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Abstract

We present an approach to reinforcement learning in which the system dynamics
are modelled using online linear regression between feature spaces, and a compact
feature representation for the dynamics model is built incrementally using greedy
feature selection. Candidate features are built online using kernels centred at dat-
apoints as they are discovered. We implement the model learning method in a
policy iteration scheme. The complexity of each policy iteration (feature learning,
model learning, value estimation and policy improvement) is independent of the
total amount of data observed, and only linear in the amount of new data added
per iteration. The approach therefore scales up to complex problems requiring a
huge amount of data to learn well. We validate the approach on benchmark MDPs
and simulated quadrocopter navigation.

1 Introduction

1.1 Overview

We consider a model-based approach to solving Markov decision processes (MDPs), in which the
system dynamics are unknown, and a model is explicitly learned from data collected online during
interaction with the system, and used during planning to optimize the policy. In this work we learn
a function µ∗ which delivers the expected successor feature map, conditioned on a current state-
action, µ∗(s, a) := ES′∼P (·|s,a)[φ(S′)] where φ : S → Rd is a feature map on states (which we
assume to be provided and is suitable for modelling the value function). Learning dynamics in this
form has been considered in, for example, Grünewälder et al. (2012b) using kernel regression. Major
issues include using the methods in an online context, scalability and appropriate representation of
state-actions, which we consider here. We attempt to achieve the performance of recent powerful
kernel estimators, but with an approach that scales up. We consider using our model as a component
in an approximate policy iteration framework (see e.g. Bertsekas, 2012).

We model µ∗ as a linear function between two feature spaces by finding an estimator

µ̂(s, a) := Bψ(s, a) ≈ µ∗(s, a), (1)

whereψ(·) is a feature map on state-actions. Unlikeφ(·), which is used to model the value function,
the feature map ψ(·), used to model the dynamics, is not provided a-priori and we build a compact
feature representation, over the course of the policy iteration process. This is achieved by sweeping
through a dictionary of candidate features at every model update and greedily selecting those which
help to improve the dynamics model. The dictionary of candidate features is not pre-defined, but
is data-dependent and built online using kernel functions defined on observed data. The learned
representation is compact since features which do not significantly improve the dynamics model are
not used, and the complexity of the representation therefore adapts automatically to the complexity
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of the problem. By increasing the power of the representation in this data-driven way we maintain
a good dynamics model over the whole region we have explored. Since the dynamics model we
build is independent of any policy we can efficiently update the model (1) online at each policy
iteration µ̂(s, a) := Bψ(s, a) by stochastic gradient descent, sweeping over a subset of the data
collected. We therefore do not have to relearn a new dynamics model after policy improvement.
The complexity of each of step of our policy iteration scheme (selecting new features; updating
the dynamics model; estimating the value of the current policy; performing policy improvement) is
independent of the number of total number datapoints discovered, and is only linear in the number
of new datapoints added at each iteration.

1.2 Related Work

The approach of Grünewälder et al. (2012b) is similar to ours: they consider learning the dynam-
ics using batch kernel least squares. This approach has strong guarantees but good training data
is assumed to be provided in advance from an oracle, which is unrealistic in many RL scenarios.
Further, learning the model scales cubicly in the datasize and so is not directly applicable to large
problems where more than a few thousand data points are needed to learn complex dynamics. Kroe-
mer and Peters (2011) and Deisenroth and Rasmussen (2011), for example, also present powerful
kernel-based models, which scale cubicly in the amount of data processed.

The form of our dynamics model is related to the linear dynamics model considered in Parr et al.
(2008), who investigate relationships between linear value models and linear dynamics models, and
also suggest feature selection to build the state or state-action representation. However Parr et al.
(2008) do not consider learning dynamics, but assume that the true dynamics are known and show
that fixed point methods of value estimation are equivalent to a particular implicit representation of
dynamics. We are concerned with policy optimization in this type of model, using data collected
online. Parr et al. (2008) consider linear representations of the dynamics for a particular policy π
in value estimation, whereas in our modular approach we separate the dynamics learning from any
particular policy, and learn the dynamics of (s, a) → s′ in order to reuse this knowledge of the
dynamics during policy optimization.

