatial and temporal relationships between the different joints in order to
keep the edited motion as close as possible to the original movement. These relationships can be encoded by an
interaction mesh and the Laplacian representation of the mesh. Using this representation retargeting and synthesis
of a motion can be formulated as a combination of several optimizations. In this work, distinctive movements are
analysed with respect to how they and their spatial and temporal relationships are encoded in the Laplacian space.
Furthermore, we investigated in this work, if it is possible to adapt the weights of the Laplacian energy or the
interaction meshes to a specific movement in order to improve the reconstructed results. Finally, we show how this
method could be applied to temporal sequences.

Zusammenfassung
Bei der Bearbeitung von Bewegungen, die enge Interaktionen zwischen einer oder mehreren Personen beschreiben,
wie die Übergabe eines Gegenstands oder einem Fausthieb, ist Erhaltung der räumlichen und zeitlichen Abhängig-
keiten zwischen den jeweiligen Gelenken der interagierenden Personen entscheidend, um die bearbeitete Bewe-
gung möglichst nah am Original zu halten. Diese Abhängigkeiten können mit Hilfe eines Interaktionsnetz und der
Laplace’schen Darstellung eines Polygonnetzes einkodiert werden, so dass die Synthese von neuen Bewegungen
und das Übertragen der Bewegung auf neue Proportionen durch diverse Optimierungen formuliert werden kann.
In dieser Arbeit wird die Darstellung von verschiedenen Bewegungen im Laplace’schen Raum analysiert und an-
hand dessen die Möglichkeit zur Verbesserung der synthetisierten Ergebnisse durch die Anpassung der Gewichte
der Laplace’schen Energie oder der Interaktionsnetze untersucht.

i

Contents

List of Figures v

List of Tables v

1. Introduction 1

2. Laplacian Mesh Editing 3
2.1. Formal Definition of a Mesh . 3
2.2. Laplacian Coordinates . 3
2.3. Weighting Schemes . 4

2.3.1. Uniform Weights . 4
2.3.2. Cotangent Weights . 4

2.4. Laplacian System . 5
2.4.1. Laplacian Matrix . 5
2.4.2. Reconstruction of the Mesh from Laplacian Coordinates . 5

2.5. Sensitivity to Linear Transformations . 6
2.5.1. Implicit Transformation . 7
2.5.2. Laplacian System including the Implicit Transformation . 8

3. Laplacian Represenations of Temporal Sequences 11
3.1. Creation of the Mesh . 11

3.1.1. Interaction Mesh . 11
3.1.2. 3D+t Graph . 12

3.2. Bone-length Constraints . 12
3.3. Movement Specific Interaction Mesh . 13

3.3.1. Initialization Phase . 14
3.3.2. Optimization Phase . 14
3.3.3. Algorithm . 15
3.3.4. Variants . 15

4. Experiments and Results 17
4.1. Data Acquisition . 17
4.2. Experiments and Results of Motion Specific Interaction Meshes . 17

4.2.1. Scenario : Handing Over . 18
4.2.2. Training using Pruning . 19
4.2.3. Training using Growing . 20
4.2.4. Discussion . 21

5. Conclusion and Future Works 23

6. Bibliography 27

A. Animations 29

iii

List of Figures

2.1. Example Laplacian coordinates . 3
2.2. Example uniform weights . 4
2.3. Example cotangent weights . 4
2.4. Sensivity of Laplacian coordinates to linear transformations . 7

3.1. Example Delaunay Tetrahetralization . 11
3.2. Example 3d+t Graph . 12
3.3. Example of interaction meshes used in the initialisation phase . 14

4.1. Skeleton structure and joint definition of the motion capture data . 17
4.2. Visualization captured motions . 18
4.3. Visualisation handing over movement . 18
4.4. Experiment pruning : Comparison between an untrained interaction mesh and a trained movement

specific interaction mesh . 19
4.5. Experiment pruning : Convergence and improvement of movement specific interaction meshes 19
4.6. Experiment growing : Comparison between an untrained interaction mesh and a trained movement

specific interaction mesh . 21
4.7. Experiment growing : Convergence and improvement of movement specific interaction meshes 21

A.1. Visualisation Sample 1, Handing Over . 29
A.2. Visualisation Sample 2, Handing Over . 29
A.3. Experiment pruning : Target 2-4, Comparison between an untrained interaction mesh and a trained

movement specific interaction mesh . 30
A.4. Experiment pruning : Target 5, Comparison between an untrained interaction mesh and a trained

movement specific interaction mesh . 31
A.5. Experiment growing : Target 2-5, Comparison between an untrained interaction mesh and a trained

movement specific interaction mesh . 31

List of Tables

4.1. Experiment pruning : Generalization of movement specific interaction meshes to different scenarios . 20
4.2. Experiment growing : Generalization of movement specific interaction meshes to different scenarios 22

List of Algorithms

1. Optimization of a interaction mesh to a specific motion . 15

v

1 Introduction
"In the long history of humankind (and animal kind, too) those who learned to collaborate and improvise most

effectively have prevailed.", Charles Darwin

Since the stone age, humans have been cooperating and collaborating with each other, as cooperation and col-
laboration are basic interactions between human beings. In the process of cooperation and collaboration close
interactions between two persons are often needed as a common way to communicate and work together. With
the birth of artificial intelligence effective collaboration and close interactions between humans and robots are
becoming progressively more important, considering the continuous growth in the usage of robots in industrial
manufacturing and possible future usage of robots in different fields of our daily life (e.g. household, elderly care).
In order to achieve close interactions between humans and robots, robots need to learn from observing actions
between two humans and generalize them to new robot-human interactions.

As the semantic of a close interaction is not only represented by the position of the joints of the interacting agents
but also in the spatial relationship between different body parts, it is necessary to incorporate both aspect when
learning a specific movement. One way to encode this information is using interaction meshes [HKT10] or 3d+t
graphs [NCG13] and their Laplacian representation [Ale03], which were originally used in animation editing and
computer graphics. Interaction mesh and 3d+t graph are volumetric meshes defined by their vertices and edges.
The vertices are defined by the joints of the interacting agents and the shape of the objects with which the agents
are interacting. The edges are defined by the spatial and temporal relationships between the joints of the agents
and the objects. In order to adapt to different skeleton topologies or to new situations, it is necessary to keep the
high-level semantics of the interaction by preserving the local details and global shape of the interaction mesh or
the 3d+t graph. Laplacian mesh editing, originally proposed by Alexa [Ale03] and Sorkine [SCOL+04], is ideal for
this task, as it aims to deform a mesh in a specified local region while preserving the global shape of the mesh as
close as possible to the original.

Furthermore, these interaction meshes have also been successfully used by Zarubin et al. [ZIT+12] for motion
planing of a reaching task on the KUKA LWR 4 robotic arm in a dynamic environment as well as by Ho et al.
[HS13] for synthesizing full body motions on a humanoid robot capable of adapting in constraint environments.
Therefore, this work’s goal is to learn the spatial and temporal relationship of a distinctive movement between two
humans and use this knowledge to adapt interaction meshes to the movement to be learned. The learning process
is achieved by using steepest ascent hill climbing, adapting an initial generic interaction mesh by adding additional
and removing existing edges, as the edges represent the spatial and temporal relationship between specific joints
of the movement. Once an interaction mesh is adapted to a specific movement between two humans, it could be
used by robots to take one part of the interaction and to interact with the human counter part.

