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Abstract. Obtaining novel skills is one of the most important problems
in robotics. Machine learning techniques may be a promising approach
for automatic and autonomous acquisition of movement policies. How-
ever, this requires both an appropriate policy representation and suitable
learning algorithms. Employing the most recent form of the dynami-
cal systems motor primitives originally introduced by Ijspeert et al. [1],
we show how both discrete and rhythmic tasks can be learned using
a concerted approach of both imitation and reinforcement learning, and
present our current best performing learning algorithms. Finally, we show
that it is possible to include a start-up phase in rhythmic primitives. We
apply our approach to two elementary movements, i.e., Ball-in-a-Cup
and Ball-Paddling, which can be learned on a real Barrett WAM robot
arm at a pace similar to human learning.

1 Introduction

When humans learn new motor skills, e.g., paddling a ball with a table-tennis
racket or hitting a tennis ball, it is highly likely that they are represented as
elementary or primitive movements and use imitation as well as reinforcement
learning [2]. In contrast, most robots are still programmed by a human operator
using task and domain knowledge. Such programming is highly efficient but can
also become very expensive and is limited to the considered situations. Learning
techniques are a plausible alternative for more autonomous skill acquisition and
improvement. Inspired by the biological insight, we will discuss the technical
counterparts in this paper and show how both single-stroke and rhythmic tasks
can be learned efficiently by mimicking the human presenter with subsequent
reward-driven self-improvement.

Unfortunately however, off-the-shelf machine learning techniques do not scale
into the high-dimensional domains of anthropomorphic robotics. Instead, robot
learning requires methods that employ both representations and algorithms ap-
propriate for the domain. If a favorable function approximator is chosen in this
context, ideally one that is linear in its parameters, then learning can be suffi-
ciently fast for application in robotics in real-time.

Recently, the idea of using dynamical systems as motor primitives was put
forward by Ijspeert et al. [1, 3] as a general approach for representing control
policies for basic movements. The resulting movement generation has a variety
of favorable properties, i.e., rescalability with respect to both time and ampli-
tude, basic stability properties and the possibility to encode either single-stroke



or rhythmic behaviors. Previous applications include a variety of different basic
motor skills such as tennis swings [1], T-ball batting [4], planar biped walking [5],
constrained reaching tasks [6] and even in tasks with potential industrial appli-
cation [7]. Nevertheless, most of the previous work in motor primitive learning
(with the exceptions of [4] and [6]) has focused on learning by imitation with-

out subsequent self-improvement. In real life, a human demonstration is rarely
ever perfect nor does it suffice for near-optimal performance. Thus, additional
reinforcement learning is essential for both performance-based refinement and
continuous adaptation of the presented skill.

In this paper, we present our current best performing setups for motor prim-
itive learning with both the required methods for imitation and reinforcement
learning. The appropriate imitation and reinforcement learning methods are
given in Section 2. In Section 3, we show how the resulting framework can be
applied to both learning Ball-in-a-Cup as a discrete task and Ball-Paddling as a
rhythmic task on a real Barrett WAM1. The ball-paddling task is of particular
interest as we show how the combination of different motor primitives is possible.
It is among the first applications where both rhythmic and discrete dynamical
systems motor primitives [1] are used in conjunction to achieve the task.

2 Learning Methods for Motor Primitives

It is likely that humans rely both on imitation and on reinforcement learning
for learning new motor skills as both of these approaches have different func-
tions in the learning process. Imitation learning has a given target and, thus,
it allows to learn policies from the examples of a teacher. However, imitation
learning can only reproduce a policy representing or generalizing an exhibited
behavior. Self-improvement by trial-and-error with respect to an external reward
signal can be achieved by reinforcement learning. Nevertheless, traditional re-
inforcement learning algorithms require exhaustive exploration of the state and
action space. Given the high-dimensionality of the state-space of anthropomor-
phic robots (a seven degree of freedom robot defies exhaustive exploration), the
“curse of dimensionality” [8] fully applies and we need to rely on local reinforce-
ment learning methods which improve upon the preceding imitation instead of
traditional ‘brute force’ approaches. To some extent, this mimicks how children
acquire new motor skills with the teacher giving a demonstration while the child
subsequently attempts to reproduce and improve the skill by trial-and-error.
However, note that not every task requires reinforcement learning and some can
be learned purely based on imitations. Nevertheless, few tasks are known which
are directly learned by reinforcement learning without preceding mimicking [9].
Thus, we first review how to do imitation learning with dynamical systems motor
primitives in Section 2.1 and, subsequently, we show how reinforcement learning
can be applied in this context in Section 2.2. The latter section will outline our
reinforcement learning algorithm for the application in motor primitive learning.

