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Abstract— A novel online-computation approach to optimal
control of nonlinear, noise-affected systems with continuous
state and control spaces is presented. In the proposed algorithm,
system noise is explicitly incorporated into the control decision.
This leads to superior results compared to state-of-the-art non-
linear controllers that neglect this influence. The solution of an
optimal nonlinear controller for a corresponding deterministic
system is employed to find a meaningful state space restriction.
This restriction is obtained by means of approximate state pre-
diction using the noisy system equation. Within this constrained
state space, an optimal closed-loop solution for a finite decision-
making horizon (prediction horizon) is determined within an
adaptively restricted optimization space. Interleaving stochastic
dynamic programming and value function approximation yields
a solution to the considered optimal control problem. The
enhanced performance of the proposed discrete-time controller
is illustrated by means of a scalar example system. Nonlinear
model predictive control is applied to address approximate
treatment of infinite-horizon problems by the finite-horizon
controller.

I. INTRODUCTION

System models and state information of dynamic systems
are always to some degree uncertain. The consideration of
noise representing such uncertainties offers the opportunity
to increase the quality with which nonlinear systems can be
controlled. Therefore, the consideration of noise is important
when designing an optimal controller for noise-affected
dynamic systems. The nonlinear optimal control problem can
be reduced to the Hamilton-Jacobi-Bellman partial differen-
tial equation that is very difficult to solve [1]. Therefore, less
ambitious methods are often employed to solve the optimal
control problem. Nevertheless, this optimization is still a
highly challenging task in case of nonlinear systems.

In almost all technical applications the state of a dynamic
system is continuous valued. For instance, when a robot
moves between two points, it attains all positions on the
connecting path. The use of continuous-valued state spaces is
a natural way to incorporate this property into the controller
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design. Moreover, continuous-valued control inputs are de-
sirable features of a controller to keep the mentioned robot
close to the optimal trajectory.

Nonlinear model predictive control (NMPC) is a common
approach to sidestep the computational burden of infinite-
horizon problems. In NMPC a finite horizon [t, t+N ] is cho-
sen, within which a solution to the optimal control problem
is determined. Application of the first control action of this
solution, shift of the finite-horizon window, and re-solving
the optimal control problem after each time step finally
results in a locally optimal, but computationally tractable,
closed-loop solution to an infinite-horizon problem [2].

The dynamic programming (DP) algorithm is the discrete-
time equivalent of the Hamilton-Jacobi-Bellman equation.
DP exploits Bellman’s principle of optimality [3] and is a
useful approach to optimal control of nonlinear systems with
finite sets of discrete states and control inputs. Although
DP suffers from the “curse of dimensionality”, it allows
efficient calculation of the optimal closed-loop control inputs
for deterministic as well as stochastic systems with a small
number of states and controls. Moreover, DP is the only
general approach for sequential optimization in case of
stochastic systems [1].

In case of deterministic optimal control, which leads to
suboptimal results for noise-affected systems, Pontryagin’s
minimum principle offers an efficient way to determine the
desired control inputs. Employing this theory, approaches to
optimal control of nonlinear systems with continuous state
and control spaces can be found in [4] and [5]. In [4] stabi-
lizing continuation methods are proposed to derive a solution
to the optimal control problem of nonlinear, continuous-time
systems with general boundary constraints. In [5] the time
domain of a continuous-time system with general boundary
constraints is modified by means of a continuation method.
The initialization of this method yields an optimal input
to the nonlinear system for a one-point horizon. While the
horizon length is being continuously transformed into the
whole considered horizon, the solution is being traced, such
that NMPC can be applied.

For continuous-time systems, an extension of Pontryagin’s
minimum principle to the stochastic case is given in [6].
Here, the assumption of an underlying Ito process is em-
ployed. For the considered discrete-time case, an equivalent
of Pontryagin’s minimum principle for noise-affected system
has not been found in the literature yet. For continuous-time
systems with linear control inputs, an approach to optimal
control of stochastic nonlinear systems with continuous state
spaces is given in [7] and [8]. With certain restrictions on



the noise structure and the assumption of a cost function that
is quadratic in the control input, the optimal control problem
can be written as a path integral, for which an approximate
solution can be found by Monte Carlo methods.

