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Autonomous Learning of Page Flipping Movements
via Tactile Feedback

Yi Zheng', Filipe Fernandes Veiga?, Jan Peters>, Veronica J. Santos'

Abstract—Robotic manipulation is challenging when both the
objects being manipulated and the tactile sensors are deformable.
In this work, we addressed the interplay between the manip-
ulation of deformable objects, tactile sensing, and model-free
reinforcement learning on a real robot. We showed how a real
robot can learn to manipulate a deformable, thin-shell object
via feedback from deformable, multimodal tactile sensors. We
addressed the learning of a page flipping task using a two-stage
approach. For the first stage, we learned nominal page flipping
trajectories for two page sizes by constructing a reward function
that quantifies functional task performance from the perspective
of tactile sensing. For the second stage, we learned adapted
trajectories using tactile-driven perceptual coupling, with an
intuitive assumption that, while the page flipping trajectories for
different task contexts (page sizes) might differ, similar tactile
feedback should be expected from functional trajectories for each
context. We also investigated the quality of information encoded
by two different representations of tactile sensing data: one based
on the artificial apical tuft of bio-inspired tactile sensors, and
another based on PCA eigenvalues. The results and effectiveness
of our learning framework were demonstrated on a real 7-DOF
robot arm and gripper outfitted with tactile sensors.

Index Terms—Deformable object manipulation, movement
primitive, perceptual coupling, real robot learning, reinforcement
learning, tactile sensing

I. INTRODUCTION

Manipulation skills are important human capabilities. With
these skills, humans are able to tackle a wide range of
tasks requiring different levels of dexterity, using a large
variety of objects, and having distinct desired outcomes. For
tasks requiring dexterity, the sense of touch plays a major
role in enabling the prediction of key state transitions that
occur during manipulation actions. Distinct tactile patterns are
associated with transitions such as the making and breaking of
contact with an object, or changes in weight during the lift and
replacement of a grasped object. Predicting such state transi-
tions allows the human to detect and react to undesired events
that produce deviations from the desired task states. This
capability is particularly relevant when vision is occluded and
the task state cannot be visually inferred [1]. When the sense of
touch is taken away, complementary sensory mechanisms such
as vision are often insufficient for completing manipulation
tasks with the same level of functional performance. This
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Fig. 1. Three joints (J2, J4, J6) of a 7-DOF Kinova robot arm are controlled to
perform page flipping movements in the y-z plane using two fingers outfitted
with deformable, multimodal BioTac tactile sensors. Large and small notebook
pages (shown) were held by rigid binders placed on a flat support surface
parallel to the x-y plane. Passive motion capture markers are attached to the
binders for tracking displacement.

importance of the sense of touch is demonstrated by a human
perception study in which a subject, whose sense of touch at
the fingertip is temporarily impaired by anesthetization takes
much longer to execute a match-lighting task that seems trivial
before the anesthesia [2]. Although one could argue that this
demonstrates that humans can still perform manipulation tasks
using complementary sensory mechanisms, it also demon-
strates the importance of tactile sensing for tasks requiring
dexterity.

To achieve performance with dexterity comparable to the
humans, robots could be equipped with tactile sensors that pro-
vide rich information about the contact interactions between
themselves and their environment [3], [4]. Once equipped with
such sensors, we believe that the ability to complete complex
manipulation tasks is dependent on how three learning chal-
lenges are addressed: Firstly, the robot needs to learn how
to associate specific task state transitions with corresponding
sensory events and use this association, or mapping, to detect
undesirable states and evaluate the functional performance of
the task. Second, once the ability to detect undesirable states
through sensory events is acquired, the next problem is to
learn which actions to perform in order to compensate for the
observed sensory deviations and to return to states associated
with acceptable functional task performance. Examples of such
corrective actions are incremental adjustments to grasp forces
after sensing slippage between the fingertips and the surface
of a grasped object, or adjustments of wrist positions to make
sure a scraping tool maintains sufficient contact with a tilted
surface [5]. Finally, once the previous two learning challenges
have been overcome, it is crucial to achieve generalization of
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these capabilities to novel contexts or scenarios [6], [7].

In the past, a major bottleneck for solving the three
aforementioned learning challenges lay in the limitations of
tactile sensing hardware technology. Traditional tactile sensors
composed of pressure sensing arrays have low deformation
capabilities [8], which may not encode sufficient information
for tasks that require detailed knowledge of the finger-surface
interactions. In recent years, efforts have been made to develop
deformable tactile sensors that can provide multi-modal and
high-resolution spatial information, such as the BioTac [9],
GelSight [10] and TacTip [11]. Although several successful
applications of these sensors exist for tasks such as slip
detection [12], [13] or object property classification [14], there
have been few examples of their application to more general
forms of object manipulation [15], [16], [17], [18]. When
the manipulated object is highly deformable (e.g., thin-shell
objects such as paper), the application of tactile sensing seems
to be even more rarer.

Currently, there are two key challenges that limit the ap-
plication of state-of-the-art tactile sensors to dexterous object
manipulation problems: (i) the dynamics of the interactions
between the sensors and the manipulated objects are nontrivial
to model, especially for cases where both the sensor and the
object are deformable, and (ii) in most cases, it is difficult to
quantify the overall functional performance of a manipulation
task solely based on tactile information that is inherently
localized to finger-object interactions.

To overcome the aforementioned challenges, we propose an
approach that begins by deploying a model-free reinforcement
learning process seeded via human demonstrations that is then
guided by a tactile-based reward function in order to learn a
nominal movement trajectory for a specific task context. Using
model-free reinforcement learning, we do not require explicit
models of the system components (e.g., the tactile sensors, the
manipulated objects, and the interactions between them) and
are able to extract the necessary information solely from the
tactile and proprioceptive data acquired during the process,
as shown in other motor skill acquisition tasks using real
robots [19], [20]. Once the nominal movement trajectory has
been learned, the corresponding sensor readings are considered
as the nominal sensing traces. In order to generalize the
learned movements to different task contexts, we operate under
the assumption that, for tasks where the trajectories required
for each context are different, the resultant nominal sensing
traces associated with the functional behavior should still be
similar. Under this assumption, we can use the differences
between sensing traces in order to adapt the movement trajec-
tory to a different context. Such an adaptation is achieved by
a separate reinforcement learning process, where adjustments
to the nominal trajectory are learned using the differences
between the nominal sensing traces and the actual sensor
traces, acquired during execution of the learned movement
trajectory in a new context. We use our approach to tackle a
notebook page flipping task, where both the tactile sensors and
manipulated objects are highly deformable. Different contexts
result from using different notebook page sizes that require
different movement trajectories to flip pages at an acceptable
performance level.

Our work contributes to the development of new reinforce-
ment learning approaches for the manipulation of deformable
objects while explicitly leveraging state information encoded
in tactile sensor data. More specifically, the contributions of
this paper are the following: (i) we show that a nominal trajec-
tory with functional behavior can be learned using model-free
reinforcement learning and a tactile-based reward function, (ii)
we achieve the adaptation of such functional behaviors to a
novel context by relying solely on the differences between
tactile sensing traces generated by a nominal trajectory and
those generated for a novel context, and (iii) our learning
approach demonstrates the manipulation of highly deformable
thin-shell objects with a real robot.

Section II outlines related work. Section III details the
manipulation task and our general methodology. Section IV
provides a description of the hardware used in our experiments
as well as a discussion of our experimental results. Section V
summarizes contributions and limitations of this work, and
suggests directions for future work.

