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Abstract—When children learn to grasp a new object, they
often know several possible grasping points from observing a
parent’s demonstration and subsequently learn better grasps
by trial and error. From a machine learning point of view, this
process is an active learning approach. In this paper, we present
a new robot learning framework for reproducing this ability
in robot grasping. For doing so, we chose a straightforward
approach: first, the robot observes a few good grasps by
demonstration and learns a value function for these grasps using
Gaussian process regression. Subsequently, it chooses grasps
which are optimal with respect to this value function using a
mean-shift optimization approach, and tries them out on the
real system. Upon every completed trial, the value function is
updated, and in the following trials it is more likely to choose
even better grasping points. This method exhibits fast learning
due to the data-efficiency of the Gaussian process regression
framework and the fact that the mean-shift method provides
maxima of this cost function. Experiments were repeatedly
carried out successfully on a real robot system. After less
than sixty trials, our system has adapted its grasping policy
to consistently exhibit successful grasps.

I. INTRODUCTION

Due to the detailed analysis of robot grasping in early
works [1], [9], this area has a strong theoretical foundation.
In the presence of good sensing, back-drivable actuation, and
accurate models of both the grasped objects and the dynamics
of the robot system, the appropriate grasp types, grasping
forces and contact points characteristics can be automatically
determined. Unfortunately, despite all progress, robot hands
remain to be among the most difficult robot hardware to
design and a robot hand that fulfills all the requirements
above is currently not commercially available. Furthermore,
an excessive number of object models would need to be read-
ily available. As a result, researchers have begun embracing
machine learning to support robotic grasping [10], [13], [16],
[17].
The most straightforward and intuitive approach for teach-

ing robots falls under the category of learning by imitation
or programming by demonstration, a form of supervised
robot learning. Learning by imitation involves showing the
robot how to perform a given task by joy-sticking, kines-
thetic teach-in, vision-based or SenSuit-based instruction.
The robot subsequently attempts to repeat these motions
to the best of its ability. Imitation learning for grasping
suffers from several short-comings, i.e., as robot hands differ

from human hands both in kinematics and sensing, the
demonstration itself is tedious and suffers strongly from the
correspondence problem [6], and the learned behavior is
limited to the teacher’s presentation and cannot adapt to new
objects or situations.
Active learning approaches can help to address these issues

[10], [16]. In active learning, the robot performs grasps on an
object in order to refine its knowledge of how an object can
be grasped. A teacher’s presentations can be used in order to
initialize the process, thereby avoiding trying every possible
grasp, and thus limit the active learning to the refinement
of the teacher. The concept of combining learning from
observations and trial & error resembles how a child would
learn many manipulation tasks. The active learning approach
suggested in this paper is aimed at robot grasping; however,
it generalizes well and can be used in a variety of different
settings. It makes use of two important components, i.e., (i) it
uses a Gaussian process regression [15] in order to estimate
the reward function of different grasps, and subsequently
(ii) it employs mean-shift optimization [2] to find the best
possible grasp candidates. As we only have few data points
for an object and need fast generalization, this approach
results in an efficient method.
The theory has been applied successfully in robot grasping

using a real Mitsubishi PA-10 robot with a Barrett hand
where it repeatedly converged on suitable grasp locations
in less than sixty trials. At this point it had found two
distinctly different yet stable ways of grasping the object
while continuing to explore ways to improve these grasps.
All experiments were carried out completely on the real
robot system and no learning in simulation was required.
This paper will proceed as follows: in the remainder of
this section, we will first review existing work in Part I-
A and show our assumed setting in Part I-B. The details
of the active learning approach are given in Section II.
The evaluations of the methods proposed in this paper are
presented in Section III, followed by the conclusion in
Section IV.

A. Related Work in Learning Robot Grasping
A large focus of previous works has been on learning grasp

classification as success or failure based on visual cues. The
choices of the features to test are often based on human
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intuitions and the earlier literature of grasp mechanics [1],
[9]. Pioneering papers used mainly traditional neural net-
works, e.g., Moussa et al. [11] learned mappings from objects
to appropriate grasp types in a grasp hierarchy (although
none of this work was evaluated on a real system), Pauli
used radial basis-function networks to classify objects and
recognize situations [12], Steffan et al. [19] have used tactile
information to dynamically alter the grasp closing strategies
based previously successful grasps which were represented
by a self-organizing map (SOM) which approximated the
grasp manifold [20].
To date, modern machine learning approaches such as