For discrete-time systems, an approach to infinite-horizon
optimal control that considers the noise influence on a system
with continuous state spaces, but only a finite set of control
inputs, is presented in [9]. In this approach the DP value
function is approximated by means of a radial basis function
network with a finite number of Gaussian kernels. Evaluation
of this network at the mean values of the kernels yields
a finite Markov decision problem, which can be solved
by approximate value iteration. In [10] the same problem
class is considered for NMPC with finite prediction horizon.
Here an approach is presented that provides a closed-form
approximate solution. The method is based on Gaussian
mixture representation of the cost function. In addition, tran-
sition densities are approximated by means of axis-aligned
Gaussian mixtures. In [11] a value function approximation
scheme for this framework employing DP is presented, which
significantly lowers the computational demand.

Regarding the control problem as a reinforcement learning
problem, an approach to derive a closed-form evaluation of
the value function of a nonlinear, noise-affected system in
discrete time with continuous state and control spaces is
presented in [12]. Here, the value function is approximated
by means of a Gaussian process (GP). GPs represent a
distribution over functions and extend the properties of a
set of support points to the entire continuous-valued space.
Applying GPs to system identification and to value function
approximation, policy iteration yields the desired optimal
policy. Similarly, in [13] and [14], a nonlinear discrete-time
system is identified by means of GPs. To solve the prediction
of uncertain system states analytically, the distributions of the
successor states are (pointwise) approximated by Gaussians.
Within the NMPC framework, a controller is obtained that
determines an optimal control input, which strongly depends
on the quality of the learned system dynamics.

In this paper an approach is presented that considers
the noise influence in the optimal control of a discrete-
time nonlinear system with unconstrained continuous-valued
state spaces and control inputs. Starting off by solving a
corresponding noise-free optimal control problem, the state
and the control spaces are restricted to an area around the
corresponding trajectories provided by this initial solution.
Here, an advanced solution incorporating the noise influence
is derived by stochastic DP combined with value function ap-
proximation as well as nonlinear stochastic state prediction.
This method can be treated as a solution to the closed-loop
optimal control problem for noisy systems within NMPC.

This paper is structured as follows. The considered system
and the corresponding optimal control problem are intro-
duced in Section II. In Section III the proposed online-
computation approach is described. Benefits gained by this
algorithm are illustrated by means of a scalar example system
in Section IV. Finally, in Section V the results of this paper
are summarized, and a survey of future work is given.

II. PROBLEM FORMULATION

We consider a discrete-time system, which is given by

xk+1 = f(xk, uk) +wk , k = 0, . . . , N − 1 , (1)

where xk ∈ IRnx is the system state, uk ∈ IRnu the control
input, and f a nonlinear function. wk ∈ IRnx is a zero-mean
Gaussian white noise term with covariance matrix Cw. The
initial state x0 is assumed to be known, and the states xk
are directly accessible at each time step.

Notation: Throughout this paper, x is a vector-valued
variable, x a scalar, and x a vector-valued random variable.
Matrices are denoted by capital boldface letters X.

To determine an optimal solution to the finite-horizon con-
trol problem, a cost function is introduced. In the following,
the important case of an additive cost function is considered.
For a state xk and a given policy πk := (uk, . . . , uN−1), the
expected cost-to-go from time step k to N within the N -step
optimization horizon is defined as

V πk

k (xk) := E
wk,...,wN−1

[
gN (xN ) +

N−1∑
i=k

gi(xi, ui)

]
. (2)

The function gN (xN ) denotes the terminal cost, and
gi(xi, ui) is the step cost from time i to i + 1 depending
on the system state and the applied control input at time i.

An optimal policy π∗ := (u∗0, . . . , u
∗
N−1) is desired, such

that (2) is minimized for the initial state x0, that is,

π∗ := argmin
π0

V π0
0 (x0) . (3)

Without any additional assumptions, a naive approach would
determine π∗ in (3) by exhaustive minimization over all poli-
cies π0. With the assumption that the system state satisfies
the Markov property, the value function, that is the minimal
expected cost-to-go, can be recursively calculated by the DP
algorithm according to

JN (xN )= gN (xN ) , (4)

Jk(xk)=min
uk

(
gk(xk, uk) + E

wk

[
Jk+1(xk+1)

])
, (5)

k = N − 1, . . . , 0 ,

where xk+1 = f(xk, uk) +wk. The function Jk(xk) sum-
marizes the minimal expected cost to the terminal state xN
starting from state xk.

