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1 Institute of Science and Technology Austria, Klosterneuburg, Austria.
2 Max Planck Institute for Biological Cybernetics, Tübingen, Germany.

Abstract. We study the problem of multimodal dimensionality reduc-
tion assuming that data samples can be missing at training time, and
not all data modalities may be present at application time. Maximum
covariance analysis, as a generalization of PCA, has many desirable prop-
erties, but its application to practical problems is limited by its need for
perfectly paired data. We overcome this limitation by a latent variable
approach that allows working with weakly paired data and is still able to
efficiently process large datasets using standard numerical routines. The
resulting weakly paired maximum covariance analysis often finds better
representations than alternative methods, as we show in two exemplary
tasks: texture discrimination and transfer learning.

1 Introduction

With the increasing availability of cheaper sensors, multimodal data has become
nearly ubiquitous in practical computer vision tasks: images on the web have text
captions, videos have audio tracks, and modern mobile phones can even record
acceleration data in addition to their audio and visual recording capabilities.
However, the field of multimodal data processing so far plays only a minor role
in current computer vision research, where most algorithms are only able to
process one data domain at a time. Those multimodal algorithms that do exist
typically make restrictive assumptions, such as a priori known pairings between
all data samples. They also commonly require that all sensor information is
available reliably at all times, which is not always the case in practical problems
because the use of multiple sensors increases the risk of subsystems failing.

In this paper, we introduce a dimensionality reduction method that can han-
dle weakly paired data, and that is robust again the risk of partially missing
data. Furthermore it incorporates two further advantages, which are of great
importance for practical applications: it is simple, and it is efficient. By sim-
plicity we mean that the method is based on elementary principles, in our case
derived from statistics, which can be easily implemented and understood by a
outsider of the field. An efficient method can be applied to data sets of realistic
size, i.e. at least several thousand data vectors with thousands of dimensions.
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2 Multimodal Dimensionality Reduction

We assume that we are given related data samples in two or more data modalities
of potentially very high dimension. The general goal of multimodal dimensional-
ity reduction is to compute new representations for these data samples that lie
in lower-dimensional feature spaces. In comparison to normal, unimodal, dimen-
sionality reduction, we expect the availability of multiple data representations
to give a better indication of what the true signal in the data is, that we want
to retain, and what parts are noise that can be suppressed. As motivated in
the introduction, we are interested in robust techniques that can handle missing
examples in the original data. Additionally, once good dimensionality reduction
mappings have been found, we want to be able to process each modality sep-
arately, in order to handle situations wherein some modalities are not always
accessible. We formalize these intuitions in the following definitions.

Definition 1 (Inductive Dimensionality Reduction). Let X = (x1, . . . , xn)
⊂ Rd×n be a set of data vectors. We call a procedure inductive dimensionality
reduction if, given the input X, it outputs a functional mapping f : Rd → Rq
with q < d. The image of X under f we call a lower-dimensional represen-
tation of X and denote it by X̂ = (x̂1, . . . , x̂n), i.e. x̂i = f(xi).

In the rest of this paper, we will only consider inductive methods, which include
PCA [25], kernelPCA [28] and autoencoder networks [10]. Non-inductive meth-
ods, e.g. probabilistic latent semantic analysis (pLSA) [11], and Isomap [30],
also compute a lower-dimensional representation X̂ from X, but do not provide
a function f that could be applied to future data.

The two main families of inductive dimensionality reduction techniques, dis-
criminative and generative, differ in the applications they are suitable for: dis-
criminative techniques, such as linear discriminant analysis (LDA) [6] and canon-
ical correlation analysis (CCA) [2, 12], identify lower-dimensional representa-
tions that are suitable for a specific task that has to be known at the time of
data processing, e.g. classification into a known set of classes. By discarding
all signal dimensions that are not relevant for the specified task, discriminative
techniques can often achieve a large reduction in dimensionality without loss of
accuracy. Their drawback is that the representations found might not be well
suited to tasks different from the specified one. In this work we concentrate
on generative dimensionality reduction instead, where the goal is to find lower-
dimensional data representations that are suited for various subsequent tasks,
not just for a specific one. Intuitively, generative dimensionality reduction tech-
niques can be seen as data compression methods, because it is often possible to
recover the original data from the reduced representation with usually only a
small reconstruction error.

