
978-1-4244-2761-1/09/$25.00 ©2009 IEEE

Jan Peters and Jens Kober

Abstract- Reinforcement Learning is an essential ability for
robots to learn new motor skills. Nevertheless, few methods
scale into the domain of anthropomorphic robotics. In order
to improve in terms of efficiency, the problem is reduced onto
reward-weighted imitation. By doing so, we are able to generate
a framework for policy learning which both unifies previous
reinforcement learning approaches and allows the derivation of
novel algorithms. We show our two most relevant applications
both for motor primitive learning (e.g., a complex Ball-in-a-
Cup task using a real Barrett WAMTM robot arm) and learning
task-space control.

I. INTRODUCTION

OLlCY LEARNING by reward-driven self improvement
is an essential ability of future robots. However, despite

all the tremendous progress in Reinforcement Learning over
the last three decades, most interesting, high-dimensional
motor learning problems are often beyond the reach of
current methods. Learning by imitation on the other hand has
proven to be significantly easier problem than reinforcement
learning and efficient methods exist even for humanoid
robots. Surprisingly, human reinforcement learning does not
appear to differ that strongly from imitation - instead of
directly improving a reward, humans will rather attempt to
imitate their own successful trials more strongly than the
unrewarded ones [10]. This insight originally triggered our
research towards reinforcement learning by reward-weighted
imitation.

The learning approach basically corresponds to giving
the highly rewarded trials proportionally more weight than
the unsuccessful ones. While this idea might sound very
basic, it can properly be motivated from a statistical learning
perspective where the reward simply corresponds to an
improper probability distribution [12], [14], [5], [17] and,
thus, one can apply most standard methods from machine
learning in order to derive novel methods for reinforcement
learning. Nevertheless, we can also directly relate existing
methods such as policy gradient approaches [6], [7], [9] and
the natural actor-critic [9] to this approach.

In this paper, we will give the most extensive overview
on these approaches to date. We will start by first deriving
the generic framework for reinforcement learning by reward-
weighted imitation and show how it relates to previous
approaches. Subsequently, we will derive to expectation-
maximization algorithms which have been essential in our
recent research, i.e., the reward-weighted regression [14]

Jan Peters and Jens Kober are with the Department of Empiri-
cal Inference and Machine Leartling, Max Planck Institute for Bio-
logical Cybernetics, Spemannstr. 38, 72076 Tlibingen, Germany (email:
{jens.kober,jan.peters}@tuebingen.mpg.de).

and the Policy Learning by Weighting Exploration with
the Returns (PoWER) algorithm [17]. We are especially
interested in a particular kind of motor control problems, i.e.,
(i) learning of task-space control and (ii) learning of dynamic
motor primitives [18], [19]. We show that the presented
algorithms work well when employed in the context of
learning dynamic motor primitives in four different settings,
i.e., the two benchmark problems from [9], the Underactuated
Swing-Up [16] and the complex task of Ball-in-a-Cup [20],
[15]. Both the Underactuated Swing-Up as well as the Ball-
in-a-Cup are achieved on a real Barrett WAMIM robot arm as
well as in various applications to learning resolved-velocity
control.

II. POLlCY LEARNING AS REWARD-WEIGHTED

IMITATION

In this section, we first discuss the reinforcement learning
problem in the general context of motor control and introduce
the required notation in Section II-A. Using a generalization
of the approach in [12], [14], we show how the general
framework is related to policy gradients methods in II-B
and derive EM-inspired algorithms such as the Reward-
Weighted Regression and the Policy Learning by Weighting
Exploration with the Returns (PoWER).

A. Problem Statement & Notation

In this paper, we focus on episodic reinforcement learning
[1]. We assume that at time t there is an actor in a state
St and chooses an appropriate action at according to a
stochastic policy 7f(atlst, t). Such a policy is a probability
distribution over actions given the current state. The stochas-
tic formulation allows a natural incorporation of exploration
and, in the case of hidden state variables, the optimal time-
invariant policy has been shown to be stochastic [7]. Upon
the completion of the action, the actor transfers to a state
St+l and receives a reward Tt.

