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Imitation and Reinforcement Learning
Practical Learning Algorithms for Motor Primitives in Robotics

by Jens Kober and Jan Peters

F

TO date, most robots are still programmed by a smart
operator who uses human understanding of the

desired task to create a program for accomplishing the
required behavior. While such specialized programming
is highly efficient, it is also expensive and limited to
the situations the human operator had considered. For
example, human programming has become the main
bottleneck for manufacturing of low-cost products in low
numbers. This problem could be alleviated by robots
that can learn new skills and improve their existing
abilities autonomously. However, off-the-shelf machine
learning techniques do not scale to high-dimensional,
anthropomorphic robots. Instead, robot learning requires
methods that employ both representations and algo-
rithms appropriate for this domain. When humans learn
new motor skills, e.g., paddling a ball with a table-
tennis racket, throwing darts, or hitting a tennis ball, it
is highly likely that they rely on a small set of motor
primitives (MPs) and use imitation as well as reinforce-
ment learning (RL) [1]. Inspired by this example, we
will discuss the technical counterparts in this article and
show how both single-stroke and rhythmic tasks can be
learned efficiently by mimicking the human presenter
with subsequent reward-driven self-improvement.

Recently, the idea of using dynamical systems as MPs
was put forward by Ijspeert et al. [2] as a general
approach of representing control policies for basic move-
ments. The resulting movement generation has a variety
of favorable properties, i.e., basic stability properties,
the ability to encode either single-stroke or rhythmic
behaviors, as well as rescalability with respect to time,
goal, and amplitude. As this representation is linear in its
parameters, learning can be sufficiently fast for real-time
applications in robotics. A series of such frameworks has
been introduced to date [2], [3]. Previous applications
include a variety of different basic motor skills such
as tennis swings [2], T-ball batting [4], drumming [5],
planar biped walking [6], constrained reaching tasks
[7] and even in tasks with potential industrial appli-
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cation [8]. Nevertheless, most of the previous work in
MP learning (with the exceptions of [4] and [7]) has
focused on learning by imitation without subsequent
self-improvement. Please refer to [9] for a review of
imitation learning methods. In real life, a human demon-
stration is usually not perfect nor does it suffice for near-
optimal performance. Thus, additional RL is essential
for both performance-based refinement and continuous
adaptation of the presented skill. Note that this approach
is inherently different from the complementary idea of
apprenticeship learning [10], which attempts to infer the
intent of the teacher and learn his policy through an
inverse RL approach.

In this article, we discuss several practical recipes
for imitation learning and RL of MPs used in our cur-
rent best performing setups. We attempt to present the
methods with sufficient detail such that the results can
be transferred to industrial applications by the robotics
practitioners. As a first step, we review the MP frame-
work in its current formulation [11] and discuss learning
of discrete, single-stroke movements as well as rhyth-
mic, repeated movements. We show how combination
of imitation learning and RL can be used for learning
tasks such as ball-in-a-cup on a real Barrett whole arm
manipulator (WAM). In contrast to previous work on
rhythmic MPs [2], [11], we have created a novel for-
mulation of the rhythmic MPs that includes a transient
start-up phase required in many practical applications.
An example of such a task is ball paddling where a ball
on a string needs to be brought into a stable limit cycle
by a rhythmic movement with a start-up phase. The ac-
companying video shows the human demonstration and
the learned performance for both tasks (see http://robot-
learning.de/Research/LearningMotorPrimitives).