Definition 2 (Multimodal Dimensionality Reduction).

Let X(1) = (x
(1)
1 , . . . , x

(1)
n1 ) ⊂ Rd1×n1 , . . . , X(m) = (x

(m)
1 , . . . , x

(m)
nm ) ⊂ Rdm×nm be

several data sets from potentially different spaces. We call an inductive dimen-
sionality reduction technique multimodal if, given the inputs X(1), . . . , X(m), it
outputs functions f1 : Rd1 → Rq, . . . , fm : Rdm → Rq for all data domains.
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Clearly, every inductive dimensionality reduction technique can in principle
be used in a multimodal framework by just processing each data domain indepen-
dently. However, since in the multimodal setup the functions fi can depend on
all data sets and not just on X(i) itself, one would expect multimodal techniques
to use this information to find better representations than those of unimodal
methods. The canonical way to construct multimodal algorithms is by making
use of dependencies between the data samples that are induced by pairings:

Definition 3 (Weakly Paired Multimodal Data). We call a collection of
data sets X(1), . . . , X(m) weakly paired, if each X(i) is split into k groups as

X(i) = (x
(i)
1,1, . . . , x

(i)

1,ni
1
, . . . , x

(i)
k,1, . . . , x

(i)

k,ni
k

) ∈ Rdi×ni (1)

with ni =
∑k
l=1 n

i
l. The special cases where nil = 1 for all i = 1, . . . ,m and

l = 1, . . . , k we call fully paired. The other extremal case is k = 1, which we
call the unpaired situation.

Weakly paired data is common in multimodal data processing. For example,
in video processing the groups could correspond to separate scenes for which
we have data in the modalities: visual content, audio soundtrack, and textual
subtitles. Unfortunately, existing techniques require fully paired data, which can
introduce artificially overconstrained systems. In the above video example, one
could pair each frame with the audio and subtitle content shown simultaneously
with it. However, many of the correspondences introduced this way will be in-
correct, as the synchronization between visual and other content is typically on
a time scale much larger than the individual frame label.

3 Weakly Paired Maximum Covariance Analysis

In this section we derive a method for inductive multimodal dimensionality re-
duction with weakly paired data that we call weakly paired maximum covariance
analysis (WMCA). It can handle weakly paired and even unpaired data, because
it infers suitable pairings directly from the data instead of requiring them a pri-
ori. This makes WMCA robust against missing data and enables it to process
datasets where the domains have different numbers of samples, whereas previous
techniques only worked if n1 = · · · = nm and the data was fully paired.

3.1 Linear Weakly Paired Covariance Maximization

We first study linear multimodal dimensionality reduction, and in order to sim-
plify the notation we restrict the discussion to two modalities X ∈ Rd×n and
X ′ ∈ Rd′×n′ . We will discuss the non-linear case in Section 3.2, and the extension
to more than two modalities in Section 3.3.

In linear dimensionality reduction the dimensionality reduction functions can
be written as f(x) = W tx for a matrix W ∈ Rd×q, and f ′(x′) = W ′tx′ for a
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matrix W ′ ∈ Rd′×q′ . The lower dimensional representations are thus X̂ = W tX
and X̂ ′ = W ′tX ′. Typically, W and W ′ are assumed orthogonal matrices, so they
contain the basis vectors of the linear subspaces of Rd and Rd′ to be retained.