In motor primitive learning, episodic reinforcement learn-
ing tasks of finite length are predominant. Task-space control
can be seen as an immediate reward reinforcement learning
problem which can be see an episodic task with an episode
length of one. Thus, we focus on finite horizons of length T
with episodic restarts [1] and learn the optimal parametrized,
stochastic policy for such reinforcement learning problems.
We assume an explorative (i.e., stochastic) parametrized
policy 7f with parameters () E JR.". The general goal in
reinforcement learning is to optimize the expected return of
the policy 7f with parameters () defined by

(1)

(4)

where

(8)

is called the state-action value function II j. Equation (9) is
equivalent to the policy gradient theorem l7J for ()' --+ () in
the infinite horizon case where the dependence on time L can
be dropped.

When adding an additional punishment to prevent large
steps away from the observed path distribution, this can
be achieved by restricting the amount of change in the
path distribution and, subsequently, determining the steepest
descent for a fixed step away from the observed trajectories.
Change in probability distributions is naturally measured
using the Kullback-Leibler divergence, thus, after adding the
additional constraint of D (Pe' (T) IIPa (T)) = 6, we can
derive the natural policy gradient by simply approximating

C. Resulting Policy Updates

In the following part, we will discuss three ditferent policy
updates which directly result from Section II-B. First, we
show that policy gradients l6J, l7J, 19J can be derived from
the lower bound L a(()'). Subsequently, we show that natural
policy gradients can be seen as an additional constraint
regularizing the change in the path distribution resulting from
a policy update when improving the policy incrementally,
and, finally, we will show how an expectation-maximization
(EM) algorithm for policy learning can be generated.

I) Policy Gradients.: When differentiating the function
La (()') which defines the lower bound on the expected return,
we directly obtain

G(J'La(()') = rlfla (T) R (T) Ga logPa l (T) dT, (7)

where T is the set of all possible paths and Ga log Pe' (T) =
E'Z=l Ga log 7f(at 1St, t) denotes the log-derivative of the path
distribution. As this log-derivative only depends on the
policy, we can estimate a gradient from roll-outs without
having a model by simply replacing the expectation by a sum;
when ()' is close to (), we have the policy gradient estimator
is widely known as Episodic REINFORCE 161, i.e., we have

{

'1
(2" (s, a, t) =}J L i-tT(S[, at, s[11' t)

t-t

expected return La (()') = - D (Pa' (T) IIPa (T) R (T)) is the
essential step when improving a policy and we will show
the relation to different previous policy learning methods in
Section II-C.

Obviously, a reward which precedes an action in an episode,
can neither be caused by the action nor cause an ac-
tion in the same episode. Thus, when inserting Equations
(2) into Equation (7), all cross-products between Tt and
Ga log 7f(atHt IStHt, L+ !5L) for !5L > () become zero in
expectation 191. Therefore, we can omit these terms and
rewrite the estimator as

Ga,La (()') log7f(aLlsL, t)(J"(s, a, t)}, (9)
L=l

(2)

(3)

, 1pa (T)log J (()) = log -,-(-)Pa' (T) R (T) dT,
1r Pa T

1 Pa' (T)2: Pa (T) R (T) log -,-(-)dT + const, (5)
1r pa T

:x -D (Pa' (T) IIPa (T) R (T)) = L a(()'), (6)

where D(p(T) III](T)) = j'p(T)log(p(T)/I](T))dT is the
Kullback-Leibler divergence which is considered a natu-
ral distance measure between probability distributions, and
the constant is needed for tightness of the bound. Note
that Pa (T) R (T) is an improper probability distribution as
pointed out in 1121. Maximizing the lower bound on the

where p(sd denotes the initial state distribution,
p(st+1ISt, at) the next state distribution conditioned
on last state and action, T(SL' aL, SL 11, L) denotes the
immediate reward, and E [0,1] the discount factor.

B. Policy Improvement as Reward-weighted Matching

In this section, we discuss how reward-weighted imitation
can be used for policy improvement and derive several
approaches resulting from that perspective. For doing so,
we first discuss the lower bound on the expected return
suggested in ll2J for guaranteeing that policy update steps
are improvements. While l12J, ll4J discussed only the im-
mediate reward case, we extend their framework to episodic
reinforcement learning and, subsequently, derive a general
update rule which yields the policy gradient theorem, a
generalization of the reward-weighted regression ll4J as well
as the PoWER algorithm.