The thesis is structured in the following way: To being with, in second chapter, we will give an introduction
to meshes and explain Laplacian mesh editing as mesh deformation technique. In the third chapter, we will show
different possibilities to generate meshes from a given temporal sequence and explain how Laplacian mesh editing
could be applied on these meshes to modify or synthesise similar motions. Moreover, in the third chapter our own
approach to adapt interaction meshes to specific movements will be presented. Results of this method are shown
and discussed in chapter 4 and 5.

1

2 Laplacian Mesh Editing
Laplacian Mesh Editing is a free form editing technique widely used in computer vision. It was proposed in 2003
by Marc Alexa [Ale03] and in 2004 by Sorkine et al. [SCOL+04]. The goal of Laplacian Mesh Editing is to deform
a mesh in a specified local region while preserving the global shape of the mesh. Therefore the mesh is represented
in differential coordinates, which describe the local properties of the mesh rather the absolute position in space.
This chapter should give an introduction into Laplacian Mesh Editing and give an intuitive understanding.

2.1 Formal Definition of a Mesh

A mesh M can be formally seen as a undirected Graph, defined as a pair (V,E). V = {v1, v2, . . . , v|V|} is a set
containing the vertices of the graph and E = {e1, e2, . . . , e|E|} with ei ∈ V× V is a set containing the edges of the
graph, describing the connectivity of the vertices. In the following the vertices of a mesh will be represented by
their geometrical position with v i ∈ Rd , 1≤ i ≤ |V| and d as the dimension of the mesh.

2.2 Laplacian Coordinates

Laplacian coordinates are differential coordinates, which can be theoretically derived from the Laplace-Beltrami
operator. They can be seen as a discretization of the continuous Laplace-Beltrami operator, if one sees a mesh as a
piecewise-linear approximation of a smooth surface [Sor05] [BS08].
Let δi be the Laplacian coordinate and v i be the absolute coordinate of a vertex i. Then the Laplacian coordinate
δi and the Laplacian operator L is defined as:

δi = L(vi) = ni

∑

vj∈N(vi)

wi j(vi− vj) (2.1)

where v j ∈ N(vi) are the direct neighbours of vi , ni is a per-vertex normalization weight and wi j are the edge
weights. Intuitively the Laplacian coordinate is the difference from the vertex to a weighted centroid of its neigh-
bour. Hence one can move the centroid nearer or farer away from specific neighbours, using the weights.

δi

vi

Figure 2.1.: An example of a vertex(black) and its Laplacian coordinate(arrow) calculated from the centroid(blue)
of its neighbours(red) in a 2 dimensional Mesh

Thus the discretization, respectively the Laplacian coordinate, depends on ni and wi j leading to different weighting
schemes (see Section 2.3).

3

2.3 Weighting Schemes

In the following, two standards weighting schemes for the discretization in computer vision are presented and
explained. Uniform weights [SCOL+04] [BS08] [Ale03] and cotangent weights. [BS08] [DMSB99]

2.3.1 Uniform Weights

Uniform weights use wi j = 1 and ni =
1
∑

j wi j
. Intuitively they define the Laplacian coordinate as the difference from

the vertex to the centroid of its neighbour without taking the local geometry (angles or edge lengths) of the mesh
in consideration, as shown in Figure 2.2. Therefore they cannot give a good approximation on irregular meshes
[BS08].

Figure 2.2.: An example of uniform weights of different mesh topologies but same laplacian coordinates

2.3.2 Cotangent Weights

Cotangent weights were proposed first by Desbrun et Al. in 1999 as an improvement of the uniformed weights and
as a better approximation of the Laplace-Beltrami operator, including the information about the local geometry of
the mesh [DMSB99]. They set the weights as

wi j = cotαi j + cotβi j ni =
1

∑

j cotαi j + cotβi j
(2.2)

with αi j and βi j as the angles opposite to the edge of the two triangles having the edge ei j in common. (depicted
in figure 2.3) An alternative formulation by Botsch et Al. in 2004 [BK04] is

wi j =
1

2
(cotαi j + cotβi j) ni =

1

Ai
(2.3)

where Ai is the Voronoy area of the vertex i, defined as the area built from the incident triangles’ circumcenters or
the edge midpoints for obtuse angles. (depicted in figure 2.3)
According to Botsch and Sorkine [BS08] these weights lead to the best solution. However, in a mesh with near-
degenerate triangles the usage of cotangent weight could lead to numerical problems and singular matrices, as the
cotangent values would degenerate.

vi

vj vj+1

vj-1
αij

βij

Figure 2.3.: The angles and the voronoi area (dark grey) used in Equation 2.2 and 2.3 for an edge between vertex i
(black) and its neighbour j (blue)

4

2.4 Laplacian System

This section will explain how one can create a linear system of equations and solve it in order to edit a mesh,
independent from the chosen weighting scheme.

2.4.1 Laplacian Matrix

The transformation between Euclidean space and Laplacian space (see Section 2.2) can be written for the whole
mesh as a matrix operation

δ1
...
δ|V|

= M−1Ls
︸ ︷︷ ︸

L

v1
...

v|V|

(2.4)

Mi i = ni Ls =

−
∑

vk∈N(vi)
wik i = j

wi j v j ∈ N(vi)
0 otherwise

where M is a diagonal matrix containing the normalization weights ni for each vertex and Ls is a symmetric matrix
containing the different edge weights wi j [BS08].
It can be shown that L = M−1Ls ∈ R|V |x |V | is symmetric, sparse and has rank |V | − 1 [SCOL+04] [Ale03] [Sor05].
Thus L is not invertible and therefore the mesh is not reconstructible without more specified constraints. L is known
as the Laplacian Matrix or as the Laplacian Operator for a mesh.
When using uniform weights L can be simplified to

L= I − DA

where D is a diagonal matrix with Di i =
1

|N(vi)|
and A as the adjacency matrix of the mesh, defined as :

Ai j =

(

1 if (vi,vj) ∈ E

0 otherwise

2.4.2 Reconstruction of the Mesh from Laplacian Coordinates

As shown in the previous section, it is not uniquely possible to reconstruct the Euclidean coordinates given the
Laplacian coordinates and L, as L is singular. Therefore the expression

vi
...

v|V|

= L−1

δi
...
δ|V |

(2.5)

is not defined. For that reason, Sorkine and Alexa proposed to fix the position of several vertices, as additional
position constraints [SCOL+04] [Sor05] [Ale03].

vj = cj j ∈ C (2.6)

where C is a set containing all the indices of the fixed vertices. By adding the positional constrains one receives the
following linear equation system.

L
. . . ω1 . . .

...
. . . ω|C | . . .

