
Noname manuscript No.
(will be inserted by the editor)

A Kernel-based Approach to Learning Contact Distributions
for Robot Manipulation Tasks

Oliver Kroemer, Simon Leischnig, Stefan Luettgen, and Jan Peters

Received: date / Accepted: date

Abstract Manipulation tasks often require robots to
recognize interactions between objects. For example, a
robot may need to determine if it has grasped an object
properly or if one object is resting on another in a stable
manner. These interactions usually depend on the con-
tacts between the objects, with different distributions
of contacts affording different interactions.

In this paper, we address the problem of learning to
recognize interactions between objects based on contact
distributions. We present a kernel-based approach for
representing the estimated contact distributions. The
kernel can be used for various interactions, and it allows
the robot to employ a variety of kernel methods from
machine learning. The approach was evaluated on blind
grasping, lifting, and stacking tasks. Using 30 train-
ing samples and the proposed kernel, the robot already
achieved classification accuracies of 71.9%, 85.93%, and
97.5% for the blind grasping, lifting and stacking tasks
respectively. The kernel was also used to cluster interac-
tions using spectral clustering. The clustering method
successfully differentiated between different types of in-
teractions, including placing, inserting, and pushing.
The contact points were extracted using tactile sensors
or 3D point cloud models of the objects. The robot

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme under grant agreements 610878 (3rdHand), 600716
(CoDyCo), and 610967 (TACMAN).

O. Kroemer
University of Southern California, USA
E-mail: okroemer@usc.edu

S. Leischnig, S. Luettgen, and J. Peters
Technische Universitaet Darmstadt, Germany
E-mail: peters@ias.tu-darmstadt.de

J. Peters is also with the
MPI for Intelligent Systems, Germany

could construct small towers of assorted blocks using
the classifier for the stacking task.

1 Introduction

Manipulation tasks usually involve direct physical con-
tact between an object and either the robot or another
object. Different types of interactions and manipula-
tions are afforded depending on the locations of the
contacts. For example, contacts on the side of an object
afford pushing the object, while contacts on the bottom
can be used to support the object. In order to use these
interactions, the robot needs to be able to determine
if the contacts resulting from a certain hand-object or
object-object configuration will afford the desired inter-
action.

Analytical approaches for assessing interactions, such
as stable grasps or object placements, generally require
information about the mass and frictional properties of
the objects as well as detailed 3D object models. This
information is often not readily available to the robot.
The robot can however approximate the positions and
normals of the contact points using either tactile sen-
sors or coarse point cloud models of the objects. The
robot can then learn to predict if an interaction is af-
forded based on the distribution of these extracted con-
tact points. Acquiring positive and negative training
samples of interactions is also usually easier than per-
forming an analytical analysis of the interaction. The
robot can often even acquire the training samples’ la-
bels autonomously by interacting with objects to verify
if they afford the interaction (Ugur and Piater, 2015;
Griffith et al, 2012).

We present a kernel-based learning approach to rec-
ognizing object interactions from contacts. The kernel

2 O. Kroemer, S. Leischnig, S. Luettgen, and J. Peters

Fig. 1 The Darias robot performing a block stacking task.
The robot learns suitable block placements using a kernel
function for comparing contact distributions.

defines the similarity between different sets of contacts,
and it can be used with a wide range of kernel methods
from machine learning. To compute the kernel value,
the robot first extracts a set of contact points using ei-
ther 3D point cloud models or tactile sensing. The ex-
tracted contact positions and normals are defined in an
interaction frame, e.g., the object’s or hand’s coordinate
frame. This interaction frame defines a shared basis for
comparing the contacts across different scenarios. The
robot then computes the distribution over the contacts.
We use a Gaussian form for representing the contact
distributions. Although the contact distributions have
the same form as probability distributions, they should
not be interpreted as actual probability densities. The
robot subsequently computes the Bhattacharyya kernel
between pairs of distributions to determine their simi-
larity (Jebara and Kondor, 2003). We adapt the stan-
dard Bhattacharyya kernel to include additional hyper-
parameters that define the task-specific similarities be-
tween individual contacts. Given the contact kernel, the
robot uses kernel logistic regression to predict whether
or not a set of contacts affords a certain interaction.
For example, the robot can predict whether the con-
tacts between its hand and an object will allow it to lift
the object. The robot can also use spectral clustering
(Shi and Malik, 2000; Luxburg, 2007) with the kernel to
cluster different interactions. The details for computing
and using the contact kernel are explained in Section 2.

The proposed approach was implemented on the
robot shown in Fig. 1 using a ReflexHand and a five-

fingered DLR hand. The robot uses the ReflexHand’s
TakkTile sensors to extract the contacts between the
hand and the objects. The DLR hand does not have
tactile sensors, and the contacts for these experiments
were extracted using 3D point cloud models of the ob-
jects. The classification evaluations involved three dif-
ferent tasks: grasping objects, lifting an elongated box,
and stacking assorted blocks. The grasping experiment
was used to benchmark contact kernels based on differ-
ent types of contact distributions. The lifting and stack-
ing experiments explored the effects of using different
contact representations and hyperparameter structures
respectively. The fourth experiment explored using the
proposed kernel to cluster different interactions. The
details of the experiments are given in Section 3.

This paper builds on two previous conference pa-
pers on contact kernels (Kroemer and Peters, 2014;
Leischnig et al, 2015). In this paper, we extend our re-
search to using the kernel in a clustering framework. We
explain the spectral clustering method in Section 2.5,
and present an experimental evaluation in Section 3.4.
We also extend our previous experiments. The grasp-
ing experiment incorporates a grid search to select indi-
vidual hyperparameter settings for each approach, and
we discuss the resulting distributions over the hyper-
parameters. The grasping experiment also explores us-
ing the force readings from the tactile sensors in the
contact vectors. When using a large variety of grasps
and objects, the results suggest that the force informa-
tion decreases performance, possibly due to interaction
forces with the table. Our lifting experiment incorpo-
rates evaluations of hand-relative contact vectors in-
cluding only position information, as well as position
and normal information. The experiment thus demon-
strates the effects of using different interaction frames.
The stacking experiment has been extended to evaluate
the hyperparameter structure where the three position
and three normal dimensions each share one single hy-
perparameter. This hyperparameter structure is used
in both the grasping and lifting experiments.

1.1 Problem Statement

From a machine learning perspective, we can frame the
problem of predicting object interactions from contacts
as a classification problem. However, rather than clas-
sifying a single element, the robot has to classify a set
of elements, i.e., the contacts. The ith sample Xi is a
set of ni unordered elements Xi = {xi1,xi2, . . . ,xini},
where each element is defined in a d dimensional space
x ∈ Rd. Each sample also corresponds to a binary la-
bel Yi ∈ {0, 1}, which indicates the class of the sample.

A Kernel-based Approach to Learning Contact Distributions for Robot Manipulation Tasks 3

These labels are known for the training data, but need
to be predicted for the test data.

For predicting interactions from contacts, the ele-
ments correspond to contacts and the samples are sets
of contacts that may or may not afford the desired in-
teraction, as indicated by their labels. For example, a
blind grasp attempt corresponds to one sample, and the
contact points extracted from the hand’s tactile sensors
are the elements of the sample. In our experiments, we
represent contacts using d = 6 dimensional feature vec-
tors that include the 3D contact positions and either the
3D normals or forces at the contact points. The contacts
are defined relative to interaction frames. These interac-
tion frames may, for example, be the coordinate frame
of the hand for blind grasping or the gravity-aligned
object frame for stacking objects. The contact vectors
could potentially be extended with additional informa-
tion, such as forces and friction coefficients. However,
this information is often not readily available to the
robot. We estimate the contact points and normals us-
ing either tactile sensor arrays or 3D models of the ob-
jects. The forces are estimated using the robot’s tactile
sensor arrays.

A sample’s label is positive Yi = 1 if the interaction
is occurring between the objects for the corresponding
sample and Yi = 0 otherwise. As object interactions
are not mutually exclusive, the robot can learn to pre-
dict multiple interactions between objects by learning
separate binary classifiers for each type of interaction.

1.2 Related Work

Learning object interactions is an important ability for
robots to define symbolic states of objects. For exam-
ple, Kulick et al (2013) proposed an active learning
approach for determining relational symbols between
objects based on their relative positions and geometric
properties. Rosman and Ramamoorthy (2011) learned
spatial relations between objects, e.g. on and adja-
cent, using k-means classifiers based on the normals
of the contact points. Sjoo and Jensfelt (2011) learn to
select relevant features for determining spatial relations
between objects using an automatic relevance determi-
nation approach. Abdo et al (2013) selected features
with small variations to learn the preconditions and ef-
fects of manipulations.

Learning interactions allows the robot to predict
whether objects in the environment afford certain ma-
nipulations, e.g., pushing and placing (Gibson, 1986;
Sahin et al, 2007; Montesano et al, 2007). Jiang et al
(2012) proposed a method for classifying locations to
place an object based on local geometric features of the

scene. Hermans et al (2013) learned locations on ob-
jects for pushing based on their overall shape and the
local geometry around the pushing point. Montesano
et al (2007) learned the Bayesian network structure for
modeling affordances. Their experiments showed that
including the duration of the contacts improved the
robot’s accuracy when classifying affordances. Kopicki
et al (2011) presented a product of experts framework
for modelling pushing interactions. Their approach in-
corporates local models to capture object proximity
and contact information. Our approach uses a task-
independent kernel function to capture the spatial con-
tact information of different types of interactions. Given
data from specific tasks, the robot then uses this ker-
nel to learn classifiers with task-specific parameters and
hyperparameters to classify the interactions.