Unlike in reinforcement learning, other machine learning
branches have focused on optimizing lower bounds, e.g.,
resulting in expectation-maximization (EM) algorithms lllj.
The reasons for this preference apply in policy learning: if
the lower bound also becomes an equality for the sampling
policy, we can guarantee that the policy will be improved
by optimizing the lower bound. Surprisingly, results from
supervised learning can be transferred with ease. For doing
so, we follow the scenario suggested in l12J, i.e., gener-
ate episodes T using the current policy with parameters
() which we weight with the returns R (T) and subse-
quently match it with a new policy parametrized by ()'.
This matching of the success-weighted path distribution is
equivalent to minimizing the Kullback-Leibler divergence
D (Pa' (T) IIPa (T) R (T)) between the new path distribution
Pa' (T) and the reward-weighted previous one Pa (T) T (T).
As shown in 112 I, 114 I, this results in a lower bound on the
expected return using Jensen's inequality and the concavity
of the logarithm, i.e.,

where T = [S1:'1+1' a1:'1] denotes a path of states S1:'1'+l =
[Sl' S2, ... , S'1+1] and actions a1:'1 = [a1' a2, ... , a'1]'
The probability of episode T is denoted by p(T) while R(T)
refers to its return. Using the assumptions of Markovness
and additive accumulated rewards, we can write

Input: initial policy parameters 00

repeat
Sample: Perform trial(s) using a stochastic policy of

a = OT ¢(s, t) + t
for generalized Reward-Weighted Regression (RWR)
and

a = (0 + t)T ¢(s, t)
for Policy Learning by Weighting Exploration with
Returns (PoWER). Collect all (t,sL,aL,SLI1,€L,rLld
for all time-steps t = 1,2, ... , T + l.
Estimate: Use unbiased estimate

A T - -
CJ"(s, a, t) = L[=L ai, si 11' t).

Reweight: Compute importance weights and reweight
trials, discard low-importance trials.
Update policy using the RWR update

ut_l t t t ut_l Itt
w w

or for PoWER use

Of=O +

with = ¢(s, t)¢(s, t)T /(¢(s, t)T¢(s, t)).
until Convergence Ok 11 Ok

Algorithm I: Sketch of EM Policy learning with both RWR
and PoWER.

D (fie' (7) IIfie (7)) D.5(of - OY/F(O)(Of - 0) (10)

with its second-order expansion where F(0) denotes the
Fisher information matrix 181. This derivation results in the
Natural Actor Critic as discussed in 181, 191.

2) Policy Search via bxpectation Maximization.: One
major drawback of gradient-based approaches is the learning
rate, an open parameter which can be hard to tune in control
problems but is essential for good performance. Expectation-
Maximization algorithms are well-known to avoid this prob-
lem in supervised learning while even yielding second-
order convergence 1111. Previously, similar ideas have been
explored in immediate reinforcement learning 1121, 1141.
In general, an EM-algorithm would choose the next policy
parameters On+l such that On+l = argrnaxe' Le(Of). In the
case where 7f(aLlsL, I) belongs to the exponential family,
the next policy can be determined analytically by setting
Equation (9) to zero, i.e.,

E 10g7f(aLlsL, t)Q"(s, a, t)} = D, (II)

and solving for Of. Depending on the choice of a stochas-
tic policy, we will obtain ditlerent solutions and different
learning algorithms. 11 allows the extension of the reward-
weighted regression to larger horizons as well as the intro-
duction of the PoWER algorithm.

In most learning control problems, we attempt to have a
deterministic mean policy a = OO/¢(s, t) with parameters
o and basis functions ¢, e.g., in linear-quadratic regulation
we have gains as 0 and states as ¢. In Section Ill, we will
introduce the basis functions of the motor primitives. When
learning motor primitives, we turn this deterministic mean
policy a = OT¢(s, t) into a stochastic policy using additive
exploration €(s, t) in order to make model-free reinforcement

learning possible, i.e., we always intend to have a policy
7f (at 1St, t) which can be brought into the form

a = O"¢(s, t) + E(¢(S, t)). (12)

Previous work in this context l6j, l4j, 19j, ll4j has fo-
cused on state-independent, white Gaussian exploration, i.e.,
E(¢(S, t)) N(D, I.:). It is straightforward obtain the
Reward-Weighted Regression for episodic RL by solving
Equation (II) for Of which naturally yields

Of = H{t
t=l t=l

i.e., a weighted regression method with the state-action
values Qfs = Q" (s, a, t) as weights and abbreviating the
basis functions by = ¢(s, I}