1 Accompanying video: http://www.youtube.com/watch?v=cNyoMVZQdYM



2.1 Imitation Learning for Dynamical Motor Primitives

In the presented framework, we initialize the motor primitives by imitation learn-
ing as in [9]. This step can be performed efficiently in the context of dynamical
systems motor primitives as they represent a deterministic policy in the form
ā = θTµ(s), where µ(s) are basis functions [9] depending on the state s (namely
positions, velocities and a phase variable), θ ∈ R

N are policy parameters and
ā are the actions (namely desired positions, velocities and accelerations). This
policy is linear in parameters, thus, we have a standard locally-weighted linear
regression problem that can be solved straightforwardly. This general approach
has originally been suggested in [1]. Estimating the parameters of the dynam-
ical system is slightly more daunting, i.e., the movement duration of discrete
movements is extracted using motion detection and the time-constant is set
accordingly. Similarly, the base period for the rhythmic dynamical motor prim-
itives was extracted using first repetitions and, again, the time-constants are
set accordingly. As the start-up phase in rhythmic presentations may deviate
significantly from the periodic movement, the baseline of the oscillation often
needs to be estimated based on the later part of the recorded movement, the
amplitude is determined as the mean of the amplitudes of individual oscillations
in this part.

2.2 Reinforcement Learning with PoWER

Reinforcement learning [10] of motor primitives is a very specific type of learning
problem where it is hard to apply generic reinforcement learning algorithms [4,
11]. For this reason, the focus of this paper is largely on novel domain-appropriate
reinforcement learning algorithms which operate on parametrized policies for
episodic control problems.

Reinforcement Learning Setup When modeling our problem as a reinforce-
ment learning problem, we always have a high-dimensional state s and as a
result, standard RL methods which discretize the state-space can no longer be
applied. The action a = θTµ(s) + ǫ is the output of our motor primitives aug-
mented by the exploration ǫ. As a result, we have a stochastic policy a ∼ π(s)
with parameters θ which can be seen as a distribution over the actions given the
states. After a next time-step δt, the actor transfers to a state st+1 and receives
a reward rt. As we are interested in learning complex motor tasks consisting of a
single stroke or a rhythmically repeating movement, we focus on finite horizons of
length T with episodic restarts [10]. While the policy representation is substan-
tially different, the rhythmic movement resembles a repeated episodic movement
in the reinforcement learning process. The general goal in reinforcement learning
is to optimize the expected return of the policy with parameters θ defined by
J(θ) =

∫

T
p(τ )R(τ )dτ , where τ = [s1:T+1,a1:T ] denotes a sequence of states

s1:T+1 = [s1, s2, . . ., sT+1] and actions a1:T = [a1, a2, . . ., aT ], the probability of
an episode τ is denoted by p(τ ) and R(τ ) refers to the return of an episode τ and
T is the set of all possible paths. Using the Markov assumption, we can write the



path distribution as p(τ ) = p(s1)
∏T+1

t=1
p(st+1|st,at)π(at|st, t) where p(s1) de-

notes the initial state distribution and p(st+1|st,at) is the next state distribution
conditioned on last state and action. Similarly, if we assume additive, accumu-
lated rewards, the return of a path is given by R(τ ) = 1

T

∑T

t=1
r(st,at, st+1, t),

where r(st,at, st+1, t) denotes the immediate reward.
While episodic Reinforcement Learning (RL) problems with finite horizons

are common in motor control, few methods exist in the RL literature (notable
exceptions are model-free method such as Episodic REINFORCE [12] and the
Episodic Natural Actor-Critic eNAC [4] as well as model-based methods, e.g., us-
ing differential-dynamic programming [13]). In order to avoid learning of complex
models, we focus on model-free methods and, to reduce the number of open pa-
rameters, we rather use a novel Reinforcement Learning algorithm which is based
on expectation-maximization [14]. Our new algorithm is called Policy learning
by Weighting Exploration with the Returns (PoWER) and can be derived from
the same higher principle as previous policy gradient approaches, see [15] for
details.