1.3 Reinforcement Learning Background

We first recall the basic concepts associated with reinforcement learning (RL) problems. In RL an
agent acts in an environment by sequentially choosing actions over a sequence of time steps, in or-
der to maximize a cumulative reward. We model this as a Markov decision process (MDP) which
comprises: a state space S; an action space A; an initial state distribution P1 over S; stationary
transition dynamics distribution with conditional distribution P (St+1|St = st, At = at) satisfying
the Markov property P (St+1|Si = si, Ai = ai,∀i ≤ t) = P (St+1|st = st, At = at); a (poten-
tially stochastic) reward function R : S × A → R. We denote, for convenience, the mean of the
reward function by r(s, a) = E[R(s, a)], and we use the shorthand P (St+1|st, at) = P (St+1|St =
st, At = at) and generally denote the successor state of s by s′. Given an MDP an agent controls
a trajectory ξH = (s1, a1, s2, a2, ..., sH , aH) through S × A by sequentially selecting the actions
at ∈ A at each time step according to a chosen stationary stochastic policy π : S → P(A), where
P(A) is the set of probability distributions on A. We denote the discounted stationary distribution
of state-actions when following a policy π by ρπ = (1 − γ)

∑∞
t=1 ρ

π
t where ρπt is the state-action

distribution at time t when following π. In policy optimization, the agent’s goal is to obtain a pol-
icy which maximizes the return (cumulative discounted reward), U(π) := limH→∞ E[rγ(ξH);π]

where, rγ(ξH) :=
∑H
t=1 γ

t−1r(St, At) and E[·;π] denotes the expectation with respect to P1, P
and π. Similarly recall the value function V π(s) := limH→∞ E[rγ(ξH)|S1 = s;π] and action-
value function Qπ(s, a) := r(s, a) + γES′∼P (·|s,a)[V

π(S′)]. For a given action-value function
Q : S × A → R we define the (deterministic) greedy policy w.r.t. Q by π(s) := supa∈AQ(s, a)
and denote π = greedy(Q). Obtaining V π for a given π is known as value estimation. It is well
known that any V π satisfies the Bellman expectation equation,

V π(s)= EA∼π(s)[r(s,A) + γES′∼P (·|s,A)[V
π(S′)]] (2)

In large MDPs value functions are typically represented in some approximation architecture,
V π(s) ≈ 〈wπ,φ(s)〉 =: V̂ π(s), where φ : S → Fφ is a feature map on states. In the approx-
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Algorithm 1 Policy Iteration with online CME
Input: reward function r; feature map φ : S → Rp; system (MDP) to interact with.
Initialize: Q-function e.g. Q0 = r, D0 = {}, B̂0 = 0, π1 = greedy(Q0), ψ0(·).
Parameters: n, m, learning rates θ, η, ω
for k = 1, 2, ... do

Data acquisition: Collectm data pointsDnew from on-policy distribution ρπk and exploratory
distribution ρνk . Aggregate data: Dk = Dk−1 ∪ Dnew.
Feature selection: Obtain new features ψnew(·), and weightsBnew by matching pursuit using

dictionary Gk. Update ψk(·) =

(
ψk−1(·)
ψnew(·)

)
and B̂k = (B̂k−1, θkBnew).

Update CME dynamics model: Perform n online updates to B̂k by sweeping over Dk (6).
Policy evaluation: Form estimate V̂k(s) = 〈wk, φ(s)〉 of V πk by choosing wk = ŵBR

π (7).
Policy improvement: Set Qk = (1 − ω)Qk−1 + ωV̂k and define greedy policy πk+1 =
greedy(Qk).

end for

imate case value estimation entails solving

〈wπ,φ(s)〉 ≈ r(s, π(s)) + γES′∼P (·|s,π(s))[〈wπ,φ(S′)〉]
= r(s, π(s)) + γ〈wπ,ES′∼P (·|s,π(s))[φ(S′)]〉, (3)

which must be solved approximately since in general no solution in wπ to (3) can be found with
equality for a given feature map φ (see e.g. Bertsekas, 2012). In this work we will also utilize a
separate feature map ψ : S ×A → Fψ on state-actions.

