
Policy Gradient Methods

for Control Applications

Novel approaches, review of previous methods, and feasibility studies

by Jan Peters

with support from Stefan Schaal, Sethu Vijaykumar, and Auke Ijspeert.





Contents

1 Introduction 1

2 Foundations of Policy Gradient Methods 9
2.1 Expected Return Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Value Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Trajectories, Transition Kernels and Stationary Distributions . . . . . . . . 18
2.4 Kernel-based Expected Return . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Analytical solution for the value function . . . . . . . . . . . . . . . . . . . 24

3 Policy Gradient Theory 27
3.1 Policy Gradient Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Compatible Function Approximation . . . . . . . . . . . . . . . . . . . . . . 31
3.4 The Optimal Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 All-Action Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Natural Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Bibliography 45

A Proofs for the Examples 47
A.1 Linear Quadratic Regulation Examples . . . . . . . . . . . . . . . . . . . . . 47

A.1.1 Expected Return Derivation . . . . . . . . . . . . . . . . . . . . . . . 47
A.1.2 Value Function Derivation . . . . . . . . . . . . . . . . . . . . . . . . 47
A.1.3 Advantage Function Derivation . . . . . . . . . . . . . . . . . . . . . 51
A.1.4 Compatible Function Approximation . . . . . . . . . . . . . . . . . . 52
A.1.5 All-Action Matrix Derivation . . . . . . . . . . . . . . . . . . . . . . 53
A.1.6 ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A.2 Discrete State- and Action Example . . . . . . . . . . . . . . . . . . . . . . 53
A.3 All-Action Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53





Chapter 1

Introduction

Reinforcement learning can best be described as the study of stochastic programming meth-
ods for (partially) Markovian decision processes without an analytical model of the system.
These methods are intended to find the optimal policy π∗ with the maximal expected Optimal

policyreturn J(π∗) in a multi-stage Markovian decision problem

π∗ = argmax
πθ∈Π

J(πθ), (1.1)

J(π∗) = max
πθ∈Π

J(πθ), (1.2)

in a goal directed manner1 (Bertsekas, 2000). In here, Π denotes the space of all admissible
policies. J(πθ) denotes the expected return of a particular policy πθ with parameters θ. It
can can be defined as

J(πθ) = ET {R (T )} =

∫

T

p (T |π )R (T ) dT , (1.3)

where R (T ) denotes the return of a particular trajectory T having a probability p (T |πθ)
given the current policy πθ (for details see Chapter 2). Clearly, this stochastic programming
problem is difficult to solve since there are infinite trajectories T , and neither all rewards
R (T ) nor all probabilities p (T |π ) are known to the learning system in the general case.

Stochastic programming offers us two different traditional approaches of solving such
problems: (a) greedy external sampling approaches, and (b) parameterized internal
sampling methods (Morton, 2001). Reinforcement learning methods which have been
introduced to date can be divided into this scheme as shown in in Figure 1.1, and Table
1.1.

Since the dawn of reinforcement learning, greedy methods dominated the field. For Greedy

methodsapplying this approach, researchers focussed on a particular kind of policies, i.e., greedy
policies

π∗ (u |x) =

{
1 if u = argmaxu∗∈U Q∗ (x,u∗)
0 if u 6= argmaxu∗∈U Q∗ (x,u∗)

, (1.4)

which are parameterized by value functions such as the state-action value function

Q∗ (x,u) = E

{ ∞∑

k=0

γkrk

∣
∣
∣
∣
∣
x0 = x,u0 = u, π∗

}

. (1.5)

Learning would proceed in the fashion that first an arbitrary initial policy π∗
0 would be

chosen. Then its value function Q∗
0 would be estimated, and subsequently the new policy

1The goal-directedness makes reinforcement learning different from Genetic algorithms as these are based
on a pure Monte-carlo search strategy.



2 Introduction

Actor-Critic

A
ctor-only

C
ri

ti
c-

on
ly

Greedy
M

et
ho

ds
P

olicy
G

rad ientM
ethods

Q-learning,
R-Learning,
Advantage
Updating

REINFORCE,
Episodic REINFORCE,,

GPOMDP

Barto’s & Sutton’s
Actor-Critic Gullapalis

Actor-Critic SRV, Kimura
& Kobayashis Actor-

Critic Method,
VAPS

SARSA

Figure 1.1: This figure shows how traditional reinforcement learning methods mapped onto
stochastic programming methods, i.e., greedy and policy gradient methods.

Method Actor-only Critic-only Actor-critic

Greedy Policy None Q-Learning, None
Optimization Advantage Updating,

R-Learning,
Value-Iteration

Parameterized REINFORCE, SARSA with an Suttons & Bartos
Policy Opti- Episodic ε-greedy policy in Actor Critic,
mization (= policy REINFORCE, discrete state and Kimuras & Kobyashis
gradient methods) GPOMDP action spaces. Actor Critic, VAPS

Table 1.1: Dominant reinforcement learning approaches in the late 1990s. Parameterized
policy approaches can be seen as policy gradient methods as explained in Chapter 4.

π∗
1 could be computed. After a sufficient amount of iterations π∗

0
learn−→ Q∗

0
select−→ π∗

1
learn−→

Q∗
1

select−→ · · · learn−→ Q∗
∞

select−→ π∗
∞, this approach can converge to the optimal policy just like its

model-based counterparts in dynamic programming (Bellman, 1957) such as value iteration
(Howard, 1960). However, convergence can only be guaranteed for lookup-table value
function approximation.

This approach particularly appealed to researchers due to the fact that not only Monte
Carlo methods but also temporal difference (TD) methods can be applied. These
methods use the fact that reward of an action and the value function of the two temporally
adjacent state-action pairs (xt,ut) and (xt+1,ut+1) allows the calculation of the TD error
δt of Q∗ using just two samples, e.g., in Q-learning it is given by

δt = rt + γ max
u∗∈U

Q∗ (xt+1,u
∗) − Q∗ (xt,ut) .

Learning of the Q∗-function appeared to be the “key to efficiency” (Sutton, 2000), and
an “almost supervised” (Sutton, 2000) learning problem. Furthermore, algorithms like
Q-learning were proved to converge for the discrete case with look-up table value func-
tion approximation (Sutton & Barto, 1998), and impressive applications such as playing



3

Backgammon on grandmaster level, and acrobat swing-ups have been presented (Sutton &
Barto, 1998).

Nevertheless, lookup table approximations suffer strongly from the curse of dimen-
sionality (Bellman, 1957), and it was obvious that a higher order of generalization was
needed. However, at the end of the 1990s when researchers turned towards continuous
approximations of large-scale value functions, the success of the greedy value function ap-
proximators was limited (Sutton & Barto, 1998; Baxter & Bartlett, 1999; Baird, 1998). No
theoretical guarantees of the performance could be obtained (Sutton, 2000). All existing
greedy methods have been shown to diverge or oscillate for at least one example (Baird,
1998) already when linear function approximation is used to approximate the value function
(obviously, more complex function approximation can result into more complex problems).

The reason for this is two-fold, and lies in the heart of the sequence of π∗
i

learn−→ Q∗
i

select−→ Greedy meth-

ods are biasedπ∗
i+1 steps. In the learning step π∗

i
learn−→ Q∗

i , we basically obtain an estimate J
π∗

i
n of the

expected return J(π∗
i ) using a finite amount of n trials. The estimate can be calculated as

J
π∗

i
n =

1

n

n∑

k=0

R (Tk) . (1.6)

In here, R (Tk) denotes the return of the k-th trajectory Tk. In order to perform the selecting

step Q∗
i

select−→ π∗
i+1, we determine the maximal reward from our trial data Jmax

n = maxπ∈Π Jπ
n ,

and at the same time we have determined the next policy π∗
i+1 = argmaxπ∈Π Jπ

n . We easily
see that the expectation of the maximum of the average reward over several trials is equal
or greater than the maximum of the expectation of one trial, i.e.,

max
π∈Π

Jπ
n = ET

{

max
π∈Π

1

n

n∑

i=0

R (Ti)

}

≥ ET

{

max
π∈Π

R (T )

}

= max
π∈Π

J(π). (1.7)

Therefore, greedy methods are positively biased estimators of the optimal policy,
and the optimization process can be mislead due to the bias. In particular, a policy which
performs optimally on a small amount of collected data might perform poor in the com-
plete trajectory space. However, the bias decreases monotonically with the amount of data
maxπ∈Π Jπ

n ≥ maxπ∈Π Jπ
n+1 ≥ maxπ∈Π J(π). This means, we better “wait and see” (Mor-

ton, 2001), before we select a new policy. This problem is not severe for typical discrete
toy problems as we can oversample every state, and therefore we can minimize the bias for
such problems. Nevertheless, it is disastrous for learning value functions with generaliza-
tion in its function approximation as greedy methods are likely to steer the learning process
towards a wrong generalization. Still, greedy optimization methods are strongly consistent
(Morton, 2001).

Despite this interesting fact, there is also another, more intuitive explanation: the greedy

mapping Q∗
i

select−→ π∗
i+1 from the value function Q∗

i onto a policy π∗
i+1 is non-smooth, and

discontinuous. Noise in the value function Q∗
i can cause the policy π∗

i to change fast since
a small value function in Q∗

i change can cause a large policy change in the new policy π∗
i+1

which in turn can cause a large value function change in Q∗
i+1. According to Sutton (2000) Greedy meth-

ods are not

sound with

value function

approxima-

tion

this can be described as follows:

“All the states interact and must be balanced which causes trade-off be-
tween them. [. . . ]. A small change (or error) in the value function estimate
can cause a large, discontinuous change in the policy which in turn causes
a large change in the value function estimate.”



4 Introduction

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1
(a) Policy parameters over time

P
ar

am
et

er
 θ 1=

k

Time t

0 2 4 6 8 10 12 14 16 18 20
1

2

3

4

5

6
(b) Value Function parameters over time

P
ar

am
et

er
 P
(x

)

Time t

Figure 1.2: This figure shows a simple linear quadratic regulation problem (LQR) when the
parameters are estimated from a noisy value function. The noisy value function parameters
are shown in (b) with their dotted true values. The true values change over time since
they depend on the policy parameters. In (a), we can observe how the resulting greedy and
the resulting natural gradient estimator computed from this value function are affected.
Obviously, the greedy estimator jumps around wildly while the natural gradient estimator
goes into the correct solution smoothly.

Therefore, we often cannot obtain a stable learning system. This is highly related
with the biasedness of the greedy approach: if the value function is inaccurate, the greedy
approach is biased towards an incorrect solution. This in turn cause a larger change, which
results in more noise, and more wrongly directed bias.

Conclusion 1 (Greedy methods) As we have pointed out in the previous pages, the
reason for the difficulties of reinforcement learning with function approximation is not
that we have to learn a value function but that we do greedy updates. Greedy methods are
characterized by two difficulties: (1) Both Monte Carlo and temporal difference based
greedy methods are biased as the greedy optimization step is done on a finite amount
of data, and a greedy step is therefore biased. (2) The discontinuous mapping from the
value function onto a policy also produces a discontinuous change in the value function.
Due to noise in the value function estimate, both value function and greedy policy can
jump around wildly not reaching the optimal policy. Therefore, we have to search an
alternative to greedy methods.

The resulting problems in greedy reinforcement learning brought researchers back toStochastic

gradients are

unbiased. . .

the question whether we have taken the right stochastic programming approach (Baxter



5

& Bartlett, 1999; Baird, 1998; Jaakkola, Jordan, & Singh, 1994; Marbach & Tsitsiklis,
1998)2. Clearly, internal sampling methods can provide us with an unbiased estimator
of the optimal expected return, and the optimal policy: according to Robbins & Monroe
(1951), a stochastic gradient estimator given by

θt+1 = θt + α
∂J(πθ)

∂θ

∣
∣
∣
∣
θ=θt

(1.8)

is unbiased. Furthermore, the effect of noise in the value function is not as drastic as it is . . . and noise

is not that

drastic

illustrated in Figure 1.2 with a simple noisy learning LQR controller3. Nevertheless, the
gradient ∂J(πθ)/ ∂θ, defined by

∂J(πθ)

∂θ
=

∫

T

∂p (T |π )

∂θ
R (T ) dT , (1.9)

is difficult to obtain in practice.
Early methods of obtaining ∂J(πθ)/ ∂θ have been studied in the reinforcement learn- Early policy

gradients

methods suf-

fered from the

large variance

ing community at the end of the 1980s when Ronald J. Williams (Williams & Peng, 1991;
Williams, 1992) first introduced the class of “REward Increment = nonnegative Factor ×
Offset Reinforcement × Characteristic Eligibility” (REINFORCE) algorithms and Vijayku-
mar Gullapalli (Gullapalli, 1991; Gullapalli, Franklin, & Benbrahim, 1994) showed how an
instance of this algorithm class, the Stochastic Real Valued (SRV) algorithm could be ap-
plied for several problems. However, while greedy methods are problematic due to the bias,
these early gradient methods were problematic due to their large variance in the gradient
estimate. This was due to the fact that they estimated the gradients from the immediate
reward of a state, i.e., neglecting most terms in equation (1.9), or from single roll-outs.
Such policy gradients estimated from immidiate rewards or single roll-outs will hardly ever
be close to the true gradient, i.e., have a large variance. Due to the large variance in the
gradient, the convergence rate of these methods was low. This in turn is the reason why
they were abandoned in the 1990s.

Nevertheless, when using multiple roll-outs, the policy gradient estimate improves sig- Low cover-

gence rate but

unaffected by

dimensional-

ity

nificantly. In fact, roll-out gradient estimation from n ≫ 1 trials (i.e., trajectories) can
work quite well since it is just a Monte Carlo integration algorithm over n trajectories.
Monte carlo integration converges with a rate of ∝ 1/

√
n (Morton, 2001). While this

appears a slow for low-dimensional state spaces (d ≈ 1), it turns out that it is a superb
result for high-dimensional spaces (d ≫ 1) as the convergence rate is not affected by the
dimensionality d (Morton, 2001). However, the variance in the estimate grows (linearly?)
with d (Morton, 2001). Clearly, these methods are capable of overcoming the curse of
dimensionality unlike lookup-table based greedy methods.

During the revival of policy gradient methods, Sutton et al. (2000) and Konda &
Tsitsiklis (2001, 2000, 2002) presented a general policy gradient theorem which unified
previous approaches, and comes with a compatible value function approximation. Building
on their results and Suttons unfinished paper (Sutton, McAllester, Singh, & Mansour, 2001),
we will present methods of obtaining minimum-variance estimates of the policy gradients,
i.e., optimal baselines, and the All-Action algorithm. Furthermore, it appears that all
non-greedy reinforcement learning methods shown in Table 1.1 are to some extend policy
gradient methods. Surprisingly, this includes SARSA as well as the actor-critic methods of
the beginning 1980s, we will study this in Chapter 4.

