

5.3.2 Kernelized Temporal Di�erence Learning Methods

The proposed approach is of course not the first to use kernels for policy evaluation. Methods such as
kernelized least-squares temporal difference learning [168] and Gaussian process temporal difference
learning [167] have also employed kernels in policy evaluation. Taylor and Parr demonstrated that these
methods differ mainly in their use of regularization [13]. The unified view of these methods is referred
to as Kernelized Temporal Difference learning.

The KTD approach assumes that the reward and value functions can be represented by kernelized
linear least-squares regression; i.e., r(s) = k(s)T K

�1

r and V (s) = k(s)T ˆ✓ , where [k(s)]i = k(s, si),
[K]i j = k(si, s j), [r]i = ri, and ˆ✓ is a weight vector. In order to derive KTD using Galerkin’s
method, it is necessary to again represent the joint distribution as p (s,a, s

0) = n�1

Pn
i=1

�i(s,a, s

0).
The Galerkin method projects the integral equation into the space of the Kronecker delta functions
[ˇ�(s)]i = ˇ�i(s,ai, s

0
i), where ˇ�i(s,a, s

0) = 1 if s

0 = s

0
i, a = ai, and s = si; otherwise ˇ�i(s,a, s

0) = 0. Thus,
Eq. (5.3) becomes

ˆ
S

ˇ� (s) p (s)k(s)T ˆ✓ds=
ˆ
S

ˇ� (s) p (s) r (s)ds+ �
ˆ
S

ˇ� (s) p
�
s, s

0�
k(s0)T ˆ✓ds

0ds,

By substituting p(s,a, s

0) and applying the sifting property of delta functions, this equation becomes

nX

i=1

ˇ�(si)k(si)T ˆ✓ =
nX

j=1

ˇ�(s j)k(s j)T K

�1

r+ �
nX

k=1

ˇ�(sk)k(s0k)T ˆ✓ ,

and thus K

ˆ✓ = r+ �K0 ˆ✓ , where [K0]i j = k(s0i, s j). The value function weights are therefore

ˆ✓ = (K� �K0)�1

r,

which is identical to the solution found by the KTD approach [13]. In this manner, the KTD approach
computes a weighting ˆ✓ such that the difference in the value at si and the discounted value at s

0
i equals

the observed empirical reward ri. Thus, only the finite set of sampled states are regarded for policy
evaluation. Therefore, some KTD methods, e.g. Gaussian process temporal difference learning [167],
require that the samples are obtained from a single trajectory to ensure that s

0
i = si+1

.
A key difference between KTD and NPDP is the representation of the value function V (s). The form

of the value function is a direct result of the representation used to embody the state transitions. In the
original paper [13], the KTD algorithm represents the transitions by using linear kernelized regression
ˆ

k(s0) = k(s)T K

�1

K

0, where [ˆk(s0)]i = E[k(s0, si)]. The value function V (s) = k(s)T ˆ✓ is the correct
form for this transition model. However, the transition model does not explicitly represent a conditional
distribution and can lead to inaccurate predictions. For example, consider two samples that start at s

1

= 0

and s
2

= 0.75 respectively, and both transition to s0 = 0.75. For clarity, we use a box-cart kernel with a
width of one k(si, s j) = 1 iff

��si � s j

�� 0.5 and 0 otherwise. Hence, K = I and each row of K’ corresponds
to (0, 1). In the region 0.25 s 0.5, where the two kernels overlap, the transition model would
then predict ˆk(s) = k(s)T K

�1

K

0 = [0 2]. This prediction is however impossible as it requires that
E[k(s0, s

2

)] >maxs k(s, s
2

). In comparison, NPDP would predict the distribution (s0) ⌘
1

(s0) ⌘
2

(s0)
for all states in the range �0.5 s 1.25.

Similar as for LSTD, the matrix (K � �K0) may become singular and thus not be invertible. As a
result, KTD usually needs to be regularized [13]. Given that KTD requires inverting an n⇥ n matrix, this
approach has a computational complexity similar to NPDP.