II. RELATED WORK

The three topics that interplay in this paper are object de-
formability, modeling of tactile sensors, and object manipula-
tion in robotics. In this section, we provide brief introductions
to related work on each of these topics.

Robotic manipulation of objects (rigid or deformable) has
been an active area of research for quite some time. Regarding
the manipulation of rigid object, several efforts have focused
on grasping or contour-following tasks, with approaches that
rely on tactile sensing to enable the detection of salient
discrete events (e.g. slip detection, stability estimation, force
thresholding) [21], [22], [15], or utilizing tactile information as
continuous feedback signals that drive corrective actions [16],
[17].

While the manipulation of rigid objects has been extensively
investigated, the same cannot be said for the manipulation of
deformable objects, especially when considering approaches
that leverage tactile sensing. Currently, state-of-the-art ap-
proaches to the manipulation of deformable objects rely pre-
dominantly on visual sensing [23], with tactile sensing mainly
being explored for the classification of object properties [24],
[25] or shape estimation [26], [27]. Such limited application
of tactile sensing to the manipulation of deformable objects
is not surprising, considering that it is extremely difficult
to accurately model deformable objects, deformable tactile
sensors, and their complex interactions during contact.

Nonetheless, some efforts have been made to model de-
formable linear objects (DLOs), [28] such as ropes and ca-
bles [29], [30], as well as thin-shell objects, such as paper [31]
and garments [32]. Still, all of these approaches either require
complex models of internal physical states of deformable
objects that are difficult to deploy in real robot experiments,
or require sufficiently accurate complementary sensing mech-
anisms (e.g., fixed visual tracking markers) instead of tactile
sensing.

A recent work by She, et al. uses tactile sensing to
manipulate a deformable object. A deformable, computer
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vision-based tactile sensor (GelSight [10]) is applied to a
cable following task [33]. The authors used a model-based
approach for manipulation because the tactile images from
the sensor enabled the state of the cable to be continuously
observed throughout task execution. In this work, we sought
to manipulate a deformable thin-shell object (notebook page).
We employed a deformable tactile sensor (BioTac [9]) that
does not enable a direct observation of system state for this
particular manipulation task, and so we elected to use a model-
free reinforcement learning approach.

Typically, endowing a robot with predictive tactile sens-
ing capabilities has been approached as a forward modeling
problem, which is nontrivial for deformable tactile sensors
that engender soft contact (e.g. BioTac [9], GelSight [10],
TacTip [11]). Successful predictive approaches include build-
ing latent space dynamics models for the BioTac sensor
using deep representation learning to enable object surface
servoing [34], and training deep recurrent neural networks to
predict sequences of future GelSight tactile images from the
current tactile image and applied control actions for the imple-
mentation of a model predictive control framework [18]. Note
that in both of these examples, the objects being manipulated
were rigid and the manipulative actions could be accurately
observed and evaluated based on the tactile sensor information.

Recent manipulation approaches attempt to capitalize on the
recent successes of reinforcement learning. Some approaches
leverage simulation in order to pre-learn policies that are then
transferred to real robotic systems [35], [36]. Other approaches
begin directly with real robotic systems either by first learning
how to evaluate the quality of their actions and using the
quality assessments to guide the learning [37], or by focusing
on a single manipulation action and only considering one
object [38].

In order to deploy reinforcement learning on real robots and
tackle more complex manipulation tasks, we elected to use
policy representations with a limited number of parameters to
encode the movement of the robot. Several policy representa-
tions have been proposed, including deterministic representa-
tions such as dynamic movement primitives (DMPs) [39] and
probabilistic representations such as probabilistic movement
primitives [40] or Gaussian mixture regression (GMR) [41].
In this work, we use the DMP framework mainly due to its
successful application to motor skill learning problems with
real robots [20].

III. LEARNING TO MANIPULATE A THIN-SHELL OBJECT
VIA TACTILE SENSOR FEEDBACK

We partition the learning challenges into two sub-problems
in order to show, first, that a robot can learn a page flipping
task using quantitative performance measures based on tactile
sensing, and second, that deviations from expected tactile
sensor feedback can be used to adapt nominal actions to
different contexts. First, we learn nominal trajectories leading
to the functional behavior of page flipping. To learn these
nominal trajectories efficiently, we bootstrap a model-free re-
inforcement learning process seeded by human demonstrations
via kinesthetic teaching. The reinforcement learning process

is guided by a reward function based on tactile signals and
motion tracking data. The tactile signals provide information
about the contact state between the fingertips and grasped
notebook pages. The motion capture data tracks the movement
of the notebook for the evaluation of task performance.

Second, after learning a nominal page flipping trajectory,
we learn an additional tactile-based feedback term that adapts
the nominal trajectory to a different-sized notebook (a dif-
ferent context). The additional feedback term is denoted as
a perceptual coupling term [42] and is in fact a separate
correction policy. As previously mentioned, the correction
policy is learned based on the assumption that, while the
nominal movement trajectories for different page sizes might
differ, the sensing traces corresponding to functional behaviors
should remain similar. Hence, the correction policy for a novel
page size should adapt the movement trajectory such that it
reproduces the nominal sensing traces corresponding to the
functional page flipping behavior generated by learning with
the nominal page size. While this correction policy is also
learned via a model-free reinforcement learning process, the
reward function that guides this process is now purely based
on tactile information.

In this section, we provide a brief introduction to the DMPs
policy representation (Section III-A) and the reinforcement
learning algorithm used for both learning sub-problems (Sec-
tion III-B). We then describe a qualitative study aimed at
establishing the relevance of tactile information to the page
flipping task (Section III-C). Leveraging insights from the
qualitative study, we describe how we use tactile and marker
tracking information to learn the nominal movement trajecto-
ries (Section III-D) and how we use tactile sensor feedback
exclusively to adapt the nominal trajectory to a different page
size (Section III-E). Finally, we describe several alternative
representations for tactile information that ensure that maximal
tactile information is provided to the reinforcement learning
process in a computationally efficient (e.g. low-dimensional)
manner (Section III-F).

A. Dynamic Movement Primitives

In order to learn a nominal movement trajectory, the param-
eters of a trajectory representation are adjusted to reproduce
a demonstrated trajectory and fine-tuned by a reinforcement
learning algorithm. In this work, we choose the Dynamic
Movement Primitives (DMPs) as the parametric representation
of a trajectory [39]. A DMP typically consists of (i) a transfor-
mation system (trajectory generator), (ii) a phase system, and
(iii) a nonlinear forcing function. We also include a gating sys-
tem to scale the magnitude of the forcing term [43]. We choose
a transformation system for discrete movements [44] [43]

[ ; } _ [ (o (By(yg —y) —2) +vf(s))/7 Y

7/
where y, y, are the actual position and goal position of a
robot movement respectively, ¢, is a spring constant, f, is
a damping constant, T is a temporal scaling factor of the
movement duration, and f(s) is a non-linear forcing function
of a phase variable s that determines the shape of the robot
trajectory.
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The forcing function is defined as
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with Gaussian kernel

CI)I‘(S) = exp((sfc,-)z/h,-). (3)

where ¢; and h; represent the center and width of the Gaussian
kernel, respectively. The forcing function is scaled by the
difference between the start yg and goal position y,, and by
a gating variable. The gating variable v evolves as a sigmoid
system [43] scaled by a time constant ¢,

v=—0a,V(1 —v/Vmax). 4

In addition, the forcing function depends on the phase
variable s instead of explicitly depending on time. The phase
variable evolves as a constant decaying system [43]

§=—1/t. (5)

Note that each degree of freedom for the robot has its own
transformation system and forcing function. The synchroniza-
tion of the multiple degrees of freedom is achieved via a shared
phase variable.

