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Abstract

In this paper we present a setup of two
BioRob robotic arms playing the game of
tetherball. We start by introducing the
robotic arms and the communication frame-
work we have established around them. We
go on to explain our vision approach of de-
tecting the ball’s position. In preparation
for the main task we create an automated
vision calibration task to be able to calcu-
late the needed transformations between all
setup components. As a first step towards
hitting the ball we use a simplified approach
of modeling the ball’s movement with the
equations of a spherical pendulum and solve
standard robotic problems like constrained
inverse kinematics and joint-trajectory plan-
ning. For the much more complex model
of a tetherball we derive the equations us-
ing the Lagrange-d’Alembert Principle and
compared the performance of two state esti-
mators for hidden model states. Finally we
combine all submodules into one task that
implements the tetherball game.

1 Introduction

Tetherball is a two player game where a ball hanging
from a pole with a string is hit repeatedly between the
participants. The goal is to wind the string around the
pole as far as possible in one direction without giving
the opponent the chance to unwind it. As related work
we mention [1] where the authors present a new plat-
form for playing table tennis with a Barrett robotic
arm. The platform is the basis for extensiv research in
learning complex skills by generalizing a set of motor
primitives [2] [3] [4]. In [5] a simple tetherball setup
is presented and used in learning and choosing from
multiple solution of a motor skill task. The aim of
our work is to build a new platform for future research
projects and applications. In our setup the players are
represented by two elastic robots imitating a human
arm. For vision we use a Microsoft Kinect sensor.

Figure 1: BioRob Tetherball Setup: The vision sensor
is placed above the robots for optimal coverage.

2 Physical Setup

Two robotic arms are fixed on bases that stand 2 me-
ters apart. Between the robots we have a 3 meter pole
with a colored ball hanging down from a 2 meter string.
For hitting the ball we mount table tennis paddles as
end effectors. The Kinect sensor delivers color and
depth images at a rate of 30Hz and is mounted on the
ceiling for optimal viewing angle. In Fig. 1 we present
an illustration of our tetherball setup in a simulation
environment.

2.1 The BioRob

The BioRob is a lightweight elastic robotic arm with
6 DoF. The elasticity is introduced with springs in 4
out of the 6 joints. This improves compliance and
safety, but also makes a joint-side control of the robot
harder. The combination of elastic joints and an ef-
ficient distribution of mass allows the robot to reach
high joint speeds. The kinematic chain of the BioRob
is described based on the Denavit-Hartenberg conven-
tion. The D-H parameters describe the spatial trans-
formation of the frame of reference of each joint rel-
ative to the previous one starting from the first joint
as described in [7]. Table 1 lists the values of the four
D-H parameters for each joint.
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Table 1: D-H Parameters of the BioRob

i θ d a α

1 q1 0.284 0 π/2
2 q2 + π/2 0 0.305 0
3 q3 + π/2 0 0 π/2
4 q4 + π 0.305 0 π/2
5 q5 + π 0 0 π/2
6 q6 + π 0.220 0 π/2

The transformations denoted by the parameters are to
be executed in the current frame of reference and in
the same order in which they are listed. The parame-
ter θ denotes the rotation around the Z-axis, while d
and a stand for the translation along the Z- and X-axis
respectively and α is the rotation around the X-axis.
The static joint angle offsets are specified by q∗.
The kinematic redundancy of having 6 DoF makes the
BioRob suitable for the tetherball task, because it en-
ables the user to specify not only the position of the
end effector in the cartesian space but also the orienta-
tion of the paddle which is critical when trying to hit
the ball. A schematic of the full kinematic structure
is shown in Fig. 2.
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Figure 2: Kinematic Chain of the BioRob

3 Communication Structure

The control station consists of two PCs running under
Linux. The primary PC is running a user interface and
is connected directly to one BioRob and to the Kinect.
The secondary PC has no UI and controls the second
BioRob. The whole structure is depicted in Fig. 3.

3.1 Simulation Lab (SL)

We use the OpenGL based physical simulation envi-
ronment SL [12] as a user interface on the primary
PC. The software runs several processes including a
vision servo where the position of the robot is depicted
graphically and the task servo where user specific tasks
are initialized and executed. The simulation commu-
nicates with the robot over a shared memory protocol
from which SL is able to read the robot’s current joint
positions q and velocities q̇ as well as the position
of the ball p = {x, y, z} and to write the calculated
feed-forward gravity compensation and PD-controller
feedback action vector u for the robot to execute.
Because SL is only able to simulate one robot at a
time, we defined the whole two BioRob setup as one
kinematic chain, where the two robotic arms are con-
nected at the base with a static joint and each end of
the chain has its separate end effector. This leads to
the expansion of all relevant joint and action vectors
to thirteen dimensions. The first six of them belong to
the first robot and the last six to the second one. The
seventh element represents the constrained connecting
joint which cannot be manipulated.

3.2 Kinect Data Processing

The Kinect sensor is used in vision calibration in ad-
dition to its main objective of tracking the green ball.
A separate module on the primary PC, running out-
side SL, initializes and starts the sensor. This module,
written in C++, utilizes the OpenCV library [13] to
read out the RGB and depth images of the sensor and
to extract the ball’s coordinates and write them into
shared memory for SL to use them.

