
Approximate Dynamic Programming with Gaussian Processes

Marc P. Deisenroth1,2, Jan Peters2, and Carl E. Rasmussen1,2

Abstract— In general, it is difficult to determine an op-
timal closed-loop policy in nonlinear control problems with
continuous-valued state and control domains. Hence, approxi-
mations are often inevitable. The standard method of discretiz-
ing states and controls suffers from the curse of dimensionality
and strongly depends on the chosen temporal sampling rate. In
this paper, we introduce Gaussian process dynamic program-
ming (GPDP) and determine an approximate globally optimal
closed-loop policy. In GPDP, value functions in the Bellman
recursion of the dynamic programming algorithm are modeled
using Gaussian processes. GPDP returns an optimal state-
feedback for a finite set of states. Based on these outcomes, we
learn a possibly discontinuous closed-loop policy on the entire
state space by switching between two independently trained
Gaussian processes. A binary classifier selects one Gaussian
process to predict the optimal control signal. We show that
GPDP is able to yield an almost optimal solution to an LQ
problem using few sample points. Moreover, we successfully
apply GPDP to the underpowered pendulum swing up, a
complex nonlinear control problem.

I. INTRODUCTION

Optimal control is one of the most intuitive setups for
specifying control policies: one simply specifies a cost func-
tion to be minimized. Due to the work of Bellman, Howard,
Kalman, and others, dynamic programming (DP) became
the standard approach to solve optimal control problems.
However, only in the case of linear systems with quadratic
loss and Gaussian noise are exact solutions known [1]. For
nonlinear systems the solution to the optimal control problem
is more difficult and optimal closed-loop policies cannot be
obtained in general. Thus, approximations have to be used
to find suitable, suboptimal solutions.

One standard method to approximate a closed-loop policy
(not just an open-loop optimal trajectory) for the nonlinear
optimal control problem is based on discretization of state
and control spaces, which reduce continuous-valued prob-
lems to discrete ones. Unfortunately, the resulting discrete
algorithm suffers from the curse of dimensionality. Fur-
thermore, the dynamic behavior of the system is strongly
affected by the relation between time-, state-, and control
discretization. In contrast, DP-based methods with function
approximation aim to solve the problem directly in con-
tinuous domains. Function approximators generalize value
functions to continuous-valued state spaces, while usually
keeping the action domain discrete. In [2], parametric value
function approximators are suggested to bypass the curse
of dimensionality. Parametric models, however, can embody
unjustified assumptions meaning that even in the limit of
infinite data there is a risk of modeling the underlying

1 Department of Engineering, University of Cambridge, Cambridge, UK
2 Max Planck Institute for Biological Cybernetics, Tübingen, Germany

function incorrectly. Kernel-based function approximations
for reinforcement learning (RL) are introduced and proven
to be consistent under mild assumptions in [3], [4]. Gaussian
processes (GPs) are a kernel machines and provide a state-of-
the-art nonparametric Bayesian regression framework com-
monly used in machine learning [5].

To date, GPs have been used in control to derive alternative
solutions to the optimal control problem. In [6] a nonlinear
discrete-time system is modeled using GPs. According to [7]
this model is used for predictions multiple time steps into
future. In [8], an optimal controller following reference
trajectories is derived. A closed-form evaluation of the value
function of a nonlinear, discrete-time system with continuous
state and control spaces is presented. The system dynamics
are modeled using a GP, which allows for analytic policy
evaluation. Updating the policy according to gradient infor-
mation completes policy iteration. One Bayesian approach to
model-free policy iteration is proposed in [9]. The authors
suggest using GPs to solve the policy evaluation and policy
improvement steps, respectively. Rewards and transitions are
considered as stochastic.