support vector machines (SVM) and other kernel methods
are frequently replacing neural networks as function ap-
proximators. Using these methods, several researchers have
tackled the key problem of learning good points directly as
a function of the shape features. Pelossof et al. [13] uses
an analytical model to determine local features of a good
grasp, and subsequently interpolates to untested situations in
simulation. Recently, such approaches have been generalized
such that both visual features and laser range finder date can
be used for identifying the probability of success of a given
grasp on a partially occluded object [18] and the algorithm
is actually implemented on a real robot [17].
Another research direction, and one more aligned with

the work presented here, is actively exploring an object to
generate a full model of how to grasp the object. Fewer as-
sumptions about the object being grasped, the kinematics of
the hand, and the sensor system need to be made when grasps
deemed successful have been experimentally proven to work
on the robot. To obtain a complete model of grasp success
probabilities, one should generally attempt new grasps at
positions where the current model is lacking evidence, and
therefore the model itself is uncertain. Salganicoff et al. [16]
pioneered this direction using the confidence intervals of
classification tree-based learning to determine which position
to grasp in order to create more information rich models
[16]. Morales et al. [10] used k-nearest-neighbors (KNN)
for predicting the reliability of untested grasps, with the
initial data being acquired by repeatedly attempting grasps
on an actual robot system. They propose using the KNN to
determine where the current model lacks information and
test grasps in these regions to improve the model.
The algorithm applied here takes a different approach in

that, rather than focusing on a complete model, the robot
searches only for areas of the objects with good grasp
affordances, which can then be used as a suitable grasping
policy. This approach allows the robot to learn grasps faster
and even directly on the real system, where the robot may
also be trying to perform an object manipulation task for
which it needs good grasps.

B. Visual Perception
All grasps are defined in the reference frame of the grasped

object. Therefore, the first step towards active learning is
determining the object position and orientation in the robot’s
reference frame. The robot uses a Videre STH-MDCS2-

(a) Vision

(b) ECV descriptors

1: The top image shows the paddle on the stand taken from
the left camera. The bottom image shows an image of the 3D
reconstruction (model descriptors in green) generated from
the stereo images of the same scene

9cm stereo camera for the vision system. Tools such as
laser range finders or sonar are not required for the pose
estimation techniques applied here as it is purely based on
standard stereo vision. The pose estimation software is the
combination of the Early-Cognitive-Vision (ECV) system
[5] and a hierarchical Markov model [4]. The system is
well suited for grasping experiments [3]. The vision system
extracts edges and localizes them in five dimensions, i.e.,
three for position and two for orientation. The orientation
along the edge can not be determined, and is not required
[7]. The two colors along the edge are also stored as part of
the feature. These features are usually called early cognitive
vision (ECV) descriptors [14], and are used in generating
models of objects as well as for observing scenes.
A model is generated by first extracting vision descriptors

from stereo images of an object. If the images for initially
creating the model were acquired from an unstructured scene,
then the vision descriptors would be manually trimmed to
only those generated by the object the system is focused on.
These descriptors and their spatial relation to each other are
encoded into a hierarchical Markov network of the object
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that has a tree structure with vision descriptors at the lowest
level, and the entire object at the top [4]. This probabilistic
hierarchical Markov model is a full representation of the
object. The object does not need to be represented by simpler
objects such as cubes and spheres for this grasping task.
For the grasping task, the robot observes the scene and

extracts its visual descriptors. The scene’s visual descriptors
are not trimmed, but used directly as observations in the
Markov model, allowing for the object’s six position and
orientation to be inferred. Although individual vision features
span a 5D sub-space, the combination of vision features, the
object’s pose, and the final grasp exist in six dimensions of
position (R3) and orientation (R3). As a probabilistic model,
the system allows for the detection of multiple instances of
the object in a given scene, and then selects the one with the
highest likelihood [4]. Only one style of grasp generation
will be addressed in the majority of this paper. Therefore,
the term “grasp” will refer to a pose of the hand, regardless
of whether it is successful in holding the object or not.
In the remainder of the paper, we will refer to the scene

information as s in nR5, and the grasp pose in the world
reference frame as a in R6. The reward, r(s,a), of a grasp
is determined by the amount the fingers need to adjust to the
object during the lifting from the table. This method rewards
grasps that are less dependent on the pose of the object on
its stand.
It should be noted that the hardware used in this paper

is more on the minimalist side for a grasping task, thus
allowing the findings of this paper to be applied to a variety
of different robots.
II. AN ACTIVE LEARNING ALGORITHM FOR ROBOT