︸ ︷︷ ︸

L̃

v′i
...

v′|V|

=

δi
...
δ|V |
ω1c1

...
ω|C |c|C |

(2.7)

5

The system matrix of Equation 2.7 is referred as L̃ ∈ R(|V |+|C |)×|V | and contains additional rows for the given
positional constrains with the weight ωi at the corresponding ith index column. The right hand side vector is
extended in addition by the respective weighted result of the positional constrains. By adding the positional
constrains as additional rows, instead of substituting them, the positional constrains are treated in a least-square
sense. Thus they may not be fully satisfied by the least-squares solution and are no hard constraints. By increasing
the weight ωi one can enforce the positional constraints. However, this leads to higher condition numbers for L̃
and possibly results in numerical problems [BS08].
Due to the additional positional constraints, L̃ is an overdetermined system (more equations than variables) with
full rank, which can be uniquely solved using linear least squares. Solving the Equation 2.7 with linear least squares
is equivalent to minimizing the following energy function

E(V ′) =
|V |
∑

i=1

||Lv′i −δi ||2+
∑

j∈C

ω j ||v′j − cj||2 (2.8)

Intuitively, this energy describes the difference in the Laplacian coordinates between a modified mesh and the given
mesh and the difference between the modified mesh and the given positional constraint. Thus, the first term tries
to preserve the local information of the original mesh, while the second term tries to satisfy the given positional
constraints. The analytical least-squares solution for Equation 2.7 can be computed by the pseudo-inverse of the
system matrix L̃.

v′i
...

v′|V|

= (L̃T
L̃)−1L̃

T

δi
...
δ|V |
ω1c1

...
ω|C |c|C |

(2.9)

To solve the system effectively and accurate Sorkine proposed to use a sparse Cholesky factorization, which can be
found in [Sor05]. Advantage of that method is that the factorization is only computed once when the system is
build. This is useful when editing is done repeatedly on different targets without changing the model.
She however notes, that the accuracy of the solution is highly dependent on the conditioning of the linear system
and that the Laplacian matrix is often ill-conditioned. Though, one can improve the condition numbers and stabilize
the factorization by adding more positional constraints.
However, this solution does not include the sensitivity of Laplacian Coordinates to linear transformation. A solution,
which covers this aspect, can be found in Section 2.5.2

2.5 Sensitivity to Linear Transformations

The optimization in Section 2.4.2 only works, if the chosen positional constraints of Equation (2.6) do not imply
a linear transformation. The reason for this behaviour is that Laplacian coordinates are sensitive to linear trans-
formations. Thus, the local information of the structure can be translated, but not scaled or rotated, as shown in
Figure 2.4.
To deal with this problem a local transformation is often used. The idea of this local transformation is to keep

the relative orientation and size of the the local features during the deformation and to split the problem into two
sequential problems. The first part is to derive the transformation Ti , which holds (definition of δi and δ′i see
Figure 2.4).

δ′i = Tiδi (2.10)

The second part is to plug these expressions into the previous reconstruction problem (Section 2.4.2) and compute
the final solution by minimizing the error function.

E(V ′) =
|V |
∑

i=1

||Lv′i − Tiδi ||2+
∑

j∈C

||v′j − c j ||2 (2.11)

There are different ways to compute this local transformation [BS08], however common methods are the esti-
mation of the transformation from an initial guess solution [LSCO+04], comparing the original surface and the
deformed surface in a neighbourhood of vi using normals or the usage of an implicit transformation [SCOL+04].

6

δ i
δ'i

δ'i

Figure 2.4.: As rotation and scalation of the mesh changes the Laplacian coordinate δi , Laplacian coordinates are
sensitive to linear transformations

2.5.1 Implicit Transformation

Implicit transformations, proposed by Sokrine [SCOL+04], are one way to deal with the unknown transformation,
combining both steps of last section into one. They are based on the assumption that the unknowns of Ti are a
linear function of V ′, modifying Equation (2.11) to:

E(V ′) =
|V |
∑

i=1

||Lv′i − Ti(V
′)δi ||2+
∑

j∈C

||v′j − c j ||2 (2.12)

Thus solving E(V ′) implies finding Ti implicitly.
Each Ti is derived from the transformation of vi and its neighbours to their reconstructed position. As a result
Sorkine propose that Ti should hold:

Ti = argmin
Ti
(||Tivi − v′i ||

2+
∑

j∈N(vi)

||Tivj − v′j ||
2) (2.13)

Furthermore, Ti needs to be constrained to only representing rotations, scaling and translations and no other
operation. In the 2D case it is easy to define such a linear transformation complying the constraint. However, in the
3D case it is not possible to define a exact linear transformation, as rotation matrices cannot be expressed linearly
in 3D. Hence a good linear approximation for small angles is used in this case [SCOL+04]

Ti =

si −hi,z hi,y t i,x
hi,z si −hi,x t i,y
−hi,y hi,x si t i,z

0 0 0 1

(2.14)

Further details for the derivation of the approximation can be found in [LSA+05]. Given now Ti , one can write
down the linear dependency of equation (2.13) using homogeneous coordinates on V ′ as:

si −hi,z hi,y t i,x
hi,z si −hi,x t i,y
−hi,y hi,x si t i,z

0 0 0 1

vk,x
vk,y
vk,z
1

=

v ′k,x
v ′k,y
v ′k,z
1

k ∈ {i} ∪ N(vi) (2.15)

where vk,x is the x-coordinate of the kth vertex, vice-versa for vk,y , vk,z . As one needs si , hi and ti as expression of
V and V ′, the equation system can be reformulated as

vk,x 0 vk,z vk,y 1 0 0
vk,y −vk,z 0 vk,y 0 1 0
vk,z vk,y −vk,x 0 0 0 1

...

︸ ︷︷ ︸

Ai

si
hi,x
hi,y
hi,z
t i,x
t i,y
t i,z

=

v ′k,x
v ′k,y
v ′k,z

...

︸ ︷︷ ︸

bi

k ∈ {i} ∪ N(vi) (2.16)

7

As this equation is equivalent to Equation (2.13), one can write down this system as Ai(si , hi , ti)T = bi and solve
the system in the least-square sense via the pseudo-inverse resulting in

si
hi,x
hi,y
hi,z
t i,x
t i,y
t i,z

= (AT
i Ai)

−1AT
i

v ′k,x
v ′k,y
v ′k,z

...

= A+
i

v ′k,x
v ′k,y
v ′k,z

...

=

A+
i,11

v ′k,x + A+
i,12

v ′k,y + A+
i,13

v ′k,z + . . .
A+

i,21
v ′k,x + A+

i,22
v ′k,y + A+

i,23
v ′k,z + . . .

A+
i,31

v ′k,x + A+
i,32

v ′k,y + A+
i,33

v ′k,z + . . .
...

k ∈ {i} ∪ N(vi) (2.17)

Since Ai is already known from the initial mesh, the coefficient of Ti are linearly dependent of V ′ as required. The
calculated coefficients can now be plugged into Ti to calculate the transformation of the Laplacian coordinates δi .

δ′i,x
δ′i,y
δ′i,z

=

si −hi,z hi,y
hi,z si −hi,x
−hi,y hi,x si

δi,x
δi,y
δi,z

k ∈ {i} ∪ N(vi) (2.18)

=

A+
i,11

v ′k,x + A+
i,12

v ′k,y + A+
i,13

v ′k,z + . . . −(A+
i,41

v ′k,x + A+
i,42

v ′k,y + A+
i,43

v ′k,z + . . .) A+
i,31

v ′k,x + A+
i,32

v ′k,y + A+
i,33

v ′k,z + . . .
A+

i,41
v ′k,x + A+

i,42
v ′k,y + A+

i,43
v ′k,z + . . . A+

i,11
v ′k,x + A+

i,12
v ′k,y + A+

i,13
v ′k,z + . . . −(A+

i,21
v ′k,x + A+

i,22
v ′k,y + A+

i,23
v ′k,z + . . .)

−(A+
i,31

v ′k,x + A+
i,32

v ′k,y + A+
i,33

v ′k,z + . . .) A+
i,21

v ′k,x + A+
i,22

v ′k,y + A+
i,23

v ′k,z + . . . A+
i,11

v ′k,x + A+
i,12

v ′k,y + A+
i,13

v ′k,z + . . .