The most popular technique for generative linear dimensionality reduction is
principal component analysis (PCA). PCA finds a lower-dimensional represen-
tation that retains as much of the original signal’s variance as possible. PCA
can also be used to process fully paired multimodal data (by stacking the data
vectors), but this does not qualify as a multimodal technique in the sense of Def-
inition 2, since the construction requires that all modalities are also present in
future data. The truly multimodal counterpart to PCA is maximum covariance
analysis (MCA) [31], which would be ideal for our purposes, except that it also
requires fully paired data.

Definition 4 (Maximum Covariance Analysis). Let X and X ′ be fully
paired datasets, i.e. for X = (x1, . . . , xn) and X ′ = (x′1, . . . , x

′
n) there is a pair-

ing between each xi and x′i. Let X and X ′ be centered, i.e. 1
n

∑n
i=1 xi = 0 and

1
n

∑n
i=1 x

′
i=0. Maximum covariance analysis (MCA) performs multimodal

dimensionality reduction with projection matrices W,W ′ that solve

maxW,W ′ tr
[
W tXX ′tW ′

]
(2)

where the maximization runs over all orthogonal d× q and d′ × q matrices.

Note that the condition of centered data is not severe, as we can center every
dataset by subtracting the data mean from all samples.

MCA gets its name from the fact that the objective function (2) measures
the total covariance between the individual dimensions of X̂ = W tX and X̂ ′ =
W ′tX ′, as one can see from rewriting tr[W tXX ′tW ′] =

∑q
p=1[W tX]tp[W

′tX ′]p
where [.]p indicates the p-th column.

Even though MCA is a strong method for multimodal dimensionality reduc-
tion, it has found relatively little application in computer vision contexts. We
believe that the main reason for this is that MCA requires fully paired data,
which realistic computer vision tasks often do not provide. In the rest of this
section, we show how MCA can be extended to the weakly paired situation,
calling the result weakly paired maximum covariance analysis (WMCA).

Definition 5 (Weakly Paired Maximum Covariance Analysis). Let X
and X ′ be centered data sets that are weakly paired as specified in Definition 3.
Weakly paired maximum covariance analysis (WMCA) performs multi-
modal dimensionality reduction with projection matrices W and W ′ that solve

maxW,W ′,Π tr
[
W tXΠX ′tW ′

]
, (3)

where W and W ′ run over all orthogonal d × q matrices and d′ × q matrices,
respectively. Π runs over all n×n′ pairing matrices that respect the group struc-
ture of X and X ′, i.e. Π = diag(Π1, . . . ,Πk), where for l = 1, . . . , k we have

Π l ∈ {0, 1}nl×n′l such that
∑nl

i=1Π
l
i,j ≤ 1 for all j = 1, . . . , n′l and

∑n′l
j=1Π

l
i,j ≤ 1

for all i = 1, . . . , nl.
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There is no single closed form solution to the optimization (3), as it requires
both continuous optimization for W and W ′, and combinatoric optimization for
Π. Furthermore, it is a high-dimensional non-convex problem, such that finding
the global optimum in a numeric procedure is typically not possible. We can,
however, efficiently find a locally optimal solution by alternating maximization:

• For known Π, solve

W,W ′ = argmaxW,W ′ tr
[
W tXΠX ′tW ′

]
(4)

Because Π is assumed to be known, the structure of this maximization is
the same as when performing MCA with fully paired data. We obtain the
basis vectors that form W and W ′ by computing the SVD of the matrix
XΠX ′t ∈ Rd×d′ , and keeping the q components in both domains with the
largest singular values. When q is much smaller than d and d′ (which is
the typical case), we can use techniques for accelerated SVD computation,
e.g. based on random projections [24]. This allows the efficient solution of
Equation (4) even when d and d′ are in the range of thousands or larger.