Grasping is one of the most extensively studied ma-
nipulations in robotics. The quality of a grasp depends
on the contacts made between the hand and the ob-
ject (Roa and Suàrez, 2015; Bicchi and Kumar, 2000).
Early work on grasping focused on deriving analytical
solutions (Bicchi and Kumar, 2000), and a number of
grasp quality measures have been proposed as a result
of this work (Miller and Allen, 1999; Ferrari and Canny,
1992; Li and Sastry, 1988; Roa and Suàrez, 2015). How-
ever, analytical analysis generally requires additional
information about the object and its material proper-
ties. The analytical approach would also require one to
derive additional methods for new types of interactions
(Trinkle and Paul, 1990), rather than just providing the
robot with samples.

The robot can alternatively use data-driven meth-
ods to learn how to grasp objects (Bohg et al, 2014).
Suitable contact points are often learned implicitly based
on the local shape of the object relative to the robot’s
hand (Detry et al, 2012; Herzog et al, 2013; ten Pa
and Platt, 2015; Kroemer et al, 2012b). Although these
methods can predict grasps precisely, they usually as-
sume a constant preshape of the hand and only explic-
itly consider variations in the shape of the object being
grasped. As a result, these methods are not well-suited
for object-object interactions, e.g. tool use, wherein the
robot must generalize over variations in the shapes of
both objects.

Recent grasping approaches have incorporated deep
neural networks to learn suitable features for represent-
ing the local object shape (Lenz et al, 2013; Kappler
et al, 2015). Deep learning methods allow the robot
to learn from large amounts of grasping data. However,
the large number of parameters in these networks makes
them difficult to train on small training sets. We focus
on learning interactions from training sets with tens

4 O. Kroemer, S. Leischnig, S. Luettgen, and J. Peters

or hundreds of samples, which is orders of magnitude
smaller than most datasets used for deep learning.

Some grasp synthesis methods explicitly model the
contact points to predict the quality of the grasp (Dang
and Allen, 2012; Kroemer and Peters, 2014; Leischnig
et al, 2015). The contact points are often predicted us-
ing a grasp simulator or they are estimated after the
grasp has been executed to verify the quality of the
grasp. These explicit approaches can be used to model
contact interactions between pairs of objects. In Section
3, we compare our kernel approach to a bag-of-features
approach (Dang and Allen, 2012).

Kopicki et al (2015) propose a one-shot learning
method for synthesizing grasps of novel objects. Instead
of relying on multiple training samples, their method
learns grasp models from single grasp demonstrations.
In this manner, the robot can learn to generalize spe-
cific grasps between different objects. To capture the
nuances of the individual types of grasps, the grasp
model uses a product of experts to incorporate con-
tact models for the individual links, as well as a hand
configuration model. Their contact models also incor-
porate curvature information. Ben Amor et al (2012)
proposed a one-shot approach to generalizing grasps be-
tween similar objects. Their approach is based on warp-
ing the 3D models of objects to extract similar contact
points, and using distinct low-dimensional hand con-
figuration spaces to capture different types of grasps.
Our approach focuses on learning discriminative classi-
fiers, from positive and negative samples, to determine
which contact distributions afford or inhibit the object
interactions.

Contact information is also important for compen-
sating for errors and verifying if a manipulation was
successful. Guarded motions detect when the robot has
made contact between an object in its environment and
a certain amount of force has been applied (Will and
Grossman, 1975). Force-torque sensors can be used to
estimate the tooltip contact point after the tool has
shifted in the robot’s hand (Karayiannidis et al, 2014).
Tactile servoing allows the robot to maintain contact
and track tactile features on objects during manipula-
tions (Li et al, 2013; Veiga et al, 2015). The robot can
also verify the quality of grasps based on tactile read-
ings (Madry et al, 2014; Bekiroglu et al, 2011). Our ap-
proach considers the distribution of contacts between
objects to detect interactions. We explain how contact
points are estimated using either tactile or 3D point
cloud data in Section 2.1.

The problem of classifying sets of contact points is
similar to set classification (Ning and Karypis, 2008)
and multi-instance classification (Amores, 2013) prob-
lems. However, these problem formulations generally

Fig. 2 The figure shows an example scene of two objects in-
teracting and the corresponding point cloud models from a
side view. The primary object’s points p̂ij are shown in blue,
and the secondary object’s points p̌ij are in red. The point
cloud models were generated from single depth images ob-
tained using a Microsoft Kinect. The models were created by
exploiting their rotationally extruded shapes (Kroemer et al,
2012a). These models capture the coarse shape of the object,
e.g., the slanted sides of the cup, but not all of the details,
e.g., the precise shape of the handle. The proposed method
works well even with coarse object models.

assume that each element is associated with a class
label. The sample’s label is then defined by the pro-
portions of the element’s labels. This assumption does
not hold for classifying sets of contacts. For example,
two opposing contact can pinch an object, but neither
contact can pinch the object individually. In this man-
ner, interactions depend on the relationships between
the contacts.

2 A Kernel for Contact Distributions

In Sections 2.1 and 2.2, we explain how contacts be-
tween objects are detected and represented for com-
puting contact distributions. In Sections 2.3, we provide
a kernel function for computing the similarity between
contact distributions. We explain how the kernel is used
to classify and cluster sets of contacts in Sections 2.4
and 2.5 respectively.

2.1 Extracting Contact Points

The first step for computing the ith sample’s contact
distribution is to extract the set of ni contacts on the
object of interest. The contacts are estimated using ei-
ther tactile sensor arrays or full 3D point cloud models
of the objects. Tactile sensor arrays are well-suited for
extracting hand-object contacts. Full point cloud mod-
els of object are useful for estimating object-object con-
tacts in the scene, or if the robot does not have tactile
sensors. A partial point cloud from a vision sensor can
usually not be used to extract a set of contact points

A Kernel-based Approach to Learning Contact Distributions for Robot Manipulation Tasks 5

as the contact points will be occluded. We therefore fo-
cus on extracting points from full models. These models
can be fairly coarse. For the clustering experiment, we
generated coarse models by acquiring single views using
a Microsoft Kinect and then fitting a linearly or rota-
tionally extruded shape to complete the model (Kroe-
mer et al, 2012a). We used partial point clouds from a
Kinect in our block tower experiment to predict contact
points.

In our grasping experiment, the robot uses a tac-
tile sensor array to extract a set of contact points be-
tween the hand and the object. Using the robot’s for-
ward kinematics, we can compute the position p̂ij ∈ R3

and surface normal ûij ∈ R3 of each of the n̂i taxels in
the tactile array for the ith sample. These positions and
normals are defined in the world coordinate frame. Each
taxel also provides a sensor reading of the applied nor-
mal force s. This sensor value is used to determine if
the taxel is in contact with the object. The ni contact
points, with positions p̃ij ∈ R3 and normals ũij ∈ R3 in
the world coordinate frame are given by the taxels with
sensor values greater than a threshold s ≥ τ . We zero
the sensor values before grasping and use a threshold
value of τ = 15.

We use a similar approach for extracting the contact
points from 3D point cloud models. For the ith sample,
the robot has two sets of 3D point clouds. The first set
represents the shape of the primary object in the scene
and it includes n̂i positions p̂ij ∈ R3 and correspond-
ing surface normals ûij ∈ R3. The second set of points
represents the shape of the object with which the pri-
mary object is interacting. This point cloud includes
ňi position vectors p̌ij ∈ R3 and corresponding surface
normals ǔij ∈ R3. Both of these point clouds are de-
fined in the world coordinate frame. An example scene
and its point cloud models are shown is Fig. 2. The indi-
vidual object models were generated using a Kinect by
exploiting the objects’ extruded shapes (Kroemer et al,
2012a). The robot must subsequently select a subset of
the points from the primary point cloud as the contact
points. To select the contact points, we train a logistic
regression classifier on ten training samples to classify
each of the points in the primary point cloud. The clas-
sifier uses two features

φ1 =

ňi∑
k=1

exp

(
−
∥∥p̂ij − p̌ik∥∥2

σ2

)
and

φ2 =

ňi∑
k=1

(
ûTijǔik

)
exp

(
−
∥∥p̂ij − p̌ik∥∥2

σ2

)
as well as a constant bias term φ3 = 1 to classify the jth

point in the primary point cloud. The hyperparameter

σ = 0.5cm defines the length scale of the point cloud
features. The subset of the primary points that were
classified as being in contact with the secondary object
then represent the ni contact points for the ith sample
with positions p̃ij ∈ R3 and surface normals ũij ∈ R3.
These points are again defined in the world coordinate
frame for now.

The extracted set of contacts will ultimately be de-
fined relative to an interaction frame and represented by
a contact distribution. These representations capture
the general distribution of the contacts, but they may
not capture all of the contacts’ details. Hence, although
one should attempt to extract accurate and precise con-
tact estimates, the proposed method does not rely on
exact contact information. Our experiments have shown
that the proposed method can perform well even when
using coarse contact estimates.

2.2 Defining an Interaction Frame

In order to compare different sets of contacts, we also
need to define a suitable interaction frame. The posi-
tions and normals of the contacts are then defined rel-
ative to the interaction frame. An interaction frame for
the ith sample is defined by a 3D position ρi and a set
of three orthonormal axes axi , a

y
i , and a

z
i in the world

frame. For example, the interaction frame may be de-
fined as the coordinate frame of the robot’s palm for
a blind grasping task. In this manner, the contacts of
different grasps would always be defined relative to the
hand.

In practice, one may often only be able to define the
position ρ and one axis axi of the interaction frame. For
example, in a lifting task, the position ρi can be defined
by the location of the object’s center of mass and the
axis axi is defined by the direction of gravity. Similarly,
for articulated objects such as levers and door handles,
the position and the axis of the revolute joint can be
used to define the interaction frame’s position and first
axis. In both of these examples, the remaining two axes
are not defined due to the rotational symmetry of the
tasks. In these situations, the remaining axes can be
selected such that they align the contact points.