Natural gradient methods as presented by Amari (2000) have the large advantage over Natural gradi-

ents are effi-

cient

2Many of the researchers did not attribute the problems associated with the greedy approach to the
policy but to the fact that we have to learn a value function.

3The analysis of this example as a whole is given in chapters 2-3. Here, we just give it as an illustration
of greedy value function based optimization.



6 Introduction

Variance

Bias

Low High

High

Low
Natural

Gradients

Greedy
Methods

Old Policy
Gradients

Good
Reinforcement

Learning Methodas

Policy
Gradient
Theorem

Optimal
Baseline
Gradients

All-Action
Gradients

Figure 1.3: This figure shows different reinforcement learning methods in a bias variance
diagram. Greedy methods have little variance but a large bias. The old policy gradient
methods, i.e., REINFORCE, and episodic REINFORCE, have a huge variance in expecta-
tion. The policy gradient theorem reduces the variance in the gradients significantly due to
the usage of value functions instead of the actual return. However, in practical application,
it is used only with single actions, and states which have occured. The variance can be
improved using a an optimal baselines which reduces the variance but introduces bias. It
can further be reduced using the all-action algorithm - which still has a variance due to
the fact that the stationary distribution has to be estimated. Only the natural gradients
deliver us an unbiased minimum variance estimator.

normal gradient methods, that they are not only unbiased but also consistent, efficient,
minimum variance estimators. Kakade (2001) presented an average natural gradient for
policy gradient methods. Building on this we will relate the results of Kakade (2001) to the
all action algorithm, and extend his proof from the “average natural gradient” towards the
true natural gradient.

Conclusion 2 (Policy gradient methods) Policy gradient methods avoid the prob-
lems of greedy approach as gradient estimators are unbiased, and noise in the value
function does not have such drastic effects. Nevertheless, early gradient methods did
not become popular due to the large variance in the gradient. As we will see in this
report, optimal baselines, All-Action policy gradients, and natural gradients allow us to
obtain a minimum variance estimate of the policy gradient. Furthermore, the natural
gradient estimator is unbiased, consistent, and efficient.
The second problem of gradient methods are plateaus and local minima. While the latter
cannot be solved by current methods, we will see that the natural gradient can indeed
solve the problems of plateaus.

While supervised learning as well as unsupervised learning methods have matured to
highly efficient techniques, reinforcement learning has remained a method for solving toy-
problems despite few impressive applications. Policy gradient methods currently appear



7

the only choice to speed-up reinforcement learning so that it can be applied in large-scale
applications. We intend to analyze policy gradient approaches in order to bring them into an
applicable framework. We test this framework on two case studies and will HOPEFULLY
show that it outperforms greedy value function based methods4.

In this research paper, we will proceed as follows. In the second chapter, we will discuss
the foundations of policy gradient methods, i.e., the expected return of the policy, proba-
bility distributions related to policy gradient methods, and value function. In particular,
we will contribute two important results here, i.e., (i) the transformation from the trajec-
tory view used in this introduction onto a sample based view, and (ii) the condition for
value function approximations to be able to represent the value function of a reinforcement
learning problem. Fact (i) is particular powerful as it reduces a controlled Markov decision
process onto an uncontrolled Markov chain.

In the third chapter, we discuss policy gradient theory based on the works of Sutton et
al. (2000), Konda & Tsitsiklis (2001, 2000, 2002), and Kakade (2001). We will attempt to
provide the missing links in their work, and present sufficient examples to undermine our
claims.

In the fourth chapter, we will discuss several non-greedy reinforcement learning methods,
and show that all of these methods are to some extend policy gradient methods. We have
stressed this point already in the introduction, and most of the methods listed in Table 1.1
will be discussed here.

In the fifth chapter, we will study the learning of the policy compatible value function
approximation. In the sixth chapter, we will present a case study on cart-pole and other
control problems. Throughout this report, we assume the reader to be familiar with the
book “Reinforcement Learning” by Sutton and Barto (1998).

4We do not count methods based upon ǫ-greedy policies as greedy methods. In fact, many ǫ-greedy
methods presented in Sutton & Barto (1998) are policy gradient methods.





Chapter 2

Foundations of Policy Gradient

Methods

In reinforcement learning problems, we generally have an actor which is in a state x ∈ X,
and takes an action u ∈ U according to a policy or probability distribution πθ (u |x) =
p (u |x,θ) ∈ [0, 1]. This policy has the internal parameters θ ∈ R

n, and p (u |x,θ ) Reinforcement

learning

problems

denotes the probability of taking action u in state x. Its actions modify the state x in
accordance to the environment which is presented in form of a probability distribution of
the next state p (x′ |x,u), and is usually not known to the actor. For each action it receives
a reward r (x,u). Throughout this report we will deal with discrete time t but continuous
states x and actions u . Furthermore, throughout this report we assume that x is fully
observable and p (x′ |x,u) depends only on x, u (and not the whole preceding state-action
sequence). Therefore, we are dealing only with Markov decision problems (MDPs). The
whole setup is shown in Figure 2.1, and examples are given in Figure 2.2.

Example 1 (Linear quadratic control) Throughout this report, we will deal with the
example of controlling a linear system with a linear quadratic regulator (LQR). For LQR problems

simplicity, we will just consider scalar actions, i.e., U = R, but high-dimensional state
spaces X = R

n. This system is a Markovian decision problem and has state-transition
probability distribution of the system given by

p
(
x′ |x, u

)
=

{
1 if x′ = Ax + bu,
0 if x′ 6= Ax + bu,

in the noise-free case. The system matrix A ∈ R
n×n, and the input vector b ∈ R

n can be
arbitrary. Its rewards are defined as

r (x, u) = −1

2
xT Qx − 1

2
uT Ru,

where Q ∈ R
n×n, and R ∈ R are positive definite. A simple example for such a problem

is given in Figure 2.2 (a-b). This system can be controlled optimally by a linear controller
u = kT

optx (Dorato, Abdallah, & Cerone, 1995). This controller can be represented by a
Gaussian policy Gaussian pol-

icy

πθ (u |x) =
1√

2πσ2
exp

(

− 1

2σ2

(
u − kT x

)2
)

,

with the policy parameters θ =
[
kT , σ

]T ∈ R
n × R+. In here, we have the controller

k ∈ R
n, and the exploration rate 0 ≤ σ ∈ R. For σ → 0, and k → kopt, the Gaussian



10 Foundations of Policy Gradient Methods

Environment
( | , )p xt+1 x ut t

Learning system
with policy

( | )pq u xt t

Reward
( )r x ut-1 t-1,

State xt+1 Action ut

Figure 2.1: The standard Markov decision reinforcement learning problem consisting of a
learning system, and the environment. The learning system is based on a policy πθ (ut |xt )
which denotes the probability of taking action ut in state xt. Its parameter vector θ is
adapted during learning. The environment consits of the state transition probabilities, and
a reward. The transition probabilities p (xt+1 |xt,ut ) denote the probability of the next
state xt+1 given the current state xt, and action ut. The environment also yields a reward
r (xt−1,ut−1) for the previous step. This figure is similar to the one of Sutton and Barto
(1998).

policy becomes the optimal controller. The parameters A, b, Q, and R are fixed parameters
of the environment – not of the policy. The optimal controller kopt is determined by the
environment.

Example 2 (Discrete state and action problems) Another, more common example,Discrete prob-

lems is a discrete action, discrete state Markov decision problem with n states, and m actions.
The state space is given by X = {x1, . . . , xn}, and the action space by U = {u1, . . . , um}.
Here we are given a table of state transitions probabilities Pu

xx′ to describe p (x′ |x, u) = Pu
xx′.

Similarly, the rewards are given in tabular form by r (x, u) = Ru
x. An example for such a

problem is given in Figure 2.2 (c-e). A common policy for such problems is the Gibbs

policyGibbs policy

π (u |x) =
exp

(
θT φxu

)

∑m
i=1 exp

(
θT φxui

) ,

with internal parameters θ ∈ R
n×m, and features vectors φxu ∈ R

n×m. This policy is known
to be able to represent the optimal policy for such problems. However, its parameters might
have to take infinite values in order to generate a deterministic policy. Therefore, another
policy, i.e., a decision border policy, might be more appropriateDecision bor-

der policy

π (uj |xi ) =

{
θxiuj

if j < m,

1 −
∑m−1

k=1 θxiuk
if j = m.

2.1 Expected Return Definition

In general, reinforcement learning algorithms intend to derive a policy πθ which maximizes
the expected return J(πθ). Two formulations of this return have been given (SuttonExpected

return et al., 2000), i.e., the average-reward formulation and the start-state formulation. Let us
now define both of these cases.



2.1 Expected Return Definition 11

u1

u2

u2

u1

x1

x x= 2

x2

x x= 1

x’ x= 1

x’ x= 2

u u= 1u u= 1 u u= 2 u u= 2

(d) Transition Probabilities Table

Pxx’
u

0

0 0

1

1

1

1

0

(c) Two State Problem

x x= 2

x x= 1

u u= 1 u u= 2Rx
u

0

0

2

1

(e) Reward Table

Valve c = X )Yin a +(1-a
X

Y
qin

q q qout= in=

c

(a) Concentration Control Problem

s-1cin q/Vm c

(b) Block Diagram

V dc/dt=q c -cm ( )in q/Vm

Volume Vm

-

+

Figure 2.2: This figure shows two simple examples. In (a) you can see a simple, one dimen-
sional linear quadratic control problem, i.e., controlling the concentration c of a substance
X (e.g., Cloride) in a basin of substance Y (e.g., water). The amount of inflow qin equals
the outflow, i.e., qout = qin = q. By tuning the inflow concentration cin, we can control the
basin concentration c. In (b), the block diagram and equations of the system dynamics are
given. In (c) you can see a simple two state, discrete action and state problem, previously
presented in (Kakade, 2002; Mahadevan, 1996). In (d) the transition probabilities Pu

xx′ and
in (e) the rewards Ru

x are given.

Definition 1 (Expected return) The expected return J(πθ) of a policy πθ can be
defined in two ways. The average reward formulation is given by

J(πθ) = lim
T→∞

1

T
E

{
T∑

t=0

r (xt,ut)

∣
∣
∣
∣
∣
πθ

}

, (2.1)

and the discounted start-state formulation is given by

Jγ(πθ |X0 ) = lim
T→∞

E

{
T∑

t=0

γtr (xt,ut)

∣
∣
∣
∣
∣
πθ, X0

}

, (2.2)

where γ denotes the discounting factor for future rewards, and X0 the set of start states.

For analyzing the expected return in-depth, we will have to focus on a few necessary
topics. Before doing so, let us pick up our previous examples, i.e., linear quadratic control,
and the two-state problem. We will now give the expected return of both examples.

Example 3 (Linear quadratic control) We will take up the linear quadratic regulation LQR expected

returnproblem from Example 1, page 9, with the same Gaussian policy πθ. The return of the



12 Foundations of Policy Gradient Methods

−2 −1.5 −1 −0.5 0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
(a) LQR expected return J(π)

Co
nt

ro
lle

r e
xp

lo
ra

tio
n 

 θ 2=σ

Controller exploitation θ
1
=k

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(b) Two state problem expected return J(π)

Pa
ra

m
et

er
 θ 2

Parameter θ
1

Figure 2.3: This figure shows the average reward in the discounted start-state formulation
for both (a) the one-dimensional linear quadratic control (LQR) problem with a Gaussian
policy, and (b) the the two-state problem with a decision border policy. In the LQR problem
(a) the parameters of the system are A = b = R = Q = 1, γ = 0.95, and the parameters of
the Gaussian policy πθ(u|x) are θ = [k, σ]T are shown on the axes. In the two state problem
(b), we define the policy parameters θx1u1

= θ1, θx1u2
= 1−θ2, θx2u1

= 1−θ2, and θx2u2
= θ2.

Furthermore, we also use a discount factor of γ = 0.95 in this problem. The optimal
solutions θ∗ of both problems are θ∗

LQR = [−0.6037, 0]T for (a), and θ∗
TwoState = [1, 0]T for

(b) are indicated by the rectangles.

policy in the average reward formulation is given by

J(πθ) = lim
T→∞

1

T
E

{
T∑

t=0

r (xt,ut)

∣
∣
∣
∣
∣
πθ

}

,

= lim
T→∞

1

T
E

{

−1

2
xT

0 Px0 −
1

2

T∑

t=0

σ
(
R + bT Pb

)
σ

}

,

= −1

2

(
R + bT Pb

)
σ2,

if the system is stable. The Ricatti matrix P ∈ R
n×n is the positive definite solution of the

modified Ricatti equation P = Q + γAT PA − kbT PA − AT PbkT + kbT PbkT + kRkT .
Similarly, the return of the policy in the discounted start-state formulation is given by

Jγ(πθ |{x0}) = lim
T→∞

E

{
T∑

t=0

γtr (xt,ut)

∣
∣
∣
∣
∣
πθ,x0

}

,

= −1

2
xT

0 Pγx0 −
1

2

1

1 − γ

(
R + γbT Pγb

)
σ2.

The Ricatti matrix Pγ ∈ R
n×n is changed in comparison to the average reward case in order

to take the discount factor into account. It is the positive definite solution of the modified



2.2 Value Functions 13

Ricatti equation Pγ = Q + γAT PγA − γkbT PγA − γAT PγbkT + γkbT PγbkT + kRkT .
In here, we assume a special case, i.e., the case where we are always starting from state
x0 ∈ X. The expected return in average reward formulation for the concentration control
LQR problem from Figure 2.2 (a-c) is given in Figure 2.3 (a). Alternatively, we could
assume a bounded start-state set with an initial probability distribution. The proof of this
example can be found in appendix Section A.1.1, page 47.

Example 4 (Discrete state and action spaces) Similarly, we can study finite discrete Discrete prob-

lems expected

return

state- and action-space problems from Example 2, page 10. In this case, we have to gen-
erate a state transition matrix P = [Pij ] ∈ R

n×n where the matrix entries Pij are de-
fined by Pij =

∑m
k=1 p (xi |xj, uk ) π (uk |xj ) =

∑m
k=1 Puk

xjxi
π (uk |xj ). The state-reward

vector R = [Rj] ∈ R
n so that the average reward for all actions in this state becomes

Rj =
∑m

k=1 r (xj , uk)π (uk |xj ) =
∑m

k=1 Ruk
xj

π (uk |xj ). Furthermore, if we assume that
each state xi ∈ X0 has the probability p(xi) of being a start-state, we can combine these in
the start-state vector S = [Si] ∈ R

n so that Si = p(xi). Using these vectors, we are given
the expected return of the policy in discounted start-state formulation by

J(πθ |X0 ) = lim
N→∞

E

{
N∑

t=0

γtr (xt, ut)

∣
∣
∣
∣
∣
πθ, X0

}

,

= lim
N→∞

ST
N∑

t=0

γtPtR = lim
N→∞

ST (I − γP)−1 (
I − γNPN

)
R,

= ST (I − γP)−1
R,

The average return for the undiscounted case cannot easily be determined analytically at
this stage. We will later return to it after introducing transition kernels and stationary
distributions. An example for such a problem is given in Figure 2.2 (c-e), and the expected
return is shown in Figure 2.3 (b). This also is an example for theorem 2 in Section 2.4,
page 22.