• For known W and W ′, solve

Π = argmaxΠ tr
[
W tXΠX ′tW ′

]
. (5)

Given that tr
[
W tXΠX ′tW ′

]
= tr

[
X ′tW ′W tXΠ

]
and Π’s special proper-

ties, the optimization (5) corresponds to a linear assignment problem with
cost matrix [X ′tW ′W tX]t ∈ Rn×n′ . Furthermore, because of the diagonal
block structure of Π, we can solve k separate problems of size nk×n′k instead
of one big one of size n × n′. Consequently, Equation (5) remains solvable
in an efficient way even for large sample sizes, e.g. using the Hungarian
algorithm [14] or LAPJV [13].

In both steps of the algorithm we maximize the same objective function.
Therefore its value will increase monotonically over the iterations, which provides
us with a natural stop criterion; we have reached a local maximum if the objective
value does not increase any further.

To obtain a complete algorithm, we need a start value for Π. Unless some rea-
sonable pairing is known a priori, we useΠ = diag(Π1, . . . ,Πk) withΠk ≡ 1

nkn′k
.

This is not a pairing matrix in the sense defined above, but it ensures that all
data samples have influence on the initial choice of W and W ′. The pairing prop-
erty of Π will be established during the first solution of the maximization (5).
As the alternating optimization algorithm is only locally convergent, it could
also be run multiple times from different, e.g. random, start configurations. In
our experiments, this did not lead to noticeable improvement, indicating that
the above choice of Π is already a good heuristic.

3.2 Nonlinear Weakly Paired Covariance Maximization

Nonlinear dimensionality reduction techniques are often more powerful than lin-
ear ones, because they have more flexibility in the dimensionality reduction func-
tion that they output. MCA and WMCA can be made into non-linear techniques
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by kernelization. As the necessary steps are very similar to, e.g., the derivation
of kernelPCA from PCA we only outline them here, and refer the reader to [28]
for a more detailed description of kernelization.

For kernelization, we require positive definite and symmetric similarity mea-
sures between samples, called kernel functions, that we denote by k : Rd×Rd →
R and k′ : Rd′ × Rd′ → R. Arguments from functional analysis show that any
such kernel function corresponds to an inner product in a latent Hilbert space,
and that it induces a latent feature map from the original data domain to this
space [28]. Kernelized WMCA now consists of mapping the input data into the
latent Hilbert spaces and performing linear WMCA on the resulting data sets.
In the kernelized form, the optimization problem (3) becomes

maxA,A′,Π tr
[
AK̄ΠK̄ ′A′t

]
, (6)

where K̄ and K̄ ′ are the centered kernel matrices. K̄ is computed by forming
the kernel matrix K ∈ Rn×n as [K]ij = k(xi, xj) and then centering it using
the formula K̄ = K − 1

n1nK − 1
nK1n + 1

n2 1nK1n, where 1n denotes the n× n
matrix in which all elements are 1. K̄ ′ is computed from k′ in the analogous
way. Centering the kernels ensures that the implicitly defined feature vectors
have zero mean in the latent feature space.

We solve the optimization problem (6) with the same alternating optimiza-
tion scheme described previously with two differences:

• In contrast to W,W ′, the matrices A ∈ Rn×q and A′ ∈ Rn′×q are not orthog-
onal. Instead they have to fulfill conditions AtKA = Id and A′tK ′A′ = Id,
which expresses orthogonality in the latent feature space. We obtain the rows
of A and A′ from a generalized eigenvalue problem:(

0 KΠK ′

K ′ΠtK 0

)(
a
a′

)
= λ

(
K 0
0 K ′

)(
a
a′

)
. (7)

Solving Equation (7) is computationally more costly than solving (4). How-
ever, because we are interested only in the q eigenvectors of highest eigen-
value, we can still solve it efficiently using, e.g., the power method [7].

• When solving for A and A′ in this way, the matrix KΠK is of size n × n′
instead of d × d′. In the case where the number of data samples is smaller
than the number of original data dimensions, it can be advantageous to use
the kernelized formulation (6) also for the linear case. For this, one uses
linear kernels k(x, x̃) = xtx̃ and k′(x′, x̃′) = x′tx̃′ and obtains the solutions
of the problem (4) as W = AtX and W ′ = A′tX ′.

