Hierarchical Relative Entropy Policy Search

Christian Daniel', Gerhard Neumann', Jan Peters

1,2

I Technische Universitit Darmstadt, Hochschulstr. 10, 64289 Darmstadt, Germany
2 Max Planck Institute for Intelligent Systems, Spemannstr. 38, 72076 Tiibingen, Germany
{daniel, neumann, peters} @ias.tu-darmstadt.de

Abstract

Many real-world problems are inherently hi-
erarchically structured. The use of this struc-
ture in an agent’s policy may well be the
key to improved scalability and higher per-
formance. However, such hierarchical struc-
tures cannot be exploited by current policy
search algorithms. We will concentrate on
a basic, but highly relevant hierarchy — the
‘mixed option’ policy. Here, a gating network
first decides which of the options to execute
and, subsequently, the option-policy deter-
mines the action.

In this paper, we reformulate learning a hi-
erarchical policy as a latent variable estima-
tion problem and subsequently extend the
Relative Entropy Policy Search (REPS) to
the latent variable case. We show that our
Hierarchical REPS can learn versatile solu-
tions while also showing an increased perfor-
mance in terms of learning speed and quality
of the found policy in comparison to the non-
hierarchical approach.

1 Introduction

In recent years, policy search methods have received a
lot of attention due to their strong convergence guar-
antees [1], their ease of use for function approximation
[2], the improved possibilities of incorporating domain
knowledge [3] and several impressive application re-
sults [4, 5, 6, 7]. A variety of successful policy search
methods have been introduced including pair-wise pol-
icy comparisons [8], policy gradient methods [9, 2],
natural policy gradient methods [1, 10], probabilistic
policy search approaches based on EM [7], or based on

Appearing in Proceedings of the 15" International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2012, La Palma, Canary Islands. Volume XX of JMLR:
W&CP XX. Copyright 2012 by the authors.

probabilistic modeling [11]. These policy search meth-
ods have been particularly successful in the domain of
robot movement generation [12, 13, 14].

However, current methods cannot exploit the hier-
archical structure inherent to many real-world prob-
lems. Introducing such structures has the potential
to improve scalability as well as performance of pol-
icy search algorithms [15]. For example, many prob-
lems require learning a ‘mixed option’ policy. That is,
given a set of parametrized options, also called mo-
tion templates [16], a gating network first determines
the option to execute and, subsequently, a continuous
action-selection policy determines the parametrization
of the option. Thus, in contrast to concentrating on a
single parameterized policy (or option), our approach
concentrates on representing a mixture of different op-
tions, and hence, we are able to represent versatile
solutions and not just a single mode of the solution
space.

In this paper, we extend the Relative Entropy Policy
Search (REPS) algorithm [17] to the hierarchal case,
which we denote as HiREPS. REPS regularizes the
policy search problem in an information theoretic way.
Such regularization was suggested recently from sev-
eral different perspectives. Bagnell & Schneider [1]
showed that the natural policy gradient corresponds
to an update where the loss of information is regu-
larized to a fixed number. Peters et. al. [17] sub-
sequently introduced the REPS algorithm which rep-
resents a closed form solution to the resulting policy
search problem. Independently, Still & Precup [18]
showed that the maximum information gain policy up-
date results in the same solution and Azar et al. [19]
showed that this update can also be understood as
punishing the distance between the controlled system
and the uncontrolled one. Finally, Rawlik et al. [20]
showed that even previous probabilistic policy search
approaches are closely related. All these different ar-
guments have lead to similar solutions despite their dif-
ferent motivations, and the resulting algorithms work
well on benchmark problems.

Hierarchical Relative Entropy Policy Search

We will treat the problem of learning a hierarchical
policy as a latent variable estimation problem. For
the policy update, we assume that we can only observe
the resulting actions of the old policy. The underly-
ing hierarchy is unknown and, therefore, unobserved.
Hence, we first estimate the probability that an action
has been created by the individual options and, sub-
sequently, weight the update of the options by these
probabilities. The resulting algorithm is closely related
to expectation maximization (EM) for latent variable
models. We prove that such EM mechanisms can be
incorporated in the information theoretic regulariza-
tion of the REPS algorithm in order to get a lower
bound of the original optimization problem, which can
subsequently be optimized in closed -form.