Remark 1: The step costs gk, k = 0, . . . , N , can be
selected in a way, such that the system state attains a desired
trajectory (x′1, . . . , x

′
N ), when the optimal policy is applied.

These functions are often quadratic in the state as well as in
the control variable.

The DP algorithm allows for the determination of an
optimal policy (u∗0, . . . , u

∗
N−1) by recursive application of

Bellman’s principle of optimality to calculate the optimal
control inputs

u∗k := argmin
uk

(
gk(xk, uk) + E

wk

[
Jk+1(xk+1)

])
(6)

for k = N − 1, . . . , 0. Clearly, the computational effort is
lowered compared to the more general formulation (3), since
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Fig. 1. Block diagram of the proposed controller. For a known state, the 5-step algorithm determines the desired state-feedback control u∗0 to be applied
in the NMPC framework. An initial solution yields a control trajectory for the considered prediction horizon and serves as a basis for a restriction of the
state space. After defining an adaptive grid within this restriction, value function approximation in stochastic DP is employed to yield the desired control
input u∗0 .

the minimization over policies in (3) is turned into recursive
minimization over the individual control inputs.

In the considered case of nonlinear systems suffering from
additive noise, recursion (5) is given by

Jk(xk) = gk(xk, u
∗
k) (7)

+

∫
IRnx

pwk
(
xk+1 − f(xk, u∗k)

)
Jk+1(xk+1) dxk+1

in case of continuous state spaces. pwk is the probability
density function of the noise vector wk, and u∗k is the
assumed optimal control input given by (6). In general, the
integral in (7) cannot be solved analytically. The complexity
of (7) is caused by the nonlinearity of the system function
and the noise influence, which requires the expected value.

Suitable approximations are necessary to obtain the
desired results, since DP is not directly applicable in
continuous-valued state and control spaces.

Example System
Throughout this paper, we use the nonlinear scalar system

xk+1 =
√
2 sin

(
xk +

π

4

)
+

xk

2
− 1 + uk +wk (8)

with a zero-mean Gaussian noise variable wk with variance
σ2
w for demonstration purposes. �

III. ONLINE-COMPUTATION APPROACH

Control without noise consideration leads to suboptimal
results for the noise-affected system (1). We employ the
following assumption to find a sound solution to (6) while
avoiding the computational burden of the consideration of
the entire state and control spaces.

Assumption 1: Given sufficiently smooth system and
value functions, a noise-free solution is still in the vicinity
of an optimal control incorporating the noise influence.

This assumption leads to the proposed algorithm consist-
ing of the following main steps to determine the optimal
control input for a nonlinear, noisy system with continuous
state and control spaces.
A. Determination of an initial (deterministic) solution.

B. Employment of the initial solution to restrict the state
space.

C. Definition of an adaptive grid, which covers the consid-
ered part of the state space.
Recursion backward in time:

D. Approximation of the DP value function (5).
E. Stochastic dynamic programming within the restricted

state space, where the approximated value function is
employed and the control space is restricted.

A block diagram of a controller employing the proposed
algorithm is depicted in Figure 1. For a known input x0,
the controller determines an initial approximate solution
(û0, . . . , ûN−1) as described in Section III-A. Using this
control sequence, the state space is restricted depending on
the mean values and the covariance matrices of the predicted
successor states, which is described in Section III-B. More-
over, adaptive grids Gk, k = 0, . . . , N , are determined within
this restriction, which is explained in Section III-C. Interleav-
ing value function approximation along the grid points of Gk,
which yields the functions J interpk , and stochastic dynamic
programming results in the expected optimal state-feedback
control u∗0 for the state x0 as described in more detail in
Sections III-D and III-E, respectively.

Remark 2: Only the control input u∗0 for the current
system state x0 is required, since the employment of NMPC
is proposed to approximately treat infinite-horizon problems.
New state information is obtained after each time step, and
the whole algorithm is repeated.