3.3 PC-PC-BioRob Interaction

The communication with the BioRob takes place over
a dedicated Ethernet-Card. The underlying layer of
the connection is provided through the software frame-
work ROS [18]. We programmed two custom ROS
modules to control the robot on two levels. The first
module is the SL-BioRob-Interaction-Module which
allows the user to send several commands from SL di-
rectly to the robot like choosing the desired control
loop and enabling the robot’s actuation. The second
module is the SL-Controller-Module which manages
process of reading and writing the joint angles, veloc-
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Figure 3: Tetherball Communication Schematic
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ities and actions between SL and the BioRob. In the
case of the BioRob connected to the primary PC, this
exchange is done directly over shared memory. For the
second BioRob however we needed to establish a local
network connection between the two controller mod-
ules. For this connection we used the Stream Con-
trol Transmission Protocol (SCTP). We choose to use
SCTP because it combines multiple advantages from
both TCP and UDP. The most important are preser-
vation of message boundaries, reliable data transfer
and ordered data delivery [19].
We divided the sending and receiving on both sides
into multiple real time threads from the Orocos Real-
Time Toolkit [17]. The threading technique is im-
portant in order to sustain a continuous non-blocking
connection to the robot at a rate of 1kHz. As differ-
ent threads try to read and manipulate the same data
structures at the same time, we regulate the access
rights of each thread with the help of mutexes.

4 Ball Detection

The Kinect sensor obtains color and depth images via
the OpenNI library. With the help of the OpenCV
library it is possible to detect the ball as a circle and
determine the cartesian position of its center.

4.1 RGB Image Based Ball Detection

(a) RGB Image (b) Green Mask

(c) Detected Circle

Figure 4: RGB Based Ball Detection

The existing approach [6] relied on recognizing the ball
as a green circle in the RGB image. This is done by us-
ing a color specific mask that discards (blackens) non
relevant pixels, Fig. 4(b). The resulting image is then
filtered by eroding noisy pixels and leaving the ball
as the only concentration of green pixels to be consid-
ered. This cloud of pixels is then dilated and blurred

as a preparation for using the Hough Transform to
detect the center, Fig. 4(c). The Hough Transform
delivers the position of the ball in the plane. A depth
value is then assigned by masking the depth image
with the area defined by the circle’s diameter and av-
eraging over the depth values of all pixels inside the
circle.

The problem with this method lies in the time discrep-
ancy between the RGB and depth image. This means
that the depth information belonging to the area
around the detected circle in the RGB image is not up
to date and might even not contain any depth values of
the ball, only those of the ground or the surroundings
objects. A second problem arises because of a trade off
between detecting circles as often as possible and the
quality of the detected circles. This leads to imperfect
circles that might go over the masked green areas.
Averaging over the depth values of those false pixels
will corrupt the depth measurement of the ball. In
Fig. 5 we illustrate the problem on a sample recording
from the Kinect, where we can clearly see that the
RGB image and the depth image are not synchronized.

Figure 5: Misalignment of RGB and Depth

4.2 Depth Image Based Ball Detection

In order to overcome the previously mentioned prob-
lems in the depth measurement we introduce a dif-
ferent algorithm to determine the ball’s position. Al-
though the new approach is also based on the Hough
Transform, the circle detection takes place in the depth
image instead of the RGB.
We start by grayscaling the depth image in the relevant
depth band as inferred from ball movement, Fig. 6(c).
The grayscaling is important when using the Hough
Transform in its Hough Gradient variation. We then
scan the RGB image for green pixels, Fig. 6(d), in or-
der to isolate the green ball, and apply the result, after
noise erosion and dilation, as a mask to the grayscaled
depth image. After some Gaussian blurring to im-
prove the performance of the circle detection, we apply
the Hough Transform to the green masked grayscaled
depth image. The center of the circle and the average
over all depth values in the circle deliver the final ball
position. In Fig. 7 we show the important steps of this
method.
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(a) Greyscaled Depth (b) Relevant Depth Mask

(c) Masked Grey Depth (d) Dilated Green Mask

(e) Green Masked Depth

Figure 6: Depth Based Ball Detection

The main advantage of this approach is that we are
able to avoid the problem with the misaligned RGB
and depth. All components of the ball’s position
are inferred from the depth image, while the RGB
image does not play a critical role like in the previous
algorithm and serves only as color mask, in whose
vicinity we search for the depth circle to limit the
number of false detections, Fig. 7.
A comparison between the performance of the two
detection algorithms is shown in Fig. 16.

Figure 7: 3D Position from the Depth Image

5 Vision Calibration Task

Because we need the position of the ball relative to dif-
ferent frames of reference (FoR), we have to determine
the transformation matrices between them. The ball
is first detected in the Kinect’s frame of reference. For
the estimation of the ball’s trajectory we have to trans-
form the Kinect data to the pivot’s frame of reference

which then also has to be transformed into the frame
of reference of the BioRob in order to hit the ball. For
this reason we have created a fully automated vision
calibration task which calculates all the needed trans-
formations under different settings.
The task consists of three stages. The first two de-
termine the transformation matrix pTc

∗†between the
Kinect’s frame of reference and the pivot while the
third stage determines the transformation rTc be-
tween the Kinect and each of the BioRobs. Those two
matrices also yield the transformation matrix between
the pivot and the two BioRobs respectively:

rTp = rTc · pT−1c (1)

Here we use the homogenous coordinate representation
to combine the rotation matrix and the translation
vector into one transformation matrix T of the form:

T =

 R
tx
ty
tz

0 0 0 1

 (2)

5.1 Kinect-Pivot Transformation

In determining the transformation matrix pTc we im-
plemented two stages. First we calculate the position
of the pivot as a point in the Kinect’s frame of refer-
ence. Then we measure the ball’s resting position, also
in the Kinect’s frame of reference. Those two points
give us a direction of the Z-axis of the pivot’s frame
of reference as from the Kinect’s point of view and
this allows us to infer the transformation matrix. In
the following sections we go into the details of both
stages.