We will return to the expected return of the policy at later stages of this report. In
order to treat the topic of estimating the average reward properly, we have to discuss further
topics: value functions, trajectories, and transition kernels.

2.2 Value Functions

Since the dawn of reinforcement learning when Bellman derived the dynamic programming
algorithms (Bellman, 1957), value functions have been an important tool for reinforcement State value

function

V πθ (x)

learning. In average reward formulation, the state value function V πθ(x) is defined as
the accumulated difference from the expected return in the steps following the visit x.
In discounted formulation, the state value function V πθ(x) is defined as the accumulated
discounted rewards in all the steps after visiting x.

The state value function V πθ(x) can be seen as a potential function of the state-space X State-action

value function

Qπθ(x, u)

similar to the potential in classical electrodynamics, and vector analysis. The state-action
value function Qπθ(x,u) is its counterpart in the state-action space X × U. We will now
shortly define, and discuss value functions.



14 Foundations of Policy Gradient Methods

Definition 2 (Value functions) The state-action value function Qπθ(x,u) for
the average reward case is given by

Qπθ(x,u) = lim
T→∞

E

{
T∑

t=0

r (xt,ut) − J(πθ)

∣
∣
∣
∣
∣
x0 = x,u0 = u, πθ

}

, (2.3)

and the state value function V πθ(x) is given by

V πθ(x) = lim
T→∞

E

{
T∑

t=0

r (xt,ut) − J(πθ)

∣
∣
∣
∣
∣
x0 = x, πθ

}

, (2.4)

according to (Sutton & Barto, 1998). The state-action value function for the dis-

counted start-state case is given by

Qπθ(x,u) = lim
T→∞

E

{
T∑

t=0

γtr (xt,ut)

∣
∣
∣
∣
∣
x0 = x,u0 = u, πθ

}

, (2.5)

and the state value function is given by

V πθ(x) = lim
T→∞

E

{
T∑

t=0

γtr (xt,ut)

∣
∣
∣
∣
∣
x0 = x, πθ

}

, (2.6)

according to (Sutton & Barto, 1998).

The classical example for a value function is linear quadratic regulation, i.e., Example
1, page 9. Here we easily see that the basis functions of the value functions are quadratic,
which allows us to derive the value functions. They are discussed in Example 5, and shown
in Figure 2.4 (a-b).

Example 5 (Linear quadratic control) In the context of Gaussian policy linear quadraticLQR value

functions regulation as in Example 1, page 9, we have the state-action value function of

Qπθ (x,u) = −1

2

[
xT , u

]
[

Q + AT PA AT Pb

bT PA R + bT Pb

] [
x

u

]

+
1

2

(
R + bT Pb

)
σ2,

and the state value function of

V πθ (x) = −1

2
xT Px,

for the average reward case. Similarly, we have the state-action value function of

Qπθ (x,u) = −1

2

[
xT , u

]
[

Q + γAT PγA γAT Pγb

γbT PγA R + γbT Pγb

] [
x

u

]

− 1

2

γ

1 − γ

(
R + γbT Pγb

)
σ2,

and the state value function of

V πθ (x) = −1

2
xT Pγx − 1

2

1

1 − γ

(
R + γbT Pγb

)
σ2,



2.2 Value Functions 15

−10
0

10

−10

0

10
−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

Action u

(a) LQR state−action value function

State x

Va
lu

e 
fu

nc
tio

n 
  Q

 π
(x

,u
)

−10 −5 0 5 10
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0
x 10

4(b) LQR state value function

Va
lu

e 
fu

nc
tio

n 
  V π

(x
)

State x

Figure 2.4: This figures shows both (a) the state-action value function Qπθ(x, u) and (b)
the state value function V πθ(x) of an one-dimensional linear quadratic control problem
with a Gaussian policy. The parameters of the system are A = b = R = Q = 1, γ = 0.95,
and the parameters of the Gaussian policy πθ(u|x) are θ = [k, σ]T with k = −0.5, and
σ = 0.1.

for the start-state case. P and Pγ are defined as in Example 3, page 11 in both cases. For
a proof of both cases, see in the appendix, Section A.1.2, page 47. The value functions for
discounted start-state case LQR are plotted in Figure 2.4 (a-b).

Due to the assumption, that our process and our policy are both Markovian, the value Bellman

and Poisson

equations

functions of both cases have a defining relation between the values at different states. This
relation can be expressed in form of the Poisson equation for the average reward case,
and in form of the Bellman equation for the discounted start-state case. These equations
are given in the definition below.

Definition 3 (Poisson- & Bellman equations) The Poisson equation states,
that

V πθ (x) =

∫

U

πθ (u |x)

(

r(x,u) − J(πθ) +

∫

X

p
(
x′ |u,x

)
V (x′)dx′

)

du, (2.7)

Qπθ (x,u) = r(x,u) − J(πθ) +

∫

X

p
(
x′ |u,x

)
V (x′)dx′, (2.8)

for the average reward formulation, and the Bellman equation states that

V πθ (x) =

∫

U

πθ (u |x)

(

r(x,u) + γ

∫

X

p
(
x′ |u,x

)
V (x′)dx′

)

du, (2.9)

Qπθ (x,u) = r(x,u) + γ

∫

X

p
(
x′ |u,x

)
V (x′)dx′, (2.10)



16 Foundations of Policy Gradient Methods

for the discounted formulation.

Please note that this definition is extended to the continuous case. This is not common
in the literature, but futile once we introduce function approximation or handle continuous
state-action tasks such as robot control or linear quadratic regulation.

Again, we can visualize these equations using a simple example which is limited to dis-
crete states, and discrete actions. The general case with continuous actions is not straight-
forward as only few techniques exist for solving integral equations such as the Bellman
or Poisson equation. In linear quadratic regulation (LQR) problems, the Bellman equa-
tions can only be solved due to the assumption that V πθ (x) = −1

2xT Px, and subsequently
showing that the integral equation has a solution given these value functions.

Example 6 (Discrete state and action spaces) Similarly, we can easily determine valueDiscrete Bell-

man equation function for discrete problems using the Bellman equations

Vi =

n∑

k=1

πθ (uk |xi )



Rk
i + γ

n∑

j=1

Pk
ijVj



 = Ri + γ

n∑

j=1

PijVj,

using the definitions from Example 4, page 13, and denoting V = [Vi] ∈ R
n with Vi =

V πθ (xi). As we have a vector-matrix equation V = R + γPV, we can solve it directly and
obtain V = (I− γP)−1R, see (Russel & Norvig, 1995). Alternatively, we can use the policy
evaluation algorithm in order to obtain the state values of discrete states (Sutton & Barto,
1998). The same can be done for the average reward case when knowing the expected reward.

Apart from the previously described value functions, we still have one further value
function, i.e., the advantage function Aπθ (x,u) as presented in (Baird, 1993). OtherAdvantage

function

Aπθ(x, u)

researchers call this function the Bellman error function (Jaakkola et al., 1994), and we
could think of it also as the expected TD(0) error of one particular action u taken in state
x.

Definition 4 (Advantage function) The advantage function Aπθ (x,u) of a pol-
icy πθ (x,u) is given by

Aπθ (x,u) = Qπθ (x,u) − V πθ (x) . (2.11)

Its Bellman equation for the discounted case is given by

V πθ (x) + Aπθ (x,u) = r(x,u) + γ

∫

X

p
(
x′ |u,x

)
V (x′)dx′, (2.12)

and its Poisson equation for the average reward case by

V πθ (x) + Aπθ (x,u) = r(x,u) − J(πθ) +

∫

X

p
(
x′ |u,x

)
V (x′)dx′. (2.13)



2.2 Value Functions 17

−10

−5

0

5

10

−10

−5

0

5

10
−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

200

State x

LQR advantage function

Action u

A
d

v
a

n
ta

g
e

 f
u

n
c
ti
o

n
  

 
A

 π
(x

,u
)

Figure 2.5: This figures shows the advantage function Aπθ(x, u) of an one-dimensional
linear quadratic control problem with a Gaussian policy. Note that this function is no
longer convex like the previous value functions. The parameters of the system are again
A = B = R = Q = 1, γ = 0.95, and the parameters of the Gaussian policy πθ(u|x) are
θ = [k, σ]T with k = −0.5, and σ = 0.1.

The advantage function Aπθ (x,u) contains all information which is necessary to decide
which is the optimal action since u = argmaxu∗∈U Qπθ (x,u∗) = argmaxu∗∈U Aπθ (x,u∗).
Unlike the state value function, and the state-action value function, the advantage function
Aπθ (x,u) has no state dependent offset as it is mean-zero

∫

U
πθ (u |x) Aπθ (x,u) du = 0.

Therefore the advantage function Aπθ (x,u) is not a potential function unlike the state value
function V πθ (x), and the state-action value Qπθ (x,u) function. In order to get a closer
look, let us discuss the advantage function of our linear quadratic regulation example with
a Gaussian policy.

Example 7 (Linear quadratic control) The advantage function Aπθ (x,u) for LQR with LQR advan-

tage functiona Gaussian policy πθ as in Example 1, page 9, is given by

Aπθ(x,u) = −1

2

[
xT , u

]
H

[
x

u

]

+
1

2

(
R + bT Pb

)
σ2,

with

H =

[
−2kbT PA − k

(
bT Pb + R

)
kT AT Pb

bT PA R + bT Pb

]

,

for the average reward case. For the discounted start-state it is given by

Aπθ(x,u) = −1

2

[
xT , u

]
H

[
x

u

]

+
1

2

(
R + γbT Pγb

)
σ2,

with

H =

[
−2γkbT PγA − γk

(
bT Pγb + R

)
kT γAT Pγb

γbT PγA R + γbT Pγb

]

.



18 Foundations of Policy Gradient Methods

Note, that both definition do not differ except for the constant γ, and become the same for
γ → 1 since limγ→1 Pγ = P. Therefore the advantage function is a more general value
function than the previously used ones. The discounted start-state value function for our
example problem is plotted in Figure 2.5. For a derivation see appendix, Section A.1.3, page
51.

2.3 Trajectories, Transition Kernels and Stationary Distri-

butions

As we are discussing Markov Chains, we can use a variety of statistical tools which long
have been neglected in the area of reinforcement learning: transition kernels, and station-
ary distributions. Let us now assume that we are interested in sequences of states and
actions of length n starting at an initial state-action pair x0, u0, and ending at state
xn. The space of all such sequences of length n, we will refer to them as trajectories,
is defined by Tn = (X, U)n × X. A single trajectory in T n ∈ Tn can be defined as
T n = [x0,u0,x1,u1,x2,u2, . . . ,xn−1,un−1,xn]. The probability p (T n |x0 ) of such a se-Probability of

a trajectory quence T n ∈ Tn given the start state x0 is obvious from our problem statement

p (T n |x0 ) =

n−1∏

t=0

p (xt+1 |xt,ut )π (ut |xt ) . (2.14)

Furthermore, the probability p (T n) of the whole trajectory T n as a whole is defined by
p (T n) = p (T n |x1 ) p (x1). Let us now consider the case that we are just interested in the
probability p (xn |x1, n) = Kn

πθ
(x1,xn) of reaching state xn given that we started in state

x1 in exactly n steps. This probability can be calculated by integrating out all actions, and
intermediary states T̃ n = [u0,x1,u1,x2,u2, . . . ,xn−1,un−1] ∈ U × (X, U)n−1. We then canTransition

kernel inter-

pretation

calculate the probability of going from x0 to xn in exactly n steps, i.e.,

Kn
πθ

(x0,xn) =

∫

Tn

p (T n |x0 ) dT̃ n,

=

∫

U

∫

X

∫

U

. . .

∫

X

∫

U

n−1∏

t=0

p (xt+1 |xt,ut )π (ut |xt ) du0dx1du1 . . . dxn−1dun−1.

From the equation above, we see that we can define this term recursively by integrating
out a single variable at a time. In order to do this we have to isolate variables and replace
terms. By reordering the variables, we get

Kn
πθ

(x0,xn) =

∫

X

. . .

∫

X

n−1∏

t=0

(∫

U

p (xt+1 |xt,ut ) π (ut |xt ) dut

)

︸ ︷︷ ︸

Kπ
θ

(xt,xt+1)

dx1 . . . dxn−1,

=

∫

X

. . .

∫

X

n−1∏

t=0

Kπθ
(xt,xt+1) dx1 . . . dxn−1.



2.3 Trajectories, Transition Kernels and Stationary Distributions 19

We define the term in the parentheses to be the transition kernel Kπθ
(xt,xt+1) of the

Markov process. If we further reorder the equations, we get

Kn
πθ

(x0,xn)=

∫

X

. . .

∫

X

∫

X

Kπθ
(x0,x1) Kπθ

(x1,x2) dx1

︸ ︷︷ ︸

K2
πθ

(x0,x2)

Kπθ
(x2,x3) dx2

︸ ︷︷ ︸

K3
π

θ
(x0,x3)

. . .

. . . Kπθ
(xn−1,xn) dxn−1

︸ ︷︷ ︸

Kn
π

θ
(x0,xn)

.

This gives us a recursive definition of the n-step transition kernels Transition

kernel defini-

tionKn+1
πθ

(
x,x′) =

∫

X

Kn−1
πθ

(
x,x′′)Kπθ

(
x′′,x

)
dx′′,

with K1
πθ

(x,x′) = Kπθ
(x,x′).

Definition 5 (Transition kernels) Given a policy πθ (u |x), and the system transi-
tion probabilities p (x′ |x, u), we can define a transition kernel Kπθ

(x, x′) as

Kπθ

(
x,x′) =

∫

U

p
(
x′ |x,u

)
πθ (u |x) du. (2.15)

The n-step transition kernels is given by

Kn+1
πθ

(
x,x′) =

∫

X

Kn−1
πθ

(
x,x′′)Kπθ

(
x′′,x′) dx′′, (2.16)

with K1
πθ

(x,x′′) = Kπθ
(x,x′′).

Having these definitions, we have reduced our controlled Markov decision problem
to an uncontrolled Markov chain. For uncontrolled Markov chains, a variety of nice
properties are given. We will list the most important ones here without attempting to give
a complete list.

Komolgorov-Chapman equation. In order to get from one state x to another state x′ Komolgorov-

Chapman

equation

in n + m steps, the agent has to pass through an intermediary state x′′. This gives us the
Komolgorov-Chapman equation

Kn+m
πθ

(
x,x′) =

∫

X

Km
πθ

(
x,x′′)Kn

πθ

(
x′′,x′) dx′′.

