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Abstract. Learning robots that can acquire new motor skills and re-
fine existing ones have been a long-standing vision of both robotics, and
machine learning. However, off-the-shelf machine learning appears not
to be adequate for robot skill learning, as it neither scales to anthro-
pomorphic robotics nor do fulfills the crucial real-time requirements. As
an alternative, we propose to divide the generic skill learning problem
into parts that can be well-understood from a robotics point of view. In
this context, we have developed machine learning methods applicable to
robot skill learning. This paper discusses recent progress ranging from
simple skill learning problems to a game of robot table tennis.

1 Introduction
Despite the many impressive motor skills exhibited by anthropomorphic robots,
the generation of motor behaviors has changed little since classical robotics. The
roboticist models the task dynamics as accurately as possible while using human
insight to create the desired robot behavior, as well as to eliminate all uncertain-
ties of the environment. In most cases, such a process boils down to recording a
desired trajectory in a pre-structured environment with precisely placed objects.
Such highly engineered approaches are feasible in highly structured industrial or
research environments. However, for robots to leave factory floors and research
environments, the strong reliance on hand-crafted models of the environment
and the robots needs to be reduced. Instead, a general framework is needed
for allowing robots to learn their tasks with minimal programming and in less
structured, uncertain environments. Such an approach clearly has to be based on
machine learning combined with robotics insights to make the high-dimensional
domain of anthropomorphic robots accessible. To accomplish this aim, three
major questions need to be addressed:
1. How can we develop efficient motor learning methods?
2. How can anthropomorphic robots learn basic skills similar to humans?
3. Can complex skills be composed with these elements?
In the next sections, we will address these questions. We focus on model-free
methods, which do not maintain an internal behavior simulator (i.e., a for-
ward model) but operate directly on the data. Note that most methods transfer
straightforwardly to model-based approaches.

2 Motor Learning Methods
In this section, we first formalize the necessary assumptions on robotics from a
machine learning perspective and then show the concepts behind the resulting
learning methods.



2.1 Modeling Assumptions.

Fig. 1. Modeling of the learning
task of paddling a ball.

For addressing these questions, we focus on an-
thropomorphic robot systems which always are
in a state x ∈ Rn that includes both the in-
ternal state of the robot (e.g., joint angles, ve-
locities, acceleration in Fig. 1, but also inter-
nal variables) as well as external state vari-
ables (e.g., ball position and velocity), and ex-
ecute motor commands u ∈ Rm at a high fre-
quency (usually 500–1000Hz). The actions are
taken in accordance to a parametrized, station-
ary, stochastic policy, i.e., a set of rules with
exploration u ∼ πθ(u|x) = p(u|x,θ) where the
parameters θ ∈ RN allow for learning. The stochasticity in the policy allows cap-
turing the variance of the teacher, can ease algorithm design, and there exist well-
known problems where the optimal stationary policy is stochastic. Frequently
used policies are linear in state feature φ(x) and have Gaussian exploration, i.e.,
πθ(u|x) = N (u|φT (x)θ, σ2). After every motor command, the system trans-
fers to a next state x′ ∼ p(x′|x,u), and receives a learning signal r(x,u). The
learning signal can be a general reward (i.e., in full reinforcement learning), but
can also contain substantially more structure (e.g., prediction errors in model
learning or proximity to a demonstration in imitation), see [1].

During experiments, the system obtains a stream of data consisting of episodes
τ = [x1,u1,x2,u2, . . . ,xT−1,uT−1,xT ] of length T , often also called trajectories
or paths. These paths are obviously distributed according to

pθ(τ ) = p(x1)
∏T
t=1p(xt+1|xt,ut)πθ(u|x), (1)

where p(x1) denotes the start-state distribution. We will refer to the distribu-
tion of teacher’s demonstrations or past data p(τ ) by simply omitting θ. The
rewards of a path can be formulated as a weighted sum of immediate rewards
r(τ ) =

∑T
t=1 atr(xt,ut). Most motor skill learning problems can be phrased as

optimizing the expected returns J(θ) = Eθ{r(τ )} =
´
pθ(τ )r(τ )dτ .