5.1.1 Pivot Point in the Kinect Frame

In this stage we let the ball move around the Kinect’s
field of vision without the pole, so that ideally the
movement covers a large area. During the movement
we collect all the occurring positions of the ball in a
matrix M =

[
xc
b yc

b zcb
]‡. Assuming the string al-

ways stays taut, all collected points lie on a sphere with
the pivot point pc

p as its center and a radius equal to
the length of the string. Using nonlinear least squares,
while taking the length of the string into considera-
tion, we can search for a sphere that fits the data and
the radius. The objective function, Eq. 3, of this op-
timization problem minimizes the euclidian distance

∗For matrices the lower right index denotes the current
FoR while the upper left denotes the target FoR
†Notation: BioRob(r), Kinect(c), Pivot(p), Ball(b),

End Effector(e)
‡For vectors the lower right index is unique to the vector

while the upper right denotes the current FoR.
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between the data and the sphere defined by the three
coordinates of the pivot point representing the func-
tion parameters.

min

{ N∑
i=1

(
l −
√

(xcp − xc
b)

2 + (ycp − yc
b)

2 + ...

...+ (zcp − zcb)
2

)2} (3)

To solve this minimization problem we implement the
Levenberg-Marquardt algorithm (see [8]) as provided
by the LEVMAR open source library [14].

5.1.2 Resting Position Relative to Kinect

In this stage we just let the ball hang without moving,
while we collect a number of points. The ball’s rest-
ing position pc

b,0 is then calculated as the mean of the
collected points to compensate for noise and outliers.

5.1.3 Kinect-Pivot-Matrix pTc

From the two points that we already have, it is easy to
define the Z-axis wc

p of the pivot’s frame of reference
as seen from the Kinect:

wc
p =

pc
b,0 − pc

p

‖pc
b,0 − pc

p‖
(4)

In order to define its X-axis uc
p, we just take the X-axis

of the Kinect and adopt its direction in the X-Y-plane
and correct the direction in X-Z-plane by rescaling the
Z-coordinate so that the two axes uc

p and wc
p are per-

pendicular:

ũc
p =

[
1 0 −

w(1)cp
w(3)cp

]
uc
p =

ũc
p

‖ũc
p‖

(5)

Notice that the only important attribute of the pivot’s
FoR is that its Z-Axis is pointing downward in a par-
allel line to the gravitational force. The rotation of the
X-Y-plane around this axis is completely irrelevant to
our aim. Using the cross product of the normalized Z-
and X-axis we can now calculate the Y-axis vc

p:

vc
p = wc

p × uc
p (6)

With all axes of the pivot system now defined relative
to the Kinect, we can easily choose four points whose
position we already know in both frames and infer the
transformation matrix. In our case we choose the ori-
gin of the pivot’s FoR pp which we have already cal-
culated in addition to the three other known points at

the tip of the unit vectors of the calculated axes:

Xp
i =


0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 1



(Xc
i )

T =


(pc

p)T 1

(pc
p + uc

p)T 1

(pc
p + vc

p)T 1

(pc
p + wc

p)T 1


pTc = Xp

i · (X
c
i )
−1 (7)

5.2 Kinect-BioRob Transformation

In the third step of the vision calibration task the
transformation matrix rTc between the Kinect’s frame
of reference and each of the BioRobs is calculated.
In order to estimate the transformation we move the
BioRob’s end effector around so it covers as much of
the Kinect’s field of vision as possible. While the robot
is moving we collect a large number of samples n of the
cartesian position of the BioRob’s end effector in the
Kinect’s frame of reference. We do this by detecting
the red side of paddle. At the same time, by using the
forward kinematics of the robot, we collect samples of
the end effector’s cartesian position in the BioRob’s
frame of reference. This measurement results in two
4 × n matrices Xr

e and Xc
e. Now the transformation

matrix can be estimated using linear least squares and
the Moore-Penrose pseudoinverse (Xc

e)
+:

rTc = Xr
e · (Xc

e)
+ (8)

For simulation in SL, we also need the distance and
the angles between the two BioRobs. These can eas-
ily be calculated. The resulting matrix contains the
translation vector and the Euler-angles:

r1Tr2 = r1Tc · cTr2 (9)

6 Pendulum Task

Before trying to implement the actual tetherball task,
we try a simpler setup in which the pole is left out.
This new setup is similar to that of the tetherball game
but has a simpler mechanical system. This task serves
as a backbone in which we test and implement several
subtasks that we can later employ in the tetherball
task. The main difference between the two setups lies
in the movement of the ball. The pendulum task im-
plements a simpler model in which, on the contrary to
tetherball, the length of the string is always constant
and the pivot point is stationary.
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We start be deriving the model equations and then go
over the subtasks like filtering and estimation, inverse
kinematics and joint-trajectory planning.