Although the use of GPs in policy iteration was suggested
for instance in [8], [9], their combination with value itera-
tion methods in fully observable Markov decision processes
(MDPs) has not been explored in the literature to the best of
our knowledge. In this paper, we introduce Gaussian process
dynamic programming (GPDP). GPDP is an approximate
dynamic programming method, where value functions in the
DP recursion are modeled by GPs. Thus, we are able consider
continuous-valued states and controls and bypass discretiza-
tion problems. GPDP yields an approximately optimal state-
feedback for a finite set of states. These state-feedback values
are generalized to a closed-loop policy defined on the entire
continuous-valued state space. To model possibly discontin-
uous policies properly, we independently train two GPs. For
any new query point, a binary classification problem has to
be solved to select the GP that predicts the corresponding
optimal control signal.

The remainder of the paper is organized as follows.
In Section II, parallels between optimal control and re-
inforcement learning are pointed out to motivate machine
learning techniques in control. The section is concluded by
an introduction into Gaussian processes. In Section III, we
introduce GPDP and describe how to determine a possibly
discontinuous closed-loop policy on the entire state space.
In Section IV, we apply GPDP to a linear quadratic (LQ)
problem so that it yields the optimal solution given sufficient
quantities of data. Moreover, we successfully apply GPDP
to the underpowered pendulum swing-up problem. In the

context of this problem, we briefly discuss the computational
and memory requirements of GPDP and standard DP. Finally,
in Section V, results of the paper are summarized and a
survey of future work is given.

II. BACKGROUND

A. Optimal Control and Reinforcement Learning

Both optimal control and reinforcement learning aim at
finding a policy that optimizes a performance measure. A
policy π : X → U is a mapping from state space X ⊆ IRnx

into control space U ⊆ IRnu that assigns a control action
to each state. In many cases, the performance measure is
defined as the expected loss over a certain time interval. For
a state x0 ∈ X and a policy π, the (discounted) expected
cumulative loss of a finite N -step optimization horizon is

V π0 (x0) := E

[
γNgterm(xN) +

N−1∑
k=0

γkg(xk,uk)

]
, (1)

where k indexes discrete time. Here, u := π(x) is the
control chosen under policy π. The function gterm is a
control-independent terminal loss incurred at time step N .
The immediate loss is denoted by g(xk,uk). The discount
factor γ∈ [0, 1] weights future losses. An optimal policy π∗0
for the N -step problem minimizes (1) for any initial state
x0. The associated bounded state-value function V satisfies
Bellman’s equation

V (x) = min
u∈U

(
g(x,u) + γ E

x′
[V (x′)|x,u]

)
(2)

for all x ∈ X . Here, the successor state for a given state-
action pair (x,u) is denoted by x′. The state-action value
function Q is defined by

Q(x,u) = g(x,u) + γ E
x′

[V (x′)|x,u] , (3)

such that V (x) = minuQ(x,u) for all x. In general, finding
an optimal policy π∗ is hard. Assuming time-additive losses
and an underlying MDP, the minimal expected cumulative
loss can be calculated by dynamic programming. DP de-
termines the optimal state-value function V by using the
Bellman recursion

Vk(xi) = min
uj∈U

(
g(xi,uj) + γ E [Vk+1(xk+1)|xi,uj]

)
(4)

as a fixed-point iteration scheme, where xi ∈ X ,uj ∈ U ,
and k = N − 1, . . . , 0. The recursion is initialized by
setting VN := gterm. The state-value function Vk(xi) is the
minimal expected loss over an N − k step optimization
horizon starting from state xi. Analogously to (4), a recursive
approximation of Q by Qk can be defined.

In contrast to optimal control theory, the standard setup of
reinforcement learning is more general. In RL, we usually do
not assume known transition dynamics and losses. General
RL algorithms have to treat these quantities as random
variables. However, if RL algorithms are applied to a fully
known MDP, it can be considered as equivalent to optimal
control. The Bellman recursion and, therefore, all related
algorithms can be used to solve this problem.

For further details on optimal control, dynamic program-
ming, and reinforcement learning, we refer to [1], [2], [10].

In this paper, we consider a more general setting in which
an expert rates state-dependent controls with corresponding
costs. Perception of these costs can be corrupted by noise.
This setting can be translated into a noisy immediate loss
signal that is not determined by the controller itself, but
externally given by an expert.