Kernelized WMCA provides reduction functions f : Rd → Rq and f ′ : Rd′ →
Rq by setting f(x) = AtK(x) with K(x) = (k(x, x1), . . . , k(x, xn))t and f ′(x′) =
A′tK ′(x′) with K ′(x′) = (k′(x′, x′1), . . . , k′(x′, xn′))

t. Thus it is an inductive
multimodal dimensionality reduction technique. Besides its flexibility to learn
nonlinear projection functions, kernelization has another advantage. It allows us
to process data sources that are provided in a different form than as vectors, e.g.
text documents or graphs. In such scenarios, only a similarity measure, with the
properties of a kernel function, needs to be defined to create Equation (6).
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3.3 WMCA for More Than Two Modalities

So far, we described WMCA for two data sources. An extension to more than two
modalities is straightforward by reformulating the objective function as the sum
of all pairwise covariances between all modalities. Thus, Equation (3) becomes

max
W (1),...,W (m)

Π(1,2),...,Π(m−1,m)

tr
[ m∑
i,j=1

W (i)X(i)tΠ(i,j)X(j)W (j)t
]
, (8)

with the convention that Π(i,i) = 0 and Π(i,j) = Π(j,i)t, and Equation (6) into

max
A(1),...,A(m)

Π(1,2),...,Π(m−1,m)

tr
[ m∑
i,j=1

A(i)K̄(i)tΠ(i,j)K̄(j)A(j)t
]
. (9)

Both systems can be solved by alternating maximization, where the step of
finding the projection directions is solvable as an eigenvalue problem (general-
ized for the kernelized case), and finding the sample pairings requires solving
1
2m(m−1) linear assignment problems. Note that this quadratic scaling in the
number of modalities does not pose a practical problems, since the majority of
multimodal datasets utilize only a small number of modalities.

4 Related Work

As a classical dimensionality reduction technique, MCA comes from the same
family of standard statistical methods as PCA, LDA and CCA. It also forms
the basis for partial least squares (PLS) regression (PLS) [33]. Over the last 10
years, all of these techniques have been kernelized into non-linear versions [3, 27,
28]. The kernelization approach we take in Section 3.2 is similar to these, and the
resulting expressions resemble the ones for kernel canonical correlation analysis
(kernelCCA) [9]. KernelCCA also acts on multimodal data, but it would not
have been a suitable basis for our purposes, as it is not generative. Furthermore,
kernelCCA requires a priori setting of a regularization parameter for each modal-
ity, whereas, except for the number of output dimensions, MCA and WMCA are
parameter-free. Nevertheless, CCA and kernelCCA are probably the most com-
mon methods for multimodal dimensionality reduction, typically in situations
with a single fixed target application, e.g. fMRI analysis [8], image clustering
[5], speaker identification [18], or shape recovery [16]. Alternative approaches
include multimodal pLSA [17] or Hilbert-Schmidt dependence maximization [4],
but these require a more careful experimental setup and are computationally
more demanding. In contrast, the classical methods, and also WMCA, can be
implemented with off-the-shelf components, typically just matrix operations.

To our knowledge, WMCA is the first multimodal dimensionality reduction
technique that can efficiently handle weakly-paired data in the sense of Defi-
nition 3. The idea of treating unknown correspondences as latent variables and
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optimizing over them, however, has been used in previous applications, including
the classical k-means [20] algorithm, where one alternates between the centroid
computation and the cluster assignment. An optimization similar to ours occurs
in [4], which also alternates between a search for projection directions and for
assignments. However in both cases the assignments are between sample and
clusters, not between samples in different data modalities. WMCA’s aspect of
identifying relevant elements in groups of samples is somewhat related to witness
approaches in multiple instance learning [1]. However, the criterion by which the
elements are identified and the overall problem framework are very different.