LEARNING METHODS FOR MPS

The generic idea of encoding elementary movements
using dynamical systems has become increasingly ac-
cepted in the motor skill learning community. A major
breakthrough was the suggestion in [2] to use two kinds
of dynamical systems with a one-way, parametrized
connection such that one system drives the others (see
Figure 1). As a result of this prestructuring, the system
is guaranteed to be stable, and the unstable or chaotic
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behaviors common in earlier learning systems, which
attempted to learn the complete dynamical systems, can
be avoided. Please note that using this stable dynamical
system as reference does not guarantee that the full robot
system remains stable. If the parametrized connection is
a function that is linear in the parameters, it becomes
straightforward to learn. This partition leads to two
components. There is a canonical, hidden system

ż = u (z) (1)

that acts as an adjustable clock or phase of the movement
with state z. As illustrated in Figure 1, this canonical
system u drives the second component, the transformed
systems

ẋ = v (x, z,g,θ) , (2)

for all considered degrees of freedom (DoFs) i, where θ
denotes the internal parameter needed for learning. The
state of the transformed systems x = [x1,x2] consists of
desired positions q = x1 and velocities q̇ = τx2 of the
robot system either in joint space or in task space. The
accelerations can also be determined by q̈ = τ ẋ2 using
the dynamical system. A suitable controller is used to
convert these into motor torques.

This approach has a multitude of advantages [2] as it
can ensure the stability of the movement as the one-way
connection is inherently stable if the separated dynami-
cal systems are stable. While it may represent arbitrary
movements, it can be generated with well-understood
components, such as linear systems used in conjunction
with established function approximation. Employing the
dynamical systems in (1) and (2) allows to determine the
stability of the movement, choosing between a rhythmic
and a discrete movement and rescaling in both time
and movement amplitude. Feedback terms can also be
added as in [5] and [12]. With the right choice of function
approximator, fast learning from a teacher’s presentation
is possible.

Case Study: Discrete MP Policies
To make this approach more concrete, we review the
MP policy representation with the example of a single
discrete movement. Since its inception in [2], the repre-
sentation has been simplified and it can be shown that
a single, first order system ż = −ταzz suffices as the
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Fig. 1. Schematic illustration of an MP.

MP Policy:
Set hyperparameters: constants αx and βx such that the
transformed system is critically damped, number of shape
parameters N , widths h, and centers c for the shape
parameters
1) for discrete MPs: decay of the canonical system αz
2) for rhythmic MPs: phase rate of change ω
Set parameters: duration modifier τ , shape parameters θn for
n = {1, . . . , N}, and amplitude modifier A
1) for discrete MPs: final position g
2) for rhythmic MPs: mean position m
Set initial values: initial position x1 = q0 and initial velocity
x2 = q̇0/τ
1) for discrete MPs: phase variable z = 1
2) for rhythmic MPs: phase variable z = 0
For each time step

Evaluate canonical system
1) for discrete MPs: ż = −ταzz
2) for rhythmic MPs: ż = τω

Evaluate transformation function
1) for discrete MPs: f (z) =

∑N

n=1
ψn (z)θnz with

ψn =
exp
(
−h−2

n (z−cn)2
)∑N

m=1
exp
(
−h−2

m (z−cm)2
)

2) for rhythmic MPs: f (z) =
∑N

n=1
ψn (z)θn with

ψn =
exp
(
−h−2

n (1−cos(z−cn))
)∑N

m=1
exp
(
−h−2

m (1−cos(z−cm))
)

Evaluate transformed system:
1) for discrete MPs:
ẋ2 = ταx (βx (g − x1)− x2) + τAf (z) and ẋ1 = τx2

2) for rhythmic MPs:
ẋ2 = ταx (βx (m− x1)− x2) + τAf (z) and ẋ1 = τx2

Numerically integrate the canonical and transformed
system and obtain the desired joint positions q = x1,
velocities q̇ = ẋ1, and accelerations q̈ = τ ẋ2.