Since DP is often inapplicable to nonlinear dynamics
in continuous-valued state and control domains, suitable
approximations are necessary to find a good policy. The
similarity of optimal control and reinforcement learning
allows for the combination of approximation techniques from
both fields to provide richer solutions.

B. Gaussian Processes for Regression

In machine learning, Gaussian processes are used to infer
latent functions from a set of observed function values and
prior assumptions. One way to think of a GP is as a distri-
bution over functions. Then, inference takes place directly
in function space [5]. A GP is completely specified by a
mean function m(·) and a positive semidefinite covariance
function k(· , ·), also called a kernel. We denote a latent
function f that is modeled by a GP as f ∼ GP(m, k).

A GP model is not restricted to a certain parametric
class of functions, such as polynomials. Instead, all function
classes that share the same prior assumptions are covered.
Most of the prior assumptions are implicitly encoded in the
choice of the covariance function. A common choice is the
squared exponential (SE) covariance function

kSE(x,x′) := s2 exp
(− 0.5 (x− x′)TΣ−1(x− x′)

)
, (5)

which reflects the prior belief that we expect the latent
function to be smooth [5]. This means, the closer the two
inputs x and x′ are the more correlated the corresponding
function values f(x), f(x′) will be. The degree of correlation
is determined through the length-scale parameters `i in Σ =
diag([`−2

1 , . . . , `−2
nx

]). In (5), the variance of the underlying
function is denoted by s2.

In case of noisy measurements, a function value is as-
sumed to be given by y = f(x) + ε, where ε ∼ N (0, σ2

ε)
is independent, zero-mean Gaussian noise with variance σ2

ε .
The parameters of the covariance function and the unknown
noise variance are concatenated in a hyperparameter vector
θ := [`1, . . . , `nx

, s, σε]T . Based on training data, this vector
is optimized and yields the least complex model that explains
the data [5]. Conditioned on the training data, the predictive
distribution of the function value f∗ = f(x∗) for a new query
point x∗ is Gaussian with mean and variance given by

µ(f∗)=k(x∗,X)(K + σ2
εI)−1y , (6)

σ2(f∗)=k(x∗,x∗)− k(x∗,X)(K + σ2
εI)−1k(X,x∗) . (7)

The training data is given by the matrix X = [x1, . . . ,xn]
of training inputs and the vector y = [y1, . . . , yn]T of cor-
responding training outputs (observations). K is the kernel
matrix with Kij = k(xi,xj). The first term in (7) is the

Algorithm 1 GPDP
1: input: f,X ,U
2: VN (X) = gterm(X) . terminal loss
3: VN (·) ∼ GPv(mv, kv) . GP model for VN
4: for k = N − 1 to 0 do . recursively
5: for all xi ∈ X do . for all states
6: Qk(xi,U) = g(xi,U)

+ γ E[Vk+1(xk+1)|xi,U , f] + ε
7: Qk(xi, ·) ∼ GPq(mq, kq) . GP model for Qk
8: π∗k(xi) ∈ arg minuQk(xi,u)
9: Vk(xi) = Qk

(
xi, π∗k(xi)

)
10: end for
11: Vk(·) ∼ GPv(mv, kv) . GP model for Vk
12: end for
13: return π∗(X) . return optimal state-feedback for X

prior variance of f(x∗). The second term reduces the prior
variance by a non-negative value that expresses how much
information is transferred from the training set to f(x∗).

GP regression using the SE covariance function is equiva-
lent to Bayesian linear regression with infinitely many Gaus-
sian basis functions. Thus, GPs are a practical realization of
a universal function approximator. In contrast to common
regression methods, Bayesian inference with GPs yields
confidence information through the predictive variance (7).

III. OPTIMAL CONTROL WITH GAUSSIAN PROCESSES

In the following, we consider a nonlinear, deterministic,
discrete-time system xk+1 = f(xk,uk) and noisy measure-
ments of the immediate loss signal

g(xk,uk) + ε , (8)

where ε is independent, zero-mean Gaussian noise with
unknown variance σ2

ε . In Section III-A, we introduce Gaus-
sian process dynamic programming. In Section III-B, we
generalize the optimal state-feedback returned by GPDP to
a possibly discontinuous policy on the entire state space.