5 Experimental Evaluation

In this section we show that due to its use of multimodal information, WMCA
is often able to find low dimensional representations that reflect the informa-
tion content of a data source better than a unimodal treatment of the same
data. For this, we perform experiments on two realistic datasets: one for texture
discrimination and one for transfer learning.

5.1 Texture Discrimination

As described in the introduction, generative dimensionality reduction aims at
finding data representations that are suitable for different subsequent tasks. In
this section we study this by performing texture discrimination both as an unsu-
pervised and as a supervised learning problem. Note that both scenarios occur in
real world scenarios. For example, in robot navigation it is important to classify
surfaces into a set of known classes, such as road or quick sand (supervised).
However, in order to collect probes in a new environment, the robot also needs
to be capable of handling previously unobserved surface types, e.g. by grouping
them based on their material properties (unsupervised).

To perform experiments on both setups we use a multimodal Materials
dataset3 that consists of images as well as audio signatures for 17 different ma-
terials (e.g. bricks, styrofoam, wallpaper, and woven carpet), see Figure 1. In
contrast to available datasets with artificially constructed perfect pairings, the
situation for this data is closer to the real problems that occur in multimodal
data acquisition. The audio signal is recorded by dragging a small audio probe
over the textured surfaces multiple times, and measuring the induced character-
istic vibrations with a microphone. The images are captured using an ordinary
digital camera. It is a priori unknown how a meaningful pairing should be con-
structed between the audio signals, which reflect a trajectory over the surface,
and the rectangular regions depicted in the images. Also the conditions under
which both modalities can be obtained differ: to capture images, one needs ac-
ceptable viewing conditions (e.g. no dust or fog). However, once this situation
is established, each image contains a large amount of information from different

3 The data set and source code are available at http://www.ist.ac.at/~chl.
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Fig. 1. Example images and audio signals from the multimodal Materials dataset.

physical locations. Audio recording in the described setup works by physical con-
tact to the material. The sensor can be shielded from environmental influences,
but the information obtained is only very local.

We demonstrate how multimodal dimensionality reduction can be beneficial
under such conditions by adopting an asymmetric multimodal setup: we use
image and audio data to compute dimensionality reduction function, but we
assume that only audio information is available at the time of application.

Data. The multimodal Materials dataset contains data from 26 textured plates
made from 17 different material types. From each plate we recorded five audio
signal with 44.1 kHz sampling frequency and segmented them into 450 overlap-
ping sections of 50 ms, which we represented by phase and amplitude invariant
cepstral features [19]. We clustered the resulting 58 500 feature vectors into an
auditory codebook using k-means and represented each recording by a 1000-bin
histogram, like in a bag-of-words representation. For the image data, we took
high resolution photos with different in-plane rotations for a total of four to
eight grayscale images per material. We computed local binary patterns over 8-
neighborhoods considering only uniform patterns [21] such that any image region
can be represented by a 58-dimensional histogram. Note that we intentionally
chose a setup that is simple and easy to reproduce instead of a more powerful
texture representation because our goal is not to improve the state of the art in
texture classification but to examine the properties of multimodal feature extrac-
tion. To match the one-dimensional nature of the audio domain, we extracted
single-pixel image strips with 16 pixel offset between them, resulting in a total
of 32 histograms per image. For both, audio and visual data, we normalized each
feature dimension to have zero mean and unit variance in order to reduce the
influence of some histogram bins being more populated than others.