TABLE 1
Representing movements with dynamical systems

canonical system [11]. This system can be used to directly
adjust the duration of the movement with time constant
τ = 1/T , where T is the duration of an MP. Parameter αz
is chosen such that z ≈ 0 at T to ensure safe movement
termination. We can express the MP function v in the
following form:

ẋ2 = ταx (βx (g − x1)− x2) + τAf (z) , (3)
ẋ1 = τx2. (4)

This set of differential equations has the same time
constant τ as the canonical system. The parameters αx,
βx are set such that the system is critically damped when
A = 0. The remaining parameters are the goal g, a trans-
formation function f , and a diagonal matrix A that acts
as an amplitude modifier. The value g − x0

1, with initial
position x0

1, is a common choice [11] for the diagonal
elements of A, as it ensures linear rescaling under goal
variations. However, other choices may be better suited
for specific tasks (e.g., for reaching tasks, the solution in
[12] is often preferable). The transformation function

f (z) =
∑N
n=1ψ

n (z)θnz. (5)

alters the output of the transformed system in (3) so
that it can represent complex nonlinear patterns. Here
θn contains the nth set of adjustable parameters for all
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Recipe for Imitating Movements
For each DoF i and each parameter n separately

Extract from reference trajectory q, q̇, q̈
1) for discrete MPs: duration T and final position g = qT
2) for rhythmic MPs: period T and mean position
m = mean(q)

Set amplitude modifier [A]ii = g − q0, time-scale τ = 1/T
as well as the hyperparameters: constants αx and βx,
number of shape parameters N , widths h and centers c
1) for discrete MPs: decay of the canonical system αz
2) for rhythmic MPs: phase rate of change ω
Calculate the values zt of the basis function and the values
ψnt of the weight for all samples j using
1) for discrete MPs: ż = −ταzz and

ψn =
exp
(
−h−2

n (z−cn)2
)∑N

m=1
exp
(
−h−2

m (z−cm)2
)

2) for rhythmic MPs: ż = τω and

ψn =
exp
(
−h−2

n (1−cos(z−cn))
)∑N

m=1
exp
(
−h−2

m (1−cos(z−cm))
)

Calculate from the parameters and the reference trajectory
qt, q̇t, q̈t the reference transformation function f ref

t
1) for discrete MPs:
f ref
t = q̈t/(τ2[A]ii)− αx (βx (g − qt)− q̇t/τ) /[A]ii

2) for rhythmic MPs:
f ref
t = q̈t/(τ2[A]ii)− αx (βx (m− qt)− q̇t/τ) /[A]ii

Create matrices from the basis function [Z]t = zt, weights
Ψ = diag

(
ψn1 , . . . , ψ

n
t , . . . , ψ

n
T

)
and reference values

[f ref]t = f ref
t

Perform regression θn =
(
ZTΨZ

)−1
ZTΨf ref to learn the

nth shape parameter
Return parameters

TABLE 2
Imitation of discrete and rhythmic movements

DoFs, N is the number of parameters per DoF, and ψn(z)
are the corresponding weights. Normalized Gaussian
kernels are used as weights, given by

ψn =
exp

(
−h−2

n (z − cn)2
)

∑N
m=1 exp

(
−h−2

m (z − cm)2
) . (6)

Such functions localize the interaction in phase space
using the centers cn and widths hn. All DoFs are syn-
chronous as the dynamical systems for all DoFs start at
the same time, have the same duration, and the shape
of the movement is generated using the z-dependant
transformation f (z) in (5).

The recipe for complete instantiation of MP policies
for either rhythmic or discrete movements is given in
Table 1.

Imitation Learning by Weighted Regression
Many movements can be learned [2], [11], or at least
initialized [4], [7] using imitation learning. This step
can be performed efficiently in the context of dynamical
systems MPs, as the transformation function (5) is linear
in its parameters [2], [11]. The policy parameters are es-
timated separately for each DoF i. We omit the index i in
this section for better readability. The weighted squared
error e2n =