2.2 Method Development Approach
The problem of learning robot motor skills can be modeled as follows: (1) The
robots starts with an initial training data set obtained from demonstrations
from which it learns an initial policy. (2) It subsequently learns how to improve
this policy by repetitive training over multiple episodes. The first goal is accom-
plished by imitation learning while the second requires reinforcement learning.
In addition, model learning is often needed for improved execution [2].
Imitation Learning. The goal of imitation learning is to successfully reproduce
the policy of the teacher π(u|x). Many approaches exist in the literature [3, 4].
However, this problem can be well-understood for stochastic policies: How can
we reproduce the stochastic policy π given a demonstrated path distribution
p(τ )? The path distribution pθ(τ ) generated by the policy πθ should be as close
as possible to the teacher’s, i.e., it minimizes the Kullback-Leibler Divergence



D(p(τ )||pθ(τ )) =
´
p(τ) log

p(τ )

pθ(τ )
dτ =

´
p(τ )

∑T
t=1 log

π(ut|xt)
πθ(ut|xt)

dτ ,

where the model of the system and the start-state distribution naturally cancel
out. As log π(ut|xt) is an additive constant, the path rewards become

r(τ ) ∝ −
∑T
t=1 log πθ(ut|xt) = −

∑T
t=1

∥∥u− φT (x)θ∥∥2 ,
where the second part only holds true for our policy which is linear in the features
and has Gaussian exploration. Clearly, the model-free imitation learning problem
can be solved in one shot in this way [4].

Reinforcement Learning. For general rewards, the problem is not straightfor-
ward as the expected return has no notion of data. Instead, for such a brute-force
problem, learning can only happen indirectly as in value function methods [1] or
using small steps in the policy space, as in policy gradient methods [5]. Instead
of circumventing this problem, we realized that there exits a tight lower bound

J(θ) =
´
pθ(τ )r(τ )dτ ≥ D(p(τ )r(τ )||pθ(τ )).

Hence, reinforcement learning becomes a series of reward-weighted self-imitation
steps (Intuitively: “Do what you are but better ”) with the resulting policy update

θ′ = argmaxθ′D(R(τ )pθ(τ )||pθ′(τ ))

which is guaranteed to converge to a local optimum. Taking such an approach,
which stays close to the training data is often crucial for robot reinforcement
learning as the robot avoids trying arbitrary, potentially destructive actions. The
resulting methods have led to a series of highly successful robot reinforcement
learning methods such as reward-weighted regression [5], LAWER [6], PoWER
[4], and Cost-regularized Kernel Regression [7].

3 Application in Robot Skill Learning

Fig. 2. Swing the
ball into the cup

The imitation and reinforcement learning approaches have so
far been general, despite being geared for the robotics sce-
nario. To apply these methods in robotics, we need appro-
priate policy representations. Such representation are needed
both for simple and complex tasks.

3.1 Learning Simple Tasks with Motor Primitives
We chose policy features based on dynamical systems, which
are an extension the ground-breaking work of Ijspeert, Nakan-
ishi & Schaal refined in [4]. We will use these features to represent elementary
movements, or Movement Primitives (MP). The methods above are straightfor-
ward to apply by using a single motor primitive as a parametrized policy. Such
elementary policies πθ(u|x) have both shape parameters w as well as task pa-
rameters γ where θ = [w,γ]. For example, an elementary policy can be used to
learn a dart throwing movement by learning the shape parameters w without
considering the task parameters γ. However, when playing a dart game (e.g.,
around the clock), the robot has to adapt the elementary policy (which repre-
sents the throwing movement) to new fields on the dart board. In this case, the



shape parameters w can be kept at fixed value and the goal-adaptation happens
purely through the task parameters γ.

Learning only the shape parameters of rhythmic motor primitives using just
imitation learning, we have been able to learn ball paddling [4] as shown in Fig.
1. Using the combination of imitation and reinforcement learning, our robot
managed to learn ball-in-a-cup in Fig. 2 to perfection within less than a hundred
trials using only shape parameters [4]. By learning dart throwing with the shape
parameters, and, subsequently, adapting the dart throwing movement to the
context, we have managed to learn dart games based on context as well as
another, black-jack-style sequential throwing game [7]. The latter two have been
accomplished by learning a task parameter policy γ ∼ π̂(γ|x).

3.2 Learning a Complex Task with Many Motor Primitives
When single primitives no longer suffice, a robot learning system does not only
need context but also multiple motor primitives, as for example, in robot table
tennis, see Fig. 3. A combination of primitives allows the robot to deal with
many situations where only few primitives are activated in the same context [8].
The new policy combines multiple primitives as follows

Fig. 3. Learning to Play
Robot Table Tennis

u ∼ πθ(u|x) =
∑K
i=1πθ0

(i|x)πθi
(u|x).

The policy πθ0(i|x) represents the probability of se-
lecting primitive i, represented by πθi

(u|x), based on
the incoming ball and the opponent’s position. The
resulting system learned to return 69% of all balls af-
ter imitation learning, and could could self-improve
against a ball gun to up to 94% successful returns.

4 Conclusion
In this paper, we reviewed the imitation and reinforcement learning methods
used to learn a large variety of motor skills. These range from simple tasks, such
as ball-paddling, ball-in-a-cup, dart games, etc up to playing robot table tennis.
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