However, such unstructured exploration at every step has a
multitude of disadvantages: it causes a large variance which
grows with the number of time-steps 19 I, it perturbs actions
too frequently 'washing' out their effects and can damage
the system executing the trajectory. As a result, all methods
relying on this state-independent exploration have proven
too fragile for learning the Ball-in-a-Cup task on a real
robot system. RiickstieB et al. ll3 j suggested that as an
alternative, one could generate a form of structured, state-
dependent exploration E(¢(S,t)) = €{¢(s,t) with [t]ij
JV(D, UTj)' where UTj are meta-parameters of the exploration
that can also be optimized. As suggested in ll3 j, this results
into the policy a 7f(aLlsL,t) = N(aIO¢(s, t), t(s, t)).
Inserting RiickstieB's policy into Equation (II), we obtain
the optimality condition update in the sense of Equation (II)
and can derive the update rule

Of=
t-l t-l

with = ¢(s, t)¢(s, t)T/(¢(S, t)T¢(S, t)). Note that for
our motor primitives W reduces to a diagonal, constant
matrix and cancels out. Hence the algorithm can be applied
in a simplified form in Section III. In order to reduce the
number of trials in this on-policy scenario, we reuse the trials
through importance sampling as described in the context of
reinforcement learning in III. To avoid the fragility some-
times resulting from importance sampling in reinforcement
learning, samples with very small importance weights are
discarded. Replacing the expectations E {.} by the impor-
tance sampler denoted by OW(T). The resulting algorithms
is shown in Algorithm I.

III. ApPLICATION I: MOTOR PRIMITIVE LEARNING

In this section, we demonstrate the etlectiveness of the pre-
sented algorithms in the context of motor primitive learning
for robotics. For doing so, we will first give a quick overview
how the motor primitives work and how the algorithm can
be used to adapt them.

As first evaluation, we will show that the novel pre-
sented PoWER algorithm outperforms all previous well-
known methods, i.e., 'Vanilla' Policy Gradients, Finite Dif-
ference Gradients, the Episodic Natural Actor Critic and the

--FDG -- VPG --eNAC -- RWR -- PoWER

Fig. I. This figure shows the mean performance of all compared methods in
two benchmark tasks averaged over twenty learning runs with the error bars
indicating the standard deviation. Policy learning by Weighting Exploration
with the Returns (PoWER) clearly outperfonns Finite Difference Gradients
(FOG), 'Vanilla' Policy Gradients (VPG), the Episodic Natural Actor Critic
(eNAC) and the adapted Reward-Weighted Regression (RWR) for both tasks.

10020 40 60 80
number of rollouts

8
B 0.6
<l.l

0.4

0.2

Fig. 2. This figure shows the expected return of the learned policy in the
Ball-in-a-Cup evaluation averaged over 20 runs.

0.8

10
2

10
3

nwnber of rollouts

(b) passing through a point(a) minimum motor command

-250

-500

-1000 "-- ---J

10
2

10
3

number of rollouts

generalized Reward-Weighted Regression on the two simu-
lated benchmark problems suggested in [9] and a simulated
Underactuated Swing-Up [16].

Real robot applications are done with our best bench-
marked method, the PoWER method. Here, we show PoWER
can be used to learn learn a high-speed Ball-in-a-Cup [20]
movement with motor primitives for all seven degrees of
freedom of our Barrett WAMIM robot arm.

A. Using the Motor Primitives in Policy Search

The motor primitive framework [l8], [l9] can be described
as two coupled differential equation, i.e., we have a canonical
system y = f(y, z) with movement phase y and possible
external coupling to z as well as a nonlinear system x =
g(x, x, y, (}) which yields the current action for the system.
Both dynamical systems are chosen to be stable and to have
the right properties so that they are useful for the desired
class of motor control problems. In this paper, we focus on
single stroke movements as they frequently appear in human
motor control [10], [19] and, thus, we will always choose
the point attractor version of the motor primitives exactly as
presented in [19] and not the older one in [18].

The biggest advantage of the motor primitive framework
of [l8], [l9] is that the function g is linear in the policy
parameters () and, thus, well-suited for imitation learning as
well as for our presented reinforcement learning algorithm.
For example, if we would have to learn only a motor
primitive for a single degree of freedom qi, then we could use
a motor primitive in the form qi = g(qi,qi,y,(}) = ¢(s)T()
where s = [qi, qi, y] is the state and where time is implicitly
embedded in y. We use the output of qi = ¢(S)T() = a as
a policy mean of Equation (12). The perturbed accelerations
iii = a = a+ E is given to the system. The details of ¢ are
given in [l9].