To encode a demonstration movement Ygen, as a DMP, the
weights {®}; associated with the forcing function need to
be adapted such that the generated robot movement matches
the recorded human demonstration used to seed the learning
process. The initial fitting of the DMP weights is achieved by
solving the linear regression problem

{o}i= argmin, . Z(ftarget(s) —f(s)) (©6)

where fiqrger 1 the target forcing function (human demonstra-
tion) and is computed by integrating the transformation system
(Equation 2) using variables extracted from the demonstration.

B. Model-based Relative Entropy Policy Search

We rely on reinforcement learning to fine-tune the initial
movement trajectory that matches the demonstration and then
to learn the correction policy to adapt the nominal movement
trajectory. Specifically, we use an information-theoretic policy
search approach: Model-based Relative Entropy Policy Search
(MORE) [45]. By bounding the KL-divergence of two sub-
sequent policy search distributions KL(7(0)||q(6)) and the
co-variance matrix shrinkage of 7(0), MORE achieves an
effective trade-off of exploration and exploitation.

For MORE, the learning problem of maximizing the reward
function under the expectation of generated trajectory samples
can be formulated as

max /() = / R(6)7(0)d0 st 7)
()

/n(e)mg Tao<e @®)

—/n(e)logn(e)de <B ©)

/n(e)de —1. (10)

with the updated policy 7(0), KL-divergnce constraints and
entropy bound constraints.

With an additional constraint that 7(0) is a proper prob-
ability distribution, the Lagrangian dual for this constraint
optimization problem can be obtained in closed form and
yields the following solution

R(O
7(8) o g(0)(117) (777, (11)
The new policy m(0) is a geometric average of the current
policy ¢(6) and an exponential transformation of the reward
function. The Lagrangian dual variables 17 and Yy serve as
“temperature” parameters that weight each sample drawn using
the current policy.

MORE fits a quadratic surrogate model to reward function
samples Rg ~ 0T RO + 07 r+ry and assumes that the current
policy search distribution is Gaussian g(0) = N(0|u,X). The
new policy search distribution can be obtained in closed form
as

n(8) =N(O|Ff,F(n+7)) (12)

where
F=mnz'—2r)™! (13)
f=n'u+r (14)

In practice, n needs to be restricted such that F is positive
definite.

C. Relevance of Tactile Information to a Page Flipping Task

To gain insights into which page flipping behaviors are de-
tectable via tactile sensing, multiple sets of DMPs parameters
are fitted using different human demonstrations via kinesthetic
teaching. The demonstrated page flipping movements can be
categorized into three groups (Figure 2):

1) Semi-circular Trajectories: In these demonstrations, the
robot flips the pages with a relatively semi-circular
movement, where the radius of the semi-circle is ap-
proximately equal to the width of the page.

2) Warping Trajectories: In these demonstrations, the tra-
jectory is either mostly horizontal and parallel to the
binder’s support surface, or it will begin along a semi-
circular path and then move downward toward the
support surface prematurely, prior to the page being
fully flipped. These trajectories cause the page to warp,
leading to “page snapping” as the curvature of the page
abruptly changes.

3) Aggressive Trajectories: In the initial period of these
trajectories, the robot pulls the page excessively. The
unnecessarily large movement can undesirably slide the
binder along the support surface or lift the binder off
the support surface.

We use a deformable, multimodal tactile sensor called
the BioTac (SynTouch, Inc., Montrose, CA, USA) to record
tactile data ((Figure 4). Each BioTac measures low frequency
pressure (Py.), high frequency pressure (P,.), data from 19
impedance electrodes (E), internal temperature (7y.), and tem-
perature flux (7;.). All tactile sensing channels are provided
at 100 Hz except for the high frequency pressure data, which
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Fig. 2. Representative snapshots of the three categories of page flipping trajectories described in Section III-C are shown in 15 sec increments and the
supplemental video. (Top) The Semi-circular trajectory represents the ideal page flipping movement. (Middle) For the Warping trajectory, page warping is

especially pronounced in subfigure (f) and page snapping results in the page configuration shown in subfigure (g). (Bottom) For the Aggressive trajectory, the
binder is pulled aggressively from subfigures (d) through (g), resulting in large and numerous displacements of the binder in the y-z plane defined in Figure 1.
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Fig. 3. Representative tactile sensing traces from the artificial apical tuft (electrodes 7, 8, 9, 10 in Fig. 4) are shown in arbitrary units (AU) for the (a) top
and (b) bottom fingers during the flipping of small pages when using the three categories of trajectories (15 rollouts each) described in Section III-C. The
semi-circular trajectories (green) generate smoother tactile signals than both warping trajectories (blue) and aggressive trajectories (red). As indicated by the
periods shaded in gray, spikes in the tactile signals occur near the end of the page flipping movement for the warping trajectories and near the beginning and
end of the movement for the aggressive trajectories.

are provided at 2200 Hz. For each of two fingers, 44 tactile several of the tactile sensor data streams. The signal spikes
signals are sampled at 100 Hz. In this work, we use the low can be interpreted as contact state instabilities during the page
frequency pressure (P;.) and impedance electrodes (E) only.  flipping movements caused by sub-optimal trajectories. By
design, optimal trajectories will attempt to minimize abrupt
changes in the tactile signals in order to maintain stable contact
throughout the page flipping movement. In order to track
undesired gross movement of the binder, which cannot be
fully characterized by tactile signals, passive motion capture
markers are attached to the binder. Optimal trajectories will
also attempt to minimize the movement of the markers, thus
minimizing the pulling of the binder.

After executing the DMPs for each trajectory category,
several repeatable patterns can be observed in the tactile
sensor data recorded by the deformable, multimodal BioTac
sensor [9] used in the experimental evaluation (Figure 3). For
semi-circular trajectories, the tactile signals captured during
the page flipping movement are relatively smooth, with very
few, if any, movements of the binder during the execution of
the trajectory. For the warping trajectories, the page snapping
causes spikes in the low frequency pressure signal (P;.) and in
the electrode voltages (E) provided by the BioTac sensors. As
the horizontal gripper trajectory moves closer to the binder’s D. Learning a Nominal Trajectory from Tactile Feedback
support surface, the more severe the page warping and snap-
ping, making the spikes in the tactile signals more pronounced.
For aggressive trajectories, signal spikes are observed when the
binder is pulled toward the robot and hits the border of the
support surface, when the binder is lifted from and returned
to the support surface, and when the gripper moves to flip the
page. In addition, aggressive pulling of the notebook pages
can tear the page, effectively damaging the notebook.

For the first learning sub-problem, we learn a functional
movement for flipping pages of a notebook by relying on
tactile and marker tracking information. We begin by fitting the
parameters of a DMP to a demonstration of a warping trajec-
tory, as this category of trajectories exhibited the undesirable
behavior during the pilot study presented in Section III-C. We
then use MORE to further optimize the trajectory for improved
functional performance. The policy distribution parameter 6 in

Based on the above observations, it is clear that undesirable the problem formulation specified in Section III-B corresponds
events can be detected as large shifts or transient spikes in to the DMP weights {®};.
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We design a novel reward function that simultaneously en-
forces that the contact areas between the fingers and notebook
pages remain stable throughout the trajectory, and that the
movement of the binder is minimized. Consider i € [1,2,...,n]
BioTac signal instances recorded during the page flipping
trajectory with a sampling frequency of ¢, and with low
frequency pressure channels denoted as Py, electrode voltages
denoted as E, and total displacement distances of the binder
markers denoted as Dyakers, the reward function is defined as

R(T) = RPdc +Rg +Rmarkers (15)

where

Rp, = —a(l +12)? (16)

penalizes trajectories with large shifts in the P;. channels by
considering the maximum shift captured during the trajectory
for each of the d fingers, where

I'y = max <
1

In a similar fashion,

dPi+1 _dpi
dc

dc
¢

>,ie[1,2,...,n]. (17)

Rp = —0(A1+A2)? (18)

penalizes large shifts in the electrode values by considering
the maximum average shift captured across the 19 electrodes
for each of the d fingers, where

1 19 ) )
Ag= — Y EF —El |,ie[1,2,...,n]. (19
d mlax<19¢j_21|] ]|>,ze[,, a). (19)
Finally, marker movement is also penalized via

Rmarkers = _learkers- (20)

Note that the pressure, electrode, and marker movement re-
ward terms are scaled by —a, —c and —A respectively. The
overall reward R(7) depends quadratically on the tactile signals
of each individual finger and linearly on the displacement
distance of the binder.