Policy learning by Weighting Exploration with the Returns (PoWER)
When learning motor primitives, we intend to learn a deterministic mean policy
ā = θTµ(s) which is linear in parameters θ and augmented by additive explo-
ration ǫ(s, t) in order to make model-free reinforcement learning possible. As a
result, the explorative policy can be given in the form a = θTµ(s, t)+ ǫ(µ(s, t)).
Previous work in [4, 11], has focused on state-independent, white Gaussian ex-
ploration, i.e., ǫ(µ(s, t)) ∼ N (0, Σ), and has resulted into applications such as
T-Ball batting [4] and constrained movement [6]. Alternatively, as introduced
by [16], one could generate a form of structured, state-dependent exploration
ǫ(µ(s, t)) = εT

t µ(s, t) with [εt]ij ∼ N (0, σ2
ij), where σ2

ij are meta-parameters

of the exploration that can be optimized in a similar manner. Each σ2
ij cor-

responds to one θij . This argument results into the policy a ∼ π(at|st, t) =

N (a|µ(s, t), Σ̂(s, t)). This form of policies improves upon shortcomings of di-
rectly perturbed policies. Based on the EM updates for Reinforcement Learning
as suggested in [11, 15], we can derive the update rule

θ′ = θ +
Eτ

{

∑T

t=1
εtQ

π(st,at, t)
}

Eτ

{

∑T

t=1
Qπ(st,at, t)

} , (1)

where Qπ(s,a, t) is the state-action value function. Note that this algorithm
does not need the learning rate as a meta-parameter. In order to reduce the
number of trials in this on-policy scenario, we reuse the trials through importance
sampling [10].

3 Robot Evaluation

The methods presented in this paper are evaluated on two learning problems on
a real, seven degree of freedom Barrett WAM, i.e., we learn the discrete task of



Fig. 1. This figure shows schematic drawings of the Ball-in-a-Cup motion, the final
learned robot motion as well as a kinesthetic teach-in. The green arrows show the
directions of the current movements in that frame. The human cup motion was taught
to the robot by imitation learning with 31 parameters per joint for an approximately
three seconds long trajectory. The robot manages to reproduce the imitated motion
quite accurately, but the ball misses the cup by several centimeters. After roughly 75
rollouts, we have good performance and at the end of the 100 rollouts we have virtually
no failures anymore.

Ball-in-a-Cup and the rhythmic task Ball-Paddling. The resulting simplicity and
speed of the learning process demonstrate the suitability of the motor primitive-
based learning framework for practical application.

3.1 Discrete Movement: Ball-in-a-Cup

The children motor game Ball-in-a-Cup, also known as Balero and Bilboquet [17]
is challenging even for a grown up. The toy has a small cup which is held in one
hand (or, in our case, is attached to the end-effector of the robot) and the cup
has a small ball hanging down on a string (the string has a length of 40cm for
our toy). Initially, the ball is hanging down vertically in a rest position. The
player needs to move fast in order to induce a motion in the ball through the
string, toss it up and catch it with the cup, a possible movement is illustrated
in Figure 1 in the top row.

The state of the system can be described by joint angles and joint velocities
of the robot as well as the the Cartesian coordinates and velocities of the ball.
The actions are the joint space accelerations where each of the seven joints is
driven by a separate motor primitive with one common canonical system. The
movement uses all seven degrees of freedom and is not on a plane. All motor
primitives are perturbed separately but employ the same joint final reward. The
reward is based on the minimal distance between the center of the ball and the
center of the cup.
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Fig. 2. This figure shows the expected
return of the learned policy in the Ball-
in-a-Cup evaluation averaged over 20
runs.