In Section III-C, we use imitation learning for the ini-
tialization. For imitations, we follow [l8]: first, extract the
duration of the movement from initial & final zero velocity
and use it to adjust the time constants. Second, use locally-
weighted regression to solve for an imitation from a single
example.

B. Benchmark Comparison

As benchmark comparison, we intend to follow a previ-
ously studied scenario in order to show which method is most
well-suited for our problem class. For doing so, we perform
our evaluations on the exact same benchmark problems as
[9] (i.e., the discount factor is 'Y = 1) and use two tasks
commonly studied in motor control literature for which the
analytic solutions are known, i.e., a reaching task where a
goal has to be reached at a certain time while the used motor
commands have to be minimized and a reaching task of the
same style with an additional via-point. In this comparison,
we mainly want to show the suitability of our algorithm
and show that it outperforms previous methods such as
Finite Difference Gradient (FOG) methods [9], 'Vanilla'
Policy Gradients (VPG) with optimal baselines [6], [7], [9],
the Episodic Natural Actor Critic (eNAC) [8], [9], and the
episodic version of the Reward-Weighted Regression (RWR)
algorithm [l4]. For both tasks, we use the same rewards as in
[9] but we use the newer form of the motor primitives from
[l9]. All open parameters were manually optimized for each
algorithm in order to maximize the performance while not
destabilizing the convergence of the learning process.

When applied in the episodic scenario, Policy learning by
Weighting Exploration with the Returns (PoWER) clearly
outperformed the Episodic Natural Actor Critic (eNAC),
'Vanilla' Policy Gradient (VPG), Finite Difference Gradient
(FOG) and the adapted Reward-Weighted Regression (RWR)
for both tasks. The episodic Reward-Weighted Regression
(RWR) is outperformed by all other algorithms suggesting
that this algorithm does not generalize well from the imme-
diate reward case. While FOG gets stuck on a plateau, both
eNAC and VPG converge to the same, good final solution.
PoWER finds the same (or even slightly better) solution
while achieving it noticeably faster. The results are presented
in Figure 1. Note that this plot has logarithmic scales on
both axes, thus a unit difference corresponds to an order of
magnitude. Please excuse the omission of the first twenty
roll-outs to cope with the log-log presentation.

Fig. 3. This figure shows schematic drawings of the Ball-in-a-Cup motion, the final learned robot motion as well as a motion-captured human motion. The
green arrows show the directions of the momentary movements. The human cup motion was taught to the robot by imitation learning with 31 parameters per
joint for ca. 3 seconds. The inverse dynamic manages to reproduce the simplified motion quite accurately, but the ball misses the cup by several centimeters.
After approximately 75 iterations of our Policy learning by Weighting Exploration with the Returns (PoWER) algorithm the robot has improved its motion
to a point the ball goes in the cup. Also see Figure 2.

C. Ball-in-a-Cup on a Barrett WAM""

The most challenging application in this paper the chil-
dren's game Ball-in-a-Cup [20] where a small cup is attached
at the robot's end-effector and this cup has a small wooden
ball hanging down from the cup on a 40cm string. Initially,
the ball is hanging down vertically. The robot needs to move
fast in order to induce a motion at the ball through the string,
swing it up and catch it with the cup, a possible movement
is illustrated in Figure 3 (top row). The state of the system
is described in joint angles and velocities of the robot and
the Cartesian coordinates of the ball. The actions are the
joint space accelerations where each of the seven joints is
represented by a motor primitive. All motor primitives are
perturbed separately but employ the same joint final reward
given by r-(tc) = exp(-a(xc - Xb)Z - a(yc - Yb)2) while
r-(t) = 0 for all other t -=I- tc where tc is the moment
where the ball passes the rim of the cup with a downward
direction, the cup position denoted by [xc, Yc, zc] E IR3 ,

the ball position [Xb' Yb, Zb] E IR3 and a scaling parameter
a = 100. The task is quite complex as the reward is not
modified solely by the movements of the cup but foremost
by the movements of the ball and the movements of the
ball are very sensitive to changes in the movement. A small
perturbation of the initial condition or during the trajectory
will drastically change the movement of the ball and hence
the outcome of the trial.