δi,x
δi,y
δi,z

In this case, no homogeneous coordinates are used as Laplacian coordinates are invariant to translations.
As the expression Ti(V ′)δi from equation (2.12) is only dependent on the unknowns v′i and v′k, k ∈ N(vi) seen
in latter Equation (2.18)(the matrix Ai and the vector δi are given from the initial mesh) , one can build an
equation system similar to the Laplacian System (Equation (2.7)), which includes the linear transformation Ti and
is equivalent to equation (2.12).

2.5.2 Laplacian System including the Implicit Transformation

Using the result from the last section one can reformulate Equation (2.12) as:

E(V ′) =
|V |
∑

i=1

||L

v ′i,x
v ′i,y
v ′i,z

− T̃i

v ′i,x
v ′i,y
v ′i,z
v ′k,x
v ′k,y
v ′k,z

...

||2+
∑

j∈C

ω j ||v′j − cj||2 k ∈ N(vi) (2.19)

with T̃i =

A+
i,11
δi,x − A+

i,41
δi,y + A+

i,31
δi,z A+

i,12
δi,x − A+

i,42
δi,y + A+

i,32
δi,z . . .

A+
i,41
δi,x + A+

i,11
δi,y − A+

i,21
δi,z A+

i,42
δi,x + A+

i,12
δi,y − A+

i,22
δi,z . . .

−A+
i,31
δi,x + A+

i,21
δi,y − A+

i,11
δi,z −A+

i,32
δi,x + A+

i,22
δi,y + A+

i,12
δi,z . . .

As the first sum of the equation is now only dependent on the unknown V ′, one can reformulate this sum into a
matrix. The first term of this sum can be described as following:

L 0 0
0 L 0
0 0 L

︸ ︷︷ ︸

L

vx
′

vy
′

vz
′

with vx

′ =

v1,x
...

v|V |,x

vy
′ =

v1,y
...

v|V |,y

vz
′ =

v1,z
...

v|V |,z

(2.20)

The matrix above is abbreviated as L ∈ R3|V |x3|V | containing the Laplacian Matrix L, described in Section 2.4.1.
To include the second term into L, one just needs to subtract the indices of T̃i at the corresponding rows and

8

columns of L. For example the first index of T̃1, T̃1,11 = A+1,11δi,x − A+
i,41
δ1,y + A+1,31δi,z , needs to be inserted as

−(A+1,11δi,x − A+
i,41
δ1,y + A+1,31δi,z) into the first row and first column, since the first row and the first column is

multiplied with v1,x . This results in a system which can be written as:

L− Tx ,x −Tx ,y −Tx ,z

−Ty,x L− Ty,y −Ty,z

−Tz,x −Tz,y L− Tz,z

vx
′

vy
′

vz
′

=

0
0
0

(2.21)

where Tx ,x is a matrix containing the all indices of T̃k with k ∈ V , which are multiplied with vx
′ to receive x-

coordinate of δ′
k
, and vice-versa for Tx ,y , Tx ,z etc. Including of the positional constraints modifies the system

to:

L− Tx ,x −Tx ,y −Tx ,z

−Ty,x L− Ty,y −Ty,z

−Tz,x −Tz,y L− Tz,z

Ci 0 0
0 Ci 0
0 0 Ci

...

︸ ︷︷ ︸

A

vx
′

vy
′

vz
′

︸ ︷︷ ︸

V

=

0
0
0

ωici,x
ωici,y
ωici,z

...

︸ ︷︷ ︸

b

(2.22)

where Ci is a row vector containing only zeros except ωi at the ith index corresponding to the constraint ci. The
size of this system matrix and the right hand side vector are (3|V |+ 3|C |)× 3|V | and (3|V |+ 3|C |) respectively.
Solving this system in a least-square sense using the pseudo-inverse leads to the solution and reconstruction of the
edited mesh including the linear transformation and is equivalent to minimizing Equation (2.18). This technique
leads to almost rotation-invariant Laplacian coordinates. However, for large rotations artefacts still remain due
to the linearisation of the rotations [BS08]. Furthermore, as this system is similar to Laplacian System in Section
2.4.2, it suffers from the same numerical problems to condition numbers.

9

3 Laplacian Represenations of Temporal Sequences
This chapter explains how one can apply Laplacian Mesh Editing to animations and temporal sequences in order
to maintain the spatial and temporal relationships of different interacting joints. Therefore this chapter deals with
the problem how one can generate a mesh given the data of a temporal sequence.

3.1 Creation of the Mesh

In the following two different related approaches to create a mesh given an animation will be presented and ex-
plained. Ho et al. proposed to create an interaction meshes for every animation frame individually using Delaunay
tetrahetralization [HKT10], while Naour et al. proposed to use an 3D+t graph created from the skeleton over time
connecting the frames to a large graph [NCG13].

3.1.1 Interaction Mesh

Given a set of animation frames and assuming that the interacting persons are given as rigid skeletons, one can
represent the posture of the interacting persons via the position of their joints. The idea for using the joint posi-
tions instead of using joint angles is because the Laplacian coordinates are based on absolute coordinates. If one
considers the joint positions as a sets of points one can apply Delaunay tetrahetralization to create a mesh out of
the point cloud.
Delaunay tetrahetraliazation is a method from ’Computational’ Geometry and creates a tetrahetralization DT (P)
given a set of points P ∈ R3 such that no point p ∈ P is inside the cirumsphere of any tetrahedron t ∈ DT (P).
The advantage of this method is that the resulting grid is quite regular, as Delaunay tetrahetralization maximizes
the smallest angle of all angles of each tetrahedron in the grid to hold latter requirements. However, Ho et al.
do not only use the joint positions as the input, they also include virtual vertices, sampled from the bones of the
skeleton. This approach was inspired by Shi et al., who used so called tetrabones in their approach [SZT+07]. The
Interaction mesh is the result of the Delaunay tetrahetralization of each individual frame, using the position of the
joints and the virtual verticies. (depicted in Figure 3.1) Hence each frame possesses a distinct interaction mesh,
which is used to keep the spatial relationship of the interaction persons by minimizing the Laplacian deformation
energy of all individual interaction meshes.

Figure 3.1.: Examples of grids resulting from Delaunay Tetrahetralization
left : a Delaunay Tetrahetralizaion of a 2D example, shown with the circumcircles of the triangles
right : a Delaunay Tetrahetralizazion of a frame from a handing over movement

11

3.1.2 3D+t Graph

Instead of using Delaunay Tetrahetralization, Naour et al. propose a different method to create the mesh given an
animation. Let S be a sequence of skeletons with S = (S1, . . . , Sm), where each skeleton Sk is defined as the skeleton
of the kth frame of the animation by Sk = (Vk,Ek), with Vk = (v1,k , . . . , vn,k) containing the joint positions of
the kth frame and Ek containing the edges of the kth frame. Naour et al. choose as edges for Ek the bones of
the skeleton structure and the temporal connection of the joints between adjacent skeletons in time. The structure
G = (V,E) with V = {Vk} and E = {Ek} containing the spatial and temporal relationships of the skeleton of each
frame is called the 3D+t Graph, as shown in Figure 3.2.
Thus, the Laplacian coordinates of the 3D+t Graph depend on the spatial and temporal relationships and are
calculated as following:

δi,k = L(vi,k) = wi,k(
∑

vj,k∈Nk(vi,k)

wi j,k(vi,k− vj,k) +w−k (vi,k− vi,k−1) +w+k (vi,k− vi,k−1)) (3.1)

with w−k and w+k as special weights for the temporal relationship between the frames and Nk(vi,k) containing all
the neighbour joints of joint v i,k of the kth frame.