Several methods are conceivable to execute either of the
steps A–E. In the following, a set of especially well-suited
methods is described, based on which the proposed algorithm
is evaluated in Section IV.

A. Initial Solution

In the proposed approach, a good candidate for the optimal
policy for a corresponding deterministic system

xk+1 = f(xk, uk) (9)

is employed. Using this result, an initial solution to the
original optimal control problem for a finite decision-making



horizon is found as described in [15]. There, the value func-
tion (5) of the stochastic dynamic programming algorithm
is approximated by means of Taylor series expansion up to
second order to simplify the problem. The approximation
serves as a basis for the derivation of a stochastic minimum
principle for the discrete-time case, where the properties
of a stochastic Hamiltonian are employed. Using these
theoretical results, the optimal control problem is reformu-
lated as a two-point boundary-value problem. The arising
nonlinear equations are solved numerically by means of a
continuation method [16]. In [15] the continuation consists
of transforming an initial linear system into the original
nonlinear system, while the solution to the corresponding
(non)linear equation system is being traced. This procedure
yields a good candidate for the sequence of optimal state
feedbacks of the simplified problem. After all, this control
sequence is equivalent to the sequence solving the optimal
control problem for (9), although initially a stochastic system
was considered. However, according to Assumption 1, this
solution can be employed as good prior knowledge in step B
to restrict the state space.

In the following, the control inputs of this approximate
initial solution are denoted by û0, . . . , ûN−1.

B. State Space Restriction

Discretization of state and control spaces is a common
approach to apply dynamic programming to continuous-
valued problems. If the state space can be restricted in a
meaningful way, for instance, if there is knowledge about
improbable or impossible system states, discretization can
be concentrated there. Typically, this leads to a simplified
problem with reduced computational demand.

In the proposed approach, the control sequence
(û0, . . . , ûN−1) of the deterministic solution is employed to
calculate the distributions of the states x0, . . . ,xN . After
that, the corresponding mean values and covariance matrices
are determined. Then, for k = 0, . . . , N , the state space is
restricted around the corresponding mean values by defining
a symmetric region whose range proportionally depends on
the covariance information.

Example System
In case of the scalar example system (8), based on empirical
results, we choose the restricted state space to be[

µk −
3

2
σx
k , µk +

3

2
σx
k

]
⊂ IR ,

where µk denote the means and σx
k the corresponding stan-

dard deviations of the predicted states xk for k = 0, . . . , N .
�

In case of Gaussian noise affecting the system, the ex-
tended Kalman filter (EKF) provides a method to obtain the
desired values by linearizing the nonlinear system function
f around the mean value of the system state and subsequent
application of the Kalman predictor for linear systems. An
alternative approach is provided by the unscented transfor-
mation (UT), which is introduced in [17]. The UT determines

estimates of the mean value and the covariance matrix of a
nonlinearly transformed random variable x given by

y = b(x) . (10)

Instead of approximating the nonlinear function b, which is
for example done by the EKF, the probability density function
of the random variable x is approximated with a small fixed
number of samples. These samples are individually trans-
formed by the original function b. The accuracy of the UT is
superior to that of the EKF, while the computational efforts
of the UT and the EKF are of the same order [18]. A more
sophisticated approach to determine the desired estimates of
the means and covariance matrices is given in [19], where a
closed-form prediction for nonlinear, time-invariant systems
is introduced, which provides more accurate predictions. This
method suffers from higher computational cost, while the
complexity of the predicted density stays constant over time.

In the present approach, the UT is employed to determine
the desired mean values and covariance matrices of the
successor states of x0 for the whole prediction horizon. This
method results in a reasonable tradeoff between accuracy and
computational effort. In the considered case, (10) is given by

xk+1 = f(xk, ûk) +wk , k = 0, . . . , N − 1 ,

that is, the control inputs û0, . . . , ûN−1 of the initial solution
from Section III-A are employed to predict the system state
by means of (1). The incorporation of the noise term wk in
the UT is treated as described in [20].