Due to the complexity of the task, Ball-in-a-Cup is even
a hard motor learning task for children who usually only
succeed at it by observing another person playing and a lot
of improvement by trial-and-error. Mimicking how children

learn to play Ball-in-a-Cup, we first initialize the motor
primitives by imitation and, subsequently, improve them by
reinforcement learning. We recorded the motions of a human
player by kinesthetic teach-in in order to obtain an example
for imitation as shown in Figure 3 (middle row). From the
imitation, it can be determined by cross-validation that 31
parameters per motor primitive are needed. As expected,
the robot fails to reproduce the the presented behavior and
reinforcement learning is needed for self-improvement.

Figure 2 shows the expected return over the number
of episodes where convergence to a maximum is clearly
recognizable. The robot regularly succeeds at bringing the
ball into the cup after approximately 75 iterations.

IV. ApPLICATION II: TASK-SPACE CONTROL

For most important control tasks, it is easier to specify
the task in the Cartesian coordinate systems of the task, e.g.,
the end-effectors velocity p E IRm , than in the complicated
manifold of joint-space configuration q E IRn . For this
reason, the transformation of task-space movements into joint
space movements, i.e., the differential inverse kinematics, is
an essential step for motor command generation [21].

Learning task-space control has a variety of interesting
properties in comparison to analytical approaches as it can
deal with camera calibration, sensor offsets and measure-
ments errors [22], [23]. Furthermore, as the kinematics of
the robot are implicitly represented by the measured data,
singularities no longer pose a difficult problem as the robot
cannot steer towards physically impossible configurations for
learned models [22], [23].

(b) Task-Space Tracking

0.28

0.26

0.18

>-
co

024
Q.

ffi 0.22
'in

('l 0.2

0.55 0.6 0.65 0.7 0.75 0.38 0.4 0.42
Cartesian Position x Cartesian Position z

(a) Mitsubishi PA 10

Task-8pace Performance x vs y y vs z
0.3

0.16

0.5

0.3

0.2

0.28

0.18

0.26>-
c
.2

0.24
Q.
c
.3] 0.22

'"(.)

A. Task-Space Control as a Reinforcement Learning Problem

While various successful approaches exist to the offline
learning of inverse kinematics, see [23] for an extensive
review, only few methods exist which extend into the realms
of real-time learning. A pioneering approach in this direction
was presented in [22], where the authors considered fast
online-learning approaches using locally linear models to
learn differential inverse kinematics for a simulated hu-
manoid robot. However, while local solutions result into
locally viable solutions, the data distribution will determine
the global solution and consistency of the local models is no
longer ensured. In [22], the authors ensure consistency by
biasing their data generation such that the learning system
would only be presented with a consistency-ensuring set of
data. However, this approach is problematic as the learner can
get stuck in certain configurations and the bias can largely
determine the behavior of the system [14].

The forward kinematics given by the transformation P =
fKinematics (q) is straightforward to compute and can be esti-
mated using stereo vision [21]. However, the inverse of this
function is not unique for redundant robots, i.e.,
robots with excessive degrees of freedom such that n > m.
Instead, a multitude of solutions exists and computing inverse
kinematics requires that certain solutions are favored de-
pending on their proximity to the current joint configuration.
For doing so, the velocity of the end-effector in task space
P = J (q) q is considered, where J (q) = dfKinematics (q) / dq
denotes the Jacobian.

An important insight into redundant task-space control
problems (see [25], [24], [14]) is that resolved motion control
can be derived as the solution of a constraint optimization
problem given by

(q) = qTNq S.t. Jq = Pref, (13)
q

where N denotes a positive definite metric weighting the
joint velocity distributing the movement onto the joints, and
Pref = Pd (t) + K: (Pd (t) - P (t)) presents a reference
attractor in task space with gain matrix K p and desired
task-space trajectory Pd, Pd. If we treat this problem as a
reinforcement learning problem, we have a comparably sim-
ple setup (especially in the light of the complex supervised
learning solution in [22]). First, all actions which we do will
yield us samples which fulfill the constraint. Second, we
can turn the cost into a reward by simply using a reward
transformation T(q) = exp(-hqTNq). As a result, we
have an immediate reward reinforcement learning problem
for which the reward-weighted regression can be applied
perfectly. Future experiments with PoWER are currently
under evaluation.