The reward function defines the task accomplishment via
salient tactile features throughout the trajectory. For the page
flipping task in this work, a salient tactile signal indicating
overall task success/failure at the end of the trajectory is not
pronounced. However, there may be other tasks, such as the
closure of a ziplock bag, where a salient tactile signal, such
as a “click” upon bag closure might exist. For those cases,
one could add an additional term to the reward function that
acknowledges overall task accomplishment.

E. Adapting Learned Nominal Trajectories to a Novel Context

For the second learning sub-problem, we show that nominal
page flipping trajectories learned for the first sub-problem can
be adapted to different page sizes while relying solely on
tactile information. In contrast to the first learning sub-problem
that considered binder displacement in the reward function, the
second learning sub-problem does not use any visual feedback
related to binder displacement. Specifically, we use the tactile
sensing traces produced by executing the optimal page flipping

trajectory learned in Section III-D for a specific page size as
the nominal tactile sensing traces.

We still require that pages of different sizes be flipped with
semi-circular trajectories for functional behavior. As such, we
propose that, while the movement trajectory needs to adapt to
different page sizes, the tactile sensing traces should remain
constant. The robot then learns how to adapt the nominal
trajectory to a different page size by trying to match the new
tactile sensing traces to the nominal sensing traces. In this
manner, we extend learning based on a single demonstration
to a different task context.

In order to adapt the nominal trajectories, the nominal DMP
needs to be modified to adapt to step-based tactile signals.
In this paper, we leverage “Perceptual Coupling Dynamic
Movement Primitives” [42], also known as “Associative Skill
Memories” [46]. After defining the nominal signal trace in-
stance Syom(s) and the current sensing trace instance S (s),
the adaptation actions are decided based on the difference
between the nominal and current signal traces (i.e., the per-
ceptual coupling term) during the execution of the current
page flipping trajectory on pages with a different size. Since
concurrent reactions to sensing trace differences depends on
which sensing channel diverged from the nominal sensing
trace, it is necessary to maintain separate weights for each
sensing channel in the adaptation policy.

Therefore, we model the adaptation policy as a mixture of
Gaussians that takes the sensing trace differences as inputs and
adds the adaptation policy to the nonlinear forcing function of
the nominal DMP as shown

FO) =15+ Y Y ope

j=1k=1

s—c, )2

( . .

"k (Srjlom(s) - S'(]:ur(s))s' (21)
Here, m represents the total number of sensing channels used
as tactile feedback, n represents the total number of basis
functions for each tactile channel, and {®} j represents the
learnable weights of the adaptation policy for a single degree
of freedom of the robot arm, which are also trained using the
MORE algorithm. Since this task involves three robot joints
(described further in Section IV-A), the total dimensionality
of the learning problem is m x n x 3. For simplicity and
better synchronization of the nominal DMP and the perceptual
coupling element, the centers {c}; and widths {i}; of the
Gaussian kernels are set to be identical across all three robot
joints. Considering the above, a natural reward function to
learn the adaptation policy is the sum of squared differences
between the nominal and the current sensing traces over the
course of an entire page flipping trajectory. In other words, we
set the reward function equal to the square of the perceptual
coupling term.

R(7) = —[Snom(7(s)) — Scur(’t(s))]2 (22)

E. Representation of the Tactile Sensing Traces

Our choice of representation of the tactile sensing traces
requires a careful balance between richness of tactile infor-
mation for effective learning and computational tractability
for deployment on a real robot. In one extreme case, we
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(a) BioTac tactile sensor (b) Electrodes on BioTac core
Artificial apical tuft

Fig. 4. (a) The multimodal BioTac sensor is comprised of a rigid core,
elastomeric skin, and fingernail (Image from [47]). (b) The rigid core of the
BioTac is shown with impedance electrodes individually numbered. The red
ellipse highlights the artificial apical tuft (flat region of the distal phalanx),
where contact is made with the page in the majority of cases.

could naively use all sensing channels from both BioTacs
on the gripper, resulting in 88 total tactile sensing channels
(1 Py channel, 19 E channels, 2 channels associated with
temperature, and 22 high frequency pressure values.

Hypothesizing that some of the native BioTac sensing
channels would not be necessary for learning the page flipping
task, we consider two possible representations for the sensing
traces. The first representation that we consider is comprised
of a subset of the complete set of BioTac channels. Upon
inspection of the page flipping trajectories, we observed that
electrodes 7, 8, 9, and 10, located on the artificial apical tuft
(flat surface of the distal phalanx) of the BioTac (Figure 4b),
are stimulated most strongly and most often during contact
with the page in the majority of trials. By focusing only on the
Py, E7, Eg, Eg, and Ejq values from each finger, we reduce the
dimensionality of the representation of tactile sensing traces
from 88 to 10 values.

To further reduce complexity, we average signals over the
four electrodes for each individual finger, which results in a
total of 4 values (one P;. value and one mean electrode value
E7_1o per finger) sampled at 100 Hz. We believe that averaging
over the four apical tuft electrodes is reasonable since we are
primarily interested in the average skin deformation of that
specific area of the sensor. To appropriately scale P,;. and
E7_10, we normalize the data on each signal individually using
sensing traces collected from the nominal trajectory learning
experiments and assume that they provide a reasonable range
for sensing traces that the robot can experience during page
flipping.

The second representation that we consider uses Principal
Component Analysis (PCA) to reduce the complete set of
BioTac channels to a subset that captures most of the variance
in the tactile sensing traces that can be leveraged for learning.
Again, we begin by focusing only on the Py, E7, Eg, E9, and
E/o values from each finger. Upon normalizing the signals as
described previously, we pool the tactile signals across both
fingers and apply PCA to further reduce the representation of
tactile sensing traces from 10 dimensions to 3 dimensions.

Note that different sensing channels on different fingers (2
PDC + 8 electrodes) form the state vector. Prior to performing
PCA, the data from each signal channel are individually
normalized. This normalization is performed to ensure that
the PCA results will not be biased by large magnitude changes

resulting from differences in measurement units, measurement
ranges, or channel sensitivity.

The first three principal components explain 96% of the
total variance in the original 10-D tactile sensing space. The
Ist, 2nd, and 3rd principal components explain 45.8%, 38.7%,
and 11.5% of the total variance, respectively. We obtain the
PCA projection matrix once at the start of the experiment.
During runtime, the 10-D normalized BioTac signals are
passed through the PCA projection matrix comprised of the
first three principal components in order to yield three PCA
eigenvalues for learning.