A. Gaussian Process Dynamic Programming

The key idea of GPDP is to model both latent value
functions Vk and Qk in the DP recursion by Gaussian
processes. The corresponding GP models are

Vk(·) ∼ GPv(mv, kv) ,
Qk(x, ·) ∼ GPq(mq, kq) ,

where the training inputs are denoted by X and U , re-
spectively. The training outputs are recursively determined
by GPDP. A sketch of the GPDP algorithm is given in
Algorithm 1. The advantage of modeling the state-value
function Vk by GPv is that the GP provides a distri-
bution of Vk(x∗) for any state x∗ through (6) and (7).
This property is exploited in the computation of the Q-
function (3): Due to the generalization property of GPv ,
we are not restricted to a finite set of successor states,
when we determine E[Vk+1(f(x,u))] in line 6. Although
we consider a deterministic system, we have to take an

expectation—with respect to the latent function Vk+1, which
is modeled by GPv . It turns out that E[Vk+1(f(x,u))] =
mv(f(x,u)). The GP model of Qk in line 7 generalizes the
Q-function to continuous-valued control domains. Note that
GPq models only a function of u since x is fixed. Therefore,
minuQk(xi,u) ≈ minumq(u), the minimum of the mean
function of GPq . Thus, the minimizing control π∗k(xi) in
line 8 is not restricted to the finite set U , but can be selected
from the continuous-valued domain IRnu . To find π∗(xi) we
have to resort to numerical methods. Although not considered
in this paper, the training inputs X and U in GPDP can vary
at each iteration step k.

Note that for all xi ∈ X independent GP models for
Qk(xi, ·) are used rather than modeling Qk(· , ·) in joint
state-action space. This idea is largely based on two obser-
vations. First, a good model of Qk in joint state-action space
requires substantially more training points and makes stan-
dard GP models computationally very expensive. Second, the
Q-function can be discontinuous in x as well as in u. We
eliminate one possible source of discontinuity by treating
Qk(xi, ·) and Qk(xj , ·) independently.

B. Learning a Closed-Loop Policy

We interpret the state-feedback π∗(X) returned by GPDP
as noisy measurements of an optimal policy. To generalize
these state-feedback values to a continuous-valued, closed-
loop optimal policy π∗ on the entire state space, we have to
solve a regression problem. We suggest to model the latent
policy with a GP.

In many dynamic systems, an optimal policy is discontinu-
ous at the boundary of an unknown subset of the state space,
especially if the system is underpowered. Using smoothness
favoring covariance functions to model this policy is thus
inappropriate. Finding a suitable covariance function reflect-
ing our prior beliefs is very hard. We tackle this problem by
observing that in applications of control algorithms to real
robots smoothness of controls protects the actuators of the
system. Therefore, we assume that a close-to-optimal policy
is at least piecewise smooth with possible discontinuities at
certain states, where the sign of the control signal changes.

Thus, we attempt to model the policy π∗ by switching
between two locally trained GPs. The main idea of this step
is depicted in Figure 1. We split the state-feedback π∗(X)
returned by GPDP into two subsets of training outputs. One
GP is trained only on the subset π∗+(X) ⊂ π∗(X) of positive
controls, the other GP uses the remaining set denoted by
π∗−(X). We call these GPs GP+ and GP−, respectively. Note
that the values π∗(X) are known from the GPDP algorithm.
Both GP models play the role of local experts in the region of
their training sets. Since we assume a locally smooth latent
close-to-optimal policy, we use smoothness favoring rational
quadratic (RQ) kernels for the two locally trained GPs. An
RQ kernel can be seen as a scale mixture of SE kernels
with different length-scales [5]. After training, it remains
to select one local GP model given a new input x∗. In
this paper, this decision is made by a binary GP classifier
that selects the most likely local GP model. This classifier