Figure 3.2.: Example of a 3D+t Graph of a reference movement(grey). Blue points represent the joints / geometrical
information. The connectivity of the graph is represented by the green dashed and yellow lines. The
yellow edges are extracted from the skeleton and the green dashed line are created from the temporal
relationship of the joints. [NCG13]

3.2 Bone-length Constraints

As Laplacian Mesh Editing applied to the meshes described in Section 3.1 do not always preserve the distance
between the vertices, it is necessary to introduce bone length constraints. Therefore an additional energy term is
needed, which enforces the bone lengths in each time step of the sequence. An other advantage of this bone length
energy term is by choosing a different desired bone length than the bone length of the original skeleton, one can
retarget the synthesized motion to different skeleton proportions, e.g. longer arm size or shorter leg size. The naive
approach for the bone constraints would be following energy :

Eb(V
′) =
∑

e(i, j)∈B

(||v′i − v′j|| − le(i, j))
2 (3.2)

with e(i, j) as a bone between two adjacent joints vi and vj of the same time step, B as a set containing all the bones
for all time steps and le(i, j) as the desired bone length for the bone e(i, j). This leads to following energy function
for Laplacian Mesh Editing applied to time sequences and animations.

E(V ′) = wl El(V
′) +wpEp(V

′) +wbEb(V
′)

= wl

|V |
∑

i=1

||Lv′i − Ti(V
′)δi ||2+wp

∑

j∈C

||v′j − cj||2+wb

∑

e(i, j)∈B

(||v′i − v′j|| − le(i, j))
2 (3.3)

12

with wl as the weight for the Laplacian energy, wp as the weight for the positional constraints and wb as the
weight for the bone length constraints. However, this energy would lead to a non-linear problem, as the bone-
length constraints adds a non-linear function to the energy function E, and could not be solved using linear-least
squares any more. For that reason, it is necessary to modify the bone-length constraints to the following energy
function

Eb(V
′) =
∑

e(i, j)∈B

||(v′i − v′j)−
(vi − vj)

||(vi − vj)||
le(i, j)||2 =
∑

e(i, j)∈B

||(v′i − v′j)− l(v i , v j))||2 (3.4)

and solve the minimization of the energy using an iterative method. This energy is a linearisation of the energy
defined in Equation (3.2) and was originally proposed by Weng et al. [WXW+06] and was later adapted by Huang
et al. [HSL+06] , by Shi et al. [SZT+07] and Ho et al. [HKT10]. Using this bone constraint one can solve the non-
linear least squares problem and minimize the energy function iteratively with the Gauss-Newton method [MBT99].
Hence, we reformulate the energy minimization problem to a equation system, which is similar to Equation System
(2.22), as follow :

argmin
V
||AV − b(V)||2 with (3.5)

A=

LT

C
H

, b(V) =

0
U

l(V)

where LT is the Laplacian Matrix combined with the implicit Transformation, C the positional constraint matrix, U
the vector containing the desired positional constraints, H the bone constraint matrix and l(V) a vector containing
the desired bone lengths and the bone lengths of the actual iteration step. Weng et al. propose to solve the problem
utilizing iterative Gauss-Newton method, as it solves the problem in the following way :

argmin
Vk+1
||AVk+1 − b(Vk)||2 (3.6)

where Vk is the solution containing the reconstructed vertices solved from the k-th iteration [WXW+06]. Since
b(Vk) is known from the current iteration, one can solve the minimization using linear-least squares :

Vk+1 = (A
T A)−1AT b(Vk) (3.7)

During each iteration b(Vk) is calculated from the current solution Vk , ergo one needs to calculate l(Vk) respec-
tively its entries, which are defined as:

l(v k
i , v k

j) =
(vk

i − vk
j)

||(vk
i − vk

j)||
le(i, j), for e(i, j) ∈ B (3.8)

3.3 Movement Specific Interaction Mesh

In this section our own approach to create a movement specific interaction mesh, derived from interaction meshes
(see Section 3.1.1) and 3D+t graph (see Section 3.1.2) will be proposed and explained. The main ideas of the
movement specific interaction mesh are the addition of temporal links to the interaction meshes and the adaptation
of an generic interaction mesh to only encode the interaction specific spatial and temporal relationships of a given
interaction.
Inspired from the 3D+t graph, the temporal relationship is added to the movement specific interaction mesh by
linking the individual interaction meshes of each frame with each other. To achieve this, for each joint of each time
step an edge between the joint and the same joint of the previous frame respectively the next frame is added to the
mesh. (e.g. the right hand joint of the kth time step will be linked to the right hand joint of the k−1th and k+1th
time step)
The adaptation process is attained by training, where an initial generic mesh, generated from a reference move-
ment, is adapted to a given sample of a specific movement by removing(pruning) and adding(growing) edges to
the mesh. For this purpose pruning and growing is done in an optimization with steepest ascent hill climbing using
an distance function to evaluate the performance of the modified mesh. Thus the adaptation consist out of two
phases : initialisation phase and optimisation phase.
After a movement specific interaction mesh is adapted to a given sample, Laplacian Mesh Editing can be applied on
the mesh to synthesise new motions by solving Equation (3.5) given a skeleton topology as bone constraints and a
target as positional constraints.

13

3.3.1 Initialization Phase

In order to create the initial interaction mesh from the reference movement, we use two different types of generic
interaction meshes. The first type, is an interaction mesh with initial edges between the two persons depicted in
Figure 3.3. This mesh is created by applying Delaunay tetrahetraliazion on the joint positions of the first time step of
both agents. The second type is an interaction mesh without any edges between the two persons depicted in Figure
3.3. This mesh is created by merging two distinct meshes, which are created by Delaunay tetrahetralization applied
on the joint positions of the first time step of one agent. To incorporate the temporal relationship of the initial
mesh in both cases, the interaction meshes of each individual time step are linked with each other by connecting
each joint to the same joints of the previous time step and the next time step.

Formally the initial generic mesh M = (V , E) is defined as follow. Let Vk = {v1,k, . . . ,vn,k} be a set contain-
ing the joint positions of the kth frame, vi,k ∈ R3 be the position of one joint of the kth frame, n be the
number of joints of the skeleton, Ed be the edges from the resulting grid of Delaunay tetrahedralization and
Et ,k = {e(v1,k−1,v1,k), e(v1,k,v1,k+1), . . . , e(vn,k−1,vn,k), e(vn,k,vn,k+1)} be the edges from the temporal relation-
ship of the joints of the kth frame. Then V = {Vk} and E = {Ek} with 1 ≤ k ≤ m, where Ek = {Ed , Et ,k} and
m as the total frame count of the animation.

3.3.2 Optimization Phase

In the optimization phase the initial generic mesh M of latter section is adapted using steepest ascent hill climbing.
Hill climbing is a iterative local search optimization technique. It attempts to maximize or minimize a target
function f (x), where x is a vector of continuous or discrete values. At each iteration step steepest ascent hill
climbing computes all possible neighbours of the current value of x and determines the value which results in the
largest or smallest f (x). This x is used for the next iteration step. This process is continued until no better solution
is found [RN10].
In our case x is represented by an interaction mesh M = (V, E) and f (x) is a distance function d : V × V → R
evaluating the performance of the reconstructed result V ′ = {v′1, . . . ,v′|V′|} of the modified mesh M ′ = (V, E′) to the
given reference sample V = {v1, . . . ,v|V|} of the movement to be trained. The distance function d is defined as:

d(V ′, V) =
|V |
∑

i∈V

wi ||vi − v′i|| (3.9)

where wi is a vertex specific weight. The neighbour M ′ = (V, E′) to a given M = (V, E) is computed by removing or
adding one additional edge between the two agents to E. By restricting the actions to only to growing or pruning,
one can create two different variants and reduce on the same time the computation time of the algorithm.