IV. EXPERIMENTAL PROCEDURE AND EVALUATION

In this section, we present the experimental procedures that
were used to evaluate our approach and discuss the results
of those experiments. First, we describe the hardware setup
used in our experiments in Section IV-A. We then present the
training procedure and results for the nominal trajectory learn-
ing sub-problem in Section IV-B. In Section IV-C, we present
the results of a simplified version of the trajectory adaptation
learning sub-problem and assess the impact of the choice of the
representation of the tactile sensing traces introduced in Sec-
tion III-F. In this simplified version of the trajectory adaptation
learning sub-problem, some partial knowledge of the novel
task context (novel page size) is provided in order to make
the adaptation policy learning problem more tractable while
we focused on the assesment choice of tactile sensing trace
representation. Finally, in Section IV-D, we present the results
of the complete trajectory adaptation learning sub-problem,
without the benefit of a priori knowledge of novel page size.
For this final, complex learning experiment, we used the PCA
eigenvalue representation of the tactile signals (Section III-F)
generated from the nominal trajectory (Section III-D) learned
for large pages.

A. Experimental Set-up

For all experiments, we used a 7 degree-of-freedom (DOF)
robot arm (JACO, Kinova, Boisbriand, Quebec, Canada) out-
fitted with a 4-DOF, three-digit gripper (KG-3, Kinova, Bois-
briand, Quebec, Canada) (Figure 1). The ulnar digit was
removed from the gripper in order to enable a two-digit
precision grip. Each fingertip was equipped with a BioTac
tactile sensor, as introduced in Section III-C.

The robot was commanded to grasp and flip two different
sizes of notebook pages (small page: 8.5” x 117, large page:
11”7 x 117). Retroreflective markers and six T-Series cameras
sampled at 100 Hz (Vicon, Culver City, CA, USA) were used
to track a rigid binder, containing the notebook pages, that was
placed on a support surface parallel to the x-y plane (Figure 1).
The binder displacement values in the y-z plane were used by
the reward function described in Section III-D for learning a
nominal trajectory for the page flipping task.

As shown in Figure 2, the page flipping movement occurs
within the y-z plane defined in Figure 1. Through purposeful
placement of the robot arm with respect to the binder, we
simplify the policy learning problem. Specifically, we operate
the robot arm within the y-z plane only. We control only
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(a) Small page size (b) Large page size
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Fig. 5. Learning curves are shown for learning nominal trajectories for flipping (a) small pages over the course of 25 policy updates and (b) large pages over
the course of 41 policy updates. Mean and variance are presented for batches of 10 rollouts.
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Fig. 6. Individual reward components from Equation 15 are shown for the nominal trajectory learning curves in Figure 5 for flipping (a) small pages over
the course of 25 policy updates and (b) large pages over the course of 41 policy updates. Mean and variance are presented for batches of 10 rollouts. This
figure illustrates that the improvement of tactile-related reward components plays a major role in the improvement of the overall reward function as compared
to any losses resulting from binder displacement.
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Fig. 7. Data for each of 19 electrodes are shown for the bottom finger for learning a nominal trajectory for flipping a large page. A total of 15 rollouts
are shown for each the initial policy after a single policy update (red) and final policy after 41 policy updates (green). The initial policy generates undesired
spikes in the electrode signals during the page warping period shaded in gray.

joints 2, 4, and 6 (Figure 1) and constrain all remaining joints, position and grips a pre-set stack of 20 pages.The home
thereby reducing the dimensionality of the policy weights to  position is determined from a single human demonstration
be tuned during learning. per page size at the start of the experimental session. An
experimenter kinesthetically teaches the robot by grasping the
robot and guiding it through a suboptimal Warping trajectory,
as described in Section III-C. Throughout the kinesthetic

Using the proposed framework introduced in Section III-A  teaching, joint angles and joint angular velocities are recorded
and Section III-B, along with the reward functions defined at 50 Hz. The kinematic data from the human demonstration
from Equation 15 to Equation 20 in Section III-D, we learn are used to initialize ten parameters for each of three DMPs
nominal trajectories for flipping pages of two different sizes. (one DMP for each of joints 2, 4, and 6 of the robot arm).
In each learning trial, the robot first moves to a “home”
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Upon initializing the DMP parameters, a reinforcement
learning process, introduced in Section III-B, refines the DMP
parameters using the reward function defined in Section III-D.
The MORE policy search space has a dimensionality of 30
(three DMPs, each with ten parameters). The MORE € and f8
parameters are set to 0.1 and 0.075, respectively. To fill a sam-
ple buffer, a total of 40 rollouts are executed and corresponding
rewards are generated based on the initial policy distribution,
which was defined as a multivariate Gaussian with mean
values set equal to the initial DMP weights and a diagonal
covariance matrix that was tuned based on preliminary data.
Once the sample buffer is filled, the policy distribution is
updated every five rollouts.

The learning curves for the nominal trajectory learning ex-
periments are shown in Figure 5 for the small and large pages.
Rewards from the updated policies are shown in increments
of 3 policy updates (10 rollouts each) for three independent
learning trials for the small pages, and in increments of
5 policy updates (10 rollouts each) for three independent
learning trials for the large pages.

Since the reward values converge to zero, we see that a
policy is successfully refined and learned for each of the
two page sizes. The supplemental video shows that the robot
learns page flipping trajectories that do not induce undesired
page warping or page snapping, thereby avoiding spikes in the
tactile signals by design of the reward function.

For brevity, we present tactile sensing traces for the nominal
trajectory learning sub-problem for large pages only. Reflect-
ing local deformation of the fluid-filled BioTac fingerpad, data
from 19 electrodes are presented for the bottom finger in
Figure 7. A total of 15 rollouts are shown for two policies:
the initial policy after a single policy update and the final
policy after 41 policy updates. The corresponding P;. data
are presented in Figure 8. The results for learning a nominal
trajectory for small pages are similar to Figures 7 and 8 except
that the final policies are learned after only 25 policy updates.
Figures 7 and 8 show that rollouts of the initial policy, shown
in red, generate undesired spikes in the tactile sensing traces
during the page warping period shaded in gray. However, the
rollouts of the final policy, shown in green, result in much
smoother tactile sensing traces characterized by a significant
reduction in spiking behaviors. The associated reduction in
page warping is also demonstrated in the supplemental video.

Figure 6 and Table I show that tactile state is more relevant
and plays a more significant role in the nominal trajectory
learning process than binder displacement. Figure 6 illustrates
how individual components of the reward function defined in
Equation 15 contribute to the learning process and change
over the course of learning. The improvement in the tactile
reward components (Rp, + Rg) play a major role in the
improvement of the overall reward function. We also observe
that the tactile reward components for the large pages are
worse when compared with those for the small pages. Given
that large pages are heavier than small pages, it makes sense
that the negative tactile consequences of page warping and
page snapping would be more pronounced in the tactile reward
components for the large pages.

Table I compares the mean and standard deviation of binder
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Fig. 8. Low frequency pressure data are shown for the (a) top and (b) bottom
fingers for learning a nominal trajectory for flipping a large page. A total of 15
rollouts are shown for each the initial policy after a single policy update (red)
and final policy after 41 policy updates (green). The initial policy generates
undesired spikes in the low frequency pressure data during the page warping
period shaded in gray.

displacement distances before and after the learning process.
Binder displacement values are reported from 15 rollouts for
each combination of page size (small or large) and learning
stage (before or after learning). Although Table I shows that
binder displacements are larger after learning, the negative
effects of binder displacement on the overall reward function
are dwarfed by the significant improvements in the tactile
reward components, indicating that the learning process is
dominated by tactile state, as desired.