We first translate and project the contact points into
a 2D plane, with the normal of the plane given by the
first axis axi , such that the point p̃ij becomes

p̃′ij =
(
p̃ij − ρi

)
− axTi

(
p̃ij − ρi

)
axi

We then compute the symmetric matrix S ∈ R3 of
second moments about the origin ρ

Si = n−1
i

ni∑
j=1

p̃′ij p̃
′T
ij

6 O. Kroemer, S. Leischnig, S. Luettgen, and J. Peters

and compute its eigenvectors. The second axis ayi is
defined by the eigenvector of Si with the largest eigen-
value, such that the mean of the contact points is in the
positive direction, i.e.,

∑
j a

yT
i (p̃ij−ρi) ≥ 0. Using this

approach, the contact point clouds are aligned accord-
ing to the radial direction with the largest variance. The
third axis is simply given by the cross product of the
first two azi = axi × a

y
i to form a right-handed coordi-

nate frame. One could also use a left-handed coordinate
frame, but it is important to be consistent. Once the in-
teraction frame has been computed, the extracted con-
tact point positions p̃ij and surface normals ũij in the
world frame are used to compute the positions pij and
surface normals uij in the interaction frames. These po-
sitions and normals are then concatenated to form the
final contact vectors xij =

[
pTij uTij

]T .
Selecting a suitable interaction frame is important

as it will affect the similarity value computed by the
kernel. As a general rule, the interaction frame is usu-
ally linked to the variable being controlled in the in-
teraction. For example, a robot may need to determine
suitable contacts for turning a lever. The first axis of
the interaction frame axi would then correspond to the
lever’s axis of rotation.

2.3 A Contact Distribution Kernel

Given a set of contact points in the interaction frame,
the next step is to define a kernel for comparing two in-
teraction samples. Rather than comparing contact points
individually, we first model the set of contact points
as a distribution in the Rd contact space and then
compute a kernel between these distributions. We pro-
pose the Bhattacharyya kernel (Jebara and Kondor,
2003). This kernel represents the contact distributions
as Gaussians, although the contact distributions should
not be interpreted as actual probability distributions.

The Bhattacharyya kernel (Jebara and Kondor, 2003)
represents each set of contacts Xi as a single Gaussian
N (x|µi,Σi) where

µi =
1

ni

ni∑
k=1

xik,

Σi =
1

ni

ni∑
k=1

(xik − µi) (xik − µi)
T

+Σ0,

and the matrix Σ0 ∈ Rd×d contains a set of hyperpa-
rameters. As Gaussians are uni-modal, this represen-
tation captures the Rd space spanned by the contacts
rather than the locations of the individual contacts. The
mean of the contact distribution may therefore corre-
spond to a point with a normal of zero length. As a re-
sult, a single contact with a unit normal will not be able

to create a similar contact distribution as two contacts
with opposing normals. However, when using forces in-
stead of normals, two opposing contact forces may have
a similar mean to a single contact with almost zero
force.

The additional covariance term Σ0 defines the sim-
ilarity between individual contacts and has the same
effect as adding a Gaussian distribution N (0,Σ0) to
the contact points. It allows the representation to cap-
ture the relevance of different dimensions in the contact
space. For example, when pushing open a door, the hor-
izontal distance from the axis of rotation is more rele-
vant than the vertical position along the axis. By adding
more variance in the vertical dimension, the kernel can
capture the fact that two contacts are more similar if
they are offset vertically rather than horizontally from
each other. The experiments in Section 3.3 show that
the robot can use this additional similarity information
to increase the sample efficiency of the learning algo-
rithm. The hyperparameters are autonomously tuned
using a grid search approach.

The Bhattacharyya kernel (Jebara and Kondor, 2003)
between two contact distributions is given by

k(Xi,Xj) = k((µi,Σi), (µj ,Σj))

=

ˆ√
N (x|µi,Σi)

√
N (x|µj ,Σj)dx.

The computation of the kernel is given in (Jebara et al,
2004), and we include it here for completeness. The
kernel function is computed in closed form as

k((µi,Σi), (µj ,Σj)) = C exp (−M/4) ,

where the values of C and M are given by

C = 0.5−d/2 ˆ|Σ|
1/2
|Σi|−1/4 |Σj |−1/4

,

M = µTi Σ
−1
i µi + µTj Σ

−1
j µj − µ̂

T Σ̂µ̂.

The vector µ̂ is given by µ̂ = Σ−1
i µi+Σ

−1
j µj , and the

matrix Σ̂ is computed as Σ̂ = (Σ−1
i + Σ−1

j)−1. The
kernel’s value is k(Xi,Xj) = 1 if the contact distribu-
tions are identical, and tends to zero as the overlap be-
tween the distributions decreases. In our experiments,
all of the samples include at least one contact. However,
if a sample were to not contain any elements Xi = ∅,
then we would define the kernel to be k(Xi,Xj) = 1 if
Xj = ∅ and k(Xi,Xj) = 0 otherwise.

This basic kernel can be used to construct more
complicated contact kernels. For example, the robot
may compute one basic kernel to capture the set of
object-hand contacts and another for the set of object-
table contacts. A new kernel over both sets of con-
tacts can then be created by multiplying or adding the
two basic kernels (Schölkopf and Smola, 2001; Kroemer

A Kernel-based Approach to Learning Contact Distributions for Robot Manipulation Tasks 7

et al, 2015). The basic kernels can even use different
interaction frames. We only employ the basic kernel in
our experiments.

2.4 Classifying Contact Distributions

Having defined a kernel between contact distributions,
we can now use kernel methods from machine learn-
ing to classify the contact interaction (Schölkopf and
Smola, 2001). We use kernel logistic regression to clas-
sify the interactions. Kernel logistic regression uses the
similarity to previously observed distributions, with la-
bels, to classify new contact distributions. The prob-
ability that a contact distribution N (x|µi,Σi) allows
for a certain interaction I is given by

p(I|µi,Σi) = (1 + exp (α))
−1
,

where

α = θ0 +

m∑
j=1

θjk(Xi,X
′
j),

and the robot has m training samples X ′j of contact
distributions. The weight parameters θ can be learned
using iterative reweighted least squares. Previous con-
tact distributions that afforded the interaction will gen-
erally have more negative weights, which will result in
a probability closer to one. Contact distributions that
are not similar to any previous distributions will have a
probability defined by θ0. As kernel logistic regression
is a probabilistic classifier, it can model a contact dis-
tribution that only sometimes affords the interaction.

2.5 Clustering Contact Distributions

The proposed kernel can also be used to cluster differ-
ent interactions. We use the spectral clustering method
proposed of Shi and Malik (2000) to cluster the sam-
ples into κ samples. Given m samples, the robot first
computes the normalized graph Laplacian L ∈ Rm×m
as L = I − D−1K , where I ∈ Rm×m is the iden-
tity matrix, the element in the ith row and jth column
of the kernel matrix K ∈ Rm×m is given by [K]ij =

k(Xi,Xj), and the diagonal matrix D ∈ Rm×m has
elements given by [D]ii =

∑m
j=1 k(Xi,Xj). Given the

normalized Laplacian, the robot computes the matrix
E ∈ Rm×κ, which contains the κ eigenvectors of L with
the smallest eigenvalues. Finally, the robot performs k-
means clustering, with κ clusters, on the rows of the
matrix E. The sample Xi is then associated to the
cluster that the ith row of E was assigned to.

The normalized spectral clustering algorithm requires
the number of clusters κ to be predefined. We employ a

heuristic to automatically select a suitable value for κ.
The robot performs the clustering multiple times and
samples the number of clusters κ from a uniform distri-
bution each time. In our experiments, we ran the clus-
tering 1500 times and sampled κ from a range between
two and ten. For each clustering, the robot computes a
matrix K̃ with elements

[
K̃
]
i,j

= k(Xi,Xj) ifXi and

Xj are in the same cluster, and
[
K̃
]
i,j

= 1−k(Xi,Xj)

otherwise. The robot then assigns a score to the clus-
tering which is the sum of all of the elements in the
matrix K̃. The clustering thus receives a higher score
for placing similar samples in the same cluster and dis-
tinct samples in different clusters. The robot ultimately
selects the clustering with the highest score. This ap-
proach also reduces the effects of the random initializa-
tion of the k-means clustering.

3 Evaluations and Experiments

The proposed kernel approach was evaluated on grasp-
ing, lifting, and stacking tasks. The experiments were
performed using the robot shown in Fig. 1. The robot
has KUKA lightweight robot arms and a Microsoft Kinect
head to observe the scenes. The grasping task was per-
formed using a RightHand Robotics ReflexHand (Odhner
et al, 2014) equipped with TakkTile sensors (Jentoft
et al, 2013) in the fingers and palm, which we used to
extract the contact points for the blind grasping exper-
iment. We also evaluated the performance on simulated
grasps using the GraspIT simulator (Miller and Allen,
2004). The lifting and stacking tasks were performed us-
ing a DLR five-fingered hand (Chen et al, 2010), and the
contacts were extracted using 3D point cloud models
of the objects. The three tasks were used to investigate
the effects of using different kernels, contact representa-
tions, and hyperparameter structures. We investigated
using the proposed kernel for clustering interactions as
explained in Section 3.4.

3.1 Grasping Experiments

In this experiment, we compare different kernels for es-
timating if a grasp is successful based on the set of de-
tected contacts. In addition to the Bhattacharyya ker-
nel (Bhat), we also compare using a bag-of-features ap-
proach (BoF), an exponential χ2 kernel (Exp χ2), and a
normalized expected likelihood kernel (NEL). We evalu-
ated the different representations using both simulated
and real robot grasping data. In contrast to our previ-
ous work (Leischnig et al, 2015), we use grid searches
to select the kernels’ hyperparameters instead of using

8 O. Kroemer, S. Leischnig, S. Luettgen, and J. Peters

a constant setting for all four approaches. The kernels
tend to select different sets of hyperparameters. We also
explore using the force readings of the tactile sensors as
part of the contact point vectors xij .