l

θ

ϕ

Figure 8: Spherical Pendulum

6.1 Spherical Pendulum Model

In Fig. 8 we present a simplified schematic of a spher-
ical pendulum. The position of the ball at the end of
the string (point mass) can be described in different
coordinate systems. However because the system has
multiple rotational symmetries, it is best described in
the spherical coordinates. A direct benefit of this rep-
resentation is that it breaks down into only two gen-
eralized coordinates§, because the string l is expected
to be always taut at all times. The two generalized
coordinates are thus the azimuth angle ϕ and the po-
lar angle θ. Another reason to go for the spherical
coordinates is that the cartesian representation would
result in a set of differential algebraic equations which
are harder to handle.
We derive the equations of motion with the Lagrangian
Formalism [10], which states that the Lagrangian en-
ergy function L = T −U , with T as the kinetic energy
and U as the potential energy, must satisfy the Euler-
Lagrange equation of the form:

d

dt
(
∂L

∂q̇i
)− ∂L

∂qi
= 0 (10)

with qi, q̇i symbolizing the generalized coordinates
{ϕ, θ} and their time derivatives {ϕ̇, θ̇}.

§Generalized coordinates in mechanics are the minimal
combination of system states that fully define the position.
In other words they stand for the system’s DoF

Because it is more comprehensible, we begin by writing
down both energy functions in the cartesian space:

T =
m

2
(ẋ2 + ẏ2 + ż2) (11)

U = −mgz (12)

m, g here stand for the mass and the gravitational ac-
celeration respectively. Now to map the energies to the
spherical space we apply the following transformation
for the states:

x = l sin(θ) cos(ϕ)

y = l sin(θ) sin(ϕ)

z = l cos(θ)

(13)

and we compute the state derivatives:

ẋ = lθ̇ cos(θ)cos(ϕ)− lϕ̇ sin(θ) sin(ϕ)

ẏ = lθ̇ cos(θ) sin(ϕ) + lϕ̇ sin(θ) cos(ϕ)

ż = −lθ̇ sin(θ)

(14)

The resulting Lagrangian L is then given by:

L = T − U

=
m

2
(l2θ̇2 + l2ϕ̇2 sin2(θ)) +mgl cos(θ)

(15)

By calculating the required derivatives of L and apply-
ing them to the Euler-Lagrangian equation, Eq. 10, we
arrive at the following equations of motion:

θ̈ =
lϕ̇2 sin(θ) cos(θ)− g sin(θ)

l
(16)

ϕ̈ =
−2ϕ̇θ̇ cos(θ)

sin(θ)
(17)

We transform these equations into their state space
form:

ẋ =


θ̇

θ̈
ϕ̇
ϕ̈

 =


x2

x24 sin(x1) cos(x1)− g
l

sin(x1)

x4

−2x2x4 cos(x1)
sin(x1)

 (18)

where the resulting system of differential equations
is of the fourth order. Since an analytical solution
cannot be found we solve these equations numerically
from four initial conditions. Because the Kinect pro-
vides only the cartesian position overlaid with noise,
we transform each sample into spherical coordinates
then differentiate and average the spherical velocities
over a window of 5 samples. We solve this initial value
problem with a Runge-Kutta solver of the fourth order
and a dynamic step control as provided by the open
source GSL library [15].
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6.2 Vision Filtering

Although we were able to significantly improve the
Kinect measurements by detecting the ball in the
depth image, we still faced problems with accuracy
especially when trying to determine the spherical ve-
locities in order to be able to estimate the trajectory
by integrating the initial conditions. For this reason,
we have implemented a solution specific to the pendu-
lum system by exploiting geometrical constraints.

6.2.1 Projection onto a Sphere

Assuming that the string is always under tension and
that it is attached to a fixed point, the pivot Op, which
is not identical to the origin of the Kinect Kp, we know
that the ball can only move on the surface of a sphere.
The center of this sphere is the pivot Op and its radius
is the string’s length l. Taking the model into consid-
eration we are able to correct outliers in the depth
measurement and improve the position of the ball in
the X-Y-plane.
We assume that although the measurement of the ball
pp
m is faulty, it is still aligned with the actual position

of the ball on the sphere pp
s as shown in Fig. 9.

pp
m

pp
s

pp
0

Op

Kp

l

Figure 9: Projection of Ball Position onto a Sphere

This means that the correct ball position pp
s lies some-

where on the line connecting the points Kp and pp
m

and satisfies both the sphere and the line equations
which are described by:

(xps − xpo)2 + (yps − ypo)2 + (zps − zpo)2 = l2 (19)xpsyps
zps

 = n ·

xpmypm
zpm

 (20)

We solve these equations for pp
s by calculating the

lower intersection point of the sphere and the line. In
Fig. 17 we show the improvement achieved by using
this projection.

6.3 Inverse Kinematics

When the estimation of the future trajectory is done
and a hitting point has been chosen this point has to
be transformed from the cartesian to the joint space
of the robot. This transformation is the inverse kine-
matics. In the beginning we chose to calculate it using
the iterative Jacobian-Transpose method. Compared
to the Inverse-Jacobian the Jacobian-Transpose offers
important numerical stability when the rate of conver-
gence is not an issue [9].

q̇ = γJT(q)ẋ (21)

As we improved our implementation of the task we also
chose to enhance our inverse kinematics algorithm to
include joint limits as well as consider the orientation
of the paddle at the chosen hitting point. To this end
we formulate the inverse kinematics as a constrained
optimization problem. The objective function of this
problem has 6 parameters represented by the joint an-
gles with 6 constraints. This function, Eq. 22, com-
pares the current cartesian end effector position and
orientation (Euler angles) as delivered by the forward
kinematics function with the goal position and orien-
tation:

{x, y, z, α, β, γ} = ForKin(q)

min
√

(xi − xg)2 + (yi − yg)2 + (zi − zg)2 + ...