Tactile state is more relevant for learning nominal trajecto-
ries for two main reasons. First, the magnitudes of the changes
in tactile data due to page warping and page snapping are
greater than those for marker movement resulting from binder
displacement. Second, we chose the magnitudes of the scaling
factors a, 0,4 in Equations 16, 18, and 20, respectively, such
that marker movement would be considered but not heavily
weighted in the overall reward function (Equation 15). If we
were to increase A to more heavily weight marker movement
than tactile state, we would contradict our definition of what
constitutes a functional page flipping behavior, as trajectories
that result in page warping and page snapping would be
improperly rewarded. Specifically, o was -0.0075 and A was
-2.5 for both page sizes, and ¢ was -0.0125 for the large page
size and -0.05 for the small page size. The scaling constant
o was increased manually for the small page size in order to
compensate for the fact that smaller tactile signal spikes result
from the snapping of smaller pages.

TABLE I
BINDER DISPLACEMENT DISTANCES ARE REPORTED AS MEAN (STANDARD
DEVIATION) FROM 15 ROLLOUTS FOR EACH COMBINATION OF PAGE SIZE
AND LEARNING STAGE. “BEFORE LEARNING” REFERS TO THE INITIAL
POLICY AFTER A SINGLE POLICY UPDATE. “AFTER LEARNING” REFERS TO
THE FINAL POLICY AFTER 25 AND 41 POLICY UPDATES FOR THE SMALL
AND LARGE PAGES, RESPECTIVELY.

Before learning
32.7 (0.5) mm
24.0 (5.3) mm

After learning
96.0 (3.7) mm
184.9 (9.9) mm

Small pages
Large pages

Although we show that it is possible to learn functional
page flipping behaviors for different page sizes using tactile
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information, some limitations were observed. For example,
if the initial policy produces a trajectory that is too low
and close to the support surface, the pages warp and then
contact the binder during the page warping period. As a result,
transient perturbations due to page snapping are absorbed by
the friction between the binder and the pages, and are not
sensed by the BioTacs, whose tactile signals will be smooth.
The policy search then gets stuck in a local optimum in
which the trajectories appear to maximize the reward function
when, in fact, the page flipping behaviors are unacceptable.
We acknowledge that the reward function may not capture the
tactile consequences of all possible notebook page flipping
trajectories. To address this, one could supplement tactile
sensing with a complementary sensing modality, such as
vision, during learning.

Another example of a limitation is the aforementioned
binder displacement after learning. Sometimes, the increased
displacement of the binder after learning results in a learned
trajectory that is not perfectly semi-circular (as seen in the
supplemental video). One possible reason for this result is
that perturbations around the set of DMP weights that gen-
erate perfectly semi-circular trajectories, can actually cause
the robot to move toward the support surface prematurely,
resulting in page warping. Page warping would cause the
rewards to deteriorate significantly due to the dominant role of
the tactile reward components. Thus, page warping is avoided
through learned trajectories that are not perfectly semi-circular.
Specifically, minor perturbations in DMP weights from semi-
circular trajectories can result in task performance and rewards
having a large variance. A large variance in the reward function
values will be deemed undesirable during policy updates,
especially if the values of B and 7y, which bound the KL-
divergence and entropy reduction constraints of the MORE
algorithm, are set to make the learning process risk-averse.

As is commonly done when performing reinforcement
learning experiments on a real robot, we tuned hyperparame-
ters in order to ensure that the learning process would converge
within a reasonable number of samples. Specifically, the hyper-
parameters were tuned such that the initial policy distribution
would have sufficient variance to generate samples of DMP
weights that would, in turn, generate page flipping movements
with different degrees of page warping and snapping. In
addition, covariance matrix values were increased for robot
joint activations that were observed to be especially sensitive
to changes in DMP weights during different phases of the page
flipping trajectories. This variance in behavior provides a wide
and meaningful range of page flipping behaviors and reward
function samples that enable productive policy updates.

C. Impact of Chosen Representation of Tactile Sensing Traces

Once we successfully learned nominal trajectories for the
page flipping task for both page sizes, we paused to examine
the impact of the choice of representation of the tactile
information on a simplified version of the sub-problem for
learning adapted trajectories. Using the methods described in
Section III-F, we sought to reduce the dimensionality of the
tactile sensing traces before attempting the full experiment

(a) Artificial apical tuft representation

-1000 |- =~ é
-2000 +
+
- =
+ +
(b) PCA eigenvalue representation

A —

-4000 |- i +
+ f == =
+ *

Warp., Warp., Warp., Aggr,

Reward

-3000

-4000

-2000

o
5]
5

2 6000 |-

-8000

Func. Aggr.,

Fig. 9. Distributions of reward function samples are shown for two rep-
resentations of tactile sensing traces: (a) artificial apical tuft, and (b) PCA
eigenvalues. Fifteen rollouts were performed for each of six trajectories on a
binder containing small pages: an ideal semi-circular trajectory (Functional),
three trajectories that cause page warping and snapping, and two aggressive
trajectories. The Warped_I trajectory is the nominal trajectory learned for
large pages, but purposely applied to small pages.

on the adaptation of the learned nominal trajectories to a
novel context. Specifically, we investigated how the values of
the reward function samples were affected by two different
simplified representations of the tactile sensing traces: (i) one
mean P, and one mean electrode value E;_ ¢ for the artificial
apical tuft, per finger, and (ii) three PCA eigenvalues.

Figure 9 shows the reward function values for the two dif-
ferent representations of the tactile sensing traces. The reward
function samples (specified for learning adapted trajectories in
Section III-E) are the result of 15 rollouts performed for each
of six trajectories on a binder containing small pages. An ideal
semi-circular trajectory is denoted as Functional. Three trajec-
tories causing page warping and page snapping are denoted as
Warped_1, Warped_2 and Warped_3. The Warped_I trajectory
is special in that it is the nominal trajectory learned for large
pages, but purposely applied to small pages (a different task
context). One aggressive trajectory (Aggressive_I) pulls the
binder upwards and away from the support surface. Another
aggressive trajectory (Aggressive_2) pulls the binder toward
the base of the robot arm.

Two comments can be made about the similarity in reward
distributions between the Functional and Aggressive_2 tra-
jectories. First, the Functional trajectory was provided by a
human demonstration, which could have resulted in a small de-
gree of aggressiveness since the demonstrator had to manually
move the robot arm in order to flip the page. Second, from a
utilitarian perspective, a trajectory that is labeled Aggressive_2
could be acceptable if it is close enough to a trajectory that is
deemed Functional.

As expected, the desired Functional trajectories generate
the best reward distributions, regardless of the representation
of tactile sensing traces (Figure 9). For both the apical tuft
and PCA eigenvalue representations, the reward distributions
can be used to distinguish between functional page flipping
trajectories and those that cause undesired page warping
and snapping. Unfortunately, the reward distributions for the
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Functional and Aggressive_2 trajectories overlap, which make
these two categories of trajectories more difficult to be distin-
guished from one another when using the tactile-based reward
function specified in Section III-E with either of the two
representations.

Nonetheless, the PCA eigenvalue representation generates
a broader reward landscape compared to that generated by
the apical tuft representation (Figure 9). In particular, the
PCA eigenvalue representation results in a larger difference in
mean reward function values between the Functional and the
Aggressive_2 trajectories than the apical tuft representation. As
a result, functional and non-functional behaviors can be better
distinguished when using the PCA eigenvalue representation.
It is possible that, by averaging the four electrode measure-
ments across the artificial apical tuft, we lose information that
may have encoded differences in page flipping behaviors.