Furthermore, we introduce an additional constraint
into the optimization problem that bounds the uncer-
tainty of identifying an option given an action. As a
consequence, the options are separated in the action
space, which allows for finding more versatile solutions
and also alleviates the problem of averaging over sev-
eral modes in the solution space, which is present in
many current policy search algorithms [21].

Such versatile solutions are more robust to changes in
the environment or the robot. For example, if one solu-
tion turns out to be unavailable in a new scenario (e.g.,
due to a damaged part of the robot or a non-stationary
environment), we can still opt for the second solution.

2 Hierarchical Relative Entropy
Policy Search

We start with the definition of a ‘mixed’ option policy.
Subsequently, we briefly review the Relative Entropy
Policy Search algorithm as well as extend it to the la-
tent variable case. We treat the hierarchical structure
of the policy as a latent variable, which results in the
Hierarchical Relative Entropy Policy Search (HiREPS)
algorithm.

2.1 Problem Statement & Notation

We assume the Markov decision process (MDP) frame-
work [22] where an agent is in a state s € S and takes
an action a € A. Based on the combination of state
and action, the agent transfers to a next state s’ and
receives a reward € R. The goal of the agent is to op-
timize the expected average rewards. The state trans-
fer happens in accordance to a transition probability
distribution p(s’ls,a) = PZ,. In real-world robotics
problems, both states and actions, are frequently con-
tinuous.

In addition to the MDP assumptions, we require that
the behavior is composed of episodes, where each

episode consists of a series of actions. Such consis-
tency can be assured by grouping sequences of actions
into options [23]. As a result, our policy m, which
maps states to actions, has to be based on these op-
tions o € O. The behavior during option o is governed
by the (sub-)policy 7(als,0). This sub-policy is acti-
vated by a supervisory policy 7(ols,o’) where o' de-
notes the option that was active in the previous time
step in order to account for the temporal consistency.
Following the classical options framework as described
in [23], w(ols,0’) can be decomposed into the termina-
tion probability 8 of option o’ and the gating network
m(o|s), i.e.,

7(o|s,0") o< B(d', s)m(0|s) + 1,(0")(1 — B(', 5)),

where 1, is the indicator function that is one when
o' = o and zero otherwise.

However, as the estimation of the temporal consistency
(i.e., B(0',s)) is a difficult problem by itself, we will
limit ourselves to the case of options which last exactly
one time step, i.e., w(o|s,0’) = w(o|s). Note that this
case also includes the motion template framework [16]
which works on the level of abstract steps. Here, a
step takes as long as a predefined parametrized motion
template is executed.

The resulting policy m(als) in this setup can be ex-
pressed as a ‘mixture of options’ policy, i.e.,

m(als) = Z w(o|s)m(alo, s).

o

The expected reward is hence given by

J(m) =Y w(s)m(ols)m(als,0)r(s,a) (1)

s,a,0

where 1" (s) denotes the state distribution. We assume
that ™ (s) is a stationary state distribution defined by

Vs’ uT(s)m(als)p(s']s,a) = u7(s)), (2)

which holds under mild conditions [2]. Here, we will
only require that this condition holds for state features

&(s), ie.,
S () S 1 (s)m(als)n(s')s,) 3)
=D 1 (s)e(s).

The goal of this paper is to develop an algorithm that
finds both, a good supervisory policy 7(o|s) and good
sub-policies 7(als, 0).

Christian Daniel’,

Gerhard Neumann', Jan Peters':?

2.2 Relative Entropy Policy Search

Several authors [19, 17, 18] have argued from different
perspectives (i.e., steps away from a natural dynamics
distribution [19], loss of information [17] and optimal
exploration [18]) that after a policy update, the new
state-action distribution p(a, s) should remain close to
a reference distribution ¢(a, s), which could be the un-
controlled dynamics [19], the previous policy [17], the
uniform distribution [18] or maybe a distribution ob-
tained by watching an expert performing a task.

Closeness among probability distributions is frequently
measured using the Kullback-Leibler divergence

Dxv. (p(a, s)llq(a, s)) = p(a, s)log (p(a, s)/q(a, s)).

In REPS, the distribution p(a,s) = p(s)w(als) is
now defined as the distribution with maximum reward
while bounding Dk, (p(a, s)||g(a,s)) < € and ensur-
ing the consistency of the steady state distribution, as
shown in Equation (3). The distribution p(s, a) can be
found in closed form and is given by

plas) o qla,s)exp (‘;) , ()

6sa = Rsa+ZP53/V (S),

where s, denotes the Bellman error and V(s) =
0T¢(s). The parameters n and 6 denote Lagrange
multipliers and can efficiently be found by minimizing
the convex dual-function g(n,0) of the original opti-
mization problem.