...+ (αi − αg)2 + (βi − βg)2 + (γi − γg)2

s.t. qmin < qi < qmax

(22)

To solve this minimization problem we use global and
local algorithms from the open source NL-OPT library
[16]. Although this solution of the inverse kinematics
transformation has the advantage of including joint
constraints, it still poses multiple issues.
The first issue is the computation effort needed by the
solvers which represents a serious problem in real-time
applications like ours. For this reason we have to run
the optimization in a seperate thread. The other is-
sue concerns the way global minimization techniques
work. Because a global minimum search has to have a
certain stochastic-evolutionary component to be able
to escape local minima, these algorithms could de-
liver widely different joint configurations when the end
cartesian goal is minimally shifted. This could lead to
problems while trying to do online re-adjusting of the
hitting point estimation by using newly acquired vi-
sion information. The new estimation of the hitting
posture is accompanied with updates to the joint tra-
jectory that is being executed. A large deviation of
the end joint configuration would lead to a completely
new joint trajectory with very little time to execute
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which leads to high motor torques. The solve to this
problem we suggest using the first inverse kinematic
solution to initialize new instances of the optimization
while re-adjusting. This allows the algorithm to con-
verge faster and deliver joint configurations that are
in the same region of the first solution.

6.4 Joint Trajectory Generation

After translating the hitting position into joint angles
and velocities with the inverse kinematics, we have
to plan a joint trajectory that provides the transition
from the current position to hitting position and meets
the time and speed constraints. The joint trajectory
should also guarantee a smooth change in acceleration
(related directly to motor torques). This would pre-
vent jerky motor movements and improve the perfor-
mance of the PD-Controller while following the trajec-
tory. These conditions could be met with a fifth order
polynomial for every joint [9]:

qi(t) = c0 + c1t+ c2t
2 + c3t

3 + c4t
4 + c5t

5 (23)

The fifth order polynomial enables us to set boundary
conditions on the velocities and acceleration for the
start t = 0, and endpoint t = T . To get the parameters
ci we use the start and end conditions to solve the
following system of linear equations:

qi(0) = c0 q̇i(0) = c1 q̈i(0) = 2c2

qi(T ) = c0 + c1T + c2T
2 + c3T

3 + c4T
4 + c5T

5

q̇i(T ) = c1 + 2c2T + 3c3T
2 + 4c4T

3 + 5c5T
4

q̈i(T ) = 2c2 + 6c3T + 12c4T
2 + 20c5T

3

(24)

6.5 Task Implementation

The pendulum SL task consists of multiple sections
that are repeated sequentially every time a robot hits
the ball. As a first step, we determine the ball’s veloc-
ity components in spherical coordinates. As mentioned
before we collect 5 samples and differentiate manually
to estimate the speed the ball is moving with. This
gives us all the necessary initial conditions to simulate
the future trajectory that the ball will follow while
undisturbed. We also use the samples to determine
the direction of the pendulum’s rotation around the
Z-axis. Depending on that, one of the two robots is
then activated and should hit the ball next.
Activation of the robot includes identifying a point on
the trajectory where the paddle is supposed to inter-
sect the ball’s movement and calculating its inverse
kinematic transformation. We choose to hit the ball
on the point where it crosses the X-axis (y = 0). Now
that we have the joint angles of the hitting posture,
we initialize the minimal jerk joint trajectory with the
current and goal joint information as well as the re-
maining time until intersection. The joint movement

is then executed iteratively until we hit (or miss) the
ball then the joint trajectory is reinitialized in order
to go back to the default joint posture that we have
started from. For this task we implement a simple hit-
ting movement by setting an end speed for the (first)
shoulder joint at the end of the joint trajectory. Other
joint angles have zero velocity when the ball is inter-
cepted. After finishing the joint movement the task
starts collecting new vision samples to re-estimate the
trajectory and activate the next robot. In Fig. 22 we
illustrate the phases of intercepting the ball in simula-
tion.

7 Tetherball Task

In this task we seek to implement the full tetherball
setup in order for the robots to play autonomously.
Because the tetherball model is fairly complex, but
also similar that of the pendulum, we first tried to
approximate the trajectory of the ball by fitting sine
functions and ellipsoids. This lead to unreliable results
considering the poor quality of the vision data.
Another approach was to regard the tetherball system
as a pendulum with changing length and to fit the
measured data into a pendulum model whose length
is to be inferred. This has also lead to poor results
because the models could be inferred only in discrete
intervals and the extrapolation of those models did not
give a good approximation.
Finally we derived the equations of motion analyti-
cally and we were able to acquire a minimally simpli-
fied model that delivered a good approximation of the
ball’s movement.