π∗(X)

π∗+(X) π∗−(X)

GP+ GP−
π∗+ π∗−

x∗

π∗(x∗)

switch

classifier

Fig. 1. Policy learning scheme. The optimal state-feedback values π∗(X)
are split into two groups: positive and negative control signals. Two GPs are
trained independently on either of the subsets to guarantee local smoothness.
A classifier selects one GP to predict an optimal control for a new input
x∗. The resulting policy can be discontinuous along the decision boundary.

plays a similar role as the gating network in a mixture-of-
experts setting [11]. We greedily choose the GP model with
higher class probability to predict the optimal control to be
applied in a state. We always apply the predicted mean of the
local GP policy model. Note that convex combination of the
predictions of GP+ and GP− according to the corresponding
class probabilities will not yield the desired discontinuous
policy. Instead, the policy will be smoothed out along the
decision boundary, which is not wanted here.

Binary classification maps outcomes of a latent function f
into two different classes. In GP classification (GPC) a GP
prior is placed over f , which is squashed through a sigmoid
function to obtain a prior over the class labels. In contrast
to GP regression, the likelihood p(ci|f(xi)) in GPC is not
Gaussian. The class label of f(xi) is ci∈{−1,+1}. The in-
tegral that yields the posterior distribution of the class labels
for new inputs is not analytically computable. Expectation
propagation approximates the non-Gaussian likelihood to
obtain an approximate Gaussian posterior. We refer to [12],
[5] for further details.

We believe that the suggested approach for learning a
discontinuous policy using two different GPs is applicable
to many dynamic systems and more effective than training a
single GP with a problem-specific kernel. Although problem-
specific kernels may perform better, they are difficult to de-
termine. Furthermore, local smoothness cannot be guaranteed
in many cases.

IV. EXPERIMENTS

A. Proof of Concept: LQ Problem

We demonstrate that the GPDP algorithm is able to solve
the LQ problem with sufficient performance. We chose the
linear system xk+1 = diag(

[
0.5 1

]
)xk +

[
1 1

]T
uk with

deterministic squared immediate loss g(xk, uk) = xTk xk +
5u2

k. The optimal policy is π∗(xk) = −Lxk , where L =[
0.054259 0.333931

]
. We set the prior mean and covari-

ance functions of GPv and GPq to m ≡ 0, k = kSE. To train
the Gaussian processes GPv and GPq we randomly selected
100 states and 100 control actions. For a set of 100 test

points X∗ ∈ [−1, 1]2 the differences between policy π∗GP of
the GPDP controller and policy π∗LQ of the LQ controller are
marginal since the normalized mean squared error (NMSE)
E[(π∗GP(X∗)−π∗LQ(X∗))2]

var(π∗LQ(X∗)) ≈ 0.0008. The GPDP controller can
indeed solve this problem (almost) optimally since there are
only marginal differences in the control decisions.

B. Experiment: Underactuated Pendulum Swing Up

In the following, we consider the underpowered pendulum
swing up. We assume system dynamics following the ODE

ϕ̈(t) =
−µϕ̇(t) +mgl sin(ϕ(t)) + u(t)

ml2
, (9)

where length l, mass m, and the gravitational constant g
are given by l = 1 m, m = 1 kg, and g = 9.81 m

s2 ,
respectively. The coefficient of friction is µ = 0.05 kg m2

s .
The applied torque is restricted to u ∈ [−5, 5] Nm. Angle
and angular velocity are denoted by ϕ and ϕ̇, respectively.
The characteristic pendulum frequency is approximately 2 s.
Initially, the pendulum is hanging down in state [ϕ, ϕ̇]T =
[−π, 0]T . The goal is to swing the pendulum up and to
balance it in the inverted position around [0, 0]T . This task
has previously been considered a hard problem [13]. Instead
of finding a trajectory-based optimal solution as in [13], our
goal is to find a globally optimal policy over the entire state
space. The pendulum dynamics (9) are temporally discretized
according to