REPS with Parametric Distributions

In the continuous case, the distributions pu(s) and
m(als) need to be represented by parametric distri-
butions such as Gaussians or linear Gaussian models.
This representation can be obtained by minimizing the
KL-divergence Dk, (p(a, s)||u(s)7(als)) which is given
by

= / p(a, s)log (u(s)m(als))dsda + const

~ Y)exp((sn)log((r(als). (5)

(s,a)~q(s,a

The distribution ¢(a, s) does not need to be known.
For both minimizing Dk as well as optimizing the
dual function g, we only require access to samples from
this distribution. Also, note that the KL-divergence
minimization as defined in Equation (5) is a simple op-
eration — it is equivalent to calculating the weighted
maximum likelihood estimates of the parameters of 7.

2.3 REPS with Latent Variables

In the hierarchical case, we also have to incorporate
our options o. However, the optimal hierarchy of ¢
is typically unknown and, therefore, o cannot be ob-
served , i.e., we only have access to samples from the
marginal ¢(s,a). Thus, we still bound the marginals
pla,s) = >, p(s,a,0) and treat o as latent variable.
Doing so, however, is not trivial as the log of the
marginal does not allow for a closed form solution.
Instead, we can reformulate the problem using the re-
lation p(s,a) = p(s,a,0)/p(o|s,a) which leads us to
the following bound
p(s,a,0)

ZZpsaolog o0,)(0|sa)§e

Having this bound does not help us directly as the con-
ditional p(ol|s,a) also depends on the marginal. How-
ever, we can use this bound in an iterative expectation-
maximization (EM)-like manner.

(6)

e In the expectation (E) step, we estimate a proposal
distribution p(o|s,a) for p(o|s,a). In order to do
so, we fix the current model distribution p(s, a, 0)
and calculate p(o|s,a) = p(s,a,0)/p(s,a). Note
that the distribution p(o|s,a) is often referred to
as the responsibility in EM-based algorithms.

e In the mazimization (M) step, we use p(o|s, a) in-
stead of the real model p(o|s, a). Using a fixed dis-
tribution p(o|s, a) for the bound defined in Equa-
tion (6) allows for a closed form solution.

In the appendix, we show that both the E- and the
M-step indeed maximize a lower bound of the original
optimization problem, which is tight after each E-step.

Learning Versatile Solutions

In the hierarchical setting of REPS, we are often inter-
ested in a versatile solution space. Therefore, it makes
sense to learn options which are clearly separable in
the action space. In order to do so, we also bound the
expected entropy of the conditionals p(ols, a).

— Zp(s, a) Zp(0|s7 a)logp(o|s,a) <k, (7)

This bounding ensures that the options are clearly
identifiable (given a state and an action) and do not
overlap. Again, we will replace the term logp(o|s,a)
by the responsibilities logp(o|s,a) and add it to the
constraints of our optimization problem. The opti-
mization problem using p(o|s,a) still defines a lower
bound of the original problem (see the appendix). We
will always choose k as percentage of the entropy of
the current responsibilities p(o|s,a) such that we can
gradually decrease the entropy of the options.

Hierarchical Relative Entropy Policy Search

2.4 Resulting Policy Updates

The combination of the objectives in Equations (1, 2,
6 and 7) as stated above, yields a well-formulated op-
timization problem given below.

Problem Statement. Find a gating policy m(ols)
and an option policy w(als,0) such that the resulting
policy w(als) = > m(o|s)m(als,0) mazimizes the ex-
pected return J(mw) while bounding the information loss
by e, i.e.,

maxJ Zu 7(a, 0|s)Rsq,
S €>Z (s,a,0)log ——F——— p(s,,0)
o = q(a, s)p(ols, a)’

K> — Zp s,a Zp o|s,a)logp(ols,a),
Z ZZPSS’IU’

s’ s’ s,a,0
(a,o0ls). (8)

1= Z wr(s)m

s,a,0

(alo, s)m(ols)p(s"),

Here, w(a,o|s) = w(o|s)m(als,0) denotes the joint pol-
icy over actions and options and p(s,a,o0) is given by
wu(s)m(o|s)m(als,o0).