Figure 3.3.: Example of interaction meshes used in the initialisation phase, left : interaction mesh with initial inter-
person edges, right : interaction mesh with no initial interperson edges

14

3.3.3 Algorithm

The adaptation process of a interaction mesh to a specific motion can be described by following algorithm :

Algorithm 1 Optimization of a interaction mesh to a specific motion
Input : Skeleton and input motion sequence

Skeleton and motion sequence of reference movement
Output : Optimized specific motion interaction mesh
(Initialization)
- Compute vertex positions V out of given reference skeleton and motion sequence
- Compute the initial interaction mesh M (vertex positions, adjacency matrix) of the input motion sequence
(Optimization)
- Retarget the input motion sequence to the reference movement using M and compute V ′ by solving (3.5)
currentMesh = M
oldEval = d(V , V ′)
loop

nextEval = Inf
nextMesh = NULL
- Compute list L of all neighbour meshes of currentMesh (growing / pruning edges)
for all Meshes M ′ in L do

- Retarget the input motion sequence to the reference movement using M ′ and compute V ′ by solving (3.5)
eval = d(V , V ′)
if eval < nextEval then

nextEval = eval
nextMesh = M ′

end if
end for
if oldEval < nextEval then

// break loop and return currentMesh as there are no better neighbours
break

end if
currentMesh = nextMesh

end loop
return currentMesh

3.3.4 Variants

There are two different variants of the algorithm: growing and pruning. The idea of the pruning is to start with
a initial mesh, which contains already numerous interperson edges and to remove all interperson edges from
the initial mesh, that are not decisive for the given motion. Thus pruning uses the first type of the proposed
initial interaction meshes and restricts the the computation of the neighbours only to removing interperson egdes.
Growing is based on the opposite idea, starting with a initial mesh, which contains no interperson edges and adding
all interperson edges to the initial mesh, that are decisive for the given motion. Thus growing uses the second
type of the proposed initial interaction meshes and restricts the computation of the neighbours only to adding
interperson edges.

15

4 Experiments and Results

4.1 Data Acquisition

For the experiments it was necessary to capture animations / motion capture data in order to train interaction
meshes and apply Laplacian Mesh Editing on them. Therefore a low cost Microsoft Kinect camera was used to
capture interactions of two human subjects utilizing the OpenNI framework [org11]. As the NITE skeleton tracking
system, included in OpenNI [Inc11], is able to track up to 15 different joints the skeleton of the captured data has
the following structure and 45 degrees of freedom:

Figure 4.1.: Skeleton structure and joint definition of the motion capture data using OpenNI and NITE skeleton
tracking system, note: the skeleton front side is seen here in this figure

For this work two different types of interactions between two person were captured with different variations:
boxing and handing over of an object. Different variations are for example handing over the object more to the
left or the right or above or below. In total 56 different samples were captured. During the capturing process a
smoothing factor of 0.55 and a factor of 0.5 for the minimum confidence of the joints were used as initial parameter
in OpenNI, in order to deal with the problem of varying bone lengths received from the NITE skeleton tracking
system between different frames. As the NITE skeleton tracking system has large difficulties with tracking persons
standing sidewards to the Kinect, the interacting persons had to face the Kinect directly and perform the movement
in direction of the camera, instead of performing the movement towards the other person. Hence the recorded
movement had to be adapted by moving one of the interacting person in front of the other and mirroring his
movement to match the intended interaction.

4.2 Experiments and Results of Motion Specific Interaction Meshes

In this section results of several experiments on motion specific interaction meshes will be presented. In the
subsequent experiments motion specific interaction meshes are trained with reference motions to different specific
movements and afterwards generalized to different samples of the same movement. Finally, the generalized result
is compared to the original samples using the distance function specified in Section 3.3. For the reconstruction of
the movements via Laplacian Mesh Editing the parameters wb = 3.0 , wp = 1.5, wl = 1.0 were used as weights
for the individual energies (see Equation (3.3)). For the distance function the weight wi = 1.0 was used for all
vertices.

17

Figure 4.2.: Three different captured samples visualized in blender, left : punch middle, middle : punch up, right :
hand over

4.2.1 Scenario : Handing Over

This scenario investigates a scene, in where two persons are interacting with each other by handing over an object.
One person, referred as the ’giver’, is handing over an object with the right hand, while the other person, referred
the ’receiver’, takes over the object with both hands, as depicted in Figure 4.3. For more detailed visualizations of
handing over movements, we refer the reader to appendix part A.
The handing over scenario was chosen for the following experiments, as it is crucial for the semantic and the
success of the handing over movement to maintain the spatial and temporal relationships between the hands and
different body parts of the interacting persons. Thus this scenario is an sufficient difficult task for the motion
specific interaction meshes. Moreover, the scenario is a very common interaction between collaborating humans.

(a) Frame 1 (b) Frame 30 (c) Frame 60

(d) Frame 1 (e) Frame 30 (f) Frame 60

Figure 4.3.: Decisive frames of a handing over movement (Sample 2), first row : view from above, second row : view
from side, blue lines represent the bones of the interacting persons, while red dots represent the joints

18

4.2.2 Training using Pruning

In this experiment the variant pruning of our algorithm 1 of Section 3.3.3 was used to train an initial mesh to a
specific handing over movement. Sample 2 was used as the input movement, while sample 1-5 were used as refer-
ence motions for different test cases. After training the result was applied on other different samples to reconstruct
adapted motions.

(a) before pruning (b) after pruning

Figure 4.4.: Comparison between an untrained initial interaction mesh (left) and a trained movement specific inter-
action mesh using pruning (right), blue lines are the edges of the interaction mesh representing spatial
relationship between the joints, shown in black, while the bones of the skeleton are shown in red

Figure 4.5.: Convergence and improvement of movement specific interaction meshes using pruning per optimiza-
tion step corresponding to the distance distance between the input motion (sample 2) and the refer-
ence motion (target 1 to 5)

Figure 4.4 shows the difference between an initial interaction mesh and a trained movement specific interaction
mesh, resulting from training the latter mesh on sample 1. For more visualisations of other samples we refer the
reader to appendix part A. It is noticeable that numerous unnecessary edges are removed while few edges between

19

Training Reconstruction

Target 1 Target 2 Target 3 Target 4 Target 5

no training 212.6802 151.9322 186.0163 193.3583 173.1756
(initialisation)

Target 1 149.9261 62.6319 105.7444 145.6166 115.6867

Target 2 163.1939 55.9176 106.0026 148.8157 124.2817

Target 3 177.3767 66.0906 85.2536 139.8456 125.9778

Target 4 172.6448 79.9069 107.4567 135.3754 121.7705

Target 5 167.0329 74.7379 111.6507 143.1870 116.3383

Table 4.1.: Distance between reference sample and reconstructed adapted movements of different samples using
movement specific interaction meshes trained to different reference movements by pruning (Sample 2
trained to Target 1-5), bold values are the results from the training process to the specific target, non-
bold values are results from generalization using the learned interaction mesh to synthesise movement
to other targets

the hands, arms, the torso and legs of the giver and the receiver are retained. If one compares this result to the
other results off training on samples 2-5, a common trend in the remaining edges can be seen, as edges between
the hands, arms, torso, and the legs of the giver and receiver tend to remain.
Figure 4.5 shows on the one hand the convergence of the method and on the other hand the improvement of the
performance in each training step of the movement specific interaction meshes. It is observable, that after about 40
iterations the pruning approach converges, as there are almost no changes in the distance any more. Convergence
is given in this approach, since at some point only edges will remain, which are important for the movement to be
trained. Pruning them would increase the distance instead of reducing it.
Table 4.1 shows the result of generalizing a trained movement specific interaction mesh to other targets, denoted
by the value of the distance function. Moreover the figure indicates two import aspects: First, trained movement
specific interaction meshes perform on their target almost always better than all other generalized reconstructed
movements. Second, it shows that the distances of the generalized reconstructed movements are always lower than
the result synthesized via untrained interaction meshes and are all in the same range of the optimal reconstructed
movements.