72

5.3.3 Discrete-State Dynamic Programming

The standard tabular DSDP approach can also be derived using the Galerkin method. Given a system with
q discrete states, the value function has the form V (s) = ˇ�(s)T v, where ˇ�(s) is a vector of q Kronecker
delta functions centered on the discrete states. The corresponding reward function is r(s) = ˇ�(s)T¯

r. The
joint distribution is given by p(s0, s) = q�1�(s)T P�(s0), where P is a stochastic matrix

Pq
j=1

[P]i j = 1, 8i
and hence p(s) = q�1

Pq
i=1

�i(s). Galerkin’s method projects the integral equation into the space of the
states ˇ�(s). Thus, Eq. (5.3) becomesˆ

S
ˇ� (s) p (s) ˇ�(s)T vds=

ˆ
S

ˇ� (s) p (s) ˇ�(s)T¯

rds+ �
ˆ
S

ˇ� (s) p
�
s, s

0�
ˇ�(s0)T vds

0ds,

Iv= I

¯

r+ �
ˆ
S

ˇ� (s)�(s)T P�(s0)ˇ�(s0)T vds

0ds,

v= ¯

r+ �Pv,

v= (I� �P)�1

¯

r, (5.6)

which is the same computation used by DSDP [160]. The DSDP and NPDP methods actually use similar
models to represent the system. While NPDP uses a kernel density estimation, the DSDP algorithm uses
a histogram representation. Hence, DSDP can be regarded as a special case of NPDP for discrete state
systems.

The DSDP algorithm has also been the basis for continuous-state policy evaluation algorithms [170,
171]. These algorithms first use the sampled states as the discrete states of an MDP and compute the
corresponding values. The computed values are then generalized, under a smoothness assumption, to
the rest of the state-space using local averaging. Unlike these methods, NPDP explicitly performs policy
evaluation for a continuous set of states.

5.4 Numerical Evaluation

In this section, we compare the different policy evaluation methods discussed in the previous section,
with the proposed NPDP method, on an illustrative benchmark system.

5.4.1 Benchmark Problem and Setup

In order to compare the LSTD, KTD, DSDP, and NPDP approaches, we evaluated the methods on a
discrete-time continuous-state system. A standard linear-Gaussian system was used for the benchmark
problem, with transitions given by s0 = 0.95s+! where ! is Gaussian noise N (µ = 0,� = 0.025). The
initial states are restricted to the range 0.95 to 1. The reward functions consist of three Gaussians, as
shown by the black line in Fig. 5.1 .

The KTD method was implemented using a Gaussian kernel function and regularization. The LSTD
algorithm was implemented using 15 uniformly-spaced normalized Gaussian basis functions, and did
not require regularization. The DSDP method was implemented by discretizing the state-space into 10
equally wide regions. The NPDP method was also implemented using Gaussian kernels.

The hyper-parameters of all four methods, including the number of basis functions for LSTD and
DSDP, were carefully tuned to achieve the best performance. As a performance base-line, the values
of the system in the range 0 < s < 1 were computed using a Monte Carlo estimate based on 50000

trajectories. The policy evaluations performed by the tested methods were always based on only 500

samples; i.e. 100 times less samples than the base-line. The experiment was run 500 times using
independent sets of 500 samples. The samples were not drawn from the same trajectory.

73

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

State

V
a

lu
e

True Value

Reward

LSTD

KTD

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

State

V
a

lu
e

True Value

Reward

DSDP

NPDP

Figure 5.1: Value functions obtained by the evaluated methods. The black lines show the reward func-
tion. The blue lines show the value function computed from the trajectories of 50,000 uni-
formly sampled points. The LSTD, KTD, DSDP, and NPDP methods evaluated the policy using
only 500 points. The presentation was divided into two plots for improved clarity

5.4.2 Results

The performance of the different methods were compared using three performance measures. Two
of the performance measures are based on the weighted Mean Squared Error (MSE) [32] E(V) =´