θ(t)

l(t)

2r

h(t)

ϕ(t)

Figure 10: Tetherball Model
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7.1 Tetherball Mechanical Model

In Fig. 10 we depict the tetherball schematic in spheri-
cal coordinates. The model has four states {θ, ϕ, l, h}.
The extra state h represents the vertical distance to
the last contact point of the string with the pole.
These four states are the generalized coordinates we
use to arrive at the equations of motion.
A notable property of the system is that in the
ball-pole fixed subsystem, the law of conservation
of angular momentum does not apply. However the
angular momentum is conserved in the the whole
ball-pole-earth system. This is easily understood
when considering that the tension force in the string
exerts a torque around the center of the pole with
a lever arm equal to the radius of the pole r. This
torque - change in angular momentum - is lost to
earth. The tetherball system is also a hybrid system
meaning that it switches between two sets of differ-
ential equations. The transition happens when the
absolute azimuth angle ϕ changes sign after winding
and unwinding the string once. Another issue is that
out of the four states only ϕ is measurable with our
vision sensor. The polar angle θ is directly connected
to l and h which can not to be determined easily.
The derivation of the equations of motion starts by
writing down the mapping of cartesian coordinates to
our generalized coordinates. For that we extend the
transformation from the pendulum model to describe
the string winding around the pole.

x

yPole
r

l

√
r2 + l2

ϕ

Ball

Figure 11: Planar Tetherball

x ' l(t) sin(θ) cos(ϕ)

y ' l(t) sin(θ) sin(ϕ)

z = l(t) cos(θ) + h(t)

(25)

Eq. 25 implements a simplified transformation as
shown in Fig. 11. The simplification of the {x, y}
coordinates is based on ignoring the radius of the
pole r when put in relation to the length of the string
l. In addition to geometric equations, the model is
constrained by two nonholonomic - not integrable -
velocity conditions to {l, h}. These constraints are
related to the nature of the model and the way the
rope (un-)winds around the pole. We used Fig. 12 to
formulate the constraints.

θ

rdϕ

dh
dl

Figure 12: Differential Tetherball Model View

The resulting constraint equations are given by:

l̇ = − rϕ̇

sin θ

ḣ =
rϕ̇

tan θ

(26)

Because these constraints are not integrable, the La-
grangian Formalism we used for the pendulum model
does not apply. We have to use the Lagrange-
d’Alembert Principle as stated in [10]. For that we
transform the constraints into vector form:

n∑
k=1

ajk(qi)q̇k = aT q̇ = 0

aT q̇ =
[
0 r[ 1

tan θ
− 1

sin θ
] 1 1

]
θ̇
ϕ̇

l̇

ḣ


(27)
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The Lagrange function consisting of the kinetic and
potential energy is:

L = T − U

T =
1

2
m(ẋ2 + ẏ2 + ż2)

U = −mgz

(28)

Now we can write out the Lagrange-d’Alembert equa-
tions:

d

dt

∂L

∂q̇i
− ∂L

∂qi
=

m∑
j=1

λja
j
i

d

dt
(
∂L

∂θ̇
)− ∂L

∂θ
= 0

d

dt
(
∂L

∂ϕ̇
)− ∂L

∂ϕ
= λ1

r

sin θ
− λ2

−r
tan θ

d

dt
(
∂L

∂l̇
)− ∂L

∂l
= λ1

d

dt
(
∂L

∂ḣ
)− ∂L

∂h
= λ2

(29)

We notice that the d’Alembert Principle does not ap-
ply the constraints directly to the Lagrangian but to
its displacement. To acquire the state space represen-
tation, we solve for {θ̈, ϕ̈}. The resulting system of
equations is too complex to be listed here. For that
we provide a Wolfram Mathematica script that deliv-
ers the result of the calculation. It is also important
to note that the resulting equations resemble only one
part of the model namely the differential equations for
a positive absolute ϕ. The second set of equations can
be derived by editing the constraints to reflect a wind-
ing string with a negative absolute azimuth angle.

7.2 Vision and State Estimation

With the new equations of motion we face the issue of
non-measurability of the spherical states. These states
are needed for estimating the trajectory by integrat-
ing the initial conditions in a similar fashion to the
pendulum task. Therefore we implement several state
estimators like Particle Filter, Extended Kalman and
Unscented Kalman in order to approximate the trans-
lation of the pivot along the pole h which is key to
calculating the values of the other states.
Because we have 3 unmeasurable states out of 4, we
cannot use the spherical state vector as it is, so we
choose to use the cartesian state vector {x, y, z, h}
which contains more measurable information. The
disadvantage of the cartesian representation is that it
overcomplicates the equations of motion. We solve this
problem by transforming the cartesian state vector to
the spherical space then updating the system by using
the spherical equations of motion and finally return

to the cartesian space to compare with the measured
cartesian vector, Fig. 13.

State
Update

Spherical
to Cartesian

Cartesian
to Spherical

h̃k

x̃k, ỹk, z̃k

h̃k+1

θ̃k, ϕ̃k,
h̃k, l̃k

θ̃k+1, ϕ̃k+1,
h̃k+1, l̃k+1

x̃k+1, ỹk+1, z̃k+1

Figure 13: State Update Function

7.2.1 Particle Filter

We follow the general approach for the Particle
Filter as described in [11]. Its structure, which we
will describe in detail in the following section, is
illustrated in Fig. 14.

State Cloud
Generation

over h

Non-linear
State Update

Time
Update

Initial
Position

Estimated
State

x0, y0, z0

xk, yk, zk

Measured
Position

S+
k−1

S−k

h̃k

S+
k

New
Cloud

Initialization

Figure 14: Structure of the Particle Filter

To initialize of the Particle Filter we take a cloud of
points S+

k−1 (N = 1000) with the same cartesian states

{x0, y0, z0}¶ and a uniform distribution over the state

¶Keep in mind that the state vector also contains the
derivative of every generalized coordinate. We do not write
out the derivatives for the sake of a compact representation



Playing Tetherball with Compliant Robots

h:
x+
0,i = {x0,i, y0,i, z0,i, h0,i}

= {x0, y0, z0, hi}
with i = 1, ..., N.