C. Definition of an Adaptive Grid

To approximate the DP value function (5) within the
restricted part of the state space, grid (support) points have
to be determined that cover the range of the considered part
of the state space. Therefore, for k = 0, . . . , N , a symmetric
set Pk of 2p + 1 points around the mean value µ

k
can

be heuristically determined, where p depends on the state
dimension nx. The set Pk depends on the covariance matrix
Cxk of the random variable xk through a function s, that is,

Pk :=
{
µ
k
, µ

k
± s(Cxk, i), i = 1, . . . , p

}
. (11)

Depending on the uncertainty of the random variable
xk, the sets Pk discretize the state space around the mean
values µ

k
for k = 0, . . . , N . The more uncertain the k-step

prediction is, the wider the area becomes that is covered by
Pk. Employing Assumption 1 that the true, but unknown,
trajectory is located within the considered region of the state
space, the function s in (11) can be chosen such that the
concentration of the grid points is higher around the mean
values to improve the quality of the solution in the vicinity
of the predicted trajectory.

Example System
In case of system (8), we define the sets Pk, k = 0, . . . , N, as

Pk :=

{
µk, µk ±

3

8
σx
k , µk ±

3

4
σx
k , µk ±

3

2
σx
k

}
with a higher concentration of the grid points in the vicinity
of the predicted mean values µk. Thus, approximately the
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Fig. 2. Possible state space restriction. With the initial deterministic
solution, the restrictions of the state space around the mean values of the
successor states of x0 are determined based on the corresponding variances.

same probability mass of a Gaussian is covered between
neighboring grid points . �

Instead of using the original set Pk as described in (11),
a slightly modified set

Gk :=
{
x
(0)
k , . . . , x

(2p)
k

}
(12)

can be determined to incorporate important properties of the
system. A point x′k of the desired state trajectory, which
is implicitly defined through the step cost gk in the DP
algorithm, is substituted for one grid point of Pk. The
grid point to be substituted is the nearest neighbor of x′k.
This modification assures exact consideration of the desired
states. To maintain the symmetry of the grid point set,
the symmetric equivalents of the substituted grid point are
replaced, too.

Remark 3: It is important to note that the sets Gk, k =
0, . . . , N , cover the same parts of the state space as the sets
Pk, if no extremal point of Pk is replaced. Furthermore, the
number of points does not change. In numerous simulations
the employment of the modified grid Gk led to better results,
since the desired points x′k are explicitly included as knots
of the subsequent interpolation scheme. The replacement is
applied as soon as x′k is in the scope of Pk.

Example System
A possible state space restriction given by Gk for the scalar
example system (8) is depicted in Figure 2. The black dots de-
note the sequence of the predicted mean values. The shaded
area covers the range of the sets Gk for k = 0, . . . , N with
N = 5. �

D. Value Function Approximation

Dynamic programming on the grid Gk requires numer-
ous grid points to achieve good accuracy. Because of the
“curse of dimensionality”, this procedure is not applicable
in general. Therefore, interpolation using a small number
of grid points is a promising approach to value function
approximation. Then, good accuracy can be achieved in the
DP algorithm, since DP is not restricted to a discrete set
of points. Using value function interpolation, the “curse of
dimensionality” cannot be removed, but noticeably reduced.
The selection of appropriate interpolating functions possesses

many degrees of freedom. In this paper we propose to
piecewise interpolate the value function (5) by means of
cubic splines within the range of the elements of the sets
Gk, k = 0, . . . , N .

In order to be able to solve (7) in closed form, only
the properties of interpolating polynomials are considered
in the following. In case of higher-degree interpolating
polynomials, oscillations tend to occur, and optimization be-
comes a serious problem. Because of that, piecewise defined
lower-degree polynomials, that is, linear, quadratic [21], or
cubic [22] functions, are often exploited to sidestep these
problems. A common assumption in model-based control is
the twice differentiability of the value function Jk in the
Bellman equation (5) in the dynamic programming algo-
rithm. For instance, higher-order Taylor series approximation
of Jk requires at least second-order derivatives [6], [15]. To
maintain this property, interpolating polynomials of at least
third degree are required. In the scalar case, cubic polyno-
mials allow for an analytical solution to the optimization
problem [23] and represent a reasonable tradeoff between
interpolation quality and function complexity.