∑T
t=1ψ

n
t (f ref

t − ztθn)2 is the appropriate cost
function in this context, which needs to be minimized

for all parameters θn. To avoid undercompleteness and
avoid overfitting, the number of parameters n should
be significantly smaller than the number of training
points T . Here, the corresponding weighting functions
are denoted by ψnt and the basis function by zt. A good
starting point for the weighting functions are centers cn
equispaced in time and a width hn of two third the
distance between the centers. The number of weighting
functions as well as the centers and widths can be
optimized by cross-validation. The reference or target
signal f ref

t is the desired transformation function, and
j indicates the sample. The error can thus be rewritten
in matrix form as

e2n =
(
f ref − Zθn

)T

Ψ
(
f ref − Zθn

)
(7)

with f ref containing the value of f ref
t for all samples j,

Ψ = diag (ψn1 , . . . , ψ
n
t , . . . , ψ

n
T ) and [Z]t = zt. The result-

ing weighted linear regression problem can be solved
straightforwardly by the unbiased parameter estimator

θn =
(
ZTΨZ

)−1

ZTΨf ref. (8)

This general approach was originally suggested in [2].
Estimating the parameters of the dynamical system is
slightly more daunting; i.e., the movement duration of
discrete movements is extracted using motion detection
and the time constant is set accordingly. Similarly, the
base period for the rhythmic dynamical MPs was ex-
tracted using first repetitions, and again, the time con-
stant τ is set accordingly. The practical method for using
such imitation learning approach for either a discrete
movement or rhythmic one is given in Table 2.

Most previous work on rhythmic MPs only treated the
case when the rhythmic movement is already in the limit
cycle [2], [11]. Despite being essential in many tasks, such
as in bouncing a ball, the transient has been neglected.
Hence, we propose an imitation framework that makes
use of the discrete primitive to modulate rhythmic ones

Recipe for Imitating Rhythmic Movements with Start-Up
Extract duration Tstart of the start-up phase, i.e., the time the
movement needs to converge to a regular rhythmic behavior
For each DoF

Apply recipe for imitating movements for the rhythmic
movement after the start-up phase, i.e., use qt, q̇t, q̈t with
j = {Tstart, Tstart+1, . . . , Tfinal} for the regression yielding
time-scale τr
Define a system in the form of the discrete canonical
system that gradually changes the time scale τ from a start
value τ0 to the rhythmic value τr ensuring that the first
period is stretched to the start-up time Tstart and that τ
corresponds to the rhythmic period τr thereafter
Run the motor primitive using the changing time-scale τ
and calculate the difference to the desired behavior ∆f ref

Apply recipe for imitating movements to learn a discrete
motor primitive that compensates the differences ∆f ref if
added to f of the rhythmic primitive

Return parameters

TABLE 3
Imitation of rhythmic movements with start-up
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Recipe for RL of MPs
Input: initial policy parameters θ0

Repeat
Sample: Perform rollout(s) using action
a = (θ+ εt)Tφ(s, t) with exploration [εt]ij ∼ N (0, σ2

ij) as
stochastic policy and collect all (t, st,at, st+1, εt, rt+1) for
t = {1, 2, . . . , T + 1}.
Estimate: Use unbiased estimate of the value function
Q̂π(s,a, t) =

∑T

t̃=t
r(st̃,at̃, st̃+1, t̃).

Reweight: rollouts, discard low-reward rollouts.
Update policy using
θk+1 = θk +

〈∑T

t=1
εtQπ(s,a, t)

〉/〈∑T

t=1
Qπ(s,a, t)

〉
.

Until convergence θk+1 ≈ θk

TABLE 4
Self-improvement for MPs

in order to generate a start-up phase for the movement.
The resulting algorithm employs only components from
this section and is shown in Table 3.

RL of MPs

Optimizing the performance of a system by trial and er-
ror is often referred to as RL, see [13], [14], and it is an es-
sential ability for skill-learning systems. However, RL for
MPs is a very specific type of learning problem, where
it is hard to apply generic algorithms [4], [15] due to the
high-dimensional states s = [z,x] that defy discretiza-
tion of the state space. Hence, we need novel domain-
appropriate RL algorithms for parametrized policies in
episodic control problems [16]. For self-improvement, it
is necessary to add an exploration term ε that modifies
the actions. In our case, this results in an output action
a = f(z) + ε that depends on the output of our trans-
formation function. As a result, we have a stochastic
policy a ∼ π(s) with parameters θ ∈ RN which can
be seen as a distribution over the actions given the
states. After a time-step ∆t, the agent transfers to a
state st+1 and receives a reward rt. As we are interested
in learning complex motor tasks consisting of a single
stroke or a rhythmically repeating movement, we focus
on finite, fixed horizons of length T with episodic restarts
[13]. While the policy is substantially different, rhythmic
movements can still be learned by episodic RL. The goal
in RL is usually to optimize the expected return of the
policy with parameters θ defined by