(30)

During the state update step we propagate S+
k−1 (com-

posed of x+
k−1,i) through the nonlinear state update

function to get the predicted state cloud S−k (com-
posed of x−k,i) as well as the predicted output vector
ŷk,i:

x−k,i = f(x+
k−1,i, wk−1,i)

ŷk,i = h(x−k,i, vk,i),
(31)

where wk,i and vk,i are randomly generated according
to the known pdf of the process noise and the mea-
surement noise.
Now for the time update we compare the predicted out-
put ŷk,i to the actual measurements yk = {xk, yk, zk}
from the Kinect sensor. This comparison is done by
calculating the probability density function of pre-
dicted output in a gaussian distribution that has the
measured state as its mean and measurement noise as
variance. This gives us the conditional likelihood of
each point in the cloud in relation to the current mea-
surement:

q̃i ∼ exp

(
− (yk − ŷk,i)

TR−1(yk − ŷk,i)

2

)
(32)

After normalizing the likelihoods

qi =
q̃i∑N
j=1 q̃j

, (33)

we resample the updated state cloud for the best fit-
ting points and get the new cloud S+

k . The sampling is
done by first taking a uniformly distributed number α
between 0 and 1, then calculating the cumulative sum
of the normalized likelihoods sample by sample until it
becomes greater than α and take the cloud point corre-
sponding to the index we stopped at. This is repeated
for N points. Thus we get a new cloud in which points
with a higher likelihood q are more likely to be repre-
sented. However a too dominant point with very high
likelihood could cause the filter to stagnate because it
would be over represented in the newly sampled cloud.
Now to obtain the estimated state vector (and hence
also h̃k) we average over all points of the new cloud
S+
k .

In Fig. 18 we show the performance of the Particle
Filter for both correct and incorrect initial velocities.
The incorrect velocities were estimated from several se-
quential measurements, whereas the correct velocities
were fitted offline. The result shows the filter’s degree
of sesnsitivity concerning the choice of the initial state

cloud. A way to avoid the bad influence of the im-
precise velocities would be to allow a distribution over
ẋ, ẏ and ż in addition to that over h. However this
would mean that we need a much larger cloud of points
to cover three extra dimensions. This would lead to
very unpractical computing times that do not suit the
nature of our task.

7.2.2 Kalman Filter

Another way to estimate the state h is by implement-
ing a Kalman Filter for the model of the tetherball.
Because the system at hand is nonlinear we start by
implementing the Extended Kalman Filter variation.
In the following sections the state vector is of the form
x = {x, y, z, h} with a starting guess for h0. The mea-
sured state vector is z = {x, y, z}. The following im-
plementations of the Kalman Filters are based on [11].

Extended Kalman Filter: Like the Particle Filter
the Extended Kalman Filter consists of the two steps
state prediction and state update. In state prediction
the filter predicts the future state vector x̃k based on
the current states x̂k−1 by integrating Eq. 18 at a rate
of 30Hz. Belonging to the current state vector is the
state covariance matrix P̃k that measures the accu-
racy of the state prediction. In order to predict the
evolution of this matrix the system state update ma-
trix Ak−1 is needed and for that the state function f
must be linearized at the working point. This is sim-
ilar to evaluating the Jacobian at the current state.
But because the Jacobian in this case is hard to deter-
mine analytically, we are forced to use fairly compli-
cated and costly numerical methods like the Complex
Step Jacobian or the Romberg Extrapolation Method.
We set the process noise covariance matrix Q to zero
assuming that our theoretical pendulum state update
model has absolute accuracy, which is fairly plausible.

x̃k = f(x̂k−1)

Ak−1 =
∂f

∂x

∣∣∣∣
x=x̂k−1

P̃k = Ak−1Pk−1A
T
k−1 + Q

(34)

During state update the output vector of the former
predictions z̃k is corrected based on the feedback com-
parison to current measurements zk. The vector z̃k is
calculated by applying the output function h on the
predicted state vector x̃k. The correction term is pro-
portional to the state prediction error. The correction
intensity is defined by the Kalman gain Kk for which
the Jacobian Hk of the output function and the mea-
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surement noise covariance matrix R are needed:

z̃k = h(x̃k)

Hk =
∂h

∂x

∣∣∣∣
x=x̃k

Kk = P̃kH
T
k (HkP̃kH

T
k + R)−1

x̂k = x̃k + Kk(zk − z̃k)

Pk = P̃k −KkHkP̃k

(35)

After testing the Extended Kalman Filter in MAT-
LAB we were confronted with stability issues because
of the high nonlinearity of the system. Attempts to
implement the algorithm in C proved also to be de-
manding because of the difficulty in the numerical cal-
culation of the Jacobian. For example the realization
of the Complex Step Jacobian algorithm, which is fast
and provides improved stability, requires the differen-
tial equations to be solved with complex entries. Con-
sidering that the GSL library lacks direct support on
this matter, we would have had to split the differential
equations to real and imaginary parts, which would
have increased the number and the complexity of the
equations. For these reasons we moved to implement-
ing the Unscented Kalman Filter whose algorithm does
not include linearizing the system at the current work-
ing state resulting in better stability and removing the
numerical obstacles concerning the calculation of the
Jacobian.