B. Experimental Evaluation

In order to demonstrate the feasibility of our learning
approach, we evaluated our learning approach to resolved
velocity control on a physical Mitsubishi PA-lO arm shown
in Figure 4(a). This robot has seven degrees of freedom
(OoF) and, thus, has four degrees of freedom too much

Fig. 4. This figure shows (a) the Mitsubishi PA-1O robot arm with
seven degrees of freedom used in the experiments in this paper and (b)
illustrates the task performance of both the analytical and the leamed
resolved motion rate task space control laws. Here, the green dotted line
shows the desired trajectory which the robot should follow, the red dashed
line is the performance of the real-time learning control law while the blue
solid line shows the performance of the resolved motion rate control law.
Note, that while the online learning solution is as good as the analytical
solution, it still yields comparable performance without any pre-training of
the local control laws before the online learning.

for following a desired trajectory in cartesian space. Note
that we do not track orientation as otherwise we could not
experimentally show that we can cope with a large number
of redundant degrees of freedom.

The goal of the experiment is to show that we can learn
consistent resolved velocity control laws without observing
the task beforehand. For doing so, we choose the standard
task of a figure-8 in task space [24]. We assume an identity
metric N = I for both the analytical control law which serves
as the benchmark control law as well as for the cost function
of the reward-weighted regression. In order to turn a cost into

V. CONCLUSION

a reward, we again transform it by r(q) = cxp(_qTN q).
The experiment consists out of two phases. In the first

phase, we pre-train the predictor models by moving in a
small region in joint-space around the rest posture. This
initialization allows us to generate some initial predictor
models; however, the controller models are not learned in this
first part. In the second phase, we start the resolved velocity
control law on the desired trajectory and perturb its out put
with a very small amount of exploration E JV (0, 0-

21) with
0- = 0.001, i.e.,

In this paper, we have presented a new perspective on
policy learning methods and an application to a highly
complex motor learning task on a real Barrett WAM1\1 robot
arm. We have generalized the previous work in 1121, 1141.
In the process, we could show that policy gradient methods
are a special case of this more general framework. We
have derived two reinforcement learning methods from this
framework, i.e., the generalized Reward-Weighted Regres-
sion and Policy Learning by Weighting Exploration with the
Returns. Both have been used successful in the application
to robot reinforcement learning. The PoWER algorithm has
been used in the context of motor primitive learning of Ball-
in-a-Cup on a real Barrett WAM. We have also shown that
the Reward-Weighted Regression can be used to for online,
real-time reinforcement learning of resolved velocity task-
space control on a Mitsubishi PA-I 0 in our lab.

As robotics increasingly moves away from the struc-
tured domains of industrial robotics towards complex robotic

Such exploration is known under the name motor babbling
in the behavioral literature and helps humans learn motor
tasks in a similar manner l23 j. It is absolutely necessary
for fast learning of the resolved velocity control law as
the robot would otherwise never have a sufficiently rich set
of observations. While this motor babbling is so small in
magnitude that it cannot be observed without a magnifying
glass, it nevertheless has an impact as it causes the robot to
slightly drift in the null-space of the task during execution.

The resulting online-learning is achieved sufficiently fast
the robot is capable to learn tracking on the same trajectory
which it is executing. Due to the prediction accuracy, the
learning system has already determine 7 different local re-
gions and will only learn [) additional different regions during
the execution of the trajectory. Altogether this trajectory
requires 12 locally linear regions for accurate tracking. All
these models determine the activity of the locally linear
control laws which are learned online during the execution
of the trajectory. The high gain of the reference aUractor
compensates for initial model errors and could be reduced
once the control law has been achieved a high level of
accuracy. In Figure 4(b), the resulting task-space perfor-
mance can be observed. We can see that the resulting task
space tracking performance is quite close to the one of the
analytical resolved velocity control law.

REFERENCES

systems, which both are increasingly high-dimensional and
increasingly hard to model, such as humanoid robots, the
techniques developed in this paper will hopefully be benefi-
cial in developing more autonomous and self-tuning robotic
systems.

[II R. Sutton and A. Bano. Reinforcement Learning. MIT Press. 1998.
[2J .I. BagnelL S. Kadade, A. Ng, and .I. Sehneidcr. Policy sem-ch hy

dynamic programming. [n Advances in Neural Information Processing
Systems (NIPS), 2003.

[3J A. Ng and M. Jordan. PEGASUS: A policy sem-ch method for largc
MDPs and pOMDPs. In International Conference on Uncertainty in
Artificial Intelligence (UAl), 2000.