J(θ) =
∫

Ξ
p(ξ)R(ξ)dξ, (9)

where the episode or rollout ξ = [s1:T+1,a1:T ] denotes
a sequence of states s1:T+1 = [s1, s2, . . ., sT+1] and
actions a1:T = [a1, a2, . . ., aT ], the probability of an
episode ξ is denoted by p(ξ), R(ξ) refers to the return
of an episode ξ and Ξ is the set of all possible paths.
Using the Markov assumption, we can write the path
distribution as p(ξ) = p(s1)

∏T+1
t=1 p(st+1|st,at)π(at|st, t)

where p(s1) denotes the initial state distribution and
p(st+1|st,at) is the next state distribution conditioned on
last state and action. Similarly, if we assume additive,
accumulated rewards, the return of a path is given by

R(ξ) = 1/T
∑T
t=1 r(st,at, st+1, t), where r(st,at, st+1, t)

denotes the immediate reward.
While episodic RL problems with finite horizons are

common in motor control, few methods exist in the RL
literature. Notable exceptions are model-free methods
such as episodic REINFORCE [17] and the episodic natu-
ral actor-critic (eNAC) [4], as well as model-based meth-
ods, e.g., differential-dynamic programming [18]. To
avoid learning of complex models, we focus on model-
free methods. To reduce the number of open parameters,
we use a novel RL algorithm called policy learning by
weighting exploration with the returns (PoWER). This
method is shown as pseudocode in Table 4. PoWER is
an expectation-maximization algorithm where the action
is treated similar as an unobserved variable and the
returns are considered an improper probability distri-
bution. When evaluating several methods in [16], we
could show that PoWER clearly outperforms preceding
policy search approaches like finite difference gradients
(FDGs), vanilla policy gradients (VPGs), eNAC, and the
episodic reward-weighted regression (eRWR) on two
benchmark problems [4], [15]. See Table 5 for results on
the underactuated swing-up benchmark [18]. Recently,
PoWER has been extended and successfully applied in
mobile robotics [19].

When learning MPs, we intend to learn a deterministic
mean policy ā = θTφ(s) = f (z) that has the basis
functions φ, is linear in parameters θ and is augmented
by additive exploration ε(s, t) in order to make model-
free RL possible. As a result, the explorative policy can
be given in the form a = θTφ(s, t) + ε(φ(s, t)). Previous
work, with the notable exception of [20], has focused on
state-independent, white Gaussian exploration [4], i.e.,
ε(φ(s, t)) ∼ N (0,Σ), and has resulted in applications
such as T-ball batting [4] and constrained movement
[7]. However, from our experience, such unstructured
exploration at every step has several disadvantages, i.e.,
1) it causes a large variance in parameter updates which
grows with the number of time steps, 2) it perturbs
actions too frequently, as the system acts as a low pass
filter the perturbations average out and thus, their effects
are washed out and 3) can damage the system executing
the trajectory.