This appears trivial from our previous discussion, and a proof for it is given in (Berger &
Casella, 2002).

Stationary distribution or invariant measure. For a stable Markov chain, a station- Stationary

distributionary distribution or an invariant measure νπθ (x) exists for which the equation

νπθ (x) =

∫

X

Kπθ

(
x,x′) νπθ

(
x′) dx′

holds (Berger & Casella, 2002).



20 Foundations of Policy Gradient Methods

Law of W. Doeblin. If a Markov chain is stable, irreducible, recurrent and aperiodic,Convergence

to stationary

distribution

we have

νπθ (x) = lim
n→∞

∫

X

Kn
πθ

(
x,x′) p

(
x′) dx′,

independent of the start-state distribution p (x′). See (Grimmett & Stirzaker, 2001) for
details.

Resolvent kernel. Associated with this kernel, we have a resolvent kernel Kγπθ
(x,x′)Resolvent ker-

nel given by

Kγπθ

(
x,x′) = (1 − γ)

∞∑

n=0

γnKn
πθ

(
x,x′) .

Obviously, a stationary distribution νπθ
γ (x) can also (does always?) exist for this ker-

nel (Robert & Casella, 1999). These two kernels are connected by
∑∞

n=0 Kn
πθ

(x,x′) =
γ

1−γ

∑∞
n=0 Kn

γπθ
(x,x′), if a stationary distribution νπθ (x) exists (Berger & Casella, 2002).

Stationary distributions are a complicated topic as they do not exist for every Markov
Chain (e.g., most importantly, they do not exist for physical control problems if the initial
policy is instable). Furthermore they are hard to infer if the state space is continuous.
Therefore we introduce average state distribution dπθ (x) which becomes the stationaryAverage state

distribution distribution if it exists.

Definition 6 (Average state distribution) The average state distribution is given
by

dπθ (x) = lim
n→∞

1

n

∫

X

p(x0)
n∑

t=0

Kt
πθ

(x0,x) dx0, (2.17)

where p(x0) denotes the start-state distribution. If the conditions of the law of W.
Doeblin are fulfilled, it becomes the stationary distribution, i.e., dπθ (x) = νπθ (x).

The discounted average state distribution is given by

dπθ

γ (x) =

∫

X

p(x0)
Kγπθ

(x0,x)

1 − γ
dx0. (2.18)

In the policy gradient literature dπθ (x), and dπθ
γ (x) are often referred to as stationary

distributions. For dπθ (x), and dπθ
γ (x) , this is not a necessary but a sufficient condition. This

makes an essential difference as a stationary distribution cannot exits for an unstable task.
However, many tasks learned by humans, e.g., standing, walking, grasping, etc., are initially
unstable. Therefore, we could not apply the theorems based on the stationary distribution
in such tasks. Using our average state distribution instead, these tasks generalize.

Let us now close this section after another example which we use to bring light into the
complicated story. In this Example 8 we analytically discuss the stationary distribution
νπθ (xi), and the average state distribution for the discounted case dπθ

γ (xi) of the discrete
state and action.



2.3 Trajectories, Transition Kernels and Stationary Distributions 21

Example 8 (Discrete state and action problems) (a) Clearly in Example 2 (page 10),
and Example 4 (page 13), we are already given the kernel of a discrete state and action prob-
lem, i.e., Kπθ

(xi, xj) = Pij . In vector-matrix notation, we can now rewrite the definition
of a stationary distribution to ν = Pν with ν = [νi] ∈ R

n. When solving for ν, we get
the equation (I − P)ν = 0. We realize, that ν is an eigenvector of the transition matrix P.
Furthermore, we see that if the law of W. Doeblin is fulfilled, we get ν = limn→∞ PnS, i.e.,
a fast numerical approximation of the stationary distribution ν.

(b) In case, that a stationary distribution exists, we obviously have dπθ (xi) = νi. If
it does not exist, we still get a not stationary average state distribution dπθ (xi) = di by
summing up d = 1

N

∑N
t=0 PtS, where d = [di] ∈ R

n. We will later see that we can also use
this measure for policy gradient methods where a stationary distribution does not exist.

(c) The second revelation comes from looking at Example 4 again. We see that we used
the resolvent of the transition kernel already in there. It is given by Kγπθ

(xi, xj) = Kij with

K = [Kij ] ∈ R
n×n, and K = (1 − γ)

∑N
t=0 γtPt. It is clear dγ = KS/ (1 − γ) = [dγ

i ] ∈ R
n,

and dπθ
γ (xi) = dγ

i .

What is the meaning of average state distributions for our applications? It has major
importance. Let us assume that we have a temporal sequence T n ∈ Tn of length n given
by T n = [x1,u1,x2,u2,x3,u3, . . . ,xn−1,un−1,xn], and a function

f (T n) =

n−1∑

t=0

f(xt,ut).

This trajectory has the same probability p (T n |x0 ) as stated in equation 2.14. We intend
to evaluate the expectation ET n {f (T n)} =

∫

Tn
p (T n |x0 ) f (T n) dT n of this function for

such a sequence of length n. We get

ET n {f (T n |x0 )} =

∫

Tn

p (T n |x0 ) f (T n) dT n,

=

∫

Tn

n−1∑

t=0

p (T n |x0 ) f(xt,ut)dT n,

=

∫

X

n−1∑

t=0

Kt
πθ

(x0,x)

∫

U

π (u |x) f(x,u)dudx.

When obtaining the average for all trajectories from all starting states with infinite length,
we can derive for the average reward case f (T n) = 1

n

∑n−1
t=0 f(xt,ut), that Averages in

trajectory and

sample view
lim

n→∞
ET

{

1

n

n−1∑

t=0

f(xt,ut)

}

= lim
n→∞

1

n

∫

X

p(x0)ET n {f (T n |x0 )} dx0,

= lim
n→∞

1

n

∫

X

p(x0)

∫

X

n∑

t=0

Kt
πθ

(x0,x)

∫

U

π (u |x) f(x,u)dudxdx0,

= lim
n→∞

1

n

∫

X

p(x0)

∫

X

n∑

t=0

Kt
πθ

(x0,x) dx0

∫

U

π (u |x) f(x,u)dudx,

=

∫

X

dπθ (x)

∫

U

π (u |x) f(x,u)dudx,

= Edπ
θ ,πθ

{f(x,u)} .



22 Foundations of Policy Gradient Methods

For the discounted case, i.e., f (T n) =
∑n−1

t=0 γtf(xt,ut), we get

ET

{ ∞∑

t=0

γtf(xt,ut)

}

= lim
n→∞

∫

X

p(x0)ET n {f (T n |x1 )} dx1,

= lim
n→∞

∫

X

p(x0)

∫

X

n∑

t=0

γtKt
πθ

(x0,x)

∫

U

π (u |x) f(x,u)dudxdx0,

=

∫

X

p(x0)

∫

X

Kγπθ
(x0,x)

1 − γ
dx0

∫

U

π (u |x) f(x,u)dudx,

=

∫

X

dπθ

γ (x)

∫

U

π (u |x) f(x,u)dudx,

= Edπ
θ ,πθ ,γ {f(x,u)} .

We can conclude this in the sequence summation theorem.

Theorem 1 (Sequence Summation Theorem) For the average reward case, the
relation between trajectories, and samples for a function f (T n) = 1

n

∑n−1
t=0 f(xt,ut)

is given by

lim
n→∞

ET

{

1

n

n−1∑

t=0

f(xt,ut)

}

=

∫

X

dπθ (x)

∫

U

π (u |x) f(x,u)dudx. (2.19)

For the start-state case, with a function f (T n) =
∑n−1

t=0 γtf(xt,ut), we have

ET

{ ∞∑

t=0

γtf(xt,ut)

}

=

∫

X

dπθ

γ (x)

∫

U

π (u |x) f(x,u)dudx. (2.20)

This theorem becomes already quite practical in order to calculate the expected return
as well as to derive the Fisher information matrix for natural gradient learning. The tran-
sitions kernel view in general allows us to bring reinforcement learning to a higher degree
of theoretical foundation. We will see both in the next section.

2.4 Kernel-based Expected Return

Let us now return to the expected return, and apply our newly derived knowledge here.
The expected return is then given by the theorem below.

Theorem 2 (Expected Return) The expected return is given by

J(πθ) =

∫

X

dπθ (x)

∫

U

πθ (u |x) r (x,u) dudx, (2.21)

both in average reward, and start-state formulation.



2.4 Kernel-based Expected Return 23

Proof. The proof is rather simple, we just set f (x,u) = r (x,u), and apply the sequence
summation theorem. We directly get this result, and therefore have obtained the expected
return.

Clearly, we now have a sample-based representation of the average reward. If a station-
ary distribution νπθ (x) exists, and the start-state distribution p(x0) equals the stationary
distribution, i.e., p(x0) = νπθ (x) , we can show the equivalance of both the average reward
and the discounted reward case:

Lemma 1 (Connection between both formulations) The expected return of the av-
erage reward case is connected to the discounted start-state case

J (πθ) = (1 − γ)Jγ (πθ |X, νπθ (x) ) , (2.22)

if a stationary distribution νπθ (x) exists, and the start-state distribution p(x0) equals the
stationary distribution, i.e., p(x0) = νπθ (x).

Proof. We have by definition

Jγ (πθ |X, νπθ (x)) =

∫

X

νπθ (x) V πθ (x) dx,

=

∫

X

νπθ (x)

∫

U

πθ (u |x)

(

r(x,u) + γ

∫

X

p
(
x′ |u,x

)
V πθ(x′)dx′

)

du dx.

Since dπθ (x) = νπθ (x), we see that

Jγ (πθ |X, νπθ (x) ) =

∫

X

dπθ(x)

∫

U

πθ (u |x) r(x,u)du dx

+ γ

∫

X

νπθ (x)

∫

U

πθ (u |x)

∫

X

p
(
x′ |u,x

)
V πθ(x′)dx′du dx,

= J (πθ) + γ

∫

X

νπθ

(
x′)V πθ(x′)dx′,

= J (πθ) + γJγ (πθ |X, νπθ (x) ) .

We can solve this and get

J (πθ) = (1 − γ)Jγ (πθ |X, νπθ (x) ) ,

which clearly proves our theorem.
This theorem was first presented by Jaakola, Singh & Jordan (1994) in a slighly different

context. Baxter & Bartlett (2000) draw the slighly incorrect solution from it that this would
be the case for arbitrary start-state distributions. We can see from Example 3, and Example
9, that this extension is not true.

Lemma 1 allows us to draw an interesting conclusion: since the start-state distribution Connection

for γ → 1does not matter for γ → 1, we immediately see from Lemma 1, that

J (πθ) = lim
γ→1

(1 − γ) Jγ (πθ |X0 ) , (2.23)

for arbitrary start-state spaces and distributions if a stationary distribution νπθ (x) exists.
The following example shows how that works for LQR.

Example 9 (Linear quadratic control) We study the expected return of linear quadratic LQR expected

return connec-

tion

regulation problems as in Example 3, page 11, with the same Gaussian policy πθ. In this



24 Foundations of Policy Gradient Methods

case, a stationary distribution νπθ (x) exists if and only if the system is stable. For a stable
LQR system, we have limγ→1 Pγ = P < ∞. We can insert the expected return from Example
3 into equation(2.23), and get

lim
γ→1

(1 − γ)Jγ (πθ |{x0}) ,

= lim
γ→1

(1 − γ)

(

−1

2
xT

0 Pγx0 −
1

2

1

1 − γ

(
R + γbT Pγb

)
σ2

)

,

= lim
γ→1

(

− (1 − γ)
1

2
xT

0 Pγx0 −
1

2

(
R + γbT Pγb

)
σ2

)

,

= −1

2

(
R + bT Pb

)
σ2,

= J(πθ).

This is exactly the solution we obtained in Example 3.

It is clear from Example 9 that the relation does not hold not for all γ ∈ [0, 1).

2.5 Analytical solution for the value function

Similarly interesting, we can also get a transition kernel-based view on the value function
for the discounted case. We can reformulate the Bellman equation by

V πθ (x) =

∫

U

πθ (u |x)

(

r(x,u) + γ

∫

X

p
(
x′ |u,x

)
V πθ(x′)dx′

)

du,

= r̄πθ(x) + γ

∫

X

Kπθ

(
x,x′)V πθ(x′)dx′,

by defining the state average reward r̄πθ(x) =
∫

U
πθ (u |x) r(x,u)du. This is an Fredholm

integral equation of the second kind. In many cases, these equations cannot be solved.
However, for the case

|γ| <
1

√∫

X

∫

X
Kπθ

(x,x′) dx′dx
,

the solution is given by a Neumann series (Bronstein, Semendjajew, Musiol, & Mühlig,
1995). Since Kπθ

(x,x′) is a probability, we have
∫

X

∫

X
Kπθ

(x,x′) dx′dx = 1, and know that
this method can be applied if γ < 1. The solution isAnalytical so-

lution of the

Bellman equa-

tion
V πθ (x) =

∫

X

∞∑

t=0

γtKt
πθ

(
x,x′) r̄πθ(x)dx′,

=

∫

X

∞∑

t=0

γtKt
πθ

(
x,x′)

∫

U

πθ

(
u
∣
∣x′ ) r(x′,u)dudx′.

=

∫

X

Kγπθ
(x,x′)

1 − γ

∫

U

πθ

(
u
∣
∣x′ ) r(x′,u)dudx′.

We therefore know that V πθ (x) does always exist, and can always be approximated in the
discounted case. This solution fits well into the sequence summation theorem. Furthermore,
we can derive the same for the average reward case from the Poisson equation if r̄πθ(x) −
J(πθ) is bounded by a real number.

We also see that if we learn models for p (x′ |u,x ), and r(x′,u), we can analytically
determine the value function V πθ (x), and do not need to learn it. However, determining



2.5 Analytical solution for the value function 25

all integrals is a non-trivial task for non-discrete problems. Let us assume, we have the
analytical models of p̃ (x′ |u,x ) ≈ p (x′ |u,x), and r̃(x′,u) ≈ r(x′,u). In this case, we can
test whether our approximator of Ṽ πθ (x) ≈ V πθ (x) can ever stably approximate V πθ (x).
For this we have to plug all these functions into the Bellman equation (or alternatively the
Poisson equation), and show that

Ṽ πθ (x) =

∫

U

πθ (u |x)

(

r̃(x,u) + γ

∫

X

p̃
(
x′ |u,x

)
Ṽ πθ(x′)dx′

)

du

holds. If we do model-based reinforcement learning, we can usually directly calculate the
value function from the analytical models. It is fairly obvious, that for many general func-
tion approximation methods used for Ṽ πθ (x), e.g., tile-coding or multi-layer perceptrons,
this equations will not hold. However, for nearest neighbor, or locally weighted regression
architectures, it might very well hold. This agrees with Sutton & Bartos (1998) observation
that these methods are usually more applicable in reinforcement learning. However, we also
see that

V ∗ (x) = max
u∈U

(

r(x,u) + γ

∫

X

p
(
x′ |u,x

)
V ∗(x′)dx′

)

,

is a very difficult integral equation. In fact, this integral equation usually has only few
solutions, and becomes unsolvable for most approximators of V ∗ (x). This can also be seen
as a reason why greedy methods fail with function approximation.