1

0

W (s) (V (s)� V ?(s))2 ds where V ? is the true value function and W (s)� 0, for all states, is a weighting
distribution

´
1

0

W (s)ds = 1. The first performance measure Eunif corresponds to the MSE where W (s) = 1

for all states in the range zero to one. The second performance measure Esamp corresponds to the MSE
where W (s) = n�1⌃n

i=1

�i(s) respectively. Thus, Esamp is an indicator of the accuracy in the space of the
samples, while Eunif is an indicator of how well the computed value function generalizes to the entire
state space. The third performance measure Emax is given by the maximum error in the value function.
This performance measure is the basis of a bound on the overall value function approximation [164].

The results of the experiment are shown in Table 5.1. The performance measures were averaged
over the 500 independent trials of the experiment. For all three performance measures, the NPDP
algorithm achieved the highest levels of performance, while the DSDP approach consistently led to the
worst performance.

Eunif Esamp Emax
NPDP 0.5811± 0.0333 0.7185± 0.0321 1.4971± 0.0309

LSTD 0.6898± 0.0443 0.8932± 0.0412 1.5591± 0.0382

KTD 0.7585± 0.0460 0.8681± 0.0270 2.5329± 0.0391

DSDP 1.6979± 0.0332 2.1548± 0.1082 2.9985± 0.0449

Table 5.1: Each row corresponds to one of the four tested algorithms for policy evaluation. The columns
indicate the performance of the approaches during the experiment. The performance indexes
include the mean squared error evaluated uniformly over the zero to one range, the mean
squared error evaluated at the 500 sampled points, and the maximum error. The results are
averaged over 500 trials. The standard errors of the means are also given.

74

5.4.3 Discussion

The LSTD algorithm achieved a relatively low Eunif value, which indicates that the tuned basis functions
could accurately represent the true value function. However, the performance of LSTD is sensitive to
the choice of basis functions and the number of samples per basis function. Using 20 basis functions
instead of 15 reduces the performance of LSTD to Eunif = 2.8705 and Esamp = 1.0256 as a result of
overfitting. The KTD method achieved the second best performance for Esamp, as a result of using a non-
parametric representation. However, the value tended to drop in sparsely-sampled regions, which lead
to relatively high Eunif and Emax values. The discretization of states for DSDP is generally a disadvantage
when modeling continuous systems, and resulted in poor overall performance for this evaluation. The
NPDP approach out-performed the other methods in all three performance measures. The performance
of NPDP could be further improved by using adaptive kernel density estimation [172] to locally adapt
the kernels’ bandwidths according to the sampling density. However, all methods were restricted to using
a single global bandwidth for the purpose of this comparison.

5.5 Sequencing Motor Primitives

In this section, we explain how the proposed NPDP framework can be used to learn a high-level policy
for selecting motor primitives. This section builds on the work presented in Chapter 4. We assume that
the robot has learned a library of motor primitives for transitioning between different phases, and that
it has access to a multi-phase model of the task.

5.5.1 Learning a High-Level Policy with Policy Iteration

Given a library of motor primitives, such as the one learned in the previous chapter, the robot must now
sequence these motor primitives M in order to perform different manipulation tasks. When selecting
the next motor primitive, the robot must take into consideration the goal of the task, the current state,
and its future actions. The robot should also reuse motor primitives when performing similar tasks.

We assume that the task is defined in the form of a reward function r(s,a), which we can use to
compute an expected reward function r(˜s,M) for motor primitives, where the extended state ˜

s includes
the state s and the robot’s estimate of the phase ˜⇢. The robot’s high-level policy ⇡(M |˜s) selects motor
primitivesM , according to the current state and phase. The motor primitives should be selected such
that they maximize the reward accumulated over time

max

⇡

1X

t=1

�t r(˜s(t),M (t)),

where � is a discount factor on future rewards 0 �< 1 and t indicates the steps in the motor primitive
sequence. In our experiments, all of the motor primitives had the same duration. However, one could
also use different discount factors for motor primitives with different durations. The value function
V⇡(˜s) is defined as the expected future rewards when in state s and phase ⇢, and following policy ⇡.
The value function therefore represents how useful it is to be in the extended state ˜

s given the current
task and the robot’s policy for selecting future actions.