3.1.1 Baseline Methods for Benchmarking

The first benchmark method is a bag-of-features (BoF)
approach. The bag-of-features representation is defined
using a dictionaryD of ń prototypical contact elements
D = {x́1, x́2, . . . , x́ń}, x́ ∈ Rd. The prototype elements
were computed by performing k-means clustering on all
of the contacts in the dataset. We used k = 64 clusters,
which achieved good results and was also the dictionary
size used by Dang and Allen (2012). The distribution
over elements in Xi can then be described by a feature
vector φ(Xi) ∈ Rń+1, where the jth component of the
feature vector indicates the proportion of contacts as-
signed to x́j , and the last component is a constant bias
term of 1. We employ a soft assignment approach to
reduce discretization effects, such that the jth feature
is given by

[φ(Xi)]j=

ni∑
m=1

exp(−0.5d(x́j ,xim)2)

ni
∑ñ
l=1 exp(−0.5d(x́l,xim)2)

,

where the Mahalanobis distance is given by

d(xa,xb) = ((xa − xb)TΣ−1
0 (xa − xb))1/2,

and the diagonal matrix Σ0 ∈ Rd×d defines the simi-
larity between the samples and the dictionary elements.
The features were normalized in preprocessing, which
increased the performance of the bag-of-features ap-
proach significantly.

The second benchmark method uses the exponential
χ2 kernel (Exp χ2) (Hofmann et al, 2008). This kernel
compares histograms, and its computation for the BoF
representation is given by

kχ(Xi, Xj) = exp

(
−

ń∑
l=1

([φ(Xi)]l − [φ(Xj)]l)
2

0.5([φ(Xi)]l + [φ(Xj)]l)

)
.

The Exp χ2 kernel has been used in computer vision
(Vedaldi et al, 2009) and to learn locations on objects
for pushing (Hermans et al, 2013).

The third benchmark method uses a normalized ex-
pected likelihood kernel (NEL) to compare contact dis-
tributions (Kroemer et al, 2012b). This kernel repre-
sents the set of contacts using a mixture of Hi Gaus-
sians in the form

fi(x) =

Hi∑
h=1

νihN (x|µih,Σih),

where νih is the mixture component. In our experi-
ments, we assign each contact point its own Gaussian,
such that

fi(x) =
1

ni

ni∑
h=1

N (x|xih,Σ0),

where the matrix Σ0 ∈ Rd×d again defines the simi-
larity between individual contacts. The NEL kernel is
then computed as

k(fi(x), fj(x)) =

´
fi(x)fj(x)dx√´

fi(x)fi(x)dx
√´

fj(x)fj(x)dx
,

in closed-form. This kernel function has a value of 1

when the contact distributions are identical, and tends
to zero as the overlap decreases. The kernel is based
on the expected likelihood kernel (Jebara et al, 2004)
and is closely related to the Cauchy-Schwarz divergence
(Jenssen et al, 2006). The NEL kernel can capture more
details of the contact distribution than the single Gaus-
sian representation. However, this level of detail is often
not needed when learning robust manipulation skills
(Eppner and Brock, 2013).

All four evaluated methods use the diagonal covari-
ance matrix Σ0 ∈ Rd×d to define the similarity be-
tween individual contacts. Rather than determining a
separate covariance for each dimension, all of the posi-
tion dimensions and normal dimensions share the same
hyperparameters Σ0 = diag(σ2

p, σ
2
p, σ

2
p, σ

2
n, σ

2
n, σ

2
n).

3.1.2 Grasping with a Simulated Barrett Hand

Using the GraspIT simulator (Miller and Allen, 2004)
and Columbia grasp database (Goldfeder et al, 2009),
we collected the contact points and normals for 2000

grasps with a simulated 3-fingered Barret hand of ev-
eryday objects, including mugs and knives. This exper-
iment was inspired by the work on blind grasping by
Dang and Allen (2012). We used the contact points
computed by the GraspIT simulator. The contact points
were defined relative to the palm frame of the hand. We
assumed a coefficient of friction of 1.0 between the hand
and the objects. For each grasp, we also recorded the
epsilon ε and volume v grasp quality metrics (Miller
and Allen, 1999; Ferrari and Canny, 1992; Li and Sas-
try, 1988). The goal of the experiment was to predict
from a set of contacts whether a grasp would result in
high grasp quality metrics. A grasp was considered suc-
cessful if it achieved grasp metrics of both ε ≥ 0.07 and
v ≥ 0.1, as proposed by Dang and Allen (2012).

The representations were evaluated using five-fold
cross validation, such that the test sets consisted of
400 samples and the training sets were sampled from

A Kernel-based Approach to Learning Contact Distributions for Robot Manipulation Tasks 9

Simulated Grasping - 10 to 150 Samples Simulated Grasping - 200 to 1000 Samples

Nr. Training Samples
0 50 100 150

A
cc

ur
ac

y

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Bhat

Expχ2

NEL
BoF

Nr. Training Samples
200 300 400 500 600 700 800 900 1000

A
cc

ur
ac

y

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

Bhat
Expχ2

NEL
BoF

Fig. 3 The figure shows the classification accuracies for different training set sizes (left: 10 to 150, right: 200 to 1000) for
the simulated grasping experiment. The compared methods include the Bhattacharyya kernel (Bhat), the exponential χ2

kernel (Expχ2), the normalized expected likelihood kernel (NEL), and the bag of features (BoF) representation. The errorbars
indicate one standard error.

the remaining pool of 1600 samples. For each test set
and training set size, we sampled 25 training sets with
replacement. The classification accuracy for each test
sample was computed based on these 25 classifiers’ pre-
dictions. The standard deviations were then computed
over the samples’ accuracies.

The hyperparameters Σ0 were selected using a grid
search with five-fold cross validation on the training
set. The grid search was performed over the hyper-
parameters σp ∈ {0.5, 1.0, 2.5, 5.0, 10.0, 15.0} cm and
σn ∈ {0.05, 0.1, 0.25, 0.5, 1.0, 1.5}. Hence, to evaluate
one training set size for one method with automatic
hyperparameter selection, the robot had to train 25 ×
5× (5× 36 + 1) = 22, 625 classifiers, i.e., 125 classifiers
for the five-fold cross validation with 25 repetitions and
another 180 for each of these classifiers to select the hy-
perparameters using an inner five-fold cross validation
on the training data. The hyperparameter values were
fixed for training sets with more than 200 samples to
the values selected for the 200 training sample trials.
The plots on the left side of fig. 4 show the distribution
over the hyperparameter values for training set sizes
from 10 to 100. The learning curves for the simulation
data are shown in Fig. 3.

3.1.3 Grasping with a Real ReFlex Hand

In order to compare the methods on real robot data,
we also collected 200 grasp attempts using a Reflex-
Hand equipped with TakkTile sensor arrays on the fin-
gers and palm (Odhner et al, 2014; Jentoft et al, 2013).
Each finger has a single row of nine sensors along its

length, with five on the proximal portion and four on
the distal. The tactile sensors cover the inner side of the
fingers, but not the sides or backs of the fingers. The
elements of the array are spaced approximately 8mm
apart and have a sensitivity of 0.01N according to the
manufacturer’s description. The palm of the hand is
covered by three large gel segments, which contain ad-
ditional TakkTile sensors (Odhner et al, 2014; Jentoft
et al, 2013). Localizing the contact point on these seg-
ments is not trivial. Therefore, if a contact was detected
for a palm sensor, the contact point estimate was set to
the most elevated point on that segment with a normal
vector orthogonal to the palm plane.

We demonstrated 200 grasps using the 50 objects
shown in Fig. 5. For each attempt, the robot executed
a grasping action at a predefined location on the ta-
ble. A human operator placed the object on the table,
and adjusted the height of the grasp, to demonstrate
the grasps to the robot. The robot then used the Re-
flexHand’s guarded grasping movement to close the fin-
gers using the default threshold value 20. Grasps were
selected such that all of the contacts are made with
the tactile sensors. The dataset contains 151 top grasps
and 49 side grasps. All grasps were performed using a
cylindrical preshape of the hand. Both successful and
unsuccessful grasps were demonstrated to the robot. A
grasp was considered to be a success if it lifted the ob-
ject above the table and did not rotate the object by
more than 30 degrees during the lifting process.

Contact points for each attempt were extracted af-
ter grasping the object, but before attempting to lift
it. The contact points were detected by thresholding

10 O. Kroemer, S. Leischnig, S. Luettgen, and J. Peters

Bhat Simulation Hyperparam. Bhat Robot Hyperparam.

<
p
 (cm)

0.5 1 2.5 5 10 15

<
n

0.05

0.1

0.25

0.5

1

1.5

0

0.02

0.04

0.06

0.08

0.1

0.12

<
p
 (cm)

0.5 1 2.5 5 10 15

<
n

0.05

0.1

0.25

0.5

1

1.5

0

0.01

0.02

0.03

0.04

0.05

0.06

NEL Simulation Hyperparam. NEL Robot Hyperparam.

<
p
 (cm)

0.5 1 2.5 5 10 15

<
n

0.05

0.1

0.25

0.5

1

1.5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

<
p
 (cm)

0.5 1 2.5 5 10 15

<
n

0.05

0.1

0.25

0.5

1

1.5

0

0.01

0.02

0.03

0.04

0.05

0.06

Exp χ2 Simulation Hyperparam. Exp χ2 Robot Hyperparam.

<
p
 (cm)

0.5 1 2.5 5 10 15

<
n

0.05

0.1

0.25

0.5

1

1.5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

<
p
 (cm)

0.5 1 2.5 5 10 15

<
n

0.05

0.1

0.25

0.5

1

1.5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

BoF Simulation Hyperparam. BoF Robot Hyperparam.

<
p
 (cm)

0.5 1 2.5 5 10 15

<
n

0.05

0.1

0.25

0.5

1

1.5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

<
p
 (cm)

0.5 1 2.5 5 10 15

<
n

0.05

0.1

0.25

0.5

1

1.5

0

0.01

0.02

0.03

0.04

0.05

0.06

Fig. 4 The plots show the distributions over the hyperparameter settings for the evaluations using 10 to 100 samples. The
left and right columns correspond to the simulated and real robot grasping experiments respectively. The four rows correspond
to the Bhattacharyya kernel (Bhat), the normalized expected likelihood kernel (NEL), the exponential χ2 kernel (Exp χ2),
and the bag-of-features approach (BoF).