In order to further test the impact of the tactile sensing
representations, the first batch of experiments for learning an
adaptation policy is conducted under the assumption that the
goal position for small pages is known a priori. Specifically,
the joint-specific values of the goal position parameter y, in the
perceptual coupling DMPs are set to the goal position values
that were obtained from the human demonstration for small
pages. Three independent learning trials are conducted with
each tactile sensing trace representation. We initialize all DMP
weights {®}; to the weights learned for large pages and all
perceptual coupling feedback weights {@®}; are set to zero. The
number of Gaussian basis functions in the perceptual coupling
term is set to three. Since three robot joints are subject to
control, the learning process explores a 36-D space (4 tactile
traces X 3 basis functions per tactile trace x 3 robot joints)
for the apical tuft representation and a 27-D space (3 x 3 x 3)
for the PCA eigenvalue representation.

Figure 10 shows the learning curves using the apical tuft and
PCA eigenvalue tactile sensing representations, respectively.
For both tactile sensing representations, the MORE algorithm
enables learning, as evidenced by an increase in the mean
and the maintenance of a relatively small variance for the
distribution of reward function samples. These results suggest
that the perceptual coupling term in Equation 22 enables the
tactile feedback to drive the adaptation of the initial trajectory
intended for flipping large pages toward that necessary for
flipping small pages.

While the learning curves are similar for both repre-
sentations (Figure 10), the resultant adapted page flipping
trajectories are quite different. Our observation is that the
adapted trajectories are more aggressive when learned with
the apical tuft representation than with the PCA eigenvalue
representation. While avoiding page warping and snapping,
the aggressive trajectories pull the binder closer toward the
base of the robot before initiating page flipping and can even
result in the binder hitting the edge of the support surface.
The gentler page flipping trajectories learned with the PCA
eigenvalue representation result in smaller displacements of
the binder toward the base of the robot. Differences between
the trajectories learned using the apical tuft and PCA eigen-
value representations can be seen in the supplementary video.
Just as the PCA eigenvalue representation was preferred for
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Fig. 10. Learning curves are shown for the simplified experiment on

adaptation of the learned nominal trajectories to a novel context using the (a)
artificial apical tuft and (b) PCA eigenvalue representations of tactile sensing
traces. The goal position for small pages is known a priori. Mean and variance
are presented for batches of 10 rollouts.

distinguishing the functional trajectories from the aggressive
trajectories (Figure 9), we conclude that the PCA eigenvalue
representation is also preferred for learning adapted trajecto-
ries.

Figure 11 shows in greater detail how the tactile sensing
traces for both representations change as the adapted trajectory
is learned. The nominal tactile sensing traces are taken from
10 rollouts of a nominal trajectory learned for large pages
(green). When the nominal trajectory learned for large pages
is directly applied to small pages (a different task context), a
much different set of tactile sensing traces results before any
learning takes place (red). The results from three independent
learning trials are shown, with each trial being comprised of
10 rollouts and 9 policy updates.

The adaptation of the tactile sensing traces encouraged by
the perceptual coupling term in Equation 22 is most clearly
illustrated in Figure 11 for the Ist and 2nd principal compo-
nents of the PCA eigenvalue representation, which combine
to explain 84.5% of the total variance in the original 10-D
tactile sensing space. After learning to adapt the initial nominal
trajectory for large pages to small pages, the tactile sensing
traces for the the learning trials converge toward those for the
ideal case in which the nominal trajectory learned for large
pages is appropriately applied to large pages. For the apical
tuft representation, the adaptation of the tactile sensing traces
after learning is most clearly shown for the top finger of the
gripper in the P;. and E7_j( data.

D. Adapting Learned Nominal Trajectories to a Novel Context

Based on the encouraging results described in Section IV-C,
we adopted the PCA eigenvalue representation for the tactile
sensing traces for the full experiment on adaptation of the
learned nominal trajectories to a novel context. For the full
experiment, we no longer provide any information about page
size. As a result, the goal position y, now becomes another axis
in the policy search space. We show that a nominal trajectory
learned for large pages can be successfully adapted to an
unknown, novel page size (small, in this case) using perceptual
coupling driven by a 3-D PCA eigenvalue representation of
tactile feedback. In the simplified version of the sub-problem
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Fig. 11. Distributions of tactile sensing traces are shown for the simplified experiment on adaptation of the learned nominal trajectories to a novel context
using the (a) artificial apical tuft and (b) PCA eigenvalue representations of tactile sensing traces. The goal position for small pages is known a priori. Tactile
data are shown for a nominal trajectory learned for large pages and applied to large pages (green) and to small pages prior to adaptation learning (red), for
10 rollouts each. Three independent learning trials (9 policy updates each) show how the tactile sensing traces change as the initial nominal trajectory for

large pages is adapted to small pages during adaptation learning.

for learning adapted trajectories, the goal positions that were
provided a priori were encoded in joint space. The learning
problem becomes much harder when the joint-specific goal
positions are no longer provided. Without the provision of such
joint-specific constraints, it is possible that naive sampling of
trajectories could lead to damage of the robot or movements
that do not flip the page at all. To address this issue, we
leverage the fact that the page flipping trajectories lie within
a 2-D plane. As seen in Figure 1, the z-coordinates for the
support surface and binder are constant. Accordingly, we
assume that the z-coordinate of the goal position will be
constant for the gripper regardless of page size. Since the y-
coordinate of the gripper will vary according to page size,
we represent different goal positions using the gripper’s final
y-coordinate.

During learning, the MORE algorithm samples values for
the gripper’s goal y-coordinate at the end of the page flipping
trajectory. The pair of goal (y,z) coordinates for the gripper
is then transformed into goal positions in joint space via an
inverse kinematics solver. Using the PCA eigenvalue repre-
sentation of the tactile sensing traces, the learning algorithm
searches a 28-D space (3 tactile traces x 3 basis functions per
tactile trace x 3 robot joints 4+ goal y-coordinate. As before
for the simplified experiment on learning adapted trajectories
(Section IV-C), all perceptual coupling feedback weights {®};
are set to zero. We use the final y-coordinate of the gripper
from the learned nominal trajectory to generate the initial
estimate for y, in joint space.

As shown by the learning curves in Figure 12, learning of
the adapted trajectories was successful for the full experiment
in which a nominal trajectory learned for large pages was
applied to a novel task context (small pages). The initial
trajectory rollouts result in aggressive movements in which
the robot lifts the binder off of the support surface and drags
the binder farther than necessary for small pages. As the
adapted trajectory is learned using tactile-driven perceptual
coupling, the distributions of reward function values improve,
as reflected by the increase in mean and decrease in variance.
After 16 policy updates, the small page is flipped gently,

without lifting the binder from the support surface, and with
less displacement of the binder.

L Sy
S 2400 Trial 1
~ - — - Trial 2
-4000- = | Trial 3

0 2 4 6 8 10 12 14 16

# of Policy updates

Fig. 12. Learning curves are shown for the full experiment on adaptation of
the learned nominal trajectories to a novel context using the PCA eigenvalue
representation of tactile sensing traces. The goal position for small pages is
not known a priori and must be learned. Mean and variance are presented for
batches of 10 rollouts.