GRASPING
In this section, we propose an algorithm for actively learn-

ing good grasps for an object. The concept of active learning
implies that the robot performs and tests grasps in the real
world. It uses the gained knowledge to efficiently predict new
and, possibly, better grasping poses for the next grasp. As
discussed in Section I-B, we measure the performance using
a reward r(s,a). The goal of the algorithm is to maximize the
value function determined by the expected reward J(s,a) =
E{r(s,a)} for an action in a particular state, which can be
used for a grasping policy â = π(s) = argmaxaJ(s,a).
In order to compute this policy efficiently, we need to

solve two steps, i.e., approximate the value function J and
find maxima a∗ efficiently. The algorithm estimates the value
function of different grasp poses for an object using Gaussian
processes regression. Mean-shift methods are applied to the
value function in order to obtain a maximum. This maximum
is subsequently tested by the real robot. As every robot
trial is very costly, it is essential to make efficient use of
them, and therefore the result is directly inserted into the
reward function after each test, rather than applying a batch
approach.
A. Value Function Approximation with Gaussian Processes
The value function, or expected rewards, of the grasps

is estimated using Gaussian process regression [15], i.e., a

Bayesian non-parametric regression approach that general-
izes well in the local vicinity of the training data. We will
be using a Gaussian kernel with independent components
given by

k (xi,xj) = exp
(

− (xi − xj)
T

H (xi − xj)
)

with xi = [xi, yi, zi, θi, φi, ψi] and H =
diag (hx, hy, hz, hθ, hφ, hψ), where xi and xj are the
vectors containing the position and orientation variables
of two grasps (i and j) in the space of the grasped
object. Grasps in the object’s reference frame need to be
determined from context s and action candidate a using
kinematics, which we denote by x = f(s,a) (note, that
the inverse can also be determined). The hyper-parameters
are contained within H. If required, further variables can
be added in here with ease. Given the initial data, suitable
values for the hyper-parameters of the kernel function need
to be constructed which can be achieved by maximizing
the marginal likelihood. For more background on the
optimization of hyper-parameters see [15]. The reward
function is approximated by

J(s,a) =
n

∑

i=1

αik (xi, f(s,a)) , (1)
using the n grasps observed to date where αi denote the
parameters or weights of this function. These weights are
now determined using Gaussian process regression by α =
(

K + σ2
JI

)−1
r, where α denotes the vector of all αi, K is

the so-called Gram matrix with entries Kij = k(xi,xj), and
the target vector r contains the reward of all previous grasp
candidates ri = r(si,ai). The Gaussian process models the
observations as having independent zero mean noise. The
hyper-parameter σ2

J represents the variance of the observed
values’ noise.
During the experiment, both successful and failed grasps

are added to the Gaussian process regression in order to
refine the reward function estimate. Upon the completion
of each grasp, an additional data point is added and the
weights need to be re-estimated. As only few trials should
be performed, the sample size is limited, and thus the
computational cost of this update is small in comparison and
the storage requirements are negligible.

B. Determining Optimal Grasp Candidates using Mean-Shift
Optimization
The main goal of this algorithm is to find good grasps

without excessive exploration, and hence we need to de-
termine promising grasp candidates based upon our current
value function estimate. Finding optima in a multidimen-
sional, non-convex function with many local optima is a
generically hard task. However, due to the choice of value
function representation in Section II-A, it can be tackled
efficiently for grasping using the mean-shift optimization
procedure. This procedure was originally designed to be used
in kernel density estimation, but it transfers straightforwardly
to reward functions represented by Gaussian processes [8].
It almost always converges onto a local maximum of the
estimated value function. A full derivation and proof of
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convergence for the kernel density case can be found in [2].
The algorithm is iterative, so it needs to be applied multiple
times until convergence before the final grasp candidates can
be determined.
It is straightforward to adapt the mean-shift algorithm to

cost functions represented by Gaussian processes [8], where
we initialize n particles in the standard way by x0

k = xk for
k ∈ {1, 2, . . . , n}, and subsequently use the adapted update
given by

x
t+1
k =

∑n
i=1 αi (xi − xk) k (xt

k,xi)
∑n

i=1 ‖αi‖ k (xt
k,xi)

+ x
t
k (2)

in order to update the particles. This update is iterated
until convergence, and the final grasp is ready to be tested.
Otherwise the new grasp coordinates are used to begin the
next mean-shift iteration. While this loop is fairly expensive,
mean-shift needs to be performed only once per trial, and is
therefore not a large cost.