Summarizing the discussed points, we conclude that with
the employment of interpolating cubic splines, stochastic DP
can be efficiently applied to solve the continuous-valued
optimal control problem approximately.

E. Stochastic Dynamic Programming

Compared with the initial control sequence, an improving
approximate solution to the considered finite-horizon optimal
control problem with the incorporation of noise is obtained
by stochastic DP within the restricted state space. There,
the DP value function (5) is recursively approximated by
interpolating the grid points of the sets Gk, k = N, . . . , 0.

Employing the assumption that Jk+1 is already given by
a continuous approximation, the aim is to obtain a similar
description of Jk depending on Jk+1, such that the DP
recursion can be applied. For k+1 = N , the value function
is given by the terminal cost (4), which is independent of
the control variable and, therefore, known.

At each time step, a restriction of the control space is
determined by considering the sets U (i)

k for all grid points
x
(i)
k , i = 0, . . . , 2p, at time step k, where

U (i)
k :=

{
u
(i,j)
k : E

wk

[
f(x

(i)
k , u

(i,j)
k ) +wk

]
= x

(j)
k+1 ,

j = 0, . . . , 2p

}
. (13)

The set U (i)
k comprises the discrete set of control inputs that

map x
(i)
k at time step k onto the grid points x(j)k+1 at time

step k + 1. Employing a control action u
(i,j)
k ∈ U (i)

k , the
expected cost-to-go starting from a specific grid point x(i)k
via the expected successor state x(j)k+1 can be computed by

Vk(x
(i)
k , u

(i,j)
k ):=gk(x

(i)
k , u

(i,j)
k )+ E

wk

[Jk+1(x
(j)
k+1)] (14)

=gk(x
(i)
k , u

(i,j)
k )+ min

uk+1,...,uN−1

V
πk+1

k+1 (x
(j)
k+1) ,



where the function Jk+1 is known. For a fixed state x
(i)
k ,

the computation of (14) for u(i,j)k ∈ U (i)
k yields the ex-

pected cost-to-go Vk(x
(i)
k , u

(i,j)
k ). Subsequent interpolation

of Vk(x
(i)
k , u

(i,j)
k ) along the corresponding knots u(i,j)k ∈ U (i)

k

yields a cost function V interpk (x
(i)
k , uk) that is continuous in

the control variable. In case of piecewise interpolation by
means of cubic splines, the optimization problem

Jk(x
(i)
k ) = min

uk

(
V interpk (x

(i)
k , uk)

)
(15)

for one specific grid point x(i)k ∈ Gk at time step k can be
solved analytically. The same calculation is performed for
all grid points in Gk. Subsequent interpolation with respect
to the grid points x(i)k ∈ Gk yields an approximated value
function J interpk (xk) within the range of the state space
restriction given by Gk. Therefore, the desired continuous
approximation of Jk depending on Jk+1 is given by J interpk

and can be employed in the dynamic programming algo-
rithm.

In contrast to non-restricted spaces, the approximation
by means of interpolating cubic splines is typically more
accurate and, therefore, yields better results when using the
sets Gk, k = 0, . . . , N .

F. Properties and Limitations

After each time step, the proposed algorithm determines
an initial control sequence as described in Section III-A and
the resulting state space restriction with the corresponding
adaptive grid as explained in Sections III-B and III-C. Be-
cause of this online computation, it is possible to incorporate
current knowledge of the system state. Owing to the spline
interpolation in Section III-D, the required number of grid
points is dramatically reduced, and good accuracy of the DP
algorithm is achieved. The first cubic spline interpolation of
the discrete control inputs yields a continuous function that
can be minimized analytically, which results in (15). The
second interpolation of the value function along the states
x
(i)
k ∈ Gk yields a continuous expected minimal cost function

within the considered restricted state space. However, the
algorithm depends on the quality of the initial solution,
a sufficiently good restriction of the state space, and the
accuracy of the interpolation scheme employed. Moreover,
the proposed algorithm only determines a local, suboptimal
solution, if Assumption 1 does not hold.