The NPDP algorithm models the system dynamics as a kernel density estimate of the form

p(˜s,M ,

˜

s

0) = m�1

Pm
i=1

�
˜

s

0
,

˜

s

0
i

�
' (M ,Mi)� (˜s,

˜

si)

where ˜

s is the extended state before executing motor primitive M , and ˜

s

0 is the extended state af-
terwards. We model � (˜s,

˜

si) using a squared exponential kernel for the state s and multiply it by a

75

Kronecker delta function for the phase ˜⇢. As we have a discrete set of motor primitives, the function '
is defined as a delta function. The function

�
˜

s

0
,

˜

s

0
i

�
is not explicitly defined and instead approximated

using samples from the multi-phase model described in Chapter 4.
In order to learn the value function, we first compute a set of m prototypical samples {˜si} for i 2
{1, ..., m}. Given a set of starting states, the prototype samples can be obtained by sampling different
sequences of motor primitives using the multi-phase model. In our experiments, we sampled every
sequence of motor primitives using the maximum-likelihood state transitions.

The value function for this joint distribution has the form

V (˜s) =

Pm
i=1

✓i� (˜s,

˜

si)Pm
j=1

�
�
˜

s,

˜

s j

�
.

The parameters ✓ of the value function are given by

✓ = (I� ��)�1

¯

r,

where the ith element of ¯

r is the expected reward [¯r]i = r(˜si,Mi), and the elements of the transition
matrix P are defined as

[�]i j =
ˆ
�
�
˜

s,

˜

s j

�
 (˜s,

˜

si)Pm
k=1

� (˜s,

˜

sk)
d˜

s.

This integral is computed by drawing samples from the multi-phase model, starting at ˜

si and executing
Mi, in order to approximate the function (˜s,

˜

si). Even though some of the DMPs are meant to transition
to specific phases, some of the samples will not reach this desired phase due to the stochasticity of the
multi-phase model. The model thus also incorporates the failure rates of the DMPs, and the robot can
learn a high-level controller that avoids motor primitives that tend to fail.

Given the value function V (˜s), the policy is updated by selecting new motor primitives for each of the
prototypical samples. For each of these samples, the robot selects the motor primitive that maximizes
the expected immediate reward plus the expected discounted value for the next state

M new
i = argmaxM E(r(˜si,M) + �V (˜s0i)).

The rows of the matrix � and the vector ¯

r are then updated accordingly, and a new value function is
computed. This policy iteration process is repeated until the value function and the policy converge. The
resulting policy is given by

⇡(M |˜s) =
Pm

i=1

' (M ,Mi)� (˜s,

˜

si)Pm
k=1

� (˜s,

˜

sk)
,

which is a similar form to the multi-class classifier policies that are commonly used by imitation learning
approaches [119, 8].

5.5.2 Motor Primitive Sequencing Experiment

The proposed approach to learning high-level policies was evaluated using the same robot setup as in the
previous chapter. The goal of this experiment was to learn high-level controllers for sequencing motor
primitives in order to perform manipulation tasks. The robot was given the library of motor primitives
learned in Chapter 4. Two motor primitives were added to the library in order to increase the range
of possible actions. The first motor primitive moves both hands 10 cm to the left. The second motor
primitive raises both hands by 10 cm. Unlike the motor primitives for transitioning between phases,
these task motor primitives can be executed from any phase. Hence, at least two motor primitives can

76

Figure 5.2: The images show two sequences of the bimanual grasping task. In the top row, the box was
placed towards the left, and the high-level controller approached the box first with the left
hand. In the bottom row, the robot chose to approach the grasp with the right hand first, as
the box was located more towards the right.

be executed from every phase. The effects of executing one of the task motor primitives depend on the
current phase.