C. Exploring new Grasp Candidates
The mean-shift algorithm finds several local maxima. If

only few trials have been performed, the reward function
will not be sufficiently informative so that the best of
these maxima can be determined. Instead, the system may
stagnate by focusing too heavily on the first region with
even mediocre rewards. Thus, it is essential to determine
a strategy for exploring the different local maxima, each
of which represents a grasp. A straightforward exploration
strategy which usually works well in application is the Gibbs
policy

â ∼ p(a∗
i |s) =

exp (τJ(s,a∗
i ))

∑q
j=1 exp

(

τJ(s,a∗
j )

) ,

where â denotes the chosen maximum, a∗
j denote the q

maxima determined by the mean-shift algorithm and the
temperature parameter τ can help trading off exploration and
exploitation over time (although it was fixed in this setting).
While other methods (e.g. ε-greedy) were considered, the
Gibbs policy was used as it is a standard approach in
reinforcement learning frameworks, and can also draw from
the benefits of simulated annealing. Most of the details of
the method for determining the next grasp to test have now
been described, and a summary of the steps of the complete
algorithm can be found in Algorithm 1.

III. ROBOT EVALUATIONS
In this section, we show how well the suggested approach

performs in application on a real robot. First, in Section
III-A, we show the robot setup used for our experiments
and subsequently, in Section III-B, we show and discuss the
results.

A. Experimental Setup
We use a hand eye system mounted on the wall consist-

ing of (i) a Mitsubishi PA-10 medical light-weight robot
arm with seven degrees of freedom, (ii) a three finger
Barrett robot hand, (iii) a VEXTA pan tilt unit, and a
(iv) Videre STH-MDCS2-9cm stereo camera system. The
complete setup can be viewed in Figure 3. The experiment

Algorithm 1 Active Learning of Grasps
Receive demonstrated grasps {x1, x2, . . . , xn}
repeat
Observe scene and estimate the object’s pose.
Estimate value function

α =
(

K + σ2
JI

)−1
c,

J(s,a) =
∑n

i=1 αik (xi, f(s,a)) ,
Initialize n particles by x0

k = xk.
repeat
Update all particles by

x
t+1
k =

Pn
i=1

αi(xi−xk)k(xt
k,xi)

P

n
i=1

‖αi‖k(xt
k
,xi)

+ xt
k

until convergence ∀k.|xt+1
k − xt

k| < ε
if all particles have the same value
Choose the corresponding grasp.

else there is more than one mode
Draw one of the particles according to

â ∼ p(a∗
i |s) = exp(τJ(s,a∗

i ))
Pq

j=1
exp(τJ(s,a∗

j ))
end
Execute the grasp on the robot system.
Observe the reward rn+1.
Insert data point (xn+1, rn+1) into the GP.

until user-intervention

now proceeds as follows: first, the user selects a few possible
locations for grasps as well as the grasp type, and then the
active learning algorithm is started.
As an object to be grasped, we chose a table tennis racket

and the user was allowed to select a few initial grasping
locations, orientations and grasp types (mainly precision
pinches) by visual inspection and joy-sticking the robot, only
limited by the fact that they need to be reachable by the robot.
The demonstrator chose mainly grasps at three locations, i.e.,
one group of grasps was focused on the handle, and two
further ones were placed on the flat section. The grasps were
demonstrated through joy-sticking.
Initial imitation attempts tend to display low success rate

due to the method’s inherent problems: the hand was joy-
sticked remotely from the operators desk (as a result, the
scene understanding of the operator was limited), lack of
experience from the demonstrator for this type of hand, and
that the Barrett hand is not equipped with tactile sensors
nor with proper joint torque sensors. As a result, the grasps
closure program needs to rely purely upon an open loop
program that upon completion determines whether the hand
has grasped the object by attempting to lift the object. If it
can be steadily lifted, the grasp is labeled a success. Thus,
the human presentations are imperfect and it is often hard
for the human operator to achieve a high success rate.
For autonomous active learning, the robot must itself deter-

mine where to grasp and improve on a trial by trial basis. A
trial consists of the following steps: first, the robot observes
the scene and estimates the object’s pose, and the mean-shift
optimization is employed to generate a new grasp based on
all prior knowledge on possible grasping points. The robot
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2: The red plot shows the expected reward, which is
increasing with the number of trials. The blue plot is an
example trial, deriving the expected reward with a uniform
five-point filter. Over all experiments, the last five trials had
mean rewards of 0.9418 with a standard deviation of only
0.0981

then moves its hand towards the grasp position along the
desired grasping approach direction. Once the appropriate
position is reached, the hand starts the grasping program,
grasps the object and tests the grasp before returning to the
home position. All experiments were carried out on the real
system and no simulation was required.