Experimental Setup. Our experiments reflect the situation where image and
audio are present during dimensionality reduction itself, but only audio in the
later application to new data. For this we split the data into two equally sized
parts, called context and task data. We use WMCA to compute projection di-
rections from the context data. As no perfect pairing between images and audio
samples is available, we rely on the weak pairing information provided by the
knowledge of which audio signal was recording from which surface. In this lin-
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10 20 30 40 50 60

Output Dimensions

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
o
n
d
it

io
n
a
l 
E
n
tr

o
p
y WMCA

PCA
µCCA
none

10 20 30 40 50 60

Output Dimensions

0.0

0.2

0.4

0.6

0.8

1.0

M
u
lt

ic
la

ss
 A

cc
u
ra

cy

WMCA
PCA
µCCA
none

Fig. 2. Dimensionality reduction for unsupervised and supervised texture discrimina-
tion. The plots depict the conditional entropy (left, lower is better) and multi-class
accuracy (right, higher is better) for different numbers of output dimensions.

ear bimodal case, each iteration of the WMCA algorithm takes only seconds.
Convergence takes 2 to 50 iterations, depending on the output dimensionality.

We use the resulting dimensionality reduction functions to project the audio
part of the task data to a new representation, and we measure the resulting
clustering and classification performance. The unsupervised setup consists of
applying k-means and measuring the quality of the resulting clusters by com-
puting the conditional entropy measure [26, 32] with respect to the ground truth.
To simplify the setup we assume that the correct number of clusters is known
a priori. In practical application, this number would have to be estimated from
data. For the supervised setup, we measure the classification accuracy of a leave-
one-out classifier; that is, for every point in the task set we determine its nearest
neighbor and compute how often the labels of both samples coincide. For com-
parison we report the results of two baseline methods: unimodal dimensionality
reduction with PCA that we apply separately to each modality, and fully-paired
CCA, that is applicable when we use the data means of each weakly-paired group
as input instead of the original samples (denoted µCCA). In addition we report
the results without applying any dimensionality reduction.

Results. Figure 2 shows the results of the described procedure as mean and
standard deviation over 100 random stratified splits of the data into context and
task sets. We observe the same effect in both setups: all techniques identify the
relevant output dimensions first and cause better results than when no dimen-
sionality reduction is applied. However, when the number of output dimensions
is increased, PCA starts to recover noise dimensions which decreases the perfor-
mance, whereas WMCA’s performance remains stable. Because µCCA uses the
group means as inputs, it has only as many input samples as there are groups
and therefore it cannot recover more than 17 output dimensions in this setup.
In conclusion, the results of this section show that the main positive effect of
using the multimodal dimensionality reduction in this case is improved noise
suppression, which results in higher robustness in the choice of the number of
output dimensions.
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5.2 Transfer Learning

The previous experiments showed that WMCA is able to use multimodal data
to infer which data dimensions are relevant and which are not. In this section
we show how a similar effect can be used for transfer learning with attribute
representations. Transfer learning consists of solving a learning task by making
use of another, related, learning task, see [23] for a general overview and [22] for
the specific case of transfer learning by dimensionality reduction. In our case, we
want to improve the accuracy of an image classification system by making use
of the data from another image classification task despite the fact that this has
a disjoint set of classes and examples.

Data. For our experiments we use the Animals with Attributes (AwA)4 dataset
that has recently been introduced as a benchmark for attribute-based classifi-
cation [15]. It consists of approximately 30,000 images of 50 animals classes as
well as descriptions of the classes in terms of 85 binary semantic attributes, see
Figure 3. The images are represented by the feature vectors that come with the
dataset (based on SIFT, SURF, colorSIFT, local self similarity and color his-
togram features). We concatenate these into 10688-dimensional feature vectors
and we remove the effect of inhomogeneous feature scaling by normalizing each
dimension to zero mean and unit variance. The transformations necessary for
this are saved in order to apply them to the task data later.

Experimental Setup. In our experiment largely follow the protocol of [15]. We
split the set of classes into a context part consisting of forty classes and a task
part consisting of ten classes. From the context data we chose 100 images per
class, except for the mole category which has only 92 images that we use all, and
we apply WMCA with the attribute representation as a second modality that is
not available at test time. By assuming only a weak pairing between the domains,
WMCA in particular is able to ignore outliers in the training set, whose actual
image contents do not coincide well with the attribute vector. The quality of the
resulting representation is determined by measuring the accuracy of a classifier
for the task data. As baselines we again compute projection directions using PCA
and CCA of the group means (µCCA). Because we assume that the context part
has label information, we are able to also use LDA as a baseline. Additionally,
we also include the case of not doing dimensionality reduction.