Due to the complexity of the task,
Ball-in-a-Cup is even a hard motor
task for children who usually only
succeed after observing another per-
son presenting a demonstration first,
and after subsequent trial-and-error-
based learning. Mimicking how chil-
dren learn to play Ball-in-a-Cup, we
first initialize the motor primitives
by imitation and, subsequently, im-
prove them by reinforcement learning.
We recorded the motions of a human
player by kinesthetic teach-in in order
to obtain an example for imitation as shown in Figure 1 (middle row). As ex-
pected, the robot fails to reproduce the presented behavior even if we use all
the recorded details for the imitation. Thus, reinforcement learning is needed for
self-improvement. We determined by cross-validation that 31 shape-parameters
per motor primitive are needed.

In [15] we benchmarked our novel algorithm and several widely used algo-
rithms on tasks having characteristics similar to this one. As a result we employ
our best algorithm, PoWER. Figure 2 shows the expected return over the num-
ber of rollouts where convergence to a maximum is clearly recognizable. The
robot regularly succeeds at bringing the ball into the cup after approximately 75
rollouts. A nine year old child got the ball in the cup for the first time after 35
trials while the robot got the ball in for the first time after 42 rollouts. However,
after 100 trials, the robot exhibits perfect runs in every single trial while, from
our experience, the child does not have a comparable success rate. Of course,
such a comparison with a child is contrived as a robot can precisely reproduce
movements unlike any human being and that children can most likely adapt
faster to changes in the setup.

3.2 Rhythmic Movement with start-up phase: Ball-Paddling

In Ball-Paddling, we have a table-tennis ball that is attached to a table-tennis
paddle by an elastic string. The goal is to have the ball bouncing above the
paddle. The string avoids that the ball is falling down but also pulls the ball
back towards the center of the paddle if the ball is hit sufficiently hard (i.e., the
string is also stretched sufficiently as a consequence). The task is fairly easy to
perform open-loop once the player has determined appropriate amplitude and
frequency for the motion. Furthermore, the task is robust to small changes of
these parameters as well as to small perturbations of the environment. We again
recorded the motions of a human player using kinesthetic teach-in in order to
obtain a demonstration for imitation learning as shown in Figure 3. From the
imitation, it can be determined by cross-validation that 10 shape-parameters per
motor primitive are sufficient.



Fig. 3. This figure shows schematic drawings of the Ball-Paddling motion, a kinesthetic
teach-in as well as the performance of the robot after imitation learning. When the
string is stretched it is shown as thinner and darker. The human demonstration was
taught to the robot by imitation learning with 10 parameters per joint for the rhythmic
motor primitive. An additional discrete motor primitive is used for the start-up phase.
Please see Section 3.2 and the accompanying video for details.

However, as we start with a still robot where the ball rests on the paddle,
we require a start-up phase in order to perform the task successfully. This ini-
tial motion has to induce more energy in order to get the motion started and
to extend the string sufficiently. For our setup, the start-up phase consists (as
exhibited by the teacher’s movements) of moving the paddle slower and further
up than during the rhythmic behavior. This kind of movement can easily be
achieved in the dynamical systems motor primitives framework by imposing an-
other discrete primitive that gradually adapts the period parameter globally and
the amplitude modifier to the ones encountered in the rhythmic behavior. The
discrete modifier motor primitive is applied additively to the two parameters.
The goal parameter of this modifier primitive is zero and thus, its influence van-
ishes after the initialization. With this start-up phase, imitation learning from
demonstrations suffices to reproduce the motor skill successfully. To our knowl-
edge, this application is probably the first where both rhythmic and discrete
dynamical systems primitives are used together to achieve a particular task.

4 Conclusion

In this paper, we present both novel learning algorithms and experiments using
the dynamical systems motor primitive [1, 9]. For doing so, we have discussed
both appropriate imitation learning methods by locally weighted regression and
derived our currently best-suited reinforcement learning algorithm for this frame-
work, i.e., Policy learning by Weighting Exploration with the Returns (PoWER).
We show that two complex motor tasks, i.e., Ball-in-a-Cup and Ball-Paddling,



can be learned on a real, physical Barrett WAM using the methods presented in
this paper. Of particular interest is the Ball-Paddling application as it requires
the combination of both rhythmic and discrete dynamical systems primitives in
order to achieve a particular task.
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