xk+1 :=
[
ϕk+1

ϕ̇k+1

]
=

[
ϕk + ∆tϕ̇k + ∆2

t

2 ϕ̈k
ϕ̇k + ∆tϕ̈k

]
, (10)

where ϕk=ϕ(t=k∆t) with ∆t being the time between two
samples. The noisy immediate loss g in (8) is

g(xk, uk) = 0.1
(
xTk diag(

[
1 0.1

]
)xk + 0.2u2

k

)
+ ε ,

where the noise standard deviation σε = 0.001 has to be
accounted for by GPq . In our case, the sampling rate is 5 Hz.
We optimize the undiscounted optimal control problem (1)
over 10 time steps. GPq is trained on a regular grid of 25
actions U ⊂ [−5, 5]. To train GPv we used a regular grid of
382 states X ⊂ [−π, π) × [−7, 7]. Around the goal state
[0, 0]T we added a regular grid of 16 states with higher
resolution. The training set covers the dynamically relevant
part of the state space. For both GPq and GPv we choose
the covariance function k(xi,xj) := kSE(xi,xj)+kn(xi,xj).
The noise kernel kn(xi,xj) := σ2

εδij accounts for the noisy
immediate loss and smooths out model errors of previous
computations. Here, δij is the Kronecker delta. At the
kth iteration, we define mv := k =: mq as prior mean
functions. This makes states far away from the training set
X unfavorable and penalizes uncertainty in GPq .

In general, a closed-loop optimal policy for continuous
state and control domains cannot be determined. Thus, we
rely on DP with state and control space discretization to
design a benchmark controller which we compare with the
GPDP controller. Here, we used regular grids of approxi-
mately 6.2 × 105 states and 125 controls. We consider the
DP controller as almost optimal.

−3 −2 −1 0 1 2 3
−5

0

5

angle in rad

an
g.

ve
l.

in
 r

ad
/s

−5

0

5

Fig. 2. Optimal policy for a discretized system with 6.2× 105 states and
125 controls. Discontinuities at the boundary of the central band are caused
by the dynamics. Due to temporal discretization, stripes of optimal controls
with discontinuous borders appear in the upper right and lower left corners.
Red and blue colors show positive and negative controls, respectively.

In discrete-time systems, higher temporal sampling rate
requires finer spatial discretization. Moreover, especially at
the boundaries of the discretized state space, spatial dis-
cretization artifacts occur. In contrast, the number of training
points in the GPDP algorithm is independent of the temporal
sampling rate. Furthermore, the GPDP controller does not
suffer from discretization errors since it works in continuous
domains

An optimal policy for the underpowered pendulum prob-
lem determined by DP is shown in Figure 2. Discontinuities
at the boundaries of the diagonal band (upper left to lower
right corner) represent states where maximum applicable
torque is just not strong enough to bring the pendulum to
the inverted position. The controller decides to use torque in
opposite direction, to exploit the dynamics of the pendulum,
and to bring it to the goal state from the other side. Other
discontinuities in Figure 2 are largely due to temporal dis-
cretization and decline with higher sampling rates. Figure 2
also shows that a GP model for this policy using smoothness
favoring covariance functions, such as SE or RQ kernels is
not appropriate if discontinuities at the boundaries of the
diagonal band shall be modeled.

The policy model that switches between two GP models
as described in Section III-B is given in Figure 3. The
black crosses and white circles mark the input locations
of the sets π+(X) and π−(X), respectively. The colors
describe optimal control decisions. Misclassification is in
many cases not a big problem, except along the boundaries
of the the diagonal band, where strong discontinuities in the
policy appear. More training points in these regions would
yield better classification performance, but might also lead
to overfitting. Although the range of the controls exceeds
the maximally applicable torque, the model of the optimal
policy is sufficiently good in most parts of the state space.
In simulations we use only the maximally applicable torque.