The robot was given two tasks in this experiment. For each task, the robot had to learn a high level
controller that would bring it to a suitable phase and then execute one of the task motor primitives. A
trial was finished once a task motor primitive had been executed. The end of a trial was modeled by
an additional absorbing state, in which no further rewards can be obtained and the robot’s actions are
limited to waiting. Executing a task motor primitive always resulted in transitioning to the absorbing
state.

The high-level controller was learned using the method described in Section 5.5. The phase estimates
˜⇢ were computed using the model’s phase transition distribution p(⇢t |st ,⇢t�1

) and the trajectory from
the previous motor primitive. For computing the kernel function � (˜s,

˜

si), we used the 3D position of the
box and the positions of the hands relative to the box. For this evaluation, the robot always selected the
most likely next motor primitive argmaxM ⇡(M |˜s). The robot computed 137 prototype samples based
on 20 start-state samples.

In the first task, the robot was given a reward for the final height of the box and a penalty for the
left-right deviation of the box from the center of the table. The discount factor was set to � = 0.99. The
task was executed 20 times on the robot. The box was placed on the left side of the table for ten of the
trials, and on the right side for the other ten trials. In all of the trials, the robot grasped the box with
both hands and successfully lifted it off of the table. When the box was placed on the left side of the
table, the robot always approached the box with the left hand first, as shown in Fig. 5.2 . When the
box was placed on the right side of the table, the robot approached the box first with the right hand in
nine of the ten trials. In this manner, the robot tended to push the box towards the center of the table
before lifting it up. In two of the trials, the robot failed to detect the 3 ! 4 phase transition. In these
trials, the robot had used the back of the thumb to hold the side of the box. As a result the fingers were
pushed together rather than apart by the grasp. This problem could be addressed by using a task-space
representation of the forces.

For the second task, the robot was given a reward for quickly moving the box to the left, and a penalty
for the height of the box. The discount factor was set to � = 0.95 in order to encourage the robot to
perform the task quickly. The task was again executed 20 times on the robot with the box placed at
different locations on the table. In all of the trials, the robot placed its right hand on the box and then
moved both hands to the left, as shown in Fig. 5.3.

The first task showed that the robot was able to reconstruct the original sequences of phase transitions
and then execute the task motor primitive. The robot additionally learned that it could exploit the DMPs
such that they push the box towards the center of the table for a higher reward. The second task showed

77

Figure 5.3: Two examples of manipulation sequences learned for pushing the box to the left (robot’s
perspective).

that the robot could learn to create new sequences by reusing DMPs from the demonstrated task. The
experiments also showed that the robot could use the model of the phases to determine the effects of
applying the motor primitives in each of the phases. Even though the task DMPs were originally not given
as part of a sequence, in both of the tasks, the robot transitioned to a suitable phase before executing the
correct task primitive. The robot even used the motor primitive that moves both hands left in order to
achieve a one-handed push. The sequences of motor primitives were fairly consistent within each task.
As a future step, the robot could learn to optimize the DMPs for these task sequences [124, 125, 126] .

The results of the experiment demonstrated that the proposed value function approach is suitable for
creating medium-length sequences of DMPs. The high-level controller takes into account the current
state, as well as the future actions.

5.6 Conclusion

In this chapter, we presented a non-parametric approach to computing value functions for continuous
state-spaces. The proposed method is based on modeling the system using a kernel density estimate
with a factorized kernel. We then showed that the value function for this type of system has the form
of a Nadaraya-Watson kernel regression, and we explained how the parameters can be computed. We
also explained how different modeling assumptions give rise to other common methods for computing
value functions, such as least-squares temporal difference learning and kernelized temporal difference
learning.

The proposed NPDP method was used to learn high-level policies for sequencing motor primitives.
The learning process was based on the library of motor primitives and the multi-phase model presented
in Chapter 4. The robot learned to perform a bimanual grasping task using the proposed approach.
The robot learned selected motor primitives such that the object would be moved towards the center of
the table. The robot also learned to perform a pushing task by reusing the motor primitives from the
previous task. The sequencing of motor primitives was therefore not limited to those observed in the
human demonstrations.