On the task set, we perform image classification in a Caltech-like setup.
We randomly select a small number of training images per class, and classify a
disjoint set of 30 randomly chosen test images using the nearest neighbor decision
rule in the feature space induced by the projection directions found during the
context stage. As in the case of texture discrimination our experimental setup
is motivated by easy reproducibility. In particular we avoid free parameters that
require model selection.

Results. Figure 4 shows the results for different numbers of training images
and output dimensions as mean accuracy and standard error over 100 train/test
splits. When few training examples are available (top row), the representation

4 Available for download at http://attributes.kyb.tuebingen.mpg.de.
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otter

black: yes
white: no
brown: yes
stripes: no
water: yes
eats fish: yes

polar bear

black: no
white: yes
brown: no
stripes: no
water: yes
eats fish: yes

zebra

black: yes
white: yes
brown: no
stripes: yes
water: no
eats fish: no

Fig. 3. Example images and attributes from the Animals with Attributes dataset.
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Fig. 4. Results of attribute-based transfer learning. The plots show the multi-class
accuracy (y-axis) with ntrain training images for different number of output dimensions
(x-axis).

found by WMCA leads to significantly higher classification accuracy than the
representations obtained by PCA and also those by not using dimensionality
reduction. When the number of training examples is increased WMCA is still
superior to PCA when few output dimensions are wanted, but both are not able
to exceed classification accuracy without dimensionality reduction anymore. This
is consistent with the general observation that transfer learning works best in
the regime when few training examples are available. However, dimensionality
reduction can still be beneficial if runtime is an issue, as it makes the nearest
neighbor lookup considerably faster than when the full features vectors are used.

µCCA leads to lower classification accuracy than both generative methods.
Also, the performance does not improve any further when the number of output
dimensions exceeds 10, which we interpret this as an overfitting effect. Because
the data means provide only 40 data points, highly correlated directions can
occur just due to noise effects. The plots in Figure 4 do not contain LDA, which
never achieved classification accuracies that where significantly better than the
chance level. The reason for this is LDA’s discriminative objective. When applied
to the context data it identifies projection directions that best encode the context
class structure, but these do not reflect the class structure in the task set.
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Overall, the results we achieve are comparable with previous work on the
AwA dataset, which is known to be a difficult one. The most similar setup to
ours is [29], where linear distance learning resulted in 23.7% accuracy in a one-
shot setup, and a logistic representation in 27.2%. In [15], accuracies of 27.8%
and 40.5% are reported, but based on a different test situation that made use of
the attribute description at test time.

6 Conclusions

We have introduced weakly-paired maximum covariance analysis (WMCA) for
multimodal dimensionality reduction. It overcomes the main limitation of MCA,
from which it is derived, as it does not require fully paired data. Instead it
treats missing pairings as latent variables which are inferred jointly with the
projection directions. We showed how WMCA can be kernelized to perform
non-linear dimensionality reduction. However, from a practical point of view, the
most satisfactory setup is the linear two-modality case, where solving WMCA
requires only two very efficient standard procedures: solving linear assignment
problems and singular value decompositions.

In our experiments we illustrated two applications where multimodal dimen-
sionality reduction was beneficial. In texture discrimination, WMCA produced
more robust representations than the baselines. In transfer learning, when few
training examples are available, WMCA was able to improve classification accu-
racy by transferring information from a context set to the main task.

Our initial experience with WMCA opens several directions for future work.
Apart from practical application in robotics and video retrieval, we plan to derive
more efficient techniques for applying kernelized WMCA at test time, e.g. based
on reduced set methods and sparsification.
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