Several methods implementing the steps A–E of the al-
gorithm can be employed to adapt the algorithm to specific
problems, since the algorithm formulation in this paper is
very general. With the chosen setting, a reasonable tradeoff
between computational demand and accuracy of the solution
is found as illustrated by simulations in the next section.

IV. SIMULATION RESULTS

The proposed algorithm is evaluated by means of the scalar
example system (8). NMPC is applied for 10 time steps with
a prediction horizon of N = 5 time steps. Simulations are
executed for initial values x0 ∈ X := {−10,−8, . . . , 10}.
The zero-mean noise variable wk is Gaussian distributed

0 1 2 3 4 5 6 7 8 9 10

−10

−5

0

5

k →

x
k
→

xinit
0 , . . . , xinit10 , σw = 5

xinit
0 , . . . , xinit10 , σw = 0

(a) State trajectories.

0 1 2 3 4 5 6 7 8 9 10
−2
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0

1

2

3

k →
u
k
→

uinit
0 , . . . , uinit9 , σw = 5

uinit
0 , . . . , uinit9 , σw = 0

(b) Corresponding control trajectories.

Fig. 3. Example state and control trajectories for system (8). Comparing
the trajectories for the deterministic system, that is, σw = 0, and the system
affected by noise with standard deviation σw = 5, the differences are
obvious.

with standard deviation σw = 5. The cost functions are given
by

gN (xN ) =
1

2
x2N ,

gk(xk, uk) =
1

2
(x2k + 2u2k) , k = N − 1, . . . , 0 ,

to attain the unstable equilibrium point 0 as rapidly
as possible. Therefore, the implicitly encoded trajectory
(x′1, . . . , x

′
N ) introduced in Remark 1 is set to (0, . . . , 0).

As described in Section III-D, the value function is
interpolated by means of piecewise defined cubic splines.
Therefore, the solution to the integral in (7) reduces to
an integral over the product of a Gaussian and a cubic
polynomial. This solution can be analytically determined
by using the first moments of the Gaussian and the error
function, since the integral is restricted to the finite domains
of the defining spline pieces.

In the following, the value functions Jk, the system states
xk, and the control inputs uk for the initial solution of
Section III-A are denoted by J initk , xinitk , and uinitk , re-
spectively. The corresponding values for the whole proposed
algorithm using the spline interpolation of the value function
are denoted by Jsplinek , xsplinek , and usplinek , respectively.

A. Noise Influence

To emphasize the noise influence on system (8), an exam-
ple state trajectory and the corresponding control trajectory
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Fig. 4. MC estimates of the expected minimal cost for different controllers.

are depicted in Figure 3 for the initial solution in case of
a deterministic system with σw = 0 and the considered
noise-affected system with σw = 5. The deviation of the
state trajectories between the deterministic and the stochastic
systems in Figure 3(a) is caused by the noise influence. The
corresponding control trajectories are given in Figure 3(b).
Clearly, the considered system suffers from relatively strong
noise disturbances, which motivates the consideration of
noise in the controller design.

B. Quality of the Proposed Methods

In the following, the arising costs are compared to ana-
lyze the quality of the control sequence resulting from the
application of the proposed methods.

For σw > 0 the costs change with each simulation.
A Monte Carlo (MC) simulation provides an approximate
upper bound and, thus, an estimate JMC

σw=5 of the true value
function depending on the noise standard deviation σw = 5
by calculating the arithmetic mean of all costs after 2816
simulations starting from each x0 ∈ X .

Four different controllers Cinit, Cspline, Cgrid 7, and
Cgrid 202 are considered. Cinit and Cspline provide the
controllers resulting from the work of [15] and the proposed
improvement explained in Section III, respectively. Cgrid 7

employs the same grid points as Cspline, but does not
interpolate the value function by means of cubic splines.
Therefore, the set of controls is also discretized and given
by a 7-elements set. The employment of Cgrid 202 with 202
possible states and controls within the restricted optimization
space per time step is computationally very demanding, but
is expected to be the best controller because of the relatively
finely discretized state and control sets.