Chapter 3

Policy Gradient Theory

The essential idea of policy gradient methods in general is to follow the gradient of the
average reward in parameter space to a locally optimal solution. This can be expressed as

θt+1 = θt + αt
∂J(πθ)

∂θ

∣
∣
∣
∣
θ=θt

, (3.1)

where αt denotes a learning rate. Obviously, the main problem for policy gradient methods
is to obtain the policy gradient ∂J(πθ)/ ∂θ in parameter space. Furthermore, we will see
that the standard policy gradient is often not efficient as it gets stuck in local minima.
This chapter deals with these problems. We will first present the policy gradient theorem
with continuous spaces and actions, and then show how the policy gradient estimate can
be improved using a baseline. Furthermore, we will present the compatible function ap-
proximation introduced by Sutton et al. (2000), and Konda & Tsitsiklis (2001, 2000, 2002).
We will show it cannot represent the state-action value function but only the advantage
function of the policy, and illustrate this with several examples. We will derive the optimal
baseline using the compatible function approximation. Subsequently, we will show how an
All-Action algorithm makes baselines obsolete. Finally, we will prove that Kakade’s “av-
erage natural gradient” is in fact the true natural gradient, and the whole reinforcement
learning problem boils down to learning the compatible function approximation.

3.1 Policy Gradient Theorem

The policy gradient theorem was first derived for the average-reward formulation by Policy gradi-

ent theoremMarbach and Tsitsiklis (1998). Subsequently, Sutton et al. (2000) showed the same for the
discounted start-state case. Both authors have shown the theorem for discrete state and
action spaces as well as discrete time. We will now present the theorem for continuous state
and action spaces.

Theorem 3 (Policy gradient theorem) For any continuous Markov decision prob-
lem in average reward and discounted start-state formulation, the policy gradient can
be expressed as

∂J(πθ)

∂θ
=

∫

X

dπθ(x)

∫

U

∂πθ (u |x)

∂θ
Qπθ (x,u) dudx. (3.2)



28 Policy Gradient Theory

−2 −1.5 −1 −0.5 0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
(a) LQR policy gradient ∂J(π)/∂θ

C
on

tro
lle

r e
xp

lo
ra

tio
n 

 θ 2=
σ

Controller exploitation θ
1
=k

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(b) Two state policy gradient ∂J(π)/∂θ

P
ar

am
et

er
 θ 2

Parameter θ
1

Figure 3.1: This figure shows the policy gradients for both (a) the one dimensional LQR
problems, and (b) the two-state problem. It is obvious in both figures that the large plateaus
in the expected return landscape cause major problems for the policy gradient approach.

Proof. The proof can be found in the Appendix. In Section ??, we have a proof based
on the second summation theorem which is more general. In Section ??, we modify for the
continuous case (Sutton et al., 2000).

In Figure 3.1, the policy gradient of our two standard examples from the last chapter
is shown. Clearly, in both cases the policy gradient suffers significantly from the large
plateaus around the optimal solutions, and therefore might be get stuck in suboptimal
solutions. Furthermore, in Figure 3.1 (b), we realize that paths along the gradient lead out
of the admissible parameters area.

3.2 Baselines

Obviously, any method which increases the speed of convergence to the locally optimal
solution is desirable. Already Williams (1991, 1992) noticed that a baseline bπθ(x) enhancesBaseline

the convergence speed of policy gradient methods when we have to estimate the gradient.
Here, we will now show that we can add arbitrary baselines without affecting the expectation
of the policy gradient.

Theorem 4 (Baselines) Even when an arbitrary baseline bπθ(x) is subtracted from
the state-action value function Qπθ (x,u), the policy gradient remains the same in ex-



3.2 Baselines 29

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(a) Estimates using a baseline bπ(x)=0

P
ar

am
et

er
 θ 2

Parameter θ
1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(b) Estimates using a baseline bπ(x)=Vπ(x)

P
ar

am
et

er
 θ 2

Parameter θ
1

Figure 3.2: This figure shows the effects of baselines on the policy gradient estimates for the
two state problem. The blue arrows show the resulting gradient while the red arrows show
the gradient components contributed by single actions. The red arrows in (a) are scaled
down by 1/10, i.e., the resulting gradient length is roughly 1/10th of the single components.
Furthermore, all different actions lead to gradients in other directions which cancel out only
in expectation. In practice, the estimate will always be noisy. In (b), both the resulting
gradient as well as its component are shown on the same scale. As all components point
into the right directions, the resulting gradient estimate will have a reduced variance, and
increased accuracy. The size of gradient components is always smaller than the resulting
gradient.

pectation, i.e.,

∂J(πθ)

∂θ
=

∫

X

dπθ (x)

∫

U

∂πθ (u |x)

∂θ
(Qπθ (x,u) − bπθ(x)) dudx, (3.3)

=

∫

X

dπθ (x)

∫

U

∂πθ (u |x)

∂θ
Qπθ (x,u) dudx. (3.4)

Proof. Since πθ (u |x) is a probability distribution, we have
∫

U
πθ (u |x) du = 1, this

implies that
∂

∂θ

∫

U

πθ (u |x) du =

∫

U

∂πθ (u |x)

∂θ
du =

∂

∂θ
1 = 0.

Subsequently, we use this in order to modify the previous theorem

∂J(πθ)

∂θ
=

∫

X

dπθ(x)

∫

U

∂πθ (u |x)

∂θ
(Qπθ (x,u) − bπθ(x)) dudx,



30 Policy Gradient Theory

−2 −1.5 −1 −0.5 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(a) Trajectory in parameter space for LQR

Co
nt

ro
lle

r e
xp

lo
ra

tio
n 

 θ 2=σ

Controller exploitation θ
1
=k

0.5 1 1.5 2

x 10
5

0.2

0.4

0.6

0.8

(b) Exploration vs time

Co
nt

ro
lle

r e
xp

lo
ra

tio
n 

 θ 2=σ
Time t

0.5 1 1.5 2

x 10
5

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

(c) Exploitation vs time

Co
nt

ro
lle

r e
xp

lo
ita

tio
n 

 θ 1=k

Time t

Figure 3.3: In this figure, we compare the performance on the same learning problem with
and without a baseline. The red, jagged curves represent the performance with no baseline,
i.e., bπθ(x) = 0. The green, smooth curves represent the perfromance with a baseline of
bπθ(x) = V πθ(x). An approximate of the policy gradient is obtained using a single roll-out,
i.e., a trajectory of length T = 100 steps. After one roll-out, we do one offline update of the
parameters using a learning rate αt = σ2

t ·10−6. Please note that despite this successful trial,
many trials from other starting positions lead to suboptimal solutions. This can be seen as
part of the exploration- exploitation dilemma. In (a), we see the trajectory in parameter
space; in (b), and (c), the parameters are plotted versus time. We use the analytical value
functions Qπθ(x, u), and V πθ(x) for the updates.

=

∫

X

dπθ(x)

∫

U

∂πθ (u |x)

∂θ
Qπθ (x,u) du − bπθ (x)

∫

U

∂πθ (u |x)

∂θ
︸ ︷︷ ︸

=0

dudx,

=

∫

X

dπθ(x)

∫

U

∂πθ (u |x)

∂θ
Qπθ (x,u) dudx.

Clearly this proves our theorem.
However, the important question is what is the optimal baseline? We will address this

question in a following section. In Figure 3.2 (a), we can see how a simple baseline bπθ (x) =
V πθ (x) affects the performance of the learning system. Furthermore, in Figure 3.3 (a-b),
we can see the reason for this: the gradient contributions for each state and action are
calculated. The gradients components for different actions point in various directions if no
baseline (i.e., bπθ (x) = 0) is used as can be seen in Figure 3.3 (a). However, using a baseline
bπθ (x) = V πθ (x), the components of all actions are aligned in a similar direction.

From the baseline theorem, we can directly see that the policy gradient ∂J(πθ) /∂θ

does not use the whole information included in the state-action value function Qπθ (x,u).
Let us split it into the advantage function Aπθ (x,u) , and the state value function V πθ (x),
i.e., Qπθ (x,u) = Aπθ (x,u) + V πθ (x). In this case, it is clear that

∂J(πθ)

∂θ
=

∫

X

dπθ(x)

∫

U

∂πθ (u |x)

∂θ
(Aπθ (x,u) + V πθ (x)) dudx, (3.5)



3.3 Compatible Function Approximation 31

=

∫

X

dπθ(x)

∫

U

∂πθ (u |x)

∂θ
Aπθ (x,u) dudx, (3.6)

since V πθ (x) is not a function of u. This makes clear that all information in V πθ (x) is not
necessary for determining the policy gradient, i.e., it is redundant.

3.3 Compatible Function Approximation

Clearly, we have to represent at least the advantage function Aπθ (x,u) or the whole state-
action value function Qπθ (x,u), in order to calculate the policy gradient. In (Sutton et al.,
2000), the following derivation of a compatible function approximation is given. For Compatible

function ap-

proximation

this we have to find a function approximator fwθ ,Qπ
θ (x,u) which represents it so that the

squared error between these two is minimal, i.e.,

E2 =

∫

X

dπθ(x)

∫

U

πθ (u |x)
(
Qπθ (x,u) − fwθ ,Qπ

θ (x,u)
)2

dudx −→ min .

The following theorem provides us with the necessary conditions for this equivalence.

Theorem 5 (Compatible basis functions) If a function approximator
fwθ ,Qπ

θ (x,u) satisfies the compatibility

∂fw
θ,Q

π
θ
(x,u)

∂wθ

=
1

πθ (u |x)

∂πθ (u |x)

∂θ
, (3.7)

and, after convergence, (2) the error minimization

E2 =

∫

X

dπθ(x)

∫

U

πθ (u |x)
(
Qπθ (x,u) − fwθ ,Qπ

θ (x,u)
)2

dudx −→ min, (3.8)

we can replace Qπθ (x,u) by fwθ ,Qπθ (x,u) so that we get

∂J(πθ)

∂θ
=

∫

X

dπθ(x)

∫

U

∂πθ (u |x)

∂θ
fwθ ,Qπ

θ (x,u)dudx. (3.9)

Proof. Assume that a function approximator fulfills the conditions (3.7), and (3.8). By
differentiating the error by the function approximation parameters wθ, we learn that this
is only the case for

∂E2

∂wθ

=

∫

X

dπθ (x)

∫

U

πθ (u |x)
∂fwθ ,Qπ

θ

∂θ

(
Qπθ (x,u) − fwθ ,Qπ

θ (x,u)
)
dudx = 0.

We can substitute for ∂fwθ ,Qπθ /∂θ using equation (3.7), and obtain

∫

X

dπθ(x)

∫

U

∂πθ (u |x)

∂θ

(
Qπθ (x,u) − fwθ ,Qπ

θ (x,u)
)
dudx = 0.

By splitting the integral, we obtain
∫

X

dπθ(x)

∫

U

∂πθ (u |x)

∂θ
Qπθ (x,u) dudx =

∫

X

dπθ(x)

∫

U

∂πθ (u |x)

∂θ
fwθ ,Qπ

θ (x,u)dudx.



32 Policy Gradient Theory

This implies
∂J(πθ)

∂θ
=

∫

X

dπθ(x)

∫

U

∂πθ (u |x)

∂θ
fwθ ,Qπ

θ (x,u)dudx,

which proves the theorem.
From equation (3.7) it becomes clear that we do can derive the class of all compatible

function approximators easily. All we need to do is to integrate these basis functions up in
the function approximators parameter space.

Theorem 6 (Compatible function approximation) A policy compatible function
approximator of the advantage function Aπθ (x,u) is given by

fwθ ,Aπ
θ (x,u) =

1

πθ (u |x)

(
∂πθ (u |x)

∂θ

)T

wθ, (3.10)

and of the state-action value function Qπθ (x,u) by

fwθ ,Qπ
θ (x,u) =

1

πθ (u |x)

(
∂πθ (u |x)

∂θ

)T

wθ + Cπθ(x), (3.11)

where Cπθ(x) represents unknown basis function. We will refer to fwθ ,Aπ
θ (x,u) as

fwθ
(x,u) from now on.

Proof. We integrate the basis functions over wθ, and get

fwθ ,Qπ
θ (x,u) =

∫
1

πθ (u |x)

∂πθ (u |x)

∂θ
dwθ,

=
1

πθ (u |x)

(
∂πθ (u |x)

∂θ

)T

wθ + Cπθ(x).

This is a compatible function approximator. Using the previously derived result for the
integral of the derivative of the policy πθ (u |x), i.e.,

∫

U
∂πθ (u |x) /∂θ du = 0,we see that

the state value function equals

V πθ(x) =

∫

U

πθ (u |x) fwθ
(x,u)du =

∫

U

∂πθ (u |x)

∂θ

T

du wθ + Cπθ(x) = Cπθ(x).

This implies that for fwθ ,Qπθ (x,u) = Qπθ (x,u) ,with Qπθ (x,u) = Aπθ (x,u) + V πθ(x),we
also have

Aπθ (x,u) =
1

πθ (u |x)

(
∂πθ (u |x)

∂θ

)T

wθ = fwθ ,Aπθ (x,u),

V πθ(x) = Cπθ(x).

This concludes the theorem.
We clearly see the weakness of the state-action value function approximator fwθ ,Qπθ (x,u),

i.e., we have to learn an additional function Cπθ(x) = V πθ(x) in order to learn wθ, although
this function disappears in expectation of the gradient. However, it is not clear how we
could learn fwθ ,Aπ

θ (x,u) directly from the data. We will study this in-depth in the Chap-
ter ??. From now on, we will focus on the advantage function approximator fwθ

(x,u) =
fwθ ,Aπ

θ (x,u), and show for our previous examples how it fits in.



3.3 Compatible Function Approximation 33

Example 10 (Gaussian policy) In order to derive the policy compatible function approx- Gaussian pol-

icy compatible

function ap-

proximation

imation for our Gaussian policy (Example 1, page 9), we have to calculate the gradients of
the policy with respect to its parameters:

∂πθ (u |x)

∂k
=

1

σ2
πθ (x, u)

(
u − kT x

)
x,

∂πθ (u |x)

∂σ
= πθ (x, u)

(

− 1

σ
+

1

σ3

(
u − kT x

)2
)

.

which gives us the full gradient

∂πθ (u |x)

∂θ
= πθ (x, u)

[
1
σ2

(
u − kT x

)
xT , − 1

σ
+ 1

σ3

(
u − kT x

)2
]T

.