A Kernel-based Approach to Learning Contact Distributions for Robot Manipulation Tasks 11

the tactile sensors’ readings at τ = 15, as described in
Section 2.1. If a taxel was considered to be in contact,
its position and normal estimates were computed us-
ing the robot’s forward kinematics. As part of a blind
grasping framework, the contacts were defined relative
to the robot’s palm frame. In addition to the position
and normal contact representation, we also explored us-
ing a position and force representation. The dimension-
ality is d = 6 in both cases. For the force representation,
we scaled the normal vectors according to the taxels’
output value. The sensor values were scaled by the in-
verse of their standard deviation and offset to get a me-
dian value of one. The taxels do not measure tangential
forces and the extracted normal and force vectors are
aligned. Including both the normals and forces would
therefore be redundant.

The robot grasping data was evaluated in a simi-
lar manner to the simulated data. The five-fold cross
validation was performed with 40 samples in each test
set, and 160 samples in the training set pool. We evalu-
ated 25 classifiers for each test set and training set size.
The hyperparameter grid search was performed using
σp ∈ {0.5, 1.0, 2.5, 5.0, 10.0, 15.0} cm for the positions
and σn ∈ {0.05, 0.1, 0.25, 0.5, 1.0, 1.5} for the normals
and scaled force estimates. The plots on the right of
fig. 4 show the distribution over the hyperparameter
values for training set sizes from 10 to 100 for the posi-
tion and normals contact data. The learning curves for
the robot’s grasping data are shown in Fig. 6.

The kernel functions require different amounts of
time to compute. For comparison, we recorded the times
required to compute the values for 64 samples, i.e., the
same number of samples as the bag-of-features repre-
sentation has features. We recorded the time from re-
ceiving the contact vectors xij to computing the kernel
or feature values. For the BoF and Expχ2 approaches,
we assumed that the dictionary was given and did not
include the k-means clustering in the computation. The
computations were performed in Matlab on a 1.8GHz
Intel Core i7 MacBook Air with 4GB of memory. We
averaged the times over the 36 different hyperparame-
ter settings. The times for evaluating 64 samples were:
Bhat 0.187s, NEL 0.215s, Expχ2 0.050s, and BoF 0.029s.
The Bag-of-Features approach is therefore the fastest,
while the Bhattacharyya kernel is the second slowest
after the NEL kernel. If we double the number of sam-
ples to 128, then the computation times become Bhat
0.693s, NEL 0.837s, Expχ2 0.142s, and BoF 0.056s. As
one would expect, the Bag-of-Features approach scales
the best with more samples and may therefore be more
suitable for very large amounts of data. However, even
the longest time of 0.837s for 128 samples with the NEL
kernel corresponds to 0.0065s for comparing one sam-

Fig. 5 The objects used to create the grasping dataset. The
RightHand robotics ReFlex hand that was used in the exper-
iment is shown on the left. The hand is equipped with tactile
sensor arrays to detect contacts.

ple to 128 samples. This duration is sufficiently short
for most applications.

3.1.4 Discussion of the Grasping Experiment

The results of the simulation experiment show that
the proposed Bhattacharyya kernel achieved the high-
est accuracy. The difference in performance is most
notable when the robot is given only a limited num-
ber of training samples. For 30 training samples, the
Bhattacharyya kernel achieves an accuracy of 71.9%

while the NEL kernel achieved the next highest accu-
racy of 65.6%. The bag-of-features approach, which is
the fastest method to compute, resulted in the lowest
accuracy of 62.5%. This result indicates that the robot
should use the Bhattacharyya kernel when the number
of training samples is limited.

Although the Bhattacharyya kernel obtained the
highest accuracy for the real robot data, the perfor-
mance increase over the other kernels is not signifi-
cant. The Bhattacharyya kernel achieved an accuracy
of 74.1% for 100 real robot training samples. The bag-
of-features approach again achieved the lowest accuracy
of 67.5% for 100 real robot training samples. Some of
the grasps failed during the experiment because they
were too far from the objects’ center of masses, which
resulted in large torques during the lifting. A perfect
prediction accuracy based on the palm-relative contact
information is therefore not possible. The latent mass
distribution issue is a challenge inherent to the blind
grasping task. The proposed representation does not
take into account the differences in friction properties
of the objects being grasped, which additionally limits
the maximum achievable accuracy for this task. The

12 O. Kroemer, S. Leischnig, S. Luettgen, and J. Peters

Robot Grasping - Positions and Normals Robot Grasping - Positions and Forces

Nr. Training Samples
0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Bhat

Expχ2

NEL
BoF

Nr. Training Samples
0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Bhat

Expχ2

NEL
BoF

Fig. 6 The figure shows the classification accuracies for different training set size for the real robot experiment. (Left) The
plot shows the results when using the contacts’ positions and normals. (Right) The plot shows the results when using the
contacts’ positions and sensed forces before lifting the object. Error bars indicate one standard error.

contact point representations also do not take into ac-
count the robot’s action space, e.g., whether the robot
can apply a certain force given the current configura-
tion.

Using force estimates instead of the contact nor-
mals resulted in a slight drop in performance for all
four approaches. Force estimates allow the robot to
disambiguate between certain interactions, e.g., a hand
resting versus pushing against a surface. The force es-
timates for predicting the quality of the grasp were
recorded before the object was lifted from the table.
These estimates therefore do not provide information
regarding the mass distribution of the object. They
may however include additional irrelevant forces from
the robot pushing down on the object and table, which
could explain the decreased performance.

The distribution over the hyperparameter values se-
lected by each of the kernels are shown in fig. 4. The
plots reveal that the robot tended to select smaller val-
ues for the hyperparameters, especially σp, when using
the Bhattacharyya kernel. The other approaches tend
to use the larger length scales to generalize between the
samples. The Bhattacharyya kernel can use a smaller
length scale as its uni-modal distribution already spans
a larger region of the contact space. The real robot data
tended to result in larger position hyperparameter val-
ues σp. The normal hyperparameters σn for the ker-
nel values also tended to increase. This indicates that
the position information was less discriminative and the
robot relied more on the normal information to differ-
entiate between successful and unsuccessful grasps.

While the Bhattacharyya kernel is based on uni-
modal Gaussian distributions, the other kernels are based

on histograms and parzen windows, which can represent
multi-modal distributions. Contacts for grasping often
have multi-modal distributions, e.g., a pinch grasp in-
cludes two distinct regions of contacts on opposite sides
of the object. One would therefore expect the multi-
modal kernels to be more suitable for representing con-
tacts. However, the results of the experiment suggest
that the Bhattacharyya kernel may be better at repre-
senting the interactions afforded by these sets of points.

To illustrate this point, we can consider the sets of
orange and blue contacts shown in Fig. 7. Using a uni-
modal contact distribution increases the similarity of
the orange and blue contacts in both scenarios we have
kBhat(XA,XB) > kNEL(XA,XB), although both ker-
nels can still differentiate between the sets of contacts
k(XA,XB) < 1 . For the scenario on the left (i), the
two blue contacts can apply similar forces to the sur-
face as the orange contact between them. For the sec-
ond scenario (ii), both sets of contacts can pinch the
object about the same point. Hence, even though the
orange and blue contacts are different, they afford sim-
ilar interactions. The Bhattacharyya kernel is better at
capturing these similarities between sets of contacts.
The kernel’s ability to generalize between these types
of variations in contacts could explain its higher accu-
racy for small training sets.

3.2 Lifting an Elongated Box

The second experiment involved predicting whether a
given grasp could be used to steadily lift an elongated
object. In this experiment, we explore the effects of us-

A Kernel-based Approach to Learning Contact Distributions for Robot Manipulation Tasks 13

(i) (ii)

XAkBhat(,) > kNEL(,)XAXB XB

Fig. 7 The illustrations show sets of orange and blue contact
points and their corresponding normals. The hashed black
lines indicate surfaces of objects. The kernel value between
the contacts is greater when using the Bhattacharyya kernel,
which is based on a unimodal distribution, than the NEL
kernel, which is based on a multi-modal distribution.

3-Fingered Grasp 4-Fingered Grasp

Fig. 8 The two types of grasps that were used during the
lifting experiment. The three-fingered grasp uses the tips of
the thumb, middle, and index fingers to pinch the object.
The ring and little finger are not touching the box. The four-
fingered grasp additionally uses the back of the ring finger on
the top of the box to provide additional support.

Failed Lift Successful Lift

Fig. 9 Examples of failed and successful lifts. A lift was con-
sidered a failure if the object was still touching the table at
the end of the trial.

ing object-relative or hand-relative interaction frames,
as well as the influence of incorporating the contact nor-
mal estimates. This systematic evaluation, in contrast
to our previous work (Kroemer and Peters, 2014), al-
lows us to observe the effect of the interaction frame on
the contact normal’s influence.

3.2.1 Experimental Setup

The robot performed 60 randomly selected grasps along
the length of a spaghetti box. We specifically selected

an object with a simple extruded shape such that the
robot has a continuum of potential grasp locations, but
only some of them will result in successful lifts (Laak-
sonen et al, 2012). The first 30 grasps were performed
with a three-fingered grasp and the other 30 were ex-
ecuted with a four-fingered grasp, as shown in Fig. 8.
The four-fingered grasp used the back of the ring finger
for additional support. The robot subsequently tried to
lift the box 13cm above the table. Lifting the box was
considered successful if the object was no longer in con-
tact with the table, and a failure otherwise, as shown in
Fig. 9. The 13cm lift allows the robot to clearly differ-
entiate between the large and small rotations observed
in the left and right pictures of Fig. 9 respectively. The
small rotation of the box in the picture on the right is
due to the weight of the box and the compliance of the
robot’s fingers.