2 Policy Iteration Using Online CMEs

2.1 Modelling Dynamics Using Expected Feature Maps

We denote by D := {(si, ai, s′i)}mi=1 our data set, and we suppose that (si, ai) ∼ D (we discuss
this distribution later) and s′i ∼ P (·|si, ai). Ideally, a data sample is provided from an oracle,
but in this work we suppose D must be collected through interactions with the system and would
become available to the learner sequentially. Approximate dynamic programming utilises a function
µ∗ : S × A → Fφ which delivers the expected successor feature map conditioned on the current
state-action, µ∗(s, a) = ES′∼P (·|s,a)[φ(S′)] ∈ Fφ, sometimes known as the conditional mean
embedding (CME) of P in Fφ. A canon of work exists providing state-of-the-art methods for
learning CMEs, in particular methods using RKHS regularization have been provided Song et al.
(2010); Grünewälder et al. (2012a) which optimize the loss,

ˆ`oss(µ) :=

m∑
i=1

||µ(si, ai)− φ(s′i)||2Fφ . (4)

Minimizing (4) is a vector-valued regression problem, and kernel regression approaches have been
applied in RL in Grünewälder et al. (2012b), but the complexity scales cubicly in the size m of the
dataset D, and an m × m kernel matrix must be stored. In Section 2 we attempt to recover the
performance of kernel estimators in RL, but with an approach that scales up.

2.2 A Policy Iteration Algorithm With Online CMEs and Greedy Feature Selection

We now develop our algorithm. We suppose the feature map φ(·) (for modelling the value function)
is given and consider an estimator of the form µ̂(s, a) = B̂ψ(s, a) where ψ(·) is a feature map
on state-actions. Importantly the feature map ψ(·) = (ψ1(·), ψ2(·), ..., ψq(·))> will be constructed
incrementally. Our version of policy iteration is outlined in pseudocode given in Algorithm 1. We
discus the key steps below.

Data acquisition and exploration is an important problem in RL but not our focus here. We apply the
approach of Ross and Bagnell (2012), who suggest to build the data set using a mixture of on-policy
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data, from the discounted stationary distribution ρπk and data from an exploratory distribution (in
experiments we use an exploration policy νk at each iteration which is a noisy version of our current
policy), and at each iteration k all data is aggregated to form Dk = {(si, ai), s′i}

mk
i=1.

Feature selection: This is the key, novel element of our approach. The feature map ψ(·) on state-
actions is incrementally constructed at each policy iteration by selecting new feature components
ψi(·) greedily from a dictionary Gk = {gk1 (·), gk2 (·), ...} of candidate functions, where each gkj :
S×A → R, in order to improve the dynamics model. At each iteration k we define the model residue
R : S × A → Fφ of (B̂k−1,ψ

k−1) by R(s, a) := ES′∼P (·|s,a)[φ(S′)]− B̂k−1ψ
k−1(s, a) ∈ Fφ,

and its empirical version over a chosen set (a random subsample) D̂k ⊆ Dk,

RD̂k(s, a, s′) := φ(s′)− B̂k−1ψ
k−1(s, a) ∈ Fφ,

for each (s, a, s′) ∈ D̂k. We then use a vector-valued version of the matching pursuit algorithm
(Mallat and Zhang, 1993) to select a set of features {ĝ1(·), ..., ĝ`(·)} ⊆ Gk and weights {bj ∈
Fφ}`j=1 such that R̂(·) :=

∑`
j=1 bj ĝj(·) approximates the residueR(·) by minimizing,

errk(R̂) :=
∑

(s,a,s′)∈D̂k

||RD̂k(s, a, s′)− R̂(s, a)||2Fφ . (5)

This is achieved by optimizing sequentially over single features and weights, adding a new feature
to maximally reduce (5) each time, until the residue cannot be significantly reduced further. Note
then that, for θk ∈ [0, 1],∑