Unscented Kalman Filter: This implementation
of the filter is based on the Unscented Transform where
fixed points, referred to as sigma points, representing
a probability distribution are propagated through a
nonlinear function to calculate the transformed distri-
bution. As with other Kalman Filter variations the
algorithm starts with a state prediction. The first step
is to create 2n+1 sigma points around the last Kalman
state vector x̂k−1 by sampling an initial distribution:

X̂k−1 = [x̂k−1 x̂k−1 x̂k−1] + ...

...+
√
c[0

√
Pk−1 −

√
Pk−1]

(36)

The constant c is defined by the number n of states
and two tuning parameters:

c = α2(n+ κ) (37)

These sigma points are then propagated through the
nonlinear state update function f to result in a new
distribution defined by the predicted mean x̃k and pre-
dicted state covariance matrix P̃k:

X−k = f(X̂k−1)

x̃k = X−k wm

P̃k = (X−k M)Wc(X
−
k M)T + Q

(38)
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a
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Figure 15: Structure of the Unscented Kalman Filter

Wc and wm are the covariance weights matrix and
the mean weights vector which reflect the importance
of the original Kalman state compared to the sigma
points that were created around it in Eq. 36:

W (0)
m = (c− n)/c

W (i)
m = 1/2c

wm = [W (0)
m ... W (2n)

m ]T

M = I− [wm ... wm]

(39)

W (0)
c = (c− n)/c+ (1− α2 + β)

W (i)
c = 1/2c

Wc = diag([W (0)
c ... W (2n)

c ])

(40)

where β is the third Kalman tuning parameter that
determines the distribution of the sigma points. For a
Gaussian distribution β is optimally chosen to be 2.
The state update comes to correct the first prediction
by comparing the predicted mean output z̃k to the
measured output zk. z̃k is calculated by propagating
newly generated sigma points from the predicted dis-
tribution through the nonlinear output function h:

X̃k = [x̃k x̃k x̃k] + ...

...+
√
c[0

√
P̃k −

√
P̃k]

Z̃k = h(X̃k)

z̃k = Z̃kwm

(41)

The correction term and the Kalman gain are calcu-
lated similar to the Extended Kalman Filter and the
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predicted mean and covariance matrix are updated:

Sk = (Z̃kM)Wc(Z̃kM)T + R

Ck = (X̃kM)Wc(Z̃kM)T

Kk = CkS
−1
k

x̂k = x̃k + Kk(zk − z̃k)

Pk = P̃k + KkSkK
T
k

(42)

In Fig. 19 we show the performance of the Unscented
Kalman Filter. It is clear that this filter performs bet-
ter than the Particle Filter and the estimation error for
the state h in this sample goes down to approximately
5cm. Another comparison of the two filters showing
the evolution of state error over time is to be found in
Fig. 20.

7.3 Task Implementation

The implementation of the tetherball task with the
Unscented Kalman filter is in its structure more com-
plicated than the pendulum task. The Unscented
Kalman filtering and the trajectory estimation run in a
separate thread because they perform heavy numerical
calculations that would slow the main thread down.
The Unscented Kalman is running constantly and is
only reset when the ball changes the direction of rota-
tion or when the filter becomes unstable.
We estimate the trajectory about 3 times a second
by integrating the current Kalman states. After each
trajectory estimation we activate one robot to hit the
ball and keep updating the trajectory until shortly be-
fore the intersection point. Meanwhile in the main SL
thread we choose a hitting point (y = 0) on the trajec-
tory, calculate the joint configuration using the inverse
kinematics and initialize the minimal jerk joint trajec-
tory. When the secondary thread updates the trajec-
tory of the ball the previous sequence is run again and
the joint trajectory is updated until we hit the ball.
The continuous correction of the interception point,
which is shown in Fig. 21, improves the accuracy dra-
matically and allows for quick reactions in case the
robot misses the ball on its first try. During the task we
use the absolute azimuth angle ϕ to detect the switch
modes in the mechanical equations of motion. This is
crucial in order for the Kalman filter and trajectory
estimation to work.

8 Conclusion

In this paper we presented a new platform for play-
ing tetherball between two BioRob robotic arms. We
first described the physical setup and the communi-
cation structure between all setup components. We
have also successfully implemented a new algorithm
for detecting the moving ball despite the shortcom-
ings of the Kinect. In addition we created a vision

calibration task in order to infer the spatial transfor-
mations between the robots, the Kinect and the ball.
We then went on to implement a simplified pendulum
task that helped us in testing our solutions to prob-
lems like inverse kinematic and minimum jerk trajec-
tories. For the tetherball task we derived the equa-
tions of the ball’s movement by using the Lagrange-
d’Alembert Principle. However the resulting the state
vector was mostly unmeasurable so we tested multiple
state estimators and achieved the best result by using
the Unscented Kalman Filter. Finally we assembled all
the subtasks into one algorithm and were able to reach
our goal of playing tetherball with compliant robots.
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Figure 16: Comparison of RGB Based Detection and Depth Based Detection
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Figure 17: Comparison of Ball Position from Kinect and Ball Position Transformed on Sphere
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Figure 18: Performance of Particle Filter with Correct and Incorrect Velocities
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Figure 19: Performance of Unscented Kalman Filter
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(a) Measure Position and Estimate Velocities (b) Integrate Initial State Using Model Equations

(c) Choose an Interception Point on the Trajectory (y = 0) (d) Apply Inverse Kinematics

(e) Minimal Jerk Joint Trajectory (f) Back to Default Posture

Figure 22: Implementation of the Pendulum Task
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