B. Results and Discussion
The experiment was repeated four times, using different

sets of initial grasps, and were run for 60 trials each. The
system presented a gradually increasing overall expected
reward shown in Figure 2. At the end of the experiments, the
robot had successfully achieved a state of high expected re-
wards with low uncertainty. The small drops in the expected
reward and sometimes moderate improvements are artifacts
resulting from several sources, i.e., (i) that the applied grasp
was not a sufficiently robust grasp, and (ii) that as long
as the robot is still exploring new grasps, it will inevitably
try out empty grasps. Defining grasps with rewards greater
than 0.5 as successful, the system exhibits an almost perfect
success rate upon convergence and even the intermediary
performance was good yielding an average of 41 successful
grasps out of the 60 trials. The system converged to learning
two distinct styles of grasps, i.e., a robust grasp of the side
of the paddle shown in Figure 3a and a handle grasp that is
appropriate for the Barrett hand, shown in Figure 3b. Note
that the discovered handle grasps have a distinctively unusual
grasping style, which was discovered by the robot system.
The successful grasps superimposed onto the ECV de-

scriptors of the object can be seen in Figure 4. For the human
demonstrator, it was logical to attempt grasping the racket at
the middle of the paddle (e.g., see Figure 4a). However, this
grasp requires a higher level of accuracy as the initial gap
between the fingers is about the same size as the diameter
of the paddle. While they do work sometimes, the active

(a) Side Grasp

(b) Handle Grasp

3: (a) The top figure shows the hand as it grasps the side
of the paddle using a three fingered precision grip. (b) The
bottom figure displays the grasp of the handle using a two
fingered grasp by pressing the handle stably against the palm.
Note that the end of the handle can just be seen at the tip of
the middle finger.

learning will eliminate them due to their lack of robustness
as can be observed in Figure 4b.
The handle of the table tennis racket is nearly too small for

the rather large and clumsy Barrett hand, allowing the hand
to fully close about it as if it were an empty grasp. The handle
also has a slightly cylindrical form, making a precision grip
unstable. As a result, the human demonstrations for the
handle were largely failures and the active learning system
was expected to eliminate this grasp as well. Surprisingly,
the grasp for the handle changed during active learning from
imitation to a new one. Instead of the precision pinch implied
by Figure 4a, the final grasp learned by the active learning
system is of a new grasp type as shown in Figure 3b. The
grasp employed uses only two fingers and presses the handle
stably against the palm with properly placed finger tips; thus,
the grasp no longer suffers from the stability problems of
the precision pinch. Aligning the handle with the finger tips
ensures that the fingers are blocked from fully closing and
thereby prohibiting the false empty grasps which a power
grasp approach would create. In order to achieve the later
two-finger grasp, the system realized a particularly stable
strategy which enables the high success rate for the unusual
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(a) After Imitation Learning (Demonstrated Grasps)

(b) After Active Learning (Discovered Successful Grasps)

4: (a) The top figure shows palm poses suggested by
imitation learning superimposed onto the ECV descriptors
of the racket. (b) The bottom figure shows successful palm
poses suggested by the system after active learning.

and unintuitive grasp.
The system has been shown to be capable of learning

quite complex grasps, beyond those demonstrated, that work
reliably. These results are very promising.

IV. CONCLUSIONS
As shown in Section III-B, the results of the four ex-

periments were positive as the system achieved confidently
high success rates within less than 60 trials with learning
taking place on the real system. The algorithm converged to a
successful grasping policy, and found two distinct successful
types of grasps. This fast learning performance indicates that
the robot could potentially learn to grasp an object while

performing a pick and place task. The results also showed
that the method has a lot of potential for finding unusual
and complex grasps beyond those commonly suggested by
the literature. The robot performed a considerable amount
of exploration before and after it had found good grasps.
The algorithm quickly determined which areas led to failed
grasps, and focused an increasing amount of time on other
areas. The system has shown that it can be used to refine
demonstrated grasps to those suited to the specific robot
hardware. Such a system could therefore be used to deal
with the correspondence problem. The algorithm fulfilled all
of its requirements.
In the future, more efforts will be needed in order to

determine how the hyper-parameters, such as number of prior
points and τ , affect the exploration-exploitation tradeoff.
Faster convergence could also be achieved by using more
complex reward functions, i.e., by doing reward shaping.
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