Alternatively, one could generate a form of structured,
state-dependent exploration ε(φ(s, t)) = εT

t φ(s, t) with
[εt]ij ∼ N (0, σ2

ij), where σ2
ij are meta-parameters of the

exploration that can be optimized in a similar manner
[20]. Each σ2

ij corresponds to one θij . This argument
results in the policy a ∼ π(at|st, t) = N (a|φ(s, t), Σ̂(s, t)).
This form of policies improves upon the shortcomings of

FDG VPG eNAC eRWR PoWER
Final return 0.907 0.907 0.910 0.900 0.937
Episodes to R = 0.9 110 100 40 186 48

TABLE 5
Comparison of policy search algorithms on the

underactuated swing-up [18] averaged over ten runs.
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Fig. 2. The schematic drawings of (a) the ball-in-a-cup motion, (b) a kinesthetic teach-in, as well as (c) the performance
of the robot after both imitation learning and RL.

directly perturbed policies mentioned earlier. Based on
the EM updates for RL as suggested in [16], we get the
update rule

θ′ = θ +
Eτ

{∑T
t=1 εtQ

π(st,at, t)
}

Eτ

{∑T
t=1Q

π(st,at, t)
} (10)

for dynamical systems MPs, where

Qπ (s,a, t) = E
{∑T

t̃=tr
(
st̃,at̃, st̃+1, t̃

)
|st = s,at = a

}
is the state-action value function. Note that this algo-
rithm does not need the learning rate as a metaparam-
eter. Alternative state-based exploration methods have
been suggested previously in [21] and [4].

To reduce the number of trials in this on-policy sce-
nario, we reuse the trials through importance sampling
[13]. To avoid the fragility sometimes resulting from
importance sampling in RL, samples with very small
importance weights are discarded.

PoWER is based on the idea of reward-weighted
imitation and relies on the following intuition: a safe
way to generate new policies is to look in the convex
combination of sampled policies. The algorithm searches
for a good solution between previously seen ones by
staying close to policies with high returns and far from
solutions with low returns. PoWER is a local learning
method and is only guaranteed to converge to a local
optimum. Thus, the method is prone to fail if the initial
demonstration is too far from a good solution.

The more shape parameters θ are used, the more
details can be captured in a MP and it can ease the
imitation learning process. However, if the MP need
to be refined by RL, each additional parameter slows
down the learning process. For optimal performance,
we need a good initial value of σ2

ij , which may be
seen as a safety-speed tradeoff parameter. The parameter
determines the exploration, where larger values lead to

greater changes in the mean policy and, thus, may lead
to faster convergence. However, they can also drive the
robot into unsafe regimes. For a small value, convergence
to a good solution will take a long time. As the method
is based on reward-weighted imitation the exploration
has to be sufficiently rich to avoid getting stuck in local
minima. The optimization of the parameters decreases
the exploration during the learning process and results
in a convergence to a deterministic solution.

ROBOT EVALUATION

The methods presented in this paper are evaluated on
two learning problems on a real robot, i.e., we learn
the discrete task ball-in-a-cup and the rhythmic task
ball paddling. The resulting simplicity and speed of
the learning process demonstrate the applicability of the
MP-based learning framework for practical applications.

Our experimental setup includes a backdriveable 7
DoF Barrett WAM that can be used as a haptic input
device for imitation and an in-house-developed vision
system for ball tracking. The vision system consists
of a stereo camera setup with two Prosilica GE640C
Gigabit Ethernet cameras and a 200-Hz blob detection
implemented on a NVIDIA graphics card.

Discrete Movement: Ball-in-a-Cup

The children’s motor skill game ball-in-a-cup, also
known as balero and bilboquet, is challenging even for
an adult. The toy has a small cup which is held in one
hand or, in our case, is attached to the endeffector of
the robot. The cup has a small ball hanging down on
a string where the string has a length of 40 cm for our
toy. Initially, the ball is hanging down vertically at the
rest position. The player needs to move fast in order to
induce a motion in the ball through the string, toss it
up, and catch it with the cup. A possible movement is
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Fig. 4. The schematic drawings of (a) the ball-paddling motion, (b) a kinesthetic teach-in as well as (c) the performance
of the robot after imitation learning.

illustrated in Figure 2(a). The human demonstration was
taught to the robot by imitation learning with 31 param-
eters per joint for an approximately 3-s long trajectory
[Figure 2(b)]. The robot manages to reproduce the imi-
tated motion quite accurately but the ball misses the cup
by approximately 13 centimeters. After around 42 trial
runs of our PoWER algorithm from Table 4, the robot
has improved its motion such that the ball goes into the
cup for the first time. After roughly 75 rollouts, we have
good performance, and at the end of the 100 rollouts, we
have virtually no failures anymore [Figure 2(c)].