Before lifting the box, the robot recorded the state
of the scene and estimated the distribution of contacts
between the hand and the box. Since the robot does not
have tactile sensors, the contacts were extracted from
3D point cloud models of the object and the robot’s
hand. The logistic regression contact detector was trained
on ten manually labeled points from one scene. The nor-
mals of the points were computed based on the local
neighborhood in the point cloud (Rusu and Cousins,
2011).

We evaluated representing contact points using only
positions d = 3 (Pos) as well as both positions and nor-
mals d = 6 (PosNorm). We also evaluated using hand-
relative and object-relative interaction frames for this
experiment. The hand-relative frame is a fixed coor-
dinate frame located at the robot’s wrist. The object-
relative frame is located at the mean position of the ob-
ject model’s points, and the first axis is in the vertical
direction of gravity. The other two axes are computed
as explained in Section 2.2.

The lifting performance was evaluated using 10-fold
cross validation, with six samples in each test set and
training set pools of 54 samples. The robot evaluated
25 classifiers for each test set and contact representa-
tion. The grid searches over the hyperparameters, with
five-fold cross validation on the training sets, were per-
formed using σp ∈ {0.5, 1.0, 2.5, 5.0, 10.0, 15.0} cm and
σn ∈ {0.05, 0.1, 0.25, 0.5, 1.0, 1.5}. The results of the
evaluation are shown in Fig. 10.

3.2.2 Discussion of the Lifting Experiment

The results of the experiment show that the robot’s
predictions are more accurate for the lifting task when
using an object-relative contact representation. The ob-
ject’s extruded shape makes the task more challenging

14 O. Kroemer, S. Leischnig, S. Luettgen, and J. Peters

Lifting Results

Nr. Training Samples
0 5 10 15 20 25 30 35 40

A
c
c
u

ra
c
y

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Obj-PosNorm
Obj-Pos
Hand-PosNorm
Hand-Pos

Fig. 10 The expected accuracies for the lifting task. We eval-
uated hand (Hand-) and object (Obj-) relative contact rep-
resentations. We also investigated representing contacts us-
ing only positions (Pos) or using both positions and normals
(PosNorm). The error bars indicate one standard error.

for the hand-relative representation, as the contacts ap-
pear similar regardless of the position along the box’s
length.

This result suggests that the accuracies for the grasp-
ing experiment in Section 3.1 could be increased by us-
ing an object-relative contact representation. However,
estimating the center of the object is not trivial and
would require multiple grasp attempts in a blind grasp-
ing scenario (Laaksonen et al, 2012). The objects in the
grasping experiment also have a variety of unobserved
masses and material properties which may also limit
the accuracy of the classifier. The lifting experiment
benefits from all of the samples having the same ma-
terial properties. The robot could potentially include
the mass and material properties explicitly by creating
additional kernels for them.

Including the contact normals increased the accu-
racy of the classifier from 82.7% to 89.3% when using
40 training samples. The normals help the robot differ-
entiate between the pinching contacts on the sides of
the object and the ring finger’s contacts on the top of
the box. The contacts on the top of the box provide ad-
ditional support for grasps on one half of the box, i.e.,
when the top contacts and the object’s center of mass
are on opposite sides of the pinching point. The increase
in performance is smaller when using the hand-relative
interaction frame, as the robot cannot determine if the
center of mass is on the opposite side of the hand. The
contact representation thus allows the robot to predict
the success of grasps that use leverage to support the
object.

Positive Example Negative Example

Fig. 11 Point cloud examples of a stable and an unstable
stacking of blocks

3.3 Learning to Stack Objects

In the third experiment, the robot was given the task of
classifying whether one object would support another
object. We extend our previous work (Kroemer and Pe-
ters, 2014) to investigate the performances of three dif-
ferent structures for the Bhattacharyya kernel’s hyper-
parameter matrix Σ0. The robot ultimately uses a ker-
nel logistic regression classifier with the proposed kernel
to predict placements for stacking assorted blocks into
towers. Unlike the previous experiments, this experi-
ment uses object-object contacts instead of hand-object
contacts. Stacking thus demonstrates how the proposed
framework can be applied to interactions where the
shapes of both objects vary (Ugur and Piater, 2015;
Kulick et al, 2013).

3.3.1 Classifying Stable Block Placements

The stacking dataset consists of 60 example scenes, each
containing two interacting toy blocks, such as the ones
shown in Fig. 11. For the 30 negative examples, phys-
ically impossible static scenes were manually created.
The extruded point cloud models of the blocks were ac-
quired using a turn table setup and a Kinect. The turn
table provided additional views and more details of the
relatively small blocks, which resulted in more accurate
point cloud models. The positions of the interaction
frames ρi were defined by the means of the points in
the point cloud models, and the first axes axi of the
interaction frames were aligned with the direction of
gravity. To train the contact point classifier for the 3D
models, as explained in Section 2.1, a logistic regression
classifier was trained on ten hand-labeled points from
one scene.

In this experiment, we explored three different struc-
tures for the Bhattacharyya kernel’s hyperparameter
matrix Σ0. The Zero approach sets all of the param-
eters to zero. The ISO approach uses one value for all
of the position dimensions and another value for all of
the normal dimensions. The ARD approach allows for
a separate value for each of the d = 6 dimensions. A

A Kernel-based Approach to Learning Contact Distributions for Robot Manipulation Tasks 15

Stacking Results

Nr. Training Samples
0 5 10 15 20 25 30 35 40

A
c
c
u

ra
c
y

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ARD
ISO
Zero

Fig. 12 The accuracy for the block stacking task. The blue
line indicates the performance when using separate hyperpa-
rameters for each dimension of the contact vectors. The red
line shows the performance when using one hyperparameter
for all three position dimensions and another hyperparameter
for the normal dimensions. The yellow line shows the accu-
racy when setting all of the hyperparameters to zero. The
error bars indicate one standard deviation.

dimension with a relatively large hyperparameter value
is considered to be irrelevant, as small variations in the
contacts along this dimension will have a negligible ef-
fect on the kernel value. The hyperparameter tuning
for the ARD approach thus selects the relevance of the
dimensions.

Similar to the lifting experiment, the stacking per-
formance was computed using 10-fold cross validation
with six samples per test set, and training pools of
54 samples. The robot evaluated 25 kernel logistic re-
gression classifiers for each test set, training sample
size, and hyperparameter structure. The hyperparam-
eter grid search was performed over a set of position
values σp ∈ {0.0, 0.5, 1.0, 2.5, 5.0, 10.0} cm and normal
values σn ∈ {0.0, 0.05, 0.1, 0.25, 0.5, 1.0} for the ISO ap-
proach and σp ∈ {0.0, 10.0} cm and σn ∈ {0.0, 1.0} for
the ARD approach. Thus, the robot evaluated 62 = 36

sets of hyperparameters for ISO and 26 = 64 sets for
ARD. The results are shown in Fig. 12.

3.3.2 Discussion of the Stacking Experiment

The experiment shows that the more flexible hyperpa-
rameter structures result in higher accuracies. Setting
the hyperparameters to zero achieved the worst perfor-
mance, as it implies that a small change in the con-
tacts can greatly alter the interaction between the ob-
jects. The generalization performance is therefore lim-
ited, which leads to worse performance.

Fig. 13 examples of block towers constructed by the robot
using a kernel logistic regression classifier with a Bhat-
tacharyya kernel and the kernel’s hyperparameters set to zero.
The classifier was trained on 60 samples of object pairs.

Using the ARD approach leads to a higher accuracy
than the ISO structure. For the stacking task, the hor-
izontal position of the contacts is more important than
the vertical position. The ARD approach results in the
robot selecting larger hyperparameters for the vertical
positions than the horizontal positions. By contrast, the
ISO approach must find single hyperparameter settings
that are suitable for all three directions.

The improved performance of the hyperparameter
tuning requires more computation time, as the grid
search evaluates an exponential number of parameter
settings. We therefore used a smaller parameter pool for
the ARD approach to keep the computation times com-
parable. Other methods, such as hill-climbing, could
alternatively be used to perform the hyperparameter
search (Kroemer and Peters, 2014). However, the grid
search allows us to specify all of the evaluated hyper-
parameter settings for our evaluations.

Smaller hyperparameters for the position dimensions
will result in lower kernel values when comparing the
contacts on objects with very different sizes, e.g., a
small toy block and a large toolbox. The kernel’s abil-
ity to generalize between different scales is therefore
limited. The stacking experiment uses blocks of similar
size. Discriminating between different scales is however
important for some manipulations. For example, the
robot may be able to screw in a large screw by hand
but not a small screw, as the larger screw allows for
more torque.

The stacking task demonstrates that the proposed
method can be used for manipulation tasks where the
shapes of both objects vary between scenarios, e.g., tool
usage. Taking into consideration the shape of both ob-
jects allows the method to be efficiently used for a wider
range of interactions between objects and their environ-
ment.

3.3.3 Learning to Build Block Towers

In the final part of the experiment, the robot used a
classifier to stack assorted blocks into towers. This ex-
periment is the same as the one presented in our pre-

16 O. Kroemer, S. Leischnig, S. Luettgen, and J. Peters

P
la

ce

1 2 3 4 5

In
se

rt

6 7 8 9 10

C
u
t

11 12 13 14 15

W
ip

e

16 17 18 19 20

P
u
sh

21 22 23 24 25

Fig. 14 The 25 example scenes used for the clustering experiment. The poses of the objects were estimated using detachable
ARTags (removed for clarity). In each scene, we are focusing on the interaction of the object that is not in contact with the
table with the object on the table.

vious work (Kroemer and Peters, 2014). We include it
here for completeness and as an example of how the
proposed method can be used to select object poses.
The kernel logistic regression classifier with the Bhat-
tacharyya kernel was trained using all 60 samples from
the stacking experiment, and the hyperparameters Σ0

were set to zero. The robot was provided with a small
wooden board, on which to stack the blocks. In order
to avoid all of the blocks being placed directly on the
board, the placing of the blocks was limited to a single

strip along the middle of the board. The sequence of
blocks was predefined. For every block, the robot ob-
served the current scene using a Kinect. It used the
resulting point cloud as the secondary object in the in-
teraction. The robot does not consider the interactions
between blocks further down in the stack. The point
cloud of the current scene is noisy and partial, as it does
not include the sides or backs of the tower’s blocks. The
partial point cloud is suitable for stacking, as the robot

A Kernel-based Approach to Learning Contact Distributions for Robot Manipulation Tasks 17

only needs to consider contacts with the top regions of
the current tower.