The resulting joint distribution is then given by

p(s,a,0) x q(s,a)p(ols, a)H'E/" exp <6:7%>) (9)

The parameters 7, £, and 6 (contained in ds,) are
again calculated by optimizing the convex dual func-
tion ¢g(8,n, &) which is also given in the appendix. The
state distribution, the gating network, and the sub-
policies can be determined from p(s, a,0) by minimiz-
ing Dkr, (p(a, s,0)||u(s)m(o|s)m(als, 0)). By setting the
number of options to 1, the resulting equations corre-
spond to the standard derivation of REPS. In this case,
k does not have any influence on the optimization pro-
cess.

2.5 Episodic HIREPS

In this paper, we will concentrate on the episodic case
of HIREPS, where only one parametrized option is ex-
ecuted until the episode is terminated. In the episodic
case, we do not have a steady-state distribution — the
state distribution po(s) now denotes the distribution
of the initial states. Instead of the steady-state distri-
bution constraint, we now require that the expected
state features > _ , , p(s,a,0)@(s) match the observed

state features éﬁ of the initial state distribution. The
resulting policy of this optimization problem is now

Input: Information loss tolerance e, Entropy toler-
ance x, Number of options n

Initialize 7 using n Gaussians with random mean

while not converged

Set sample policy:
q(als) = 3., mola(0]s)mora(als, 0)

Sample: collect samples from the sample policy
{si ~ p(s0),ai ~ qlalsi), Ri}iequ,.. N}

Proposal distribution:
p(olsi, ai) = pola(0]si, ai)

Minimize the dual function
[0,7,&] = argmingg, ¢ 9(6,7,¢)

Policy update:
Calculate weighting
_nT
Plsis a5,0) ot o], i)+ exp (B2t)
Estimate distributions m(o|s) and 7(als, 0) by
weighted ML estimates

Output: Policy 7(a,o|s)

Table 1: Episodic HIREPS

given by

p(s,a,0) o q(s,a)p(ols,a) /7 exp (
n

Reo — 9T¢(s)>

where 87 ¢(s) accounts for the value of the initial
states s.

We are now ready to provide the episodic HIREPS
algorithm which can be seen in Table 1.

Illustration

We illustrate our algorithm on a simple toy task, where
we have a two dimensional action space and a bi-modal
reward function (see Figure 1). We will refer to this
task as the Two-Gaussians Task for the remainder of
this paper. In this task, the reward distribution con-
sists of two Gaussians such that the we have two global
optima.

Examining the Two-Gaussians Task is interesting for
two reasons: first, many standard policy search meth-
ods have problems with multi-modal solution spaces,
i.e., they will be drawn to all optima in multi-modal
tasks and, therefore, converge slowly [21]. Here we
will see that HIREPS solves this problem by bounding
the entropy of the options. Second, as the task has
multiple solutions, we would like to represent a versa-
tile solution space by learning all modes of the reward
function.

In Figure 1, we show the results of comparing our al-
gorithm qualitatively to the standard REPS algorithm
and to HIREPS without bounding of the options’ en-

Christian Daniel’, Gerhard Neumann', Jan Peters':?

'REPS

Iteration = 6 Iteration = 9

HIiREPS
=00

Iteration = 6

Iteration =0 Iteration = 3

\
=~

,

Y

~—

Iteration = 0 Iteration = 3

)
h
\

Iteration = 6 Iteration = 9

Iteration = 0 Iteration = 3

Figure 1: Schematic sketch of the behavior of the
REPS, the HIREPS with and without bounding of the
options’ entropy (k = 0.8,k = o0) . Blue and green
lines show the contours of the bi-modal reward func-
tion. The REPS and the HIREPS without bounding
try to average over both modes. After many iterations,
they will eventually converge to one (or two) mode(s).
The HiREPS with x = 0.8 separates both options and
is therefore able to find both modes reliably.

tropy (i.e., kK = 00). The standard REPS algorithm
tries to average over both modes and, hence, takes
a long time to converge. For the HiREPS without
bounding the entropy, the behavior is quite similar.
All options are attracted by both modes. Thus, in
most cases, both options find the same mode. In cases
where they do separate, the separation takes a long
time. When using HIREPS with a bound on the en-
tropy, the options quickly separate and concentrate on
different modes, allowing for a fast improvement of the
policy without getting stuck between two modes. The
illustrations in Figure 1 represent typical cases when
applying the previously introduced algorithms to this
setup.