In Figure 4 the MC estimates of the expected mini-
mal cost functions resulting from the applications of all
controllers are depicted. In each simulation the controllers
Cinit, . . . , Cgrid 202 suffer from the same noise vector,
which explains the similar structure of the MC estimates. The
first striking observation is that Jsplineσw=5 and JMC grid 202

σw=5 are
indistinguishable. Therefore, the proposed approach yields
results of the same quality as Cgrid 202, which employs
finely discretized state and control spaces. As shown in
Table I, however, the computational demand of Cspline is
clearly lower than the one of Cgrid 202. In Table I the relative
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Fig. 5. 2-σs error bars for the sample mean values of the initial
deterministic and the spline-based algorithms.

TABLE I
RELATIVE COMPUTATIONAL EFFORT OF THE CONTROLLERS.

Cinit Cspline Cgrid 7 Cgrid 202

1 1.80 1.04 33.44

computation times of the corresponding MATLAB codes are
given. The computation time of the initial solution is set to 1,
since it is employed in all other controllers to restrict the state
space. Comparing the expected cost resulting from the initial
solution, it is concluded that the first aim is achieved, that is,
Cspline noticeably outperforms Cinit, where the additional
computation effort is still acceptable.

Remark 4: In the current setting the improvement is not
only noticeable, but statistically significant. Considering the
values JMC init

σw=5 (x0) and JMC spline
σw=5 (x0) for x0 ∈ X as

estimates of the mean values of the corresponding minimal
cost functions (depending on the different controllers), a one-
tailed t-test is performed to determine the significance level
of the difference of these estimates. The p-values yield the
result that the hypothesis of identical mean values has to be
rejected with an error probability of less than 0.0010 along
the sample points x0 ∈ X .

In the chosen setting the average improvement by Cspline

is approximately 4%. The error bars along the sample
mean values JMC init

σw=5 (x0) and JMC spline
σw=5 (x0) are given

in Figure 5. The error bars desribe the 2-σs interval around
the sample means, where σs is the standard error.

Simulations with smaller noises or other systems led to
results similar to the ones described above.

V. CONCLUSIONS AND FUTURE WORK

In this paper a novel online-computation approach to
optimal control of nonlinear, noise-affected systems with
continuous state and control spaces is presented. At each
time step, the algorithm is initialized with a candidate of
the finite-horizon open-loop solution to the optimal control
problem of a corresponding deterministic system. The noise
is explicitly incorporated into the control in a post-processing
algorithm comprising the following steps. Using the initial
solution, estimates of the means and covariance matrices
of the predicted successor states of the known initial state
are obtained for the entire finite decision-making horizon.



In the vicinity of the means, the state space is restricted
depending on the uncertainties of the successor states. Within
this restriction, an improved solution is found by interleaving
stochastic dynamic programming and value function approx-
imation. Therefore, continuous state and control spaces are
treated approximately. With the methods employed in the
post-processing algorithm, a reasonable tradeoff between
accuracy and computational effort is achieved.

The application of nonlinear model predictive control in
the simulation of a scalar example system resulted in a
noticeable and statistically significant improvement over the
initial deterministic solution by using the proposed algo-
rithm. Moreover, value function interpolation by means of
cubic splines yielded better results than a purely grid based
DP approach. Finally, the accuracy of the proposed approach
is of the same quality as a computationally very demanding
DP approach that discretizes the restricted part of the state
space with a huge number of grid points.

Several points merit further investigation in future work.
The proposed algorithm allows the employment of arbitrary
methods to apply the main steps mentioned in Section III.
Depending on a concrete application, other methods than
the currently implemented ones might be preferable. As
mentioned in Section III-D, solutions to the function approx-
imation problem are desired, such that the expected value can
be computed analytically. The true underlying function itself
is, of course, not restricted to low-order polynomials, but is
presumably covered by other function classes. With Gaussian
approximations, the integral in the expected value (7) is
analytically solvable. This property is exploited in the Gaus-
sian process framework. Here, the Gaussian approximation
holds pointwise for the function values. The employment of
GPs to multi-step ahead prediction is for instance covered
in [24], where the mean and the uncertainty information
are predicted. The application of this method to state space
restriction is of high interest. Therefore, the application of
the GP framework in the proposed algorithm is worth being
evaluated in future. The application of the proposed approach
to a real experiment is a straightforward step to evaluate its
practical use.
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