The robot determined a suitable placement for the
current block by sampling different positions in the
scene. For each sample, the contact points were esti-
mated and the probability of the block being supported
was computed using the Bhattacharyya kernel classifier.
The robot subsequently attempted to place the block
at the position with the highest probability.

Random sampling of block positions led to poor per-
formance. The robot would often attempt to place the
object into a partially occluded region, resulting in a
collision. The robot can avoid these collisions by con-
sidering the path of the block as it is being placed.
Hence, we implemented a sampling approach that mim-
ics the movement of the block when it is being placed.
The robot sampled 20 horizontal positions at 7.5mm
increments across the width of the board. For each hor-
izontal position, the robot sampled vertical placements
at 5mm increments in a top-down manner until contact
was detected between the block and the stack. This
sampling approach improved the stacking framework’s
robustness. The occlusion issue could potentially also
be resolved by completing the point cloud (Bohg et al,
2011; Kroemer et al, 2012a).

The robot was given the task of creating five tow-
ers consisting of five blocks each. Using the improved
sampling approach, the robot successfully placed 24 of
the 25 blocks without knocking any blocks down. Only
one block was misplaced by a few millimeters and fell
down. The robustness of the system could be further
improved by also considering the success probability of
neighboring positions (Boularias et al, 2011).

Examples of block towers created using the pro-
posed method are shown in Fig. 13. The robot placed
the pink arched block across gaps, as can be seen in
the picture on the right. This result illustrates how the
robot adapts the block’s placement to both the shape
of the block and the scene.

3.4 Clustering Interactions

In the final experiment, we explored using the Bhat-
tacharyya kernel for clustering different interactions.
This experiment explored object-object interactions and
used 3D point cloud models to extract the contact points.

3.4.1 Experimental Setup

For this experiment, we provided the robot with 25 sam-
ples from five different types of manipulations: placing,
inserting, cutting, wiping, and pushing. The scenes are
shown in Fig. 14. In each scene, we identify a primary

object that is not touching the table, and a secondary
object that is resting on the table. Since the interactions
are between objects, we provide the robot with 3D point
cloud models of the objects and use the model-based ap-
proach to extract the contact points. The models were
generated by placing the objects individually on a ta-
ble, taking a single depth image of the object using a
Microsoft Kinect, and then completing the 3D mod-
els by fitting a linearly or rotationally extruded shape
(Kroemer et al, 2012a). The process results in coarse
3D models of the objects and some of the details are
lost, as shown in Fig. 2. The proposed approach works
well even with these coarse models.

The positions of the interaction frames are defined
by the mean positions of the primary objects’ points.
The first axis of the interaction frame is aligned with
gravity and the other axes are computed according to
the contact points as explained in Section 2.2. Once the
contact points have been extracted, we use the Bhat-
tacharyya kernel to perform normalized spectral clus-
tering as detailed in Section 2.5. We evaluated 1500

clusterings with the number of clusters κ sampled uni-
formly between two and ten.

The clustering of the samples depends on the ker-
nel’s hyperparameters σp and σn. Using larger values
will generally result in fewer clusters. We selected the
values σp = 3.5cm and σn = 0.35, which correspond
to midrange values from the previous experiments’ grid
search. We also evaluated reducing the normal hyperpa-
rameter to σn = 0.035. The results of the clustering are
shown in Fig. 15. The plots on the left show the ker-
nel values between the individual samples. The plots
on the right show the resulting clustering, with non-
zero elements indicating the pairs of samples that are
assigned to the same cluster. The robot extracted three
and four clusters for the σn = 0.35 and σn = 0.035

values respectively.

3.4.2 Discussion of the Clustering Experiment

The robot was not given the labels of the five different
types of manipulations presented in the scenes. How-
ever, it still managed to cluster the samples from the
same types of manipulations into the same clusters for
both hyperparameter settings. Some of the samples from
the same interaction type would be divided into differ-
ent clusters as the position hyperparameter value σp
tends to zero. For example, if the value is close to zero,
then the kernel will differentiate between contacts at
different locations along a knife’s edge.

When the normal hyperparameter is set to σn =

0.35, the robot found three clusters of interactions. The
insertion and pushing samples received their own clus-

18 O. Kroemer, S. Leischnig, S. Luettgen, and J. Peters

Clustering Results for σp = 3.5cm and σn = 0.35

Sample Nr.
5 10 15 20 25

S
am

pl
e

N
r.

5

10

15

20

25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sample Nr.
5 10 15 20 25

S
am

pl
e

N
r.

5

10

15

20

25
0

0.5

1

1.5

2

2.5

3

Clustering Results for σp = 3.5cm and σn = 0.035

Sample Nr.
5 10 15 20 25

S
am

pl
e

N
r.

5

10

15

20

25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sample Nr.
5 10 15 20 25

S
am

pl
e

N
r.

5

10

15

20

25
0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 15 The plots show the results of the clustering experiments for two sets of hyperparameter values (top: σp = 3.5cm and
σn = 0.35, bottom: σp = 3.5cm and σn = 0.035). Each of the 25 rows and 25 columns of the plots correspond to a sample, as
shown in Fig. 14. The plots on the left show the Bhattacharyya kernel values for the pairs of samples. The plots on the right
show the resulting clusters from the normalized spectral clustering. The non-zero elements indicate pairs of samples that are
assigned to the same cluster.

ters. The placing, cutting, and wiping samples were all
clustered together as they all involve the primary object
being on top of the secondary object. If we reduce the
normal hyperparameter value to σn = 0.035, then the
average kernel value between the cutting and placing
samples is reduced from 0.63 to 0.44 and the cutting
samples are given their own cluster. The smaller hyper-
parameter value allows the kernel to capture the higher
variance in the normals around the edge of the knife
and differentiate it from the large flat contacts from
the placing and wiping samples.

The placing and horizontal wiping samples were clus-
tered together for both hyperparameter settings. The
contact distributions are very similar for these two ma-
nipulations. The key difference between them is the mo-
tion of the object. Hence, one could consider including

the velocities of the points in the contact vectors to dif-
ferentiate between these kinds of interactions. It should
also be noted that wiping a vertical surface would be
considered a different interaction from wiping a hori-
zontal surface. The robot could generalize wiping over
different surface orientations by defining the interac-
tion frame according to the surface normal. However,
for clustering we need a common interaction frame for
all of the samples and interaction types.

Similar to the grasping experiment, the clustering
does not take into account object properties such as
friction or material, which could influence the types of
interactions between the objects. However, the experi-
ment has shown that the Bhattacharyya kernel can be
used to cluster some different types of manipulations
using spectral clustering.

A Kernel-based Approach to Learning Contact Distributions for Robot Manipulation Tasks 19

4 Future Work

The proposed kernel approach allows the robot to rep-
resent and compare the geometric contact distributions
between objects. In the future, we plan on extending
the framework by incorporating additional information
into the kernel representation. The robot may include
material properties, e.g. masses and friction coefficients,
or action related information, e.g., the velocities of the
contact points. Information related to individual con-
tact points could be incorporated by extending the con-
tact vectors xij . Additional object information, e.g.,
masses, can be captured using a separate kernel and
then combined with the proposed kernel to create a
new kernel (Schölkopf and Smola, 2001). Ultimately,
the type of information that the robot can include will
depend on the scenario

We plan to also explore using the proposed frame-
work in different situations. For example, the robot may
be able to better predict the outcome of a lift using the
position and force information if it has already lifted the
object slightly from the table (Chebotar et al, 2016). By
combining the kernels of multiple-pairwise interactions,
the robot can also use the proposed approach to repre-
sent interactions between three or more objects.

The proposed method relies on estimating contacts
between objects. It thus emphasizes the need for robust
contact detection and verification methods. Tactile sen-
sors are well suited for detecting hand-object contacts,
but object-object contacts are generally more difficult
to detect. Verifying that two objects are in contact,
and not just in close proximity, is difficult using only
vision. We will therefore explore methods for detect-
ing object-object contacts on held objects using tactile
sensing (Molchanov et al, 2016), as well as acoustic cues
(Griffith et al, 2012).

5 Conclusion

In this paper, we explored the problem of recogniz-
ing interactions between objects based on their contact
distributions. The robot first extracts a set of contact
points using either 3D point cloud models or tactile
sensors. The extracted contact points are then used to
compute a contact distribution, which forms the basis
for a kernel function. The kernel allows the robot to
compare different sets of contacts to classify the inter-
actions.

The proposed kernel was evaluated on simulated
and real grasping data, and it achieved higher accura-
cies than the three benchmark kernels. The robot also
successfully evaluated the proposed method on lifting
and stacking tasks, as well as a clustering experiment.

These experiments’ results show the importance of us-
ing an interaction frame that is well suited to the task
and a flexible hyperparameter structure. The stacking
task also showed that the proposed method can gener-
alize between scenarios where the shapes of both inter-
acting objects vary.