3 Evaluation

In order to evaluate our algorithm, we choose two
tasks, i.e., a puddle world task and a robot Tetherball
task. For all experiments, we use Gaussian gating net-
works and linear Gaussian models for the sub-policies.
The gating networks and the sub-policies are randomly
initialized. Whenever the prior m(o|s) of an option
gets too small (i.e., m(0) < 10~%) we delete the option.
However, in order to avoid options getting deleted too
quickly, we assure that each option gets a minimum
amount of samples in the sampling process. We also

bound the minimum variance of our Gaussian models
to small values in order to avoid singularities. All ex-
periments were averaged over 20 trials. After the sam-
pling process, we always evaluate the quality of the
exploration-free policy (i.e., without variance) found
so far. We also evaluate the versatility of the found
solutions. For all setups with states, we will use a
squared exponential kernel as basis functions for the
state features, i.e

(5) = exp (55 5)A (s - 5)).

where A is a diagonal matrix denoting the bandwidth
of the kernel. We will compare our algorithm to
the non-hierarchical counterpart, REPS [17], which is
equivalent to our algorithm with just one option. Both
algorithms receive the same number of samples per it-
eration. We will also investigate the effect of bounding
the entropy of the options on the performance of the al-
gorithm. For all presented results, we have optimized
the parameters of the algorithms to deliver the best
performance.

3.1 PuddleWorld Experiment

In a first toy task, we test HIREPS on a variation of
the puddle world as seen in [24]. Our version differs, as
the action space is continuous instead of discrete. We
use Dynamic Movement Primitives [25] to represent
the options. An option is given by two DMPs, one for
each of the x and y dimensions. We assume that the
goal is known and, therefore, fix the point-attractor
of the DMPs at the known goal position. For the x-
dimension, the DMP is fixed, but for the y-dimension
we use five basis-functions of the DMPs to modify the
trajectory. The linear weights of these basis-functions
define the parameters of the option. Thus, the action
vector a of our options is five-dimensional.

The reward of the task is given by the negative length
of the line segments, which encourages shorter solu-
tions. An additional punishment occurs for passing
through the puddles. The arrangement of the puddles
can be seen in Figure 2. The presented puddle world
has two solutions which are located close to each other,
however, the mean of both solutions leads through a
puddle and, therefore, yields lower rewards.

In Figure 3, we evaluate the performance of REPS and
HiREPS with and without bounding of the options’ en-
tropy. For HIREPS, just two options were used. REPS
takes a long time to reliably find good solutions, as the
algorithm averages over both modes. HIREPS without
bounded entropy performs slightly better than REPS.
However, the advantage of HIREPS is much more pro-
nounced when bounding the entropy. Furthermore, if

Hierarchical Relative Entropy Policy Search

60 [

50

40 Puddle

30+

20 ‘
0 20 40 60

Figure 2: The puddle world task. Sub-policies are
represented as two-dimensional DMPs with fixed end
points. The DMPs have five basis functions per dimen-
sion and we learn the weights of the basis functions for
the y dimension while leaving the weights for the x di-
mension fixed. The plot shows trajectories sampled
from two options found after 80 iterations of HIREPS.

we do limit the entropy, the algorithm is able to reli-
ably find both modes.

3.2 Simulated Tetherball Experiment

Our aim is to adapt the human game Tetherball for
a robotic player. Specifically, the task consists of a
ball, an elastic rope, an obstacle (i.e., a pole) and a
target. The ball is hung in front of the pole using
the elastic rope. The pole is placed on a line between
the ball’s resting position and the goal, such that it
is impossible to hit the target with a single punch of
the ball in direction of the target. The goal of the
robot is to hit the ball such that it comes as close

Reward
500
0 e
s |
€ 500
[}
[~4
-1000 f ——HIREPSk=c
——HiREPSk= 0.9
---REPS
-1500 : : : ‘
0 20 40 60 80

Iteration

Figure 3: Performance of HIREPS and REPS on the
puddle world task. As HiREPS can represent both
solutions it does not get stuck averaging over both
modes. Note, that this effect is much more pronounced
if we bound the entropy of the options.