Prior to adaptation learning, ten rollouts of a nominal
trajectory learned for large pages and applied to small pages
result in a mean value of -48.2 mm for the y-coordinate of
the goal position. The mean value for the y-coordinate of the
goal position is 40.0 mm for the ideal case in which a nominal
trajectory learned for small pages is applied small pages. The
final policies from three independent learning trials (16 policy
updates each) result in mean values for the y-coordinate of the
goal position of -40.8 mm, -41.0 mm, and -41.8 mm. In all
cases, all standard deviation values were less than 0.03 mm.
The mean value of the goal y-coordinate decreases by at least
6 mm (approximately 12%) as the trajectory is adapted from
large pages to small pages. By the end of three independent
learning trials, the mean goal y-coordinates are most similar
to that for the ideal case in which a nominal trajectory learned
for small pages is applied to small pages. This illustrates that
the y-coordinate of the goal position is also learned and is
successfully adapted from a value suited for large pages to
a value appropriate for small pages. This demonstrates that a
learned nominal trajectory can be successfully adapted to a
novel task context using only the tactile sensing traces of a
functional behavior as a reference.

Figure 13 shows in greater detail how the tactile sensing
traces for the PCA eigenvalue representation change as the
adapted trajectory is learned. Tactile sensing trace distributions
(mean and variance) are shown in red for 10 rollouts of a
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Fig. 13. Distributions are shown for the PCA eigenvalue representation of
tactile sensing traces for the full experiment on adaptation of the learned
nominal trajectories to a novel context. The goal position for small pages is
not known a priori and must be learned. Distributions (mean and variance)
are shown for a nominal trajectory learned for large pages and applied to
large pages (blue) and to small pages prior to adaptation learning (red), for
10 rollouts each. Three independent learning trials (16 policy updates each)
show how the distributions change as the initial nominal trajectory for large
pages is adapted for small pages after learning. The distribution of tactile
feedback is also shown for the ideal case of a nominal trajectory learned for
small pages and applied to small pages (green).

nominal trajectory learned for large pages and naively applied
to small pages (a novel task context). The ideal tactile sensing
traces are shown in green for a nominal trajectory learned
for small pages and applied appropriately to small pages. As
desired, after 16 policy updates, the tactile sensing traces for
the three independent learning trials converge upon those for
the ideal case after learning the adapted trajectory and goal
position using tactile-driven perceptual coupling.

For comparison, tactile sensing traces are shown in blue for
a nominal trajectory learned for large pages that is applied
appropriately to large pages. First, we see that task context
does affect the tactile feedback, as exemplified by the slight
differences between the tactile sensing traces for the rollouts
that do not require adaptation, but are learned for different
page sizes (blue for large pages, green for small pages).
Nonetheless, the tactile feedback for the rollouts that do
not require adaptation (blue, green) are more similar to one
another than to the tactile feedback for the rollouts that do
require adaptation (red). This supports our assumption that,
while the page flipping trajectories for different page sizes
might differ, similar tactile sensing traces should be expected
from functional trajectories for each of the page sizes. Second,
we see that the learning trials that adapt to small pages lead
to tactile sensing traces that are most similar to those from
rollouts for small pages that do not require adaptation (ideal
green case). This trend is most clearly visible for the 3rd
principal component.

Figure 14 compares distributions of reward function values

for different cases of trajectory rollouts. Reward function sam-
ples are shown in red for 10 rollouts of a nominal trajectory
learned for large pages and naively applied to small pages (a
novel task context). Reward function samples are shown in
green for the ideal case in which a nominal trajectory learned
for small pages is applied appropriately to small pages.

After 16 policy updates, the reward function samples for
the three independent learning trials generally converge upon
those for the ideal case after learning the adapted trajectory and
goal position. The improvement in reward function values is
most clearly seen in the boxplots for the 2nd and 3rd principal
components. For the Ist principal component, it was initially
surprising to see little improvement in reward function values
with learning. We believe this may be caused by the fact
that the trajectory is being adapted from a nominal trajectory
learned for a different task context. Some of the undesired
properties of the initial trajectory may remain prevalent in
the adapted trajectory and are reflected in the 1st principal
component of the tactile feedback representation.
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Fig. 14. Distributions are shown for reward function samples using the PCA
eigenvalue representation of tactile sensing traces for the full experiment on
adaptation of the learned nominal trajectories to a novel context. Goal position
is not known a priori and must be learned. Distributions are shown for a
nominal trajectory learned for large pages and applied to small pages prior
to adaptation learning (red), for 10 rollouts each. Three independent learning
trials (16 policy updates each) show how the distributions change as the initial
nominal trajectory for large pages is adapted for small pages after learning.
The distribution of reward function samples is also shown for the ideal case
of a nominal trajectory learned for small pages and applied to small pages
(green).

V. CONCLUSION

With experiments on real robots, we demonstrated a learned
manipulation of deformable, thin-shell objects via a page
flipping task. We showed that the functional performance of
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the task can be quantified from the perspective of tactile
sensing. We also verified our intuitive assumption that there
exist tactile features that can be used to adapt learning to novel
task contexts for the manipulation of deformable objects. This
insight could facilitate the design of tactile-based controllers
for more complex manipulation tasks involving deformable
objects and deformable tactile sensors.

A. Summary of Contributions

In this paper, we demonstrated the ability for a real robot
to learn how to manipulate a deformable thin shell and adapt
the learned functional behavior to other task contexts. More
specifically, we demonstrated that a real robot can learn a page
flipping task via tactile information. We addressed the learning
of this task using a two-stage approach. For the first learning
sub-problem, we learned nominal page flipping trajectories
by constructing a reward function that quantifies functional
task performance and is driven by tactile feedback. Nominal
trajectories were learned specifically for small or large pages
using human demonstrations via kinesthetic teaching.

For the second learning sub-problem, we learned adapted
trajectories by constructing a reward function that used tactile-
driven perceptual coupling. We assumed that, while the page
flipping trajectories for different task contexts (page sizes)
might differ, similar tactile feedback should be expected from
functional trajectories for each of the contexts. We performed
a simplified experiment on adaptation of the learned nominal
trajectories to a novel context in which the goal position for
small pages was known a priori. Using this simplified case, we
compared two different representations of tactile sensing traces
and concluded that a PCA eigenvalue representation encodes
essential tactile information to enable learning. Finally, we
performed a full experiment on adaptation of the learned
nominal trajectories to a novel context in which the goal
position for small pages had to be additionally learned. We
showed that functional behaviors for different task contexts
shared features in the tactile feedback that enabled successful
learning of adapted trajectories via tactile-driven perceptual
coupling.

B. Limitations and Future Work

One limitation of this work is that, for practical purposes,
we reduced the control of the 7-DOF robot arm to three joints
such that the page flipping movement would be constrained
to a 2-D plane. If all 7 DOFs of the robot were enabled,
the learning algorithm might encounter regions of the policy
parameter space associated with unnecessarily complex robot
motions, such as the twisting of notebook pages through wrist
rotation. Defining an effective reward function based on raw
tactile sensor data becomes very challenging for such complex
scenarios.

Another limitation is that this work does not address addi-
tional factors, such as object texture, that might affect the gen-
eralizability of a tactile-driven policy. Further investigations
are needed to assess the applicability of the “tactile invariance”
notion to other tasks and scenarios, when more factors that
might affect tactile sensor signals are introduced. Specifically,

we believe that one interesting direction is to investigate tactile
invariance not only in the context of a specific task, but
rather taking it to a higher level of abstraction. For example,
many contact manipulation tasks can be decomposed into a
sequence of different subtasks (primitives). If they exist, intra-
subtask tactile invariances could be used to compose a skill
with varying task context, or speed up the learning of a new
skill [48], [49].

Another interesting line of investigation is the use of
multiple sensing modalities to capture task-relevant features
across different task contexts. If low-level representations
that encode information related to “task invariance” could
be extracted from high-dimensional multimodal sensory data,
the representations could enable the generalization of learned
policies to new task instances more efficiently [50].
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