4.2.3 Training using Growing

In this experiment an initial mesh was trained to a specific handing over movement using the growing variant
algorithm 1 of Section 3.3.3. Sample 2 was used as the input movement and samples 1-5 were used as reference
motions for different test cases. After training the result was applied on other different samples to reconstruct
adapted motions.
Similar to the first experiment Figure 4.4 shows the improvement from an untrained initial interaction mesh to a

trained movement specific mesh. In this case it is observable that only a few important edges between the hands,
arms and the torso of the giver and the receiver are added to the initial mesh. Looking at the results from training
the same mesh on the other samples 2-5, one can see similarities between the added edges. There is a trend to
connect the right arm of the receiver with the right arm of the giver and to connect the feet and the torso with each
other. For the visualization of the other results we refer the reader to the appendix part 1.
Figure 4.7 shows the convergence of the growing approach, since at some point all edges, which are important for
the trained movement, are added to the mesh. Adding more edges at this point would only increase the distance
instead of reducing it. It is noticeable that convergence is already reached after about 10 iterations.
Table 4.2 shows the results of generalization of the adapted interaction meshes to other targets, denoted in the
distance value. The table indicates almost analogous results for growing. However, trained movement specific
interaction meshes perform on their trained always better than all other generalized reconstructed movements.

20

(a) before growing (b) after growing

Figure 4.6.: Comparison between an untrained initial interaction mesh (left) and a trained movement specific inter-
action mesh using growing (right), blue lines are the edges of the interaction mesh representing spatial
relationship between the joints, shown in black, while the bones of the skeleton are shown in red

Another difference to pruning is that generalized results are closer to the reconstructed results of the untrained
interaction mesh and differ more from the optimal result.

Figure 4.7.: Improvement of the trained movement specific interaction mesh using growing per optimization step
corresponding to the distance distance between the input motion (sample 4) and the reference motion
(target 1 to 5)

4.2.4 Discussion

Concerning the difference of both approaches, it is noticeable that growing leads to a much faster convergence, as
less edges need to be altered than in the pruning approach. However, one iteration step in growing takes more
computation time than pruning, because there are much more possibilities to add new edges between the two in-
teracting persons than edges to remove in the pruning approach. Thus, in the end, the computation effort is quite

21

Training Reconstruction

Target 1 Target 2 Target 3 Target 4 Target 5

no training 179.5994 77.3663 119.5287 165.5458 140.8939
(initialisation)

Target 1 147.2350 66.5611 122.5619 153.9787 122.6171

Target 2 164.6189 46.2863 92.4765 137.2643 117.4041

Target 3 170.4324 61.4900 84.4851 132.8890 117.3768

Target 4 178.9507 74.0411 101.5868 115.8765 114.0387

Target 5 164.4972 62.6003 99.1190 130.9264 100.6056

Table 4.2.: Distance between reference sample and reconstructed adapted movements of different samples using
movement specific interaction meshes trained to different reference movements by pruning (Sample 2
trained to Target 1-5), bold values are the results from the training process to the specific target, non-
bold values are results from generalization using the learned interaction mesh to synthesise movement
to other targets

similar in both approaches. Moreover, it is noticeable that growing leads slightly to smaller distances on the trained
samples than pruning. This could indicate that growing is the better approach, as growing computes all possible
interperson edges, while pruning only uses the internal interperson edges, computed by Delaunay tetrahetralization.
Ideally would be a combination of both methods though, as pruning can remove interperson edges, which were
added by growing in the first place ,but are performing worse after more edges were added.
Looking at the similarities, it is observable that both approaches perform well, as the distance decreases signifi-
cantly for both approaches when comparing the training result. Furthermore, if we take a look at the order of the
targets how good they perform, we can see that the order is the same for both approaches. (e.g. Target 2 shows
the best performance, Target 1 the worst, etc.) Hence, it can be assumed, that the difficulty to adapt a movement
is not significantly influenced by the pruning or the growing approach.
An other similarity is that movement specific interaction meshes perform on their trained target always better than
all other generalized reconstructeed movement, which could indicate a case of overfitting. Thus a solution would
be training on multiple samples simultaneously to prevent this phenomena.

In general the experimental results showed the effectiveness of movement specific interaction meshes, as they out-
performed untrained generic interaction meshes in each sample. The results indicate the possibility to generalize
from the learned interaction mesh and to synthesise new similar movements in different scenarios, as the distance
of the generalized results tend to be in the same range of the optimal result and usually perform better than the
untrained interaction meshes. Furthermore, they indicate the possibility of learning the spatial relationship of a
specific movement, as the algorithm leads to quite feasible connections between the different joints of the inter-
acting persons. Thus they are more suitable to encode the spatial and temporal relationship of a given movement
than traditional interaction meshes.

However, it seems that there are motions, which can be adapted easier and motions which are more difficult
to adapt. For example Target 2 has in both approaches the smallest difference while Target 1 has the largest
difference. This can be explained by the fact, that some of the targets are closer to the reference motion, while
others are differ more. This shows a limitation of this method. If the new scenario differ to much from the reference
sample, the method performs worse, as Laplacian Mesh Editing would try to stick close to the data. A solution for
this behaviour would be by proving enough samples for this method.

22

5 Conclusion and Future Works
In this thesis, an improved version of an interaction mesh, which encodes the spatial and temporal relationship of
a specific movement by learning, was presented. Futhermore, it was shown how they could applied to synthesise
similar interactions between two persons in different scenarios using Laplacian Mesh Editing. The core aspects of
this idea are: 1. To use Delaunay tetrahetralization only as an initial solution for the spatial relationship between
the interacting humans and learn the spatial relationship by pruning and growing the initial mesh. 2. To merge
the individual interaction meshes to a single one by adding edges between joints of adjacent frames, which allows
us to incorporate additionally the temporal relationship. In different experiments the effectiveness of the proposed
version was demonstrated, as movement specific interaction meshes showed more adapted and realistic synthesized
movements on different targets, compared to the traditional approaches of interaction meshes. However, the exper-
iments also showed limitations of these movement specific interaction meshes, as the method performs worse when
the new situation differs too much from the learned reference movement.

As future work the learning process of the movement specific interaction meshes could be improved by using simul-
taneously multiple reference motions in one optimization step or by varying the weights of the distance function,
in order to improve the feedback on individual important body parts (feet, arms etc.). For the reconstruction part
learning the weights of the Laplacian coordinates or the usage of cotangent weights, would be an attractive topic,
as they perform better on irregular meshes than uniform weights. Another possibility would be the consideration
of other mesh deformation techniques and investigate if they are usable for reconstruction on interaction meshes or
not. Last but not least it would be interesting to extend this method to real humanoid robots, to learn interactions
between two humans using movement specific interaction meshes and evaluate if robots could take over one part
and interact with the other human counter part.

23

Acknowledgements
At this point, I want to thank everybody who supported me writing this thesis.