Starting from the downward position [−π, 0]T , we applied
nonlinear model predictive control. The trajectories of the
system simulation over 5 s are shown in Figure 4. The first
panel of the figure shows the angle, the second panel the

−3 −2 −1 0 1 2 3
−5

0

5

angle in rad

an
g.

ve
l.

in
 r

ad
/s

−5

0

5

Fig. 3. GP approximation of the learned policy based on 398 training
points. The set of optimal control signals is split into two classes on
which two GPs are trained independently. The corresponding states (training
inputs) are denoted by black crosses and white circles, respectively.

0 1 2 3 4 5
−2

0
2

time in s

an
gl

e

GPDP
DP

0 1 2 3 4 5
−4
−2

0

time in s

an
g.

ve
l.

GPDP
DP

0 1 2 3 4 5
−5

0

5

time in s

co
nt

ro
l

GPDP
DP

Fig. 4. States and applied control actions of the underpowered pendulum
swing up for both controllers. The state trajectories almost coincide, whereas
the control signals slightly differ.

angular velocity of the pendulum. The dashed blue curves are
caused by the DP controller, the green solid curves are belong
to the GPDP controller. The third row describes the applied
control signal. The controls applied by the GPDP controller
are drawn with an error bar representing the uncertainty in
the control decision (twice standard deviation of the GP
prediction). Depending on which GP model is used, the
uncertainty of the applied control signal depends on the
distance of the system state to the training inputs of either
π+(X) or π−(X). Both controllers swing the pendulum up
and stabilize it in the inverted goal position. The system
trajectories almost coincide, the control trajectories differ
slightly. The GPDP controller causes with 9.29 slightly more
cumulative loss than the DP controller with 9.02.

Note that the GPDP controller finds the solution in
continuous-valued domains. Although the GPDP controller
is not as good as the optimal benchmark controller, it finds a
reasonable tradeoff between performance and generalization
in the example considered.

C. Computational and Memory Requirements

GPDP without policy learning scales in Ocomp
GPDP :=

O(|X ||U|3 + |X |3) computations per iteration since GP
regression scales cubically in the number of training points.

TABLE I
COMPUTATIONAL DEMANDS AND PERFORMANCES OF GPDP AND DP

GPDP |X | Ocomp
GPDP loss DP |XDP| Ocomp

DP loss

578 2.0×108 9.23 6.2×105 9.8×1012 9.02
488 1.2×108 9.24 3.1×105 1.3×1012 9.05

400∗ 7.0×107 9.55∗ 2.3×105 6.1×1011 9.05
398 6.9×107 9.29 6.4×103 1.0×109 9.34
200 1.1×107 9.48 1.5×103 6.1×107 11.13

Classical DP for deterministic settings needs Ocomp
DP :=

O(|XDP|2|UDP|) computations. Note that the sets of states
XDP and controls UDP used by DP usually contain substan-
tially more elements than their counterparts in GPDP. Thus,
GPDP uses data more efficiently than discretized DP.

In the following, we fix both U , UDP to 25 controls and
only vary the number of states in X , XDP. We compare the
performances of DP and GPDP for one example trajectory
of the underpowered pendulum swing up as well as the
corresponding computational requirements. Note that we still
consider noisy immediate loss signals, which might slightly
decrease the performance of the GPDP controller. The results
are given in Table I. For the swing-up trajectory, the best
cumulative loss of GPDP in Table I is close to the optimal
solution provided by the DP controller although it does not
reach it. The computational and memory requirements of
GPDP are, however, significantly smaller. If we compare
results of similar computational complexity, GPDP with only
398 states outperforms standard DP with 1,500 states. Bigger
sets X in GPDP mainly yield global policies closer to the
one from Figure 2. However, increasing the size of X beyond
a certain point tends to overfitting. In Table I, all simulations
except the one marked with a * are executed using a regular
grid to train GPv as described in Section IV-B. The *-
entry instead defines X through random samples in the state
space. Even in this case, the GPDP controller shows good
performance.