(b) Simulation of robot
Tetherball

(a) Tetherball

Figure 4: (a) A standard game of Tetherball. Two op-
ponents play against each other. The goal is to hit the
ball to the partner. Adapted from [26] with permis-
sion. (b) The simulation of the robot Tetherball task.
The goal is to hit the ball to a fixed target.

to the target as possible. In order to hit the target,
the robot has to exploit the elasticity of the rope and
bouncing of the ball against the obstacle. On its’ path,
the ball may bounce off of the pole and the rope may
wind around the pole. Note that this task presents
a versatile solution space, as many different strategies
successfully hit the target. Our goal is to model this
versatile solution space with HIREPS.

For the purpose of testing the HIREPS method, we
use a strongly simplified setup where the Tetherball
task is implemented in a Matlab simulation. We ini-
tialize HIREPS with 30 randomly located options. The
agent can push the ball with a two dimensional impulse
{Fy,F,}. The reward of a push is given by the nega-
tive minimum squared distance of the ball to the target
throughout the ball’s trajectory. The initial state of
the agent is given by the initial position of the ball
before hitting it. We only vary the x-position of the
ball and learn different solutions to hit the target. We
again compare HIREPS with and without bounding to
the standard REPS approach. In Figure 5a, we eval-
uate the average reward of all three approaches. The
results show that HIREPS with a bound on the entropy
outperforms the two other methods. The HIREPS ap-
proach without bounding of the entropy is clearly bet-
ter than the REPS approach, as REPS only uses one
option to cover the whole state space. Thus, REPS
needs to approximate the optimal policy using a sin-
gle linear model. Therefore, in order to have a fair
comparison to REPS, we also compare HIREPS and
REPS on the Tetherball task without states i.e., we
always start from the same initial state in the middle.
This comparison can be found in Figure 5b. We can
observe that REPS is impaired by the multi-modality
of the solution space as it tries to average over several
modes.

In Figure 6a, we show the number of options used for

Christian Daniel’, Gerhard Neumann', Jan Peters':?

Tetherball average reward achieved

5 .
2
©
: | .
[=
o
[
[e)]
©
g . .
Z- HIREPSKk= inf
——HiREPSk= 0.9
---REPS
-15 L L L
0 10 20 30 40 50 60
Iteration
(a) Tetherball Average Reward
Reward
5 .
o 05 e
5 T
=
U
o
(]
[*)]
8-
g
- ——HIREPSk= 1.0
---REPS
-20 w ‘ ‘ : ‘
0 10 20 30 40 50
Iteration

(b) Tetherball without States, Average Reward

Figure 5: (a) Average reward gathered by the REPS
and the HIREPS with and without bounding the en-
tropy of the options in the Tetherball task including
states. As REPS only uses a single option and thus a
linear model as policy, it cannot represent the compli-
cated structure of the solution. The HiIREPS approach
benefits from bounding the entropy of the options. (b)
Average reward in the Tetherball task without states.
While REPS also finds the optimal solution, HIREPS
benefits from its structured policy representation and
outperformes REPS in learning speed.

different bounds of the entropy x. By bounding the
entropy, we avoid that the options overlap and, hence,
superfluous options get deleted more quickly.

As shown in Figure 6b, we also evaluate the number
of modes found by the HiREPS with bounding and
without bounding the entropy. In order to do so, we
divide each dimension of the state action space into 5
partitions and count the number of partitions which
contain at least one option with an average reward
larger than —1. The plot shows that, because the
options distribute more uniformly in the state-action
space due to the bounding, we can find more modes.
Thus, the bounding also helps us to find more versatile
solutions as we avoid situations where multiple options
concentrate on the same solution. In Figure 7, we il-
lustrate eight different options found by the HiREPS
algorithm. These options represent very different solu-
tions and multiple options can be chosen for a certain

Tetherball # of options used

40 ¢
30 ¢
[%2]
C
o
220+
(]
#
10 HiREPSk= inf
——HiREPSk= 0.9
P P — S— 11T
0 10 20 30 40 50 60
Iteration
(a) Tetherball Number of Options Used
Tetherball # of modes found
20
15

Modes
=
o

5 R
_______________ HIREPSk= inf
. ——HIREPSK= 0.9
. ‘ ‘ _ |---Reps
0 10 20 30 40 50 60

Iteration

(b) Tetherball Number of Modes Found

Figure 6: (a) Number of options used by the HIREPS
approach with and without bounding the entropy. If
the prior p(0) of an option becomes too small, the op-
tion gets deleted. With the bounding of the entropy,
less options are used while the performance of the al-
gorithm is increased. (b) Number of modes found
by both approaches. We can see that even though
HiREPS with bounding the entropy uses less options,
it can find more modes than HiREPS without bound-
ing the entropy of the options.

state.