(s,a,s′)∈D̂k

||RD̂k(s, a, s′)− θkR(s, a)||2Fφ ≤
∑

(s,a,s′)∈D̂k

||RD̂k(s, a, s′)||2Fφ ,

since matching pursuit only adds features and weights if they reduce the objective (5). Thus by set-
ting Bnew := (b1, b2, ..., b`) and ψnew

i (·) := ĝi(·), and then augmenting the feature representation

ψk(·) =

(
ψk−1(·)
ψnew(·)

)
and B̂k = (B̂k−1, θkBnew), where θk ∈ [0, 1] is a learning rate, we have

that B̂kψ(s, a) = B̂k−1ψ
k−1(s, a) + θkBnewψ

new(s, a), and therefore,∑
(s,a,s′)∈D̂k

||φ(s′)− B̂kψ
k(s, a)||2Fφ =

∑
(s,a,s′)∈D̂k

||RD̂k(s, a, s′)− θkR̂(s, a)||2Fφ

≤
∑

(s,a,s′)∈D̂k

||φ(s′)− B̂k−1ψ
k−1(s, a)||2Fφ

i.e. the empirical loss (4) of the model is reduced (on D̂k) by the addition of new weights and
features. In this way ` new features can be added in time O(`p|Gk||D̂k|), where p = dim(Fφ).

We define the dictionary Gk adaptively at each stage, in a data-driven way. Given a kernel K on
S × A, when encountering some state-actions {(si, ai)}mki=1+mk−1

during exploration at round k,
we set Gk = {gi(·) = K((si, ai), ·)}mki=1+mk−1

, as in kernel matching pursuit (Vincent and Bengio,
2002), in which case we will learn an estimator (µ̂(s, a))i =

∑mk
j=1BijK((sj , aj), (s, a)), after k

rounds, which has the form of a kernel regressor, but here matching pursuit will ensure that the size of
this expansion is controlled by only incorporating useful features (most columns ofB will be zero).
Further we can add functions corresponding to many different kernels to the dictionary, in particular
kernels of the same form but different bandwidth, allowing us to learn a representation at various
scales throughout the state-action space. The approach is general and the dictionary could include
arbitrary real-valued functions. This method is therefore adaptive in two senses: firstly, by selecting
new features only if the loss (5) is reduced more than a certain threshold, so that the complexity of
the representation adapts to the problem; secondly the feature representation is in terms of kernel
functions defined at state-actions that have been discovered. This can be an advantage in RL since a
good feature representation can be difficult to choose a-priori.

Model update: The estimators B̂k have been improved in the feature selection stage with the addi-
tion of new weights Bnew, but all weights can be refined. Since the representation power improves
with the addition of new features we can learn complex transition models and are able to sweep over
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previous data to maintain a good model over regions previously encountered. We do this by perform-
ing stochastic gradient descent on the empirical loos on Dk, ˆ`oss(B) := 1

2mk

∑mk
i=1 ||Bψ(si, ai)−

φ(s′i)||2+ λ
2 ||B||

2
Fr, to form a sequence of estimators B̂k−1 = B̂k,0, B̂k,1, ..., B̂k,T = B̂k, updated

at a randomly chosen datapoint ((sj , aj), s
′
j) via

B̂k,τ+1 = B̂k,τ + ηkτ (φ(s′j)− B̂k,τψ
k(sj , aj))ψ

k(sj , aj)
> − λkτ B̂k,τ , (6)

where ηkτ ∈ [0, 1] is a learning rate. The complexity of each online sweep over T points is O(pqkT )
where p = dim(Fφ), qk = dim(Fψk).