References

Abdo N, Kretzschmar H, Spinello L, Stachniss C (2013)
Learning manipulation actions from a few demon-
strations. In: International Conference on Robotics
and Automation (ICRA)

Amores J (2013) Multiple instance classification: Re-
view, taxonomy and comparative study. Artificial In-
telligence

Bekiroglu Y, Detry R, Kragic D (2011) Learning tactile
characterizations of object- and pose-specific grasps.
In: International Conference on Intelligent Robots
and Systems (IROS)

Ben Amor H, Kroemer O, Hillenbrand U, Neumann G,
Peters J (2012) Generalization of human grasping for
multi-fingered robot hands. In: International Confer-
ence on Intelligent Robots and Systems (IROS)

Bicchi A, Kumar V (2000) Robotic grasping and
contact: A review. In: International Conference on
Robotics and Automation (ICRA)

Bohg J, Johnson-Roberson M, León B, Felip J, Gratal
X, Bergström N, Kragic D, Morales A (2011) Mind
the gap - robotic grasping under incomplete obser-
vation. In: International Conference on Robotics and
Automation (ICRA)

Bohg J, Morales A, Asfour T, Kragic D (2014) Data-
driven grasp synthesis - a survey. IEEE Transactions
on Robotics (TRo)

Boularias A, Kroemer O, Peters J (2011) Learning
robot grasping from 3d images with markov ran-
dom fields. In: International Conference on Intelligent
Robot Systems (IROS)

Chebotar Y, Hausman K, Kroemer O, Sukhatme G,
Schaal S (2016) Generalizing regrasping with super-
vised policy learning. In: International Symposium
on Experimental Robotics (ISER)

Chen Z, Lii NY, Wimboeck T, Fan S, Jin M, Borst C,
Liu H (2010) Experimental study on impedance con-
trol for the five-finger dexterous robot hand dlr-hit
ii. In: International Conference on Intelligent Robots
and Systems (IROS)

Dang H, Allen PK (2012) Learning grasp stability. In:
International Conference on Robotics and Automa-
tion (ICRA)

Detry R, Ek CH, Madry M, Piater J, Kragic D (2012)
Generalizing grasps across partly similar objects. In:

20 O. Kroemer, S. Leischnig, S. Luettgen, and J. Peters

International Conference on Robotics and Automa-
tion (ICRA)

Eppner C, Brock O (2013) Grasping unknown objects
by exploiting shape adaptability and environmental
constraints. In: International Conference on Intelli-
gent Robots and Systems (IROS)

Ferrari C, Canny J (1992) Planning optimal grasps. In-
ternational Conference on Robotics and Automation
(ICRA) pp 2290–2295

Gibson JJ (1986) The Ecological Approach To Visual
Perception. Lawrence Erlbaum Associates

Goldfeder C, Ciocarlie M, Dang H, Allen PK (2009)
The Columbia Grasp Database. In: International
Conference on Robotics and Automation (ICRA)

Griffith S, Sinapov J, Sukhoy V, Stoytchev A (2012) A
behavior-grounded approach to forming object cat-
egories: Separating containers from noncontainers.
IEEE Transactions on Autonomous Mental Develop-
ment 4(1):54–69

Hermans T, Li F, Rehg JM, Bobick AF (2013) Learning
contact locations for pushing and orienting unknown
objects. In: International Conference on Humanoid
Robots

Herzog A, Pastor P, Kalakrishnan M, Righetti L, Bohg
J, Asfour T, Schaal S (2013) Learning of grasp selec-
tion based on shape-templates. Autonomous Robots

Hofmann T, Schölkopf B, Smola AJ (2008) Kernel
methods in machine learning. Annals of Statistics

Jebara T, Kondor R (2003) Bhattacharyya and ex-
pected likelihood kernels. In: Conference on Learning
Theory (COLT)

Jebara T, Kondor R, Howard A (2004) Probability
product kernels. Journal of Machine Learning Re-
search (JMLR) 5:819–844

Jenssen R, Principe JC, Erdogmus D, Eltoft T (2006)
The cauchy-schwarz divergence and parzen window-
ing: Connections to graph theory and mercer kernels.
Journal of the Franklin Institute 343(6):614–629

Jentoft LP, Tenzer Y, Vogt D, Liu J, Wood RJ, Howe
RD (2013) Flexible, stretchable tactile arrays from
mems barometers. In: International Conference on
Advanced Robotics (ICAR)

Jiang Y, Lim M, Zheng C, Saxena A (2012) Learning
to place new objects in a scene. International Journal
of Robotic Research (IJRR) 31(9):1021–1043

Kappler D, Bohg B, Schaal S (2015) Leveraging big
data for grasp planning. In: IEEE International Con-
ference on Robotics and Automation (ICRA)

Karayiannidis Y, Smith C, Vina FE, Kragic D (2014)
Online contact point estimation for uncalibrated tool
use. In: International Conference on Robotics and
Automation (ICRA)

Kopicki M, Detry R, Adjigble M, Stolkin R, Leonardis
A, Wyatt JL (2015) One shot learning and genera-
tion of dexterous grasps for novel objects. The Inter-
national Journal of Robotics Research (IJRR)

Kopicki MS, Zurek S, Stolkin R, Morwald T, Wyatt JL
(2011) Learning to predict how rigid objects behave
under simple manipulation. In: International Confer-
ence on Robotics and Automation (ICRA)

Kroemer O, Peters J (2014) Predicting object inter-
actions from contact distributions. In: International
Conference on Intelligent Robots and Systems

Kroemer O, Ben Amor H, Ewerton M, Peters J (2012a)
Point cloud completion using extrusions. In: the In-
ternational Conference on Humanoid Robots

Kroemer O, Ugur E, Oztop E, Peters J (2012b) A
kernel-based approach to direct action perception. In:
International Conference on Robotics and Automa-
tion (ICRA)

Kroemer O, Daniel C, Neumann G, van Hoof H, Pe-
ters J (2015) Towards learning hierarchical skills
for multi-phase manipulation tasks. In: International
Conference on Robotics and Automation (ICRA)

Kulick J, Lang T, Toussaint M, Lopes M (2013) Active
Learning for Teaching a Robot Grounded Relational
Symbols. In: International Joint Conference on Arti-
ficial Intelligence (IJCAI)

Laaksonen J, Nikandrova E, Kyrki V (2012) Probabilis-
tic sensor-based grasping. In: International Confer-
ence on Intelligent Robots and Systems (IROS)

Leischnig S, Luettgen S, Kroemer O, Peters J (2015)
A comparison of contact distribution representations
for learning to predict object interactions. In: Inter-
national Conference on Humanoid Robots

Lenz I, Lee H, Saxena A (2013) Deep learning for de-
tecting robotic grasps. In: Robotics: Science and Sys-
tems (RSS)

Li Q, Schürmann C, Haschke R, Ritter HJ (2013) A
control framework for tactile servoing. In: Robotics:
Science and Systems (R:SS)

Li Z, Sastry SS (1988) Task-oriented optimal grasping
by multifingered robot hands. Journal of Robotics
and Automation 4(1):32–44

Luxburg U (2007) A tutorial on spectral clustering.
Statistics and Computing 17(4):395–416

Madry M, Bo L, Kragic D, Fox D (2014) ST-
HMP: Unsupervised Spatio-Temporal Feature Learn-
ing for Tactile Data. In: International Conference on
Robotics and Automation (ICRA)

Miller A, Allen P (1999) Examples of 3d grasp qual-
ity computations. In: International Conference on
Robotics and Automation (ICRA)

Miller A, Allen P (2004) Graspit!: A versatile simulator
for robotic grasping. IEEE Robotics and Automation

A Kernel-based Approach to Learning Contact Distributions for Robot Manipulation Tasks 21

Magazine 11:110–122
Molchanov A, Kroemer O, Su Z, Sukhatme GS (2016)

Contact localization on grasped objects using tactile
sensing. In: International Conference on Intelligent
Robots and Systems (IROS)

Montesano L, Lopes M, Bernardino A, Santos-Victor
J (2007) Modeling affordances using bayesian net-
works. In: International Conference on Intelligent
Robot Systems (IROS)

Ning X, Karypis G (2008) The set classification problem
and solution methods. In: International Conference
on Data Mining Workshops

Odhner LU, Jentoft LP, Claffee MR, Corson N, Ten-
zer Y, Ma RR, Buehler M, Kohout R, Howe RD,
Dollar AM (2014) A compliant, underactuated hand
for robust manipulation. The International Journal
of Robotics Research (IJRR) 33(5):736–752

ten Pa A, Platt R (2015) Using geometry to detect
grasp poses in 3d point clouds. In: International Sym-
posium on Robotics Research (ISRR)

Roa MA, Suàrez R (2015) Grasp quality measures: re-
view and performance. Autonomous Robots (AuRo)

Rosman B, Ramamoorthy S (2011) Learning spatial re-
lationships between objects. The International Jour-
nal of Robotics Research (IJRR)

Rusu RB, Cousins S (2011) 3D is here: Point Cloud
Library (PCL). In: International Conference on
Robotics and Automation (ICRA)

Sahin E, Cakmak M, Dogar MR, Ugur E, Ucoluk G
(2007) To Afford or Not to Afford: A New Formaliza-
tion of Affordances Toward Affordance-Based Robot
Control. Adaptive Behavior (4):447–472

Schölkopf B, Smola AJ (2001) Learning with Kernels:
Support Vector Machines, Regularization, Optimiza-
tion, and Beyond, 1st edn. The MIT Press

Shi J, Malik J (2000) Normalized cuts and image seg-
mentation. IEEE Trans on Pattern Analysis and Ma-
chine Intelligence 22(8):888–905

Sjoo K, Jensfelt P (2011) Learning spatial relations
from functional simulation. In: International Confer-
ence on Intelligent Robots and Systems (IROS)

Trinkle J, Paul RP (1990) Planning for dextrous manip-
ulation with sliding contacts. International Journal of
Robotics Research 9(3):24–48

Ugur E, Piater J (2015) Bottom-up learning of object
categories, action effects and logical rules: From con-
tinuous manipulative exploration to symbolic plan-
ning. In: International Conference on Robotics and
Automation (ICRA), pp 2627–2633

Vedaldi A, Gulshan V, Varma M, Zisserman A (2009)
Multiple kernels for object detection. In: Interna-
tional Conference on Computer Vision (ICCV)

Veiga F, van Hoof H, Peters J, Hermans T (2015) Stabi-
lizing novel objects by learning to predict tactile slip.
In: International Conference on Intelligent Robots
and Systems (IROS)

Will PM, Grossman DD (1975) An experimental system
for computer controlled mechanical assembly. IEEE
Trans Comput 24(9):879–888