Note that learning ball-in-a-cup and kendama have
previously been studied in robotics and we are going to
contrast a few of these approaches here. While we learn
directly in the joint space of the robot, Takenaka [22]
recorded planar human cup movements and determined
the required joint movements for a planar, 3 DoF robot so
that it could follow the trajectories while visual feedback
was used for error compensation. Both Sato et al. [23]
and Shone et al. [24] used motion-planning approaches
that relied on very accurate models of the ball while
employing only 1 DoF in [24] or 2 DoF in [23] so that
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Fig. 3. The expected return of the learned policy in the
ball-in-a-cup evaluation averaged over 20 runs.

the complete state space could be searched exhaustively.
Interestingly, exploratory robot moves were used in [23]
to estimate the parameters of the employed model.
Probably, the most advanced preceding work on learning
kendama was done by Miyamoto et al. [25] who used
a 7 DoF anthropomorphic arm and recorded human
motions to train a neural network to reconstruct via
points. Employing full kinematic knowledge, the authors
optimized a desired trajectory represented by splines.

The state of the system is described by joint angles and
joint velocities of the robot as well as the the Cartesian
coordinates and velocities of the ball. The actions are
the joint space accelerations where each of the seven
joints is driven by a separate MP with one common
canonical system. The movement uses all 7 DoFs and
is not restricted to being planar. All MPs are perturbed
separately but receive the same shared final reward. At
the time tc where the ball passes the rim of the cup
with a downward direction, we compute the reward as
r(tc) = exp(−α(xc − xb)2 − α(yc − yb)2) while we have
r (t) = 0 for all t 6= tc. Here, the cup position is denoted
by [xc, yc, zc] ∈ R3, the ball position [xb, yb, zb] ∈ R3,
and we have a scaling parameter α = 100. The direc-
tional information is necessary as the algorithm could
otherwise learn to hit the bottom of the cup with the
ball. The reward is not only affected by the movements
of the cup but foremost by the movements of the ball
which are sensitive to small changes in the movement.
A small perturbation of the initial condition or during
the trajectory can change the movement of the ball
significantly and hence the outcome of the trial. The
position of the ball is estimated using a stereo vision
system and needed to determine the reward.

Because of the complexity of the task, ball-in-a-cup
is a difficult motor task for children; they usually only
succeed after observing another person presenting a
demonstration first and through subsequent trial-and-
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error-based learning. Mimicking how children learn to
play ball-in-a-cup, we first initialize the MPs by imitation
and, subsequently, improve them by RL.

We recorded the motions of a human player by kines-
thetic teach-in to obtain an example for imitation as
shown in Figure 2 (b). Kinesthetic teach-in (i.e., taking
the robot by the hand) requires performing the task by
moving the robot while it is in gravity-compensation
mode and recording the joint angles, velocities, and
accelerations. A single demonstration was used for imi-
tation learning. Learning from multiple demonstrations
did not improve the performance, as the task is sensi-
tive to small deviations. As expected, the robot fails to
reproduce the presented behavior when learned purely
by imitation. Thus, RL is needed for self-improvement
of the performance. The imitation serves the learning
system with a policy that swings the ball roughly to the
height of the rim so that it may get a small reward based
on the proximity to the rim.

The more parameters that are used for RL, the slower
the convergence. Hence, prior to starting to learn by RL,
we have determined that only 31 shape-parameters per
MP suffice by cross-validation for the imitation learning-
based initialization. Our best performing algorithm in
previous comparisons, PoWER, was employed for all RL
evaluations. This algorithm is also shown in Table 4.
Here, the metaparameters σij are initially set in the
order of magnitude of the median of the parameters for
each MP and are then optimized alongside the shape
parameters. The performance of the algorithm is fairly
robust for values chosen in this range.