At the policy evaluation stage we find a wπ such that V π(s) ≈ 〈wπ,φ(s)〉 =: V̂ π(s) by minimiz-
ing the Bellman residual (Baird, 1995),

wBR
π := argmin

w∈Rd
||ΦCw − (r + γΦ′Cw)|| ≈ argmin

w∈Rd
||ΦCw − (r + γΨCB̂

>
kw)|| =: ŵBR

π . (7)

where ΦC = (φ(s1), ...,φ(sn))>, Φ′C = (E[φ(S′)|s1, π(s1)], ...,E[φ(S′)|sn, π(sn)])>, ΨC =
(ψ(s1, π(s1)), ...,ψ(sn, π(sn)))>, ri = r(si, ai), and C := {s1, a1, s2, a2, ..., sn, an} is some
chosen collection of state-actions. The complexity of performing I iterations of gradient descent
utilizing previous value estimates as starting points is O(|C|p2 + Ip2 + |C|pqk).

At the policy improvement stage, we compute an estimate Q̂πk ≈ Qπk via, Q̂πk(s, a) := r(s, a) +

γ〈wk, B̂kψ(s, a)〉 and update Qk incrementally, Qk = Qk−1 + ω(Qπk −Qk−1), for some chosen
ω ∈ [0, 1], and we then take πk+1 = greedy(Qk). This smoother version of policy iteration was
considered by Wagner (2013), and is related in principle to conservative policy iteration (Kakade
and Langford, 2002): the idea is that by controlling the updates in this way the new policy will not
induce trajectories which leave the region in which the Q function (and also the dynamics model)
are accurately modelled, reducing the chance of policy oscillations.

2.3 Learning Feature Dynamics

We also consider using the regression approach to learn the change in the feature map: µ∗(s, a) =
ES′∼P (·|s,a)[φ(S′) − φ(s)] rather than the actual successor state. Thus the data set we use for
vector-valued regression of µ∗ is {(si, ai),∆i := φ(s′i)− φ(si)}mi=1.

3 Experiments

Figure 1: Toy, Mountain Car and Pendulum MDPs

3.1 Benchmarks

We compare our matching pursuit approach, ‘MP’, to an online version of the kernel least squares
algorithm of Grünewälder et al. (2012b), ‘Kernel’, in which data is collected online as in our method
here, but the dynamics model is relearned every iteration using all accumulated data. To make model
learning feasible for ‘Kernel’ we collect less data than for ‘MP’. In all experiments we built the
dictionary from a collection of Gaussian kernels, centered on all the data we discover, with a range
of bandwidths. We learned the change in the feature map as described in Section 2.3.

We first consider a simple Toy MDP which is a navigation task on a simple Markov chain on an
interval S ⊂ R. The second benchmark is the Mountain Car problem. The third is the under-
actuated Inverted Pendulum swing-up problem. Cumulative reward for the three problems is shown
in Figure 1. The key advantage of our method - the time taken to learn the model each iteration -
is shown in Figure 2: model learning time is almost constant for the matching pursuit version, but
cubic for the kernel version, and even on these small problems this becomes an issue.
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Figure 2: Mountain car model learning time Figure 3: Quadrocopter navigation

3.2 Simulated Quadrocopter navigation
The fourth experiment is a simulated Quadrocotper navigation task which uses a simulator calibrated
to model the dynamics of PelicanTMquadrocopter platforms (De Nardi, 2013). S ⊂ R13, s =
(x, y, z, θ φ, ψ, ẋ, ẏ, ż, θ̇, φ̇, ψ̇, F ) which consists of platform position sxyz ∈ R3, platform roll,
pitch and yaw sθφψ ∈ R3, associated time derivatives and the thrust applied to all rotors F ∈
R. A ⊂ R3 which represent desired velocity vectors for the platform. The simulator mimics the
architecture of a real platform such that a PID controller receives these desired velocities at the
agent’s rate and translates them into low level commands issued directly to the rotor blades at a rate
of about 50Hz, in attempt to attain those velocities, which creates complex dynamics for the system
in a state-action space of 16 dimensions. A target location is defined at coordinates xtarg such
that we define r(s, a) = e−

1
2σ2
||x−sxyz||2 . Average cumulative reward is shown in Figure 3, along

with the 10 individual experiment rewards. Our controller learns the complex system dynamics and
achieves a policy in which the UAV navigates to the target and hovers around the target point to
collect reward.
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