4 Conclusion & Discussion

In this paper, we presented a new hierarchical policy
search method and integrated it into the relative en-
tropy reinforcement learning (REPS) framework. In
order to do so, we extended the REPS framework to
the latent variable case, and formulated the problem
of estimating the hierarchy of the control policy as a
latent variable estimation problem. We could show
that, even for basic hierarchical structures such as the
‘mixture of options’ policy, our algorithm can bene-
fit from exploiting this hierarchy and outperforms the
standard REPS framework in terms of both learning
speed as well as solution quality.

As we have seen, the ‘mixture of options’ hierarchy
can alleviate a basic deficiency of many policy search
algorithms, i.e., averaging over several modes in the

Hierarchical Relative Entropy Policy Search

Starting
Positions

Pole

Figure 7: Trajectories for 8 out of 17 options found
by HiREPS for the simulated Tetherball task. The
agent can choose with which force to shoot the ball,
and the objective is to hit the target with the ball.
Thick colored lines show the mean of the options, gray
lines show samples from different states created by that
option.

solution space. In addition, the algorithm offers the
appealing perspective of learning versatile solutions by
not just concentrating on a single solution, but repre-
senting multiple solutions at once.

Currently, our algorithm uses simple hierarchical
structures that are insufficient for many continuous
tasks. However, we are planning to use more compli-
cated hierarchical structures which capture the tem-
poral consistency of the options or which incorporate
continuous latent variables. Furthermore, we are also
planning to incorporate importance sampling for ef-
ficient sample reuse in order to further increase the
sample efficiency of our algorithm. In the future, we
will use this method to play real-world Tetherball on
a physical Barrett WAM 7-DoF robot arm.

5 Acknowledgements

The authors want to thank for the support of the Eu-
ropean Union projects # FP7-ICT-270327 (Complacs)
and # 248 273 (GeRT).

A Derivation of the Lower Bound

Consider the optimization problem in Equation (8)
with the real conditional p(o|s,a) instead of the re-
sponsibilities p(o|s,a). For simplicity, we neglect the
steady-state distribution and the normalization con-
straint, however, our derivation is not affected by these
constraints. The Lagrangian of this problem is then
given by

L(p,n,&) = > p(s,0,0)Rea (10)

s,a,0

_ s.a,0)lo M
Jrn(e Zp(et)1 gq(s,a)p(0|57a)>

s,a,0

+ & <ﬁ+ Zp (s,a) Zp (ols, a) log p(ols, a))

Ss,a

Simplifying the terms, we get

L(p,n,€) = Y _ p(s,a,0) (Rsa (11)

s,a,0

1 p(s,a,o)
— O
08 4(s, a)p(o] s, a) 1 +E/m

>+ne+£n

However, determining a closed form solution for
p(s, a,0) is infeasible as the conditional p(ols, a) is in-
side the log. Yet, we can determine a lower bound
F(p,n,&,p) by using a proposal distribution p(o|s, a)
for p(ols,a) which we can iteratively maximize in an
EM-like manner. We need to verify that F is a lower
bound on L and that maximizing F w.r.t p is equiv-
alent to setting p(o|s,a) = p(ols,a), both of which
follows from the relation

-+ Zps a Zp ols,a log

D, (p(ols.a)|[3(o]s.a)) >0

p(ols,a)

plols,a)

After the E-step, the lower bound is tight, i.e.,
max; F(p,n,§,p) = L(p,n,§). In the M-step, we fix
p and maximize F' w.r.t p, n and £. This defines our
constraint optimization problem.

A.1 The Dual Function

The dual-function for the steady-state constraint is
given by

9(0.n.8) = en+ K+
- en
nlog (Zs,a,o q(s, a)p(o]s,a) +</ exp (7)) :

For the episodic case, the dual-function is given by

9(0,1,6) = en+rE+60"¢+nlog (Z q(s, a)Zsa>
T
T = Zﬁ(0|37a)1+§/" exp (W) .

Both dual-functions are convex in their parameters.

Christian Daniel’, Gerhard Neumann', Jan Peters':?