By integrating in function approximation parameter space, we can obtain

fwθ
(x, u) =

∫
1

πθ (u |x)

∂πθ (u |x)

∂θ
dwθ,

= wT
θ

[

1
σ2

(
u − kT x

)
xT , − 1

σ
+ 1

σ3

(
u − kT x

)2
]T

,

=
1

σ2
wT

1 ux − 1

σ2
kT xwT

1 x − w2
1

σ
+ w2

1

σ3

(

u2 − 2ukT x +
(
kT x

)2
)

,

=
[

xT uT
]
[
−kwT

1
1
σ2 + w2

1
σ3 kkT 1

2w1
1
σ2 − kwT

2
1
σ3

1
2wT

1
1
σ2 − w2

1
σ3 kT 1

σ3 w2

] [
x

u

]

− w2
1

σ
.

(3.12)

In here, we use wθ =
[
wT

1 , w2

]T
. By this, we have obtained the compatible function ap-

proximator.

Example 11 (Gibbs policy) Similarly, we can do the same for the Gibbs policy (Example Gibbs policy

compatible

function ap-

proximation

2, page 10). The derivative of the log-policy with respect to θxu would be given by

1

π (ui |xj )

∂π (ui |xj )

∂θ
=

∂ log π (ui |xj )

∂θ

=
∂

∂θ

(

θTφ (u |x) − log

(
∑

u′∈U

exp
(
θT φ

(
u′ |x

))

))

,

= φ (u |x) −
∑

u′∈U

π
(
u′ |x

)
φ
(
u′ |x

)
.

This implies

1

π (ui |xj )

∂π (ui |xj )

∂θkl
=







1 − π (uk |xl ) if k = i ∧ l = j
−π (uk |xl ) if k = i ∧ l 6= j

0 if k 6= i
.

The compatible function approximation is given by fwθ
(x, u) = ∂ log π (ui |xj )/ ∂θTwθ.

Example 12 (Decision border policy) Similarly, we can do the same for the decision Decision

border policy

compatible

function ap-

proximation

border policy (Example 2, page 10). Here we have

1

π (ui |xj )

∂π (ui |xj )

∂θkl

=







1
θkl

if k = i ∧ l = j 6= m

− 1

1−
∑m−1

h=1 θkh

if k = i ∧ j = m

0 if k 6= i

.

The compatible function approximation is given by fwθ
(x, u) = ∂ log π (ui |xj )/ ∂θTwθ.



34 Policy Gradient Theory

These example show very clearly how such a compatible function approximator can be
obtained. We will now show that for both cases it can indeed represent the advantage
function.

Example 13 (Linear quadratic control with Gaussian policies) Let us pick up Ex-LQR analyt-

ical function

approximation

parameters

ample 1, page 9. We will now show that the advantage function Aπθ(x,u) of linear quadratic
control (Example 7, page 17) can be represented by the compatible function approximator
fwθ

(x, u) from Example 10, page 33. From Example 10, we know that the advantage for
LQR under policy πθ is given by

Aπθ (x,u) = −1

2

[
xT , u

]
H

[
x

u

]

+
1

2

(
R + γbT Pb

)
σ2, (3.13)

in the start-state formulation. We intend to show that the advantage function Aπθ(x,u)
from Example 7 can be represented by the compatible function approximation fwθ

(x, u)
from Example 10, i.e., Aπθ(x,u) = fwθ

(x, u). For this we compare all terms of Aπθ(x,u),
equation (3.12), and fwθ

(x, u), equation (3.13), respectively. This gives us
[
−kwT

1 + w2
1
σ3 kkT 1

2w1 − kw2
1
σ3

1
2wT

1 − w2
1
σ3 kT 1

σ3 w2

]

= −1

2
H,

−w2
1

σ
= +

1

2

(
R + γbT Pγb

)
σ2,

using wθ =
[
wT

1 , w2

]T
. This means that we have five equations which have to be satisfied

by wθ. If we solve these, we obtain a unique solution

w1 = −k
(
R + γbT Pγb

)
σ2 − γAT Pγbσ2,

w2 = −1

2

(
R + γbT Pγb

)
σ3,

which satisfies all five equations. Clearly, this shows that the advantage can be represented
in the compatible function approximator. It is clear from this and the previous example that
the same is true for the average reward case as it only differs by having γ = 1 as we have
seen in Example 7.

Example 14 (Discrete actions & state spaces with Gibbs policies) Let us pick upDiscrete

Gibbs-policy

analytical

function

approximation

parameters

Example 2, page 10. Similarly, we can directly obtain the same result for deterministic
environments, i.e., Pu

xx′ ∈ {0, 1}. In this case, we can show that

Aπθ(xi, uj) = Qπθ(xi, uj) − V πθ(xi)

= r(xi, uj) +

n∑

k=1

γPuj
xixk

V πθ(xk) − V πθ(xi)

= (1 − π (uj |xi ))

(

r(xi, uj) +
n∑

k=1

γPuj
xixk

V πθ(xk)

)

−
∑

h 6=j

π (uh |xi )

(

r(xi, uh) +

n∑

k=1

γPuh
xixk

V πθ(xk)

)

= (1 − π (uj |xi )) Qπθ (xi, uj) −
∑

h 6=j

π (uh |xi )Qπθ(xi, uh)

=
∂ log π (uj |xi )

∂θ

T [
w1···(i−1)m, Qπθ(xi, u1), · · · , Qπθ(xi, un), w(i+1)m···nm

]T

=
∂ log π (uj |xi )

∂θ

T

wθ.



3.4 The Optimal Baseline 35

Therefore it can also be represented by a policy compatible function approximator, and we
know that wθ = [Qπθ(x1, u1), . . . , Q

πθ(xm, un)].

Furthermore, we can show that the state-action value function cannot be represented
without further basis function. For linear quadratic control with Gaussian basis functions,
we can even obtain the basis functions.

Example 15 (Compatible Q-function approximation) To undermine this claim, we State-action

value func-

tions need

additional ba-

sis functions

reexamine our Gaussian policy LQR control example (Example 1, page 9). If we could
represent fwθ

(x, u) = Qπθ (x,u), we would have

−wT
2

1

σ
= −1

2

γ

1 − γ

(
R + γbT Pγb

)
σ2,

[
−kwT

1 + wT
2

1
σ3 kkT 1

2w1 − kwT
2

1
σ3

1
2wT

1 − wT
2

1
σ3 kT 1

σ3 wT
2

]

= −1

2

[
Q + γAT PγA γAT Pγb

γbT PγA R + γbT Pγb

]

,

in the discounted start-state formulation. Without further derivation, we see that this is not
the case as there are more open parameters in this formulation than in the representation and
there is no relationship among them. Furthermore, the relation between the rightmost lower
elements of the matrix and the relation of the constant addition are clearly a contradiction.
However, using additional basis functions

Cπθ(x) = V πθ (x) = −1

2
xT Pγx − 1

2

1

1 − γ

(
R + γbT Pγb

)
σ2,

we could represent it. The same holds true for the average reward formulation where exactly
the same problem occurs.

The discussion in the previous section has shown fairly well that we are only interested in
advantage functions. In this section, we have seen, that we can only represent the advantage
functions without further basis functions. Furthermore, we have a compatible approximator
with linear constants as parameters. We will use this now to obtain three major results,
i.e., the optimal baseline, the all-action algorithm, and the natural gradient1.

3.4 The Optimal Baseline

Already for REINFORCE, researchers (Williams, 1992; Gullapalli et al., 1994; Dayan, 1990)
asked themselves the question what might be the optimal baseline bπθ(x). Similarly, this Optimal base-

linequestion has arisen again due to refocusing on policy gradient methods, and researchers have
started investigating this topic again (Berny, 2000; Greensmith, Bartlett, & Baxter, 2001;
Weaver & Tao, 2001a, 2001b). For REINFORCE mostly the average return of the policy
bπθ(x) = J (π), or the state value-function bπθ(x) = V πθ(x) has been used. Nevertheless,
already Dayan (1990) was able to show that these baselines are suboptimal for a simple two-
state MDP. Berny (2000) was the first to show that the optimal baseline for REINFORCE
and related algorithms must minimize the variance of the gradient. Such an optimal Minimum

variance

baselines

baseline can be denoted by

bπθ(x) = min
b(x)

Var

(
1

πθ (u |x)

∂πθ (u |x)

∂θ
(fwθ

(x,u) − b(x))

)

.

1It would be interesting to show that we can derive from the linear parameterization of the policy that
the advantage function always has the form of the compatible approximator.



36 Policy Gradient Theory

Using the compatible function approximation, we can try to search the optimal baseline
bπθ(x) for approximation the policy gradient with a minimal variance. Instead of deriving
this result here, we will present it straight ahead and refer the interested reader to the
Appendix, Section ??, page ??.

Theorem 7 (Optimal baseline) The optimal baseline bπθ(x) which minimizes the
variance

Var

{
1

πθ (u |x)

∂πθ (u |x)

∂θ
(fwθ

(x,u) − bπθ(x))

}

→ min, (3.14)

is given by

bπθ(x) = F−1
θ

(x)

∫

U

wT
θ

∂πθ (u |x)

∂θ

∂πθ (u |x)

∂θ

∂πθ (u |x)

∂θ

T 1

πθ (u |x)2
du, (3.15)

where

Fθ (x) =

∫

U

1

πθ (u |x)

(

∂πθ (u |x)

∂θ

∂πθ (u |x)

∂θ

T
)

du (3.16)

denotes a matrix of point x for policy πθ with parameters θ.

Obviously, all integrals can be evaluated analytically, and therefore we have an algebraic
function with no unknown components except for the policy compatible function approxi-
mation parameters wθ in here.

The matrix Fθ (x) is of greater interest: Kakade (2001) calls Fθ (x) a point Fisher in-
formation matrix, and we will later discuss the background of this. However, already for
simple examples, Fθ (x) can be non-invertible (see Example 16).

The reader might wonder why we do not discuss this theorem in a similar depth as
previous ones. The reason for this is two-fold. First, we will see in the next section that we
can make baselines obsolete using a simple trick, the All-Action Algorithm. Second, there
might be infinitely many optimal baselines since Fθ (x) is not generally invertible.

3.5 All-Action Algorithm

We have seen in the last section, that we can obtain optimal baselines. However, these
appeared to be rather impractical as there might be infinitely many solutions for them.
This poses the question whether we might be able to make them obsolete. Luckily, this is
the case as Sutton already noticed in (Sutton et al., 2001) where he indicates that there isAll-action

algorithm an all-action algorithm.

Theorem 8 (All-action algorithm) The all-action form of the policy gradient does
not require any baselines. It is given in the form

∂J(πθ)

∂θ
=

∫

X

dπθ (x)Fθ (x)wθdx, (3.17)



3.5 All-Action Algorithm 37

where

Fθ (x) =

∫

U

1

πθ (u |x)

(

∂πθ (u |x)

∂θ

∂πθ (u |x)

∂θ

T
)

du (3.18)

can be derived analytically.

Proof. We can obtain this directly from the baseline theorem

∂J(πθ)

∂θ
=

∫

X

dπθ (x)

∫

U

∂πθ (u |x)

∂θ
(fwθ

(x,u) − bπθ(x)) dudx,

=

∫

X

dπθ (x)

∫

U

∂πθ (u |x)

∂θ

(

1

πθ (u |x)

∂πθ (u |x)

∂θ

T

wθ − bπθ(x)

)

dudx,

=

∫

X

dπθ (x)

∫

U

1

πθ (u |x)

∂πθ (u |x)

∂θ

∂πθ (u |x)

∂θ

T

du wθdx

=

∫

X

dπθ (x)Fθ (x)wθdx.

This clearly proves the theorem.
Furthermore, if we define the all-action matrix F (θ) =

∫

X
dπθ(x)Fθ (x) dx, we can All-action

matrixexpress the policy gradient by

∂J(πθ)

∂θ
=

∫

X

dπθ(x)Fθ (x) wθdx = F (θ)wθ.

Therefore, we can get a minimum variance estimate already if we have just estimated the
average state density dπθ (x), and the parameters wθ with sufficient exactness.

Conclusion 3 (Baselines) In order to obtain a minimum variance estimate of the
policy gradient ∂J(πθ) /∂θ , we do not need any baselines bπθ(x). Only the All-Action-
Matrix F (θ), and the policy compatible function approximation parameters wθ have to
be estimated.

Nevertheless, F (θ) is difficult to estimate from the data even given Fθ (x). In practice it
usually requires a large amount of trials. Furthermore, the problems with plateaus remain.
In Section 3.6, we will see that both problems can be avoided.

Example 16 (Gaussian all-action matrix) A simple example where the matrix Fθ (x) Gaussian all-

action matrixis easy to determine is our Gaussian policy (Example 1, page 3). Here, we have

Fθ (x) =

∫ ∞

−∞
πθ (u |x)

∂ log πθ (u |x)

∂θ

∂ log πθ (u |x)

∂θ

T

du,

=

∫ ∞

−∞
πθ (u |x)

[
∂ log π

∂k

∂ log π
∂k

T ∂ log π
∂k

∂ log π
∂σ

∂ log π
∂σ

∂ log π
∂k

T ∂ log π
∂σ

∂ log π
∂σ

]

du,

=

[
1
σ2 xxT 0

0 2
σ2

]

.



38 Policy Gradient Theory

−2 −1.5 −1 −0.5 0
0

0.1

0.2

0.3

0.4

0.5
(a) LQR policy gradient

C
on

tr
ol

le
r 

ex
pl

or
at

io
n 

 θ 2=
σ

Controller exploitation θ
1
=k

−2 −1.5 −1 −0.5 0
0

0.1

0.2

0.3

0.4

0.5
(b) LQR natural gradient

C
on

tr
ol

le
r 

ex
pl

or
at

io
n 

 θ 2=
σ

Controller exploitation θ
1
=k

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(c) Two state policy gradient

P
ar

am
et

er
 θ 2

Parameter θ
1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(d) Two state natural gradient

P
ar

am
et

er
 θ 2

Parameter θ
1

Figure 3.4: This figure compares the natural gradient to the policy gradient. In (a), the
policy gradient, and in (b) the natural gradient of the LQR problem with a Gaussian policy
is shown. The LQR again had the parameters A = b = R = Q = 1, and γ = 0.95. The
natural gradient had to be normalized to be nicely visible. In (c), the policy gradient, and
in (d) the natural gradient of the two state problem with a decision border policy. The
natural gradient of the two-state problem has not been normalized. The discount factor of
the two-state problem is γ = 0.95.

Clearly, this matrix is not generally invertable since xxT is of rank 1. For a proof of this,
please refer to appendix, Section A.1.5, page 53.