Figure 3 shows the expected return over the number
of rollouts with clear convergence to a maximum. The
robot regularly succeeds at bringing the ball into the
cup after approximately 75 rollouts. After 100 rollouts,
the metaparameters, such as the exploration rate, have
converged to negligible size and do not influence the
outcome of the behavior any longer.

A nine-year-old child got the ball in the cup for the
first time after 35 trials while the robot got the ball in for
the first time after 42 rollouts. However, after 100 trials,
the robot exhibits perfect runs in every single trial while,
from our experience, the child does not have a compa-
rable success rate. Of course, such a comparison with
a child is contrived, as a robot can precisely reproduce
movements unlike any human being, and as children
naturally get tired or bored.

Rhythmic Movements with Start-Up: Ball Paddling

In ball paddling, we have a table-tennis ball that is
attached to a table-tennis paddle by an elastic string. The
goal is to have the ball bouncing above the paddle. The
string avoids the ball falling down but also pulls the ball
back towards the center of the paddle if the ball is hit
sufficiently hard, i.e., the elastic string is also stretched as
a consequence. The task is fairly easy to perform once
the player has determined appropriate amplitude and

frequency for the motion. Furthermore, the task is robust
to small changes of these parameters as well as to small
perturbations of the environment. We again recorded
the motions of a human player using kinesthetic teach-
in to obtain a demonstration for imitation learning, as
shown in Figure 4. When the string is stretched it is
shown as thinner and darker. The human demonstration
was taught to the robot by imitation learning. From
the imitation, it was determined by cross-validation that
10 shape-parameters per MP are sufficient. The shape
parameters, the amplitude, and the period of the motion
are estimated from the demonstration after the start-up
phase. An additional discrete MP is used for the start-up
phase (see the accompanying video for details).

However, as we start with a still robot where the
ball rests on the paddle, we require a start-up phase
in order to perform the task successfully. This initial
motion has to induce more energy in order to get the ball
motion started and to extend the string sufficiently. Once
the ball falls below the paddle, the rhythmic motion
becomes chaotic, and the behavior cannot be recovered
without an additional still phase; this was the case not
only for the robot but for all human presenters. For our
setup, the start-up phase consists of moving the paddle
slower and further up than during the rhythmic behav-
ior, as exhibited by the teacher’s movements. This kind
of movement can easily be achieved in the dynamical
systems MP framework by imposing another discrete
dynamical systems primitive that gradually adapts the
period parameter τ and the transformation function f
to the ones encountered in the rhythmic behavior, as
presented in Table 3. The discrete modifier MP is applied
additively to the two parameters. The goal parameter of
this modifier primitive is zero, and thus, its influence
vanishes after the initialization time Tstart. With this
start-up phase, imitation learning from demonstrations
suffices to reproduce the motor skill successfully. Previ-
ous work [27] considered the superposition of discrete
and rhythmic primitives as well as modulating the off-
set of a rhythmic primitive by a discrete one. To our
knowledge, this application is among the first where a
rhythmic dynamical systems primitive is modified by
a discrete primitive in the start-up phase to achieve a
particular task.

CONCLUSION

In this article, we present both novel learning algo-
rithms and experiments using the dynamical systems
MPs. As such, we describe this MP representation in a
way that it is straightforward to reproduce. We review
an appropriate imitation learning method, i.e., locally
weighted regression, and show how this method can
be used both for initializing RL tasks as well as for
modifying the start-up phase in a rhythmic task. We
also show our currently best-suited RL algorithm for
this framework, i.e., PoWER. We present two complex
motor tasks, i.e., ball-in-a-cup and ball paddling, learned
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on a real, physical Barrett WAM, using the methods
presented in this article. Of particular interest is the
ball paddling application, as it requires the combination
of both rhythmic and discrete dynamical systems MPs
during the start-up phase in order to achieve a particular
task.
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