References

[1]

[13]

J. Bagnell, “Covariant Policy Search,” Interna-
tional Joint Conference on Artificial Intelligence
(ICJAI), 2003.

R. Sutton, D. McAllester, and S. Singh, “Policy
gradient methods for reinforcement learning with
function Approximation,” Advances in Neural In-
formation Processing Systems (NIPS), 2000.

P. Stone, “Scaling Reinforcement Learning To-
ward RoboCup Soccer,” International Conference
on Machine Learning (ICML), 2001.

J. A. Bagnell and J. G. Schneider, “Autonomous
Helicopter Control using Reinforcement Learning
Policy Search Methods,” in International Confer-
ence on Robotics and Automation (ICRA).

M. Rosenstein, “Robot Weightlifting by Direct
Policy Search,” International Joint Conference on
Artificial Intelligence (ICJAI), 2001.

N. Kohl, “Policy Gradient Reinforcement Learn-
ing for Fast Quadrupedal Locomotion,” Interna-
tional Conference on Robotics and Automation
(ICRA), 2004.

J. Kober and J. Peters, “Policy Search for Motor
Primitives in Robotics,” Machine Learning, 2008.

M. Strens, “Policy Search Using Paired Com-
parisons,” Journal of Machine Learning Research
(JMLR), 2003.

J. Baxter, “Infinite-horizon Policy-gradient Es-
timation,” Journal of Artificial Intelligence Re-
search (JAIR), 2001.

J. Peters and S. Vijayakumar, “Natural Actor-
Critic,” European Conference on Machine Learn-
ing (ECML), 2005.

M. Deisenroth, “PILCO: A Model-based and
Data-efficient Approach to Policy Search,” in
International Conference on Machine Learning
(ICML), 2011.

J. Kober, K. Milling, and O. Kroémer, “Move-
ment Templates for Learning of Hitting and Bat-
ting,” International Conference on Robotics and
Automation (ICRA), 2010.

G. Endo, J. Morimoto, T. Matsubara, J. Nakan-
ishi, and G. Cheng, “Learning CPG-based Biped
Locomotion with a Policy Gradient Method: Ap-
plication to a Humanoid Robot,” International
Journal of Robotics Research, 2008.

[14]

[24]

[25]

[26]

P. Kormushev, S. Calinon, and D. G. Cald-
well, “Robot Motor Skill Coordination with EM-
based Reinforcement Learning,” in International
Conference on Intelligent Robots and Systems

(IROS), 2010.

A. Barto, “Recent Advances in Hierarchical Re-
inforcement Learning ,” Discrete Event Dynamic
Systems, 2003.

G. Neumann, W. Maass, and J. Peters, “Learning
Complex Motions by Sequencing Simpler Motion
Templates,” in International Conference on Ma-

chine Learning (ICML), 2009.

J. Peters, K. Miilling, and Y. Altiin, “Relative
Entropy Policy Search,” in National Conference
on Artificial Intelligence (AAAT), 2010.

S. Still and D. Precup, “An Information-
theoretic Approach to Curiosity-driven Reinforce-
ment Learning,” International Conference on Hu-
manoid Robotics, 2011.

M. G. Azar, V. Gomez, and H. J. Kap-
pen, “Dynamic Policy Programming,” arXiv.org,
vol. ¢s.LG, Apr. 2010.

K. Rawlik, M. Toussaint, and S. Vijayakumar,
“Approximate Inference and Stochastic Optimal
Control,” arXiv.org, vol. c¢s.LG, Sept. 2010.

G. Neumann, “Variational Inference for Policy
Search in Changing Situations,” in International

Conference on Machine Learning (ICML), 2011.

Sutton, R.S. and Barto, A.G., Reinforcement
Learning: An Introduction. Cambridge Univ
Press, 1998.

R. Sutton and D. Precup, “Between MDPs and
Semi-MDPs: A Framework for Temporal Ab-
straction in Reinforcement Learning,” Artificial
intelligence (AI), 1999.

R. Sutton, “Generalization in Reinforcement
Learning: Successful Examples Using Sparse
Coarse Coding,” Advances in Neural Information
Processing Systems (NIPS), 1996.

S. Schaal, J. Peters, J. Nakanishi, and A. J.
Ijspeert, “Learning Movement Primitives,” in
International Symposium on Robotics Research
(ISRR), 2003.

“http://www.buylifetime.com/ products/ blt/
pid-90029.aspx.”