3.6 Natural Gradient

Natural gradients have received a lot of attention lately (Amari, 2000) as they improveNatural gradi-

ents the performance of stochastic gradient estimators significantly: they are unbiased, have a
minimum variance, and do not get stuck in plateaus. In natural gradient methods, the
gradient multiplied with the inverse of the Fisher information matrix M (θ) is used asFisher in-

formation

matrix

a new, more efficient gradient, i.e.,

∇̃J(πθ) = M−1 (θ)
∂J(πθ)

∂θ
.

A particular advantage of natural gradients is that plateaus are significantly less severe.
Since we have large plateaus already for the most simple problems (see Figure 3.1) this is
particularly helpful. However, local minima cannot be avoided by these methods.

Kakade (2001) shows that on the average, the Fisher information matrix M (θ) can
become our previously introduced all-action matrix F (θ), i.e., F (θ) → M (θ) for many



3.6 Natural Gradient 39

−2 −1.5 −1 −0.5 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(a) Trajectory in parameter space for LQR

C
o

n
tr

o
lle

r 
e

xp
lo

ra
tio

n
  θ 2=

σ

Controller exploitation θ
1
=k

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1
(b) Exploration vs time

C
o

n
tr

o
lle

r 
e

xp
lo

ra
tio

n
  θ 2=

σ

Time t

0 200 400 600 800 1000 1200
−2

−1.5

−1

−0.5
(c) Exploitation vs time

C
o

n
tr

o
lle

r 
e

xp
lo

ita
tio

n
  θ 1=

k

Time t

Figure 3.5: This figure shows the performance of natural gradients in comparison to policy
gradients. In (a), you can see the performance in terms of a trajectory in the parameters
space. In (a), and (b), you can see the parameters over time. To make the performance
differences obvious, a large learning rate of α = σt ·10−3 was taken. For such learning rates,
there is practically no case where the optimal solution is being found by the policy gradient
algorithm in this problem unless the exploration rate is being fixed. The natural gradient,
however, converges to the optimal solution with no problem.

trials. This opens the question whether this can be the case in general. From (Berger &
Casella, 2002), we know that for an estimation problem of J(πθ) =

∫

T
R (T ) p (T ) dT , the

Fisher information matrix is given by

M(θ) = ET

{

∂ log p (T )

∂θ

∂ log p (T )

∂θ

T
}

,

if VarT {J(πθ)} < ∞, and ∂J(πθ) /∂θ =
∫

T
R (T ) ∂p (T ) /∂θ dT by the Cramér-Rao in-

equality. We can derive

∂p (T )

∂θ
=

∂

∂θ

(

p(x0)

∞∏

t=1

p (xt |xt−1,ut−1 )π (ut−1 |xt−1 )

)

,

=

(

p(x0)
∞∏

t=1

p (xt |xt−1,ut−1 )

)

∂

∂θ

( ∞∏

t=1

π (ut−1 |xt−1 )

)

,

=

(

p(x0)

∞∏

t=1

p (xt |xt−1,ut−1 )

)( ∞∏

t=1

π (ut−1 |xt−1 )

)



40 Policy Gradient Theory

·
( ∞∑

t=1

∂ log π (ut−1 |xt−1 )

∂θ

)

,

∂ log p (T )

∂θ
=

∞∑

t=1

∂ log π (ut−1 |xt−1 )

∂θ
.

We can differentiate ∂ log p (T ) /∂θ again, and we get

∂2 log p (T )

∂θ2 =
∞∑

t=1

∂2 log πθ (ut−1 |xt−1 )

∂θ2 .

From (Casella & Berger, 1999), we know that for any probability density function p (y) the
rule

∫

Y
p (y) ∂ log p (y) /∂θ· ∂ log p (y) /∂θT dy = −

∫

Y
p (y) ∂2 log p (y)

/
∂θ2 dy holds. Using

this rule and the sequence summation theorem, we can easily derive

M(θ) = ET

{

∂ log p (T )

∂θ

∂ log p (T )

∂θ

T
}

,

= −ET

{
∂2 log p (T )

∂θ2

}

,

= −ET

{ ∞∑

t=1

∂2 log πθ (ut−1 |xt−1 )

∂θ2

}

,

= −Edπ
θ ,πθ

{
∂2 log πθ (u |x)

∂θ2

}

,

= Edπ
θ ,πθ

{

∂ log πθ (u |x)

∂θ

∂ log πθ (u |x)

∂θ

T
}

= F (θ) .

Therefore, we know that M (θ) = F (θ) is the Fisher information matrix in general (forThe all-action

matrix is

the Fisher

information

matrix

the average reward formulation). This proof extends Kakade’s (2001) statement, who
showed that F (θ) is the average of the Fisher information matrix. Using the relation
∑∞

n=0 Kn
πθ

(x,x′) = γ
1−γ

∑∞
n=0 Kn

γπθ
(x,x′), we see that the same is true for the start-state

case, if a stationary distribution νπθ (x) exists2.
If we now compute the natural gradient using the all-action gradient estimate, we get

∇̃J(πθ) = M−1 (θ)
∂J(πθ)

∂θ
= M−1 (θ) F (θ)wθ = wθ,

as shown by Kakade (2001) when assuming that it is just the average Fisher information
matrix. This allows us to draw the conclusion for Chapter 3.

Conclusion 4 (Policy gradient methods) In order to do policy gradient learning,
we do not need to estimate the stationary distribution dπθ (x) nor the Fisher information
matrix F (θ). The only parameter we need to estimate from the trials is the vector wθ.

Due to conclusion 4, we know that the optimal way of policy gradient learning is to first
approximate wθ, and then use it as a parameter update. We will refer to this algorithm

2Can we make the start-state Fisher information matrix case more clear? I am not confident with it.



3.6 Natural Gradient 41

as natural gradient learning (NGL). As we have not yet derived a method how to learn
fwθ

(xt,ut), we will for now refer to it as a black box LEARN.

Algorithm 1 (Natural gradient learning NGL)
Initialize θ0 ∈ R

n arbitrarily.

Initialize update counter T = 0.
Initialize episode counter h = 0.
Repeat (Updates)

Start at state x0 ∈ X0 from distribution p (x0).
Repeat (Sample gathering)

Initialize time t = 0.
Repeat (Episode)

Draw ut ∈ U from distribution πθT
(ut |xt ).

Observe reward r (xt,ut), and next state xt+1.

Update fwθT
(xt,ut) using LEARN(xt,ut, r (xt,ut) ,xt+1, h, T, t).

Increment t = t + 1.
Until episode ends.

Increment episode counter h = h + 1.
Until wθT

converges.

Update θT+1 = θT + αtwθT
.

Increment T = T + 1.
Until θT converges.

We will analyze the estimation of wθ (i.e., different approaches for LEARN) in Chapter
??, page ??. Before doing so, we will review a few of the previously introduced reinforcement
learning methods, and relate them to previous policy gradient methods in Chapter ??. Let
us now conclude this section by showing that if the learning system converges, it converges
to the optimal solution of the time-discrete LQR problem.

Example 17 (Natural gradients for LQR) From Example 13 (page 34), we know wθ LQR natural

gradientof a Gaussian policy in linear quadratic regulation problems from Example 1 (page 9).
Therefore, we have analytically determined the natural gradients of the Gaussian policy
for LQR, given by

∇̃J (πθ) =

[
w1

w2

]

=

[
−k
(
R + γbT Pb

)
σ2 − γAT Pbσ2

−1
2

(
R + γbT Pb

)
σ3

]

,

for simplicity, we write P instead of Pγ. Asking the question of convergence, we can deter-
mine the fixpoints in parameter space of the difference equation θt+1 = θt + αt∇̃J (πθ), i.e.,
the points where ∇̃J (πθ) = 0. Clearly, we have

0 = k
(
R + γbT Pb

)
+ γAT Pb,

=⇒ k = −
(
R + γbT Pb

)−1
γAT Pb,

0 =
1

2

(
R + γbT Pb

)
σ3,

=⇒ σ = 0.



42 Policy Gradient Theory

−2 −1 0 1
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

(a) Natural Gradient vs Greedy in LQR (k
1
 x k

2
 space)

P
ar

am
et

er
 θ 2=

k 2

Parameter θ
1
=k

1

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

P
ar

am
et

er
 θ 1=

k 1

Time t

(b−d) Parameters over time

0 5 10 15 20
−1.5

−1

−0.5

0

P
ar

am
et

er
 θ 2=

k 2

Time t

0 5 10 15 20
0

0.05

0.1

P
ar

am
et

er
 θ 3=

σ

Time t

Figure 3.6: This figure shows the performance of natural gradients in comparison to the
greedy approach. The value function V πθ(x) has mean-zero Gaussian distributed errors. In
(a), you can see that the greedy learner goes straight close to the optimal solution, and then
jumps around close to the optimum due to the noise in the value function. The natural
gradient learner follows the straight path of the first greedy step, and subsequently turns
towards the optimal solution. Probably better recognizeable in (b-d), the natural gradient
is hardly affected by the noise of the system while the greedy approach is highly affected.
In here, we use a learning rate of αt = 0.1 · J−1 (πθ) for the natural gradient. The region
of stable solution, i.e., the flat plateau in the middle, can be recognized well. The instable
solutions are behind all three edges.

This happens to be the optimal solution for time-discrete LQR problems. However, con-
vergence can be achieved by σ = 0 alone. Furthermore, from the literature (Bertsekas,
2000), we know the dynamic programming update algorithm for deterministic LQR, i.e.,

kt+1 = −
(
R + γbT Ptb

)−1
γAT Ptb. Let us compare this rule to the natural gradient up-

date θt+1 = θt + αt∇̃J (πθ) = θt + αtwθt
with θt = [kt, σt]. For this we heuristically

assume a learning rate of αt = −σ−2
(
R + γbT Ptb

)−1
. This learning rate also equals

αt = 2σtw
−1
2 = 2J−1 (πθ). It turns out that the two update rules for kt are identical for

this learning rate αt, i.e.,

kt+1 = kt + αtw1

= kt − αt

(
k
(
R + γbT Ptb

)
σ2

t + γAT Pbσ2
t

)
,

= kt − σ−2
(
R + γbT Ptb

)−1 (
kt

(
R + γbT Ptb

)
σ2

t + γAT Ptbσ2
)
,

= kt − kt −
(
R + γbT Ptb

)−1
γAT Ptb,



3.6 Natural Gradient 43

= −
(
R + γbT Ptb

)−1
γAT Ptb,

σt+1 = σt + w2

= σt − αt
1

2

(
R + γbT Ptb

)
σ3

t ,

= σt − σ−2
t

(
R + γbT Ptb

)−1 1

2

(
R + γbT Ptb

)
σ3

t ,

= σt −
1

2
σt,

=
1

2t
σ0.

Clearly, the natural gradient update is in general collinear to a dynamic programming update, LQR dynamic

programming

and natural

gradient

learning are

equivalent

and for this specific learning rate they even become equal. This shows that the most famous
example for dynamic programming in optimal control is in fact also an example for natural
gradient learning3. Its performance can be seen in figure 3.6.

3The part with the learning rate has to be explored more deeply...should we generally use αt = J−1 (πθ)?





Bibliography

Baird, L. (1993). Advantage updating. (Technical Report)

Baird, L. (1998). Gradient descent for general reinforcement learning.

Bartlett, P. L., & Baxter, J. (2000). Estimation and approximation bounds for gradient-
based reinforcement learning. Connection Science, 3 (28).

Baxter, J., & Bartlett, P. (1999). Direct gradient-based reinforcement learning.

Bellman, R. (1957). Dynamic programming. Princeton, NJ: Princeton University Press.

Berger, R., & Casella. (2002). Statistical inference. TO BE ENTERED.

Berny, A. (2000). Statistical machine learning and combinatorial optimization. In L. Kallel,
B. Naudts, and A. Rogers, editors, Theoretical Aspects of Evolutionary Computing,
Lecture Notes in Natural Computing, 0 (33).

Bertsekas, D. (2000). Dynamic programming and optimal control. Athena Scientific.

Bronstein, I. N., Semendjajew, K. A., Musiol, G., & Mühlig, H. (1995). Taschenbuch der
mathematik. Verlag Harri Deutsch.

Dayan, P. (1990). To be entered. TO BE ENTERED.

Dorato, P., Abdallah, C., & Cerone, V. (1995). Linear quadradic control: an introduction.
Prentice Hall.

Greensmith, E., Bartlett, P., & Baxter, J. (2001). Variance reduction techniques for gradi-
ent estimates in reinforcement learning. Advances in Neural Information Processing
Systems, 14 (34).

Grimmett, G., & Stirzaker, D. (2001). Probability and random processes. Oxford University
Press.

Gullapalli, V. (1991). Associative reinforcement learning of real-value functions. SMC, -(-).

Gullapalli, V., Franklin, J., & Benbrahim, H. (1994). Aquiring robot skills via reinforcement
learning. IEEE Control Systems, -(39).

Jaakkola, T., Jordan, M. I., & Singh, S. P. (1994). Convergence of stochastic iterative
dynamic programming algorithms. In J. D. Cowan, G. Tesauro, & J. Alspector (Eds.),
Advances in neural information processing systems (Vol. 6, pp. 703–710). Morgan
Kaufmann Publishers, Inc.

Kakade, S., & Langford, J. (2002). Approximately optimal approximate reinforcement
learning. International Conference on Machine Learning.



46 BIBLIOGRAPHY

Konda, V. (2002). Actor-critic algorithms. Ph.D. Thesis (MIT), 3 (36).

Konda, V., & Tsitsiklis, J. (2000). Actor-critic algorithms. Advances in Neural Information
Processing Systems, 12 (35).

Konda, V., & Tsitsiklis, J. (2001). Actor-critic algorithms. Submitted to SIAM Journal on
Control and Optimisation(38).

Mahadevan, S. (1996). To be entered. TO BE ENTERED.

Marbach, P., & Tsitsiklis, J. (1998). Simulation-based optimization of markov reward
processes.

Morton, D. (2001). Monte carlo methods in stochastic programming. (Graduate Program
in Operations Research, University of Texas in Austin)

Russel, & Norvig. (1995). To be entered. TO BE ENTERED.

Sutton, R. (2000). Policy gradient methods for reinforcement learning with function ap-
proximation. Presentation at NIPS, 12 (22).

Sutton, R., & Barto, A. (1998). Reinforcement learning: an introduction. MITPRESS.

Sutton, R., McAllester, D., Singh, S., & Mansour, Y. (2000). Policy gradient methods for
reinforcement learning with function approximation. Advances in Neural Information
Processing Systems, 12 (22).

Sutton, R., McAllester, D., Singh, S., & Mansour, Y. (2001). Comparing policy gradient
methods. (Unfinished paper)

Weaver, L., & Tao, N. (2001a). The optimal reward baseline for gradient-based reinforce-
ment learning. Uncertainty in Artificial Intelligence: Proceedings of the Seventeenth
Conference, 17 (29).