Especially, to my both supervisors Dr. Heni Ben Amor and M.Eng. Oliver Kroemer for your generous and patient
support and the enlightening input I received during our Skype meetings. I am thankful to Heni, that he still con-
tinued to supervise me even after he moved to Georgia Tech. I am also grateful to Oli, as he accepted to supervise
my thesis after Heni had to move to Georgia Tech.

I am grateful to Prof. Dr. Jan Peters and the Intelligent Autonomous Systems Lab for accepting my thesis and giving
me the opportunity to work in such an excellent research group. I really treasure the time spend at the IAS.

I am additionally thankful to my friends and colleagues in the lab for their mental and physical support, giving me
the motivation whenever I needed it. Special thanks go to Victora Fehr, for helping me correcting my spelling.

Last but not least I want to thank my parents for all the support they gave me throughout the thesis and my whole
life.

25

6 Bibliography
[Ale03] Marc Alexa. Differential coordinates for local mesh morphing and deformation. The Visual Computer,

pages 105–114, 2003.

[BK04] Mario Botsch and Leif Kobbelt. A Remeshing Approach to Multiresolution Modeling. Proceedings of
the 2004 Eurographics ACM SIGGRAPH symposium on Geometry processing SGP 04, page 185, 2004.

[BS08] Mario Botsch and Olga Sorkine. On linear variational surface deformation methods. IEEE Transactions
on Visualization and Computer Graphics, 14(1):213–230, January 2008.

[DMSB99] Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H Barr. Implicit fairing of irregular meshes
using diffusion and curvature flow. In Proceedings of the 26th annual conference on Computer graphics
and interactive techniques - SIGGRAPH ’99, volume 33, pages 317–324, 1999.

[HKT10] Edmond S. L. Ho, Taku Komura, and Chiew-Lan Tai. Spatial relationship preserving character motion
adaptation. ACM Transactions on Graphics, 29(4):1, 2010.

[HS13] Edmond S. L. Ho and Hubert P. H. Shum. Motion adaptation for humanoid robots in constrained
environments. In ICRA, pages 3813–3818. IEEE, 2013.

[HSL+06] Jin Huang, Xiaohan Shi, Xinguo Liu, Kun Zhou, Li-Yi Wei, Shang-Hua Teng, Hujun Bao, Baining
Guo, and Heung-Yeung Shum. Subspace gradient domain mesh deformation. ACM Trans. Graph.,
25(3):1126–1134, July 2006.

[Inc11] PrimeSense Inc. Prime sensor™ NITE 1.5 algorithms notes. http://www.openni.org/wp-content/
uploads/2013/02/NITE-Algorithms.pdf, 2011. Accessed: 14-02-2014 14:57.

[LSA+05] Yaron Lipman, Olga Sorkine, Marc Alexa, Daniel Cohen-Or, David Levin, Christian Rössl, and Hans-
Peter Seidel. Laplacian framework for interactive mesh editing. International Journal of Shape Model-
ing, 11(1):43–62, 2005.

[LSCO+04] Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rossi, and H.P. Seidel. Differential coordinates for
interactive mesh editing. Proceedings Shape Modeling Applications, 2004., 2004, 2004.

[MBT99] Kaj Madsen, Hans Bruun, and Ole Tingleff. Methods for non-linear least squares problems, 1999.

[NCG13] Thibaut Le Naour, Nicolas Courty, and Sylvie Gibet. Spatiotemporal coupling with the 3d+t motion
laplacian. Journal of Visualization and Computer Animation, 24(3-4):419–428, 2013.

[org11] OpenNI organization. Openni user guide. http://kinectcar.ronsper.com/docs/openni/index.
html, Dezember 2011. Accessed: 14-02-2014 14:57.

[RN10] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach, chapter 4.1.1. Pearson
Education, 3. edition, 2010.

[SCOL+04] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P. Seidel. Laplacian surface editing.
In Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, SGP ’04,
pages 175–184, New York, NY, USA, 2004. ACM.

[Sor05] Olga Sorkine. Laplacian Mesh Processing. Eurographics - State of the Art Reports, (Section 4):53–70,
2005.

[SZT+07] Xiaohan Shi, Kun Zhou, Yiying Tong, Mathieu Desbrun, Hujun Bao, and Baining Guo. Mesh puppetry:
Cascading optimization of mesh deformation with inverse kinematics. ACM Trans. Graph., 26(3), July
2007.

27

http://www.openni.org/wp-content/uploads/2013/02/NITE-Algorithms.pdf
http://www.openni.org/wp-content/uploads/2013/02/NITE-Algorithms.pdf
http://kinectcar.ronsper.com/docs/openni/index.html
http://kinectcar.ronsper.com/docs/openni/index.html

[WXW+06] Yanlin Weng, Weiwei Xu, Yanchen Wu, Kun Zhou, and Baining Guo. 2D shape deformation using
nonlinear least squares optimization. The Visual Computer, 22(9-11):653–660, 2006.

[ZIT+12] Dmitry Zarubin, Vladimir Ivan, Marc Toussaint, Taku Komura, and Sethu Vijayakumar. Hierarchi-
cal Motion Planning in Topological Representations. In Proceedings of Robotics: Science and Systems,
Sydney, Australia, July 2012.

28

A Animations

Figure A.1.: Visualisation of sample 1 (handing over movement) , view from above, Frames 1-60, successive image
from left to right: 1, 5, 10, 15,...,60

Figure A.2.: Visualisation of sample 2 (handing over movement), view from above, Frames 1-60, successive image
from left to right: 1, 5, 10, 15,...,60

29

(a) before pruning (b) after pruning

(c) before pruning (d) after pruning

(e) before pruning (f) after pruning

Figure A.3.: Target 2-4, Comparison between an untrained initial interaction mesh (left) and a trained movement
specific interaction mesh using pruning (right), blue lines are the edges of the interaction mesh rep-
resenting spatial relationship between the joints, shown in black, while the bones of the skeleton are
shown in red

30

(a) before pruning (b) after pruning

Figure A.4.: Target 5, Comparison between an untrained initial interaction mesh (left) and a trained movement
specific interaction mesh using pruning (right), blue lines are the edges of the interaction mesh rep-
resenting spatial relationship between the joints, shown in black, while the bones of the skeleton are
shown in red

(a) Target 2 (b) Target 3

(c) Target 4 (d) Target 5

Figure A.5.: Target 2-5, Trained movement specific interaction mesh using growing (right), blue lines are the edges
of the interaction mesh representing spatial relationship between the joints, shown in black, while the
bones of the skeleton are shown in red

31

	List of Figures
	List of Tables
	Introduction
	Laplacian Mesh Editing
	Formal Definition of a Mesh
	Laplacian Coordinates
	Weighting Schemes
	Uniform Weights
	Cotangent Weights

	Laplacian System
	Laplacian Matrix
	Reconstruction of the Mesh from Laplacian Coordinates

	Sensitivity to Linear Transformations
	Implicit Transformation
	Laplacian System including the Implicit Transformation

	Laplacian Represenations of Temporal Sequences
	Creation of the Mesh
	Interaction Mesh
	3D+t Graph

	Bone-length Constraints
	Movement Specific Interaction Mesh
	Initialization Phase
	Optimization Phase
	Algorithm
	Variants

	Experiments and Results
	Data Acquisition
	Experiments and Results of Motion Specific Interaction Meshes
	Scenario : Handing Over
	Training using Pruning
	Training using Growing
	Discussion

	Conclusion and Future Works
	Bibliography
	Animations