Under certain conditions on the dynamics, GPDP can solve
the optimal control problem for stochastic systems with little
additional computations and no additional memory require-
ments (O(|X |2)). DP is in general no longer applicable
because of the O(|XDP|2) memory required to store a full
transition matrix.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced Gaussian process dynamic
programming (GPDP). Based on noisy measurements of the
immediate loss, Gaussian processes were used to model value
functions in the Bellman recursion in the DP algorithm to
generalize dynamic programming to continuous-valued state
and control domains. This allowed us to avoid discretization
problems. GPDP returns an optimal state-feedback for a
finite set of states. We suggested to generalize these state-
feedback values to a continuous-valued closed-loop policy
on the entire state space. To model a close-to-optimal
policy that is smooth almost everywhere, we trained two
Gaussian processes independently on subsets of the known

state-feedback values. Since both Gaussian processes can
model the underlying policy well in their training domain, a
classifier selects one Gaussian process to predict the optimal
control signal for a new query point. Switching between the
GP models accounts for discontinuities of the policy along
the decision boundary. The application of the concept to a
nonlinear problem, the underpowered pendulum swing up,
yielded a policy that achieved the task with slightly higher
cumulative loss than an almost optimal benchmark controller.

Extending GPDP to stochastic systems within the Gaus-
sian process framework is straightforward. Instead of assum-
ing idealized system dynamics, it is possible to learn the
system dynamics based on observations only. Preliminary
results strongly motivate the use of GPs for this idea. Optimal
placement of support points is also an issue to be dealt
with in future. Regression methods need less data points
than pure discretization methods. However, especially in high
dimensions, data points have to be used efficiently and can
be expensive to obtain. Therefore, a criterion has to be
formulated to rank and select possible support points for the
Gaussian process.

ACKNOWLEDGEMENTS

We thank the reviewers for valuable suggestions. M. P.
Deisenroth is supported by the German Research Founda-
tion (DFG) through grant RA 1030/1.

REFERENCES

[1] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed.,
Athena Scientific, 2005, vol. 1.

[2] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Athena Scientific, 1996.

[3] D. Ormoneit and Ś. Sen, “Kernel-Based Reinforcement Learning,”
Machine Learning, vol. 49, no. 2–3, pp. 161–178, November 2002.

[4] N. Jong and P. Stone, “Kernel-Based Models for Reinforcement
Learning,” in ICML Workshop on Kernel Machines and Reinforcement
Learning, Pittsburgh, PA, USA, June 2006.

[5] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning. The MIT Press, 2006.

[6] J. Kocijan, R. Murray-Smith, C. E. Rasmussen, and A. Girard,
“Gaussian Process Model Based Predictive Control,” in Proceedings
of the 2004 American Control Conference (ACC 2004), Boston, MA,
USA, June–July 2004, pp. 2214–2219.

[7] A. Girard, C. E. Rasmussen, J. Quiñonero Candela, and R. Murray-
Smith, “Gaussian Process Priors with Uncertain Inputs—Application
to Multiple-Step Ahead Time Series Forecasting,” in Advances in
Neural Information Processing Systems 15.The MIT Press, 2003, pp.
529–536.

[8] C. E. Rasmussen and M. Kuss, “Gaussian Processes in Reinforcement
Learning,” in Advances in Neural Information Processing Systems 16.
The MIT Press, June 2004, pp. 751–759.

[9] Y. Engel, S. Mannor, and R. Meir, “Reinforcement Learning with
Gaussian Processes,” in Proceedings of the 22nd International Con-
ference on Machine Learning (ICML-2005), vol. 22, Bonn, Germany,
August 2005, pp. 201–208.

[10] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. The MIT Press, 1998.

[11] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive
Mixtures of Local Experts,” Neural Computation, vol. 3, pp. 79–87,
1991.

[12] T. P. Minka, “A Family of Algorithms for Approximate Bayesian
Inference,” Ph.D. dissertation, Massachusetts Institute of Technology,
Cambridge, MA, USA, January 2001.

[13] C. G. Atkeson, “Using Local Trajectory Optimizers to Speed up Global
Optimization in Dynamic Programming,” in Advances in Neural
Information Processing Systems 6. Morgan Kaufmann, 1994, pp.
503–521.