Weaver, L., & Tao, N. (2001b). The variance minimizing constant reward baseline for
gradient-based reinforcement learning. Technical Report ANU, -(30).

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8 (23).

Williams, R. J., & Peng, J. (1991). Function optimization using connectionist reinforcement
learning algorithms. Connection Science, 3 (24).



Appendix A

Proofs for the Examples

A.1 Linear Quadratic Regulation Examples

A.1.1 Expected Return Derivation

Average Reward Case

Start-State Case

A.1.2 Value Function Derivation

Average Reward Case

Start-State Case

In this appendix section, we derive the result that the state value function of the Gaussian
policy

πθ (u |x) =
1√

2πσ2
exp

(

− 1

2σ2

(
u − kT x

)2
)

(A.1)

for a given discrete-time LQR problem with matrices A,b, R, and Q can be defined as

V̂ πθ (x) =
1

2
xT Px +

1

2

1

1 − γ

(
R + γbT Pb

)
σ2

for the discrete-time, undiscounted start-state case where P is the solution of

P =
[
Q + γAT PA + γkbT PA + γAT PbkT + γkbT PbkT + kRkT

]
.

Similarly, we have the state-action value function

Q̂πθ (xt,ut) =
1

2

[
xT , u

]
[

Q + γAT PA γAT Pb

γbT PA R + γbT Pb

] [
x

u

]

+
1

2

γ

1 − γ

(
R + γbT Pb

)
σ2.

Proof. In order to obtain the value function, we have solve the Bellman equation for the
undiscounted case of this specific problem, i.e.,

V̂ πθ (xt) =

∫

U

πθ(xt, u)Q̂πθ (xt, u) du.

As this becomes a nonlinear, vectorized Fredholm integral equation of second kind with a
scalar value function, this is difficult to solve. However, we can rewrite our system equation



48 Proofs for the Examples

to

xt+1 = Axt + but,

= Axt + b (ūt + wt) ,

= Axt + būt + bwt,

= Axt + bkT x + bwt,

where wt are ‘errors’ which have a zero mean and are drawn from a mean-zero Gaussian
distribution

p
(
w = w′ |πθ

)
=

1√
2πσ2

exp

(

− w2

2σ2

)

.

The expectations of the ‘errors’ wt are given by

w̄ = E {wt} = 0,

W = E {wtwt} = σ2.

This slight change in problem notation causes a large change in the difficulty of derivation
since the structure of the value function for this problem is well-known (?). It is given by
Stengel (?) as

V̂ πθ (xt) =
1

2
xT

t Pxt + vt,

with

vt = ∆vt + γvt+1,

for the discrete-time case. For the continuous time case, a similar formulation with
integrals is given in (?).

In order to do this, we have to define a state function V̂ πθ (x) so that we can solve the
upper equation. Instead of defining V̂ πθ (x) directly, we define Q̂πθ (xt, ut) first and use it
to derive the policy value function.

Q̂πθ (xt, u) = E
{

r (xt, u) + γV̂ πθ (xt+1) + vt+1

}

,

=
1

2

(
xT

t Qxt + Ru2
)

+
1

2
γ (Axt + bu)T

P (Axt + bu) + vt+1.

We have to integrate over the policy:

V̂ πθ (xt) =

∫

U

πθ(xt, u)Q̂πθ (xt, u) du,

=

∫

U

πθ(xt, u)
(

r (xt, u) + γV̂ πθ (Axt + bu) + vt+1

)

du,

=

∫

U

πθ(xt, u)

(
1

2
xT

t Qxt +
1

2
Ru2

+
1

2
γ (Axt + bu)T

P (Axt + bu) + γvt+1

)

du.

Clearly, we can integrate the first term to

∫

U

πθ(xt, u)
1

2
xT

t Qxtdu =
1

2
xT

t Qxt.



A.1 Linear Quadratic Regulation Examples 49

The second term can be derived using integrals from Bronstein et al. (1995) if we assume
that U = R, i.e.,

∫

R

πθ(xt, u)
1

2
Ru2du

=

∞∫

−∞

1√
2πσ2

exp

(

− 1

2σ2

(
u − kT xt

)2
)

1

2
Ru2du,

=
1

2

∞∫

−∞

1√
2σ2

︸ ︷︷ ︸

= dv
du

1√
π

exp

(

− 1

2σ2

(
u − kT xt

)2
)

︸ ︷︷ ︸

=−v2

R u2
︸︷︷︸

=(
√

2σv−k
T

xt)
2

du,

=
1

2

∞∫

−∞

1√
π

exp
(
−v2

)
R
(√

2σv − kT xt

)2
du,

=

∞∫

−∞

1√
π

exp
(
−v2

)
R
(

2σ2v2 − 2
√

2σvkT xt +
(
kT xt

)2
)

du,

=
2σ2R√

π

1

2

∞∫

−∞

exp
(
−v2

)
v2dv

︸ ︷︷ ︸

=
√

π/2

− R2
√

2σkT xt√
π

1

2

∞∫

−∞

exp
(
−v2

)
vdv

︸ ︷︷ ︸

=0

+
1

2

R
(
kT xt

)2

√
π

∞∫

−∞

exp
(
−v2

)
dv

︸ ︷︷ ︸

=
√

π

,

=
1

2
Rσ2 +

1

2
R
(
kT xt

)2
,

=
1

2
Rσ2 +

1

2
xT

t kRkT xt.

The integral
∫

R
πθ(xt, u) (Axt + bu)T

P (Axt + bu) du can be split into pieces and subse-
quently solved to

∫

R

πθ(xt, u)xT
t AT PAxtdu = xT

t AT PAxt,

∫

R

πθ(xt, u)ubT PAxtdu = xT
t kbT PAxt,

∫

R

πθ(xt, u)xtA
T Pbudu = xT AT PbkT xt,

∫

R

πθ(xt, u)ubT Pbudu = bT Pbσ2 + xT
t kbT PbkT xt,

which gives us a full integral of

1

2

∫

R

πθ(xt, u) (Axt + bu)T P (Axt + bu) du,

=
1

2

(
xT

t AT PAxt + xT
t kbT PAxt + xT AT PbkT xt + bT Pbσ2 + xT

t kbT PbkT xt + xT
t kRkT xt

)
.



50 Proofs for the Examples

Similarly, we get ∫

R

πθ(xt, u)vt+1du = vt+1.

Let us now determine the unknown parameters P and vt+1. By coefficient comparison, this
gives us the equation

1

2
xT

t Pxt =
1

2
xT

t

[
Q + AT PA + kbT PA + AT PbkT + kbT PbkT + kRkT

]
xt,

P =
[
Q + γAT PA + γkbT PA + γAT PbkT + γkbT PbkT + kRkT

]

which we have to solve for P, and

vt =
1

2

(
R + γbT Pb

)
σ2 + γvt+1,

vt = ∆v + γvt+1,

∆v =
1

2

(
R + γbT Pb

)
σ2.

which gives us ∆v. We can clearly derive from

vt = ∆v + γvt+1

= ∆v + ∆v + vt+2

= ∆v + γ∆v + . . . + γtf−t∆v
︸ ︷︷ ︸

=tf−t

+ vtf

=
1 + γtf−t+1

1 − γ
∆v + vtf

=
1 + γtf−t+1

1 − γ

(

R +
1

2
γbT Pb

)

σ2 + vtf

Since the final state is the end of any trajectory we have vtf = 0. This gives us

vt =
1

2

1 + γtf−t+1

1 − γ

(
R + γbT Pb

)
σ2.

We now have all components of the value function for this policy for state xt at time t for
the undiscounted start-state case, i.e.,

V̂ πθ (xt) =
1

2
xT

t Pxt +
1

2

1 + γtf−t+1

1 − γ

(
R + γbT Pb

)
σ2.

Clearly, the undiscounted formulation would not always exist as it grows with time. For
tf → ∞, we get

V̂ πθ (xt) =
1

2
xT

t Pxt +
1

2

1

1 − γ

(
R + γbT Pb

)
σ2.

Similarly, we have

Q̂πθ (xt, u) = E
{

r (xt, u) + γV̂ πθ (xt+1) + γvt+1

}

,

=
1

2

(
xT

t Qxt + Ru2
)

+
1

2
γ (Axt + bu)T

P (Axt + bu) + γvt+1,

=
1

2

[
xT

t uT
t

]
[

Q + γAT PA γAT Pb

γbT PA R + γbT Pb

] [
xt

ut

]

+
1

2

γ

1 − γ

(
R + γbT Pb

)
σ2.



A.1 Linear Quadratic Regulation Examples 51

A.1.3 Advantage Function Derivation

Average Reward Case

Start-State Case

In this appendix section, we derive the result that advantage function for linear quadratic
regulation (LQR) problems under policy πθ is given by

Aπθ(x,u) =
1

2

[
xT , u

]
H

[
x

u

]

− 1

2

(
R + γbT Pb

)
σ2,

with

H =

[
−2γkbT PA − γk

(
bT Pb + R

)
kT γAT Pb

γbT PA R + γbT Pb

]

,

for the start-state case.
Proof. We have by definition

Aπθ(x,u) = r (x, u) + V πθ (Ax + bu) − V πθ (x) ,

= Qπθ (x,u) − V πθ (x) ,

This gives us

Aπθ(x,u) =
1

2

[
xT

t uT
t

]
[

2Q + γAT PA γAT Pb

γbT PA 2R + γbT Pb

] [
xt

ut

]

+
1

2

γ

1 − γ

(
2R + γbT Pb

)
σ2 − 1

2
xT

t Pxt −
1

2

1

1 − γ

(
2R + γbT Pb

)
σ2.

We can now simplify the terms. Let us start with the outer constant, i.e.,

1

2

γ

1 − γ

(
2R + γbT Pb

)
σ2 − 1

2

1

1 − γ

(
2R + γbT Pb

)
σ2,

=
1

2

γ − 1

1 − γ

(
2R + γbT Pb

)
σ2,

= −1

2

(
2R + γbT Pb

)
σ2.

Since 1
2xT

t Pxt does not contain any u’s, we can move it into the matrix, i.e.,

H =

[
Q + γAT PA γAT Pb

γbT PA R + γbT Pb

]

−
[

P 0
0 0

]

=

[
Q + γAT PA − P γAT Pb

γbT PA R + γbT Pb

]

Therefore, we have to simplify the upper-left element by

Q + γAT PA − P,

= Q + γAT PA −
[
Q + γAT PA + γkbT PA + γAT PbkT + γkbT PbkT + kRkT

]
,

= −γkbT PA − γAT PbkT − γkbT PbkT − kRkT ,

= −2γkbT PA − γkbT PbkT − kRkT .

The last step is only possible due the symmetry of the formulation, i.e.,

γAT PbkT = γvkT = γkvT = γkbT PA.



52 Proofs for the Examples

By reinserting this element into matrix H we get

H =

[
−2γkbT PA − γk

(
bT Pb + R

)
kT γAT Pb

γbT PA R + γbT Pb

]

.

This has proved our example.

A.1.4 Compatible Function Approximation

Let us now show that the expected TD(0) advantage can be represented by the compatible
function approximation at least for this problem. We analyze all terms

−w2
1

σ
= −1

2

(
R + γbT Pb

)
σ2,

w2 =
1

2

(
R + γbT Pb

)
σ3.

Let us now look this into our main equation
[
−kwT

1
1
σ2 + w2

1
σ3 kkT 1

2w1
1
σ2 − kwT

2
1
σ3

1
2wT

1
1
σ2 − w2

1
σ3 kT 1

σ3 w2

]

=
1

2

[
−2γkbT PA − γk

(
bT Pb + R

)
kT γAT Pb

γbT PA R + γbT Pb

]

.

This gives us three equations due to the symmetry of both matrices:

−kwT
1

1

σ2
+ w2

1

σ3
kkT = −γkbT PA − 1

2
γk
(
bT Pb + R

)
kT ,

1

2
w1

1

σ2
− kw2

1

σ3
=

1

2
γAT Pb,

1

σ3
w2 =

1

2
R +

1

2
γbT Pb.

Clearly, the third of these equations is equivalent with our previous one. So we just have
to analyze the other two.

1

2
w1

1

σ2
− kw2

1

σ3
=

1

2
γAT Pb,

w1
1

σ2
= 2kw2

1

σ3
+ γAT Pb,

= k
(
R + γbT Pb

)
σ3 1

σ3
+ γAT Pb,

w1 = k
(
R + γbT Pb

)
σ2 + γAT Pbσ2.

Let us now simplify the right side of the last missing equation:and reinsert it into the
equation (, i.e., due to symmetry). We now want to see whether it does not contradict
the previous equations. Therefore we insert the parameters into the left side of the last
equation:

− kwT
1

1

σ2
+ w2

1

σ3
kkT ,

= −k
(
k
(
R + γbT Pb

)
+ γAT Pb

)T
σ2 1

σ2
+

1

2

(
R + γbT Pb

)
σ3 1

σ3
kkT ,

= −kkT
(
R + γbT Pb

)
− γkbT PA +

1

2

(
R + γbT Pb

)
kkT ,

= −1

2
k
(
R + γbT Pb

)
kT − γkbT PA,

=
1

2

(
−k
(
R + γbT Pb

)
kT − 2γkbT PA

)
.

Clearly, this shows that the expected TD(0) advantage can be represented in the compatible
function approximator.



A.2 Discrete State- and Action Example 53

A.1.5 All-Action Matrix Derivation

53

A.1.6 ...

A.2 Discrete State- and Action Example

A.3 All-Action Matrix

Double k-equation: The double k-equation is solved here

∞∫

−∞

1

π(x, u)

∂π(x, u)

∂ki

∂π(x, u)

∂kj
du,

=

∞∫

−∞

1√
2πσ2

exp

(

−1

2
v2

)

v2 xixj

σ

1

σ
du,

=

∞∫

−∞

1√
2πσ

exp

(

−1

2
v2

)

v2 xixj

σ
dv,

=
xixj

σ2
. (A.2)

Single k, single σ-equation: The single k, single σ-equation is solved here

∞∫

−∞

1

π(x, u)

∂π(x, u)

∂σ

∂π(x, u)

∂kj
du,

=

∞∫

−∞

1√
2πσ

exp

(

−1

2
v2

)
xj

σ
v
(
v2 − 1

) 1

σ
du,

=

∞∫

−∞

1√
2πσ

exp

(

−1

2
v2

)
xj

σ
v
(
v2 − 1

)
dv,

= 0. (A.3)

Double σ-equation: The double σ-equation is solved here

∞∫

−∞

1

π(x, u)

(
∂π(x, u)

∂σ

)2

du,

=

∞∫

−∞

1√
2πσ

exp

(

−1

2
v2

)
1

σ

(
v2 − 1

)2 1

σ
du,

=

∞∫

−∞

1√
2πσ

exp

(

−1

2
v2

)
1

σ

(
v2 − 1

)2
dv,

=
2

σ2
. (A.4)