[4J F. Guenter. M. Hersch. S. Calinon. and A. Billard. Rcinforccmcnt
leal11ing lor imitating constrained reaching movements. RSf Advanced
Robotics. 21. 1521-1544. 2007.

[51 M. Hollman. A. Douect. N. de Freitas. and A. Jasra. Bayesian
policy leal11ing with trans-dimensional MCMC. In Advances in Neural
Information Processing Systems (Nfl'S). 2007.

[61 R. .I. Williams. Simple statistical gradient-following algorithms for
conncctionist reinforcemcnt leal11ing. Machine Learning, 8:229-256,
1992.

[71 R. S. Sutton, D. McA[lester, S. Singh, and Y. Mansour. Policy gradient
mcthods for rcinforcement learning with function approximation. In
Advances in Neural Irifimnation I'rocessing Systems (NIl'S), 2000.

[81 .I. Bagnell and J. Schneider. Covariant policy search. [n International
.Ioint Conference on Artificial Intelligence (J.JCAI), 2003.

[9J .I. Pcters and S. SchaaL Policy gradicnt mcthods for rohotics. In
International Conference on Intelligent Robots and Systems (IROS),
2006.

[[OJ G. Wu[L Attention and motor skill learning. Human Kinetics.
Champaign. [1., 2007.

[[IJ G. .I. McLachan and T. Krishnan. The EM Algorithm and Extensions.
Wiley Series in Prohahility and Statistics. John Wiley & Sons, 1997.

[12J P. Dayan and G. E. Hinton. Using expcctation-maximization for
reinforccmcnt leal11ing. Neural Computation, 9(2):271-278, 1997.

[131 T. RUckstiel3, M. Fe[der, and .I. Schmidhuher. State-Dependent Exp[o-
ration for Policy Gradicnt Mcthods. In Proceedings of the European
Conference on Machine Learning (ECML), Antwerp, HelgiLlln, 2008.

1141 .I. Peters and S. Schaal. Learning operational .lj)(ICe control. In
Procccdings of Rohotics: Sciencc and Systcms (RSS), Philadelphia,
PI\, 2006.

I 151 M. Kawato, F. Gandolfo, H. Gomi, and Y. Wada. Teaching by showing
in kendama based on optimization principle. In Intcl11ational ConL on
Anilicia[Neura[Networks, 1994.

I 161 c. G. Atkeson. Using local trajectory optimizer.I' to speed up global
optimization in dynamic programming. In Advances in Neura[Infor-
mation Processing Systems (NIPS), 1994.

1171 .I. Kober,.I. Peters. Policy Search of Motor Primitives for Robotics. In
Advanccs in Neura[Information proccssing Systcms (NIPS), 200!!.

1181 A. Ijspeert, .I. Nakanishi, and S. Schaal. Learning attractor landscapes
for learning motor primitives. In Advanccs in Ncura[Inlormation
Proccssing Systcms (N[PS), 2003.

119] S. Schaal, Mohajerian, and A. Ijspeert. Dynamics systems V.I'.

optimal control - a unifying view. Progrcss in Brain Rcsem-ch,
165(1):425-445, 2007.

120] Wikipedia, May 31, 200S. hllp:I/cn. wikipcdia.org/wikiIHalUll_'LCUP
121] L Sciavicco and B. Siciliano, Modcling and control of rohot

manipulators. Heidelberg, Germany: MacGraw-Hill, 2007.
122] A. D'Souza, S. Vijayakumw; and S. SchaaL Learning inverse kine-

matics," In Proccedings of the IEEE/RSJ Intcrnationa[Con1"crcncc on
Intelligent Robots and Systems (lROS), Hawaii, USI\, 2001.

123] D. DeMers and K. Kreutz-Delgado. Canonical parameterization of
excess motor degrees offreedOln with self organizing maps. In IEEE
Transactions on Neural Networks, vol. 7, PI'. 43-55, 1996.

124] .I. Nakanishi, M. Mistr)', .I. Peters, and S. Schaal. Operational space
control: A theoretical and emprical comparison. In International Journal
of Robotics Rcsearch (I.JRR), pp.737-757, Vol 27 (6), 200S.

125] .I. Peters, M. Mistr)', r: Udwadia, RoCor)', .I. Nakanishi, and S. Schaal.
A unifying methodology fin robot control with redundant /)OFs In
Autonomous Robots, pp.I-12, Vol 24 (I), 200S.

(14)q = 7f(q, Pref) + E.