5.7 Potentially Helpful Insights

The main motivation for the non-parametric dynamic programming project was to obtain insights into
continuous value function features and how they can be constructed. These features could then be used

78

for learning to select motor primitive actions. We achieved our goal by determining the form of the value
function for a flexible model representation. The key component of our kernel density estimate model
p(s,a, s

0), was the use of a factorized kernel, which resulted in a value function form that is consistent
under the Bellman equation. The factorisation implies that a single term cannot represent correlations
between the state and the next state. This result is generally valid for mixture models that exhibit this
form of factorisation. These insights could therefore also be used to construct features for other methods,
such as LSTD, if one assumes this form of factorization.

The NPDP approach is well-suited for sequencing actions that funnel the states into specific regions.
Motor primitive actions generally fit the NPDP assumption if the goal is defined as a fixed point. Trig-
gering a motor primitive will usually result in the robot ending up near the goal state, with only a minor
correlation between the starting state and the final state. The initial and final states become more cor-
related if the goal state changes with the position of another object, or a collision would occur when
executing the motor primitive from certain start states. These correlations are captured by using multi-
ple samples to the model the system, and hence adding more features to the value function. The number
of features needed to represent the value function therefore generally depends on how the state space
is defined. For example, when reaching for an object placed at different locations on a table, it is more
efficient to define the state of the hand relative to the object rather than the world frame. From an
object-relative perspective, grasping would result in a large region of initial hand poses being funnelled
into a small region near the desired grasp.

In the robot experiments, we investigated using NPDP to learn a high-level policy for selecting motor
primitives. However, value functions could also be used to optimize continuous action parameters. For
example, the robot could compute a value function for different grasps based on the sequence f actions
it intends to perform with the object. The value function would thus compactly represent the robot’s
future intentions for selecting a grasp. In this manner, the robot can learn to optimize the continuous
parameters of manipulation sequences.

79

6 Learning Surface Properties from
Dynamic Tactile Sensing

Dynamic tactile sensing is a fundamental ability for recognizing materials and objects. However, while
humans are born with partially developed dynamic tactile sensing and quickly master this skill, today’s
robots remain in their infancy. The development of such a sense requires not only better sensors, but also
the right algorithms to deal with these sensors’ data. For example, when classifying a material based on
touch, the data is noisy, high-dimensional and contains irrelevant signals as well as essential ones. Few
classification methods from machine learning can deal with such problems.

In this chapter, we propose an efficient approach to inferring suitable lower-dimensional representa-
tions of the tactile data. In order to classify materials based on only the sense of touch, these represen-
tations are autonomously discovered using visual information of the surfaces during training. However,
accurately pairing vision and tactile samples in real robot applications is a difficult problem. The pro-
posed approach therefore works with weak pairings between the modalities. Experiments show that
the resulting approach is robust and yields significantly higher classification performance based on only
dynamic tactile sensing.

6.1 Learning Dynamic Tactile Sensing with Robust Vision-based Training

Figure 6.1: Robot learning about materi-
als by stroking and visually in-
specting di�erent surfaces

The sense of touch has a fundamental role in most human
manipulation tasks, where it serves a variety of purposes.
A particularly important type of tactile sensing is dynamic
tactile sensing. The impressive abilities of this sense are
straightforward to observe [173]. For example, when a
blind-folded person has an object placed in the palm of their
hand, and they do not move their hand nor the object, it is
very difficult to recognize the object. The size and weight
of the object can be determined, but important properties
such as the object’s material and precise shape cannot. If
one instead slides the object over the skin, one can quickly
determine the object and the material [173]. Developing
this ability for robots offers many future possibilities.

Dynamic tactile sensing relies on the motion between the
skin and the object to induce vibrations and deformations
in the skin, which it then uses to infer object and material
properties [15]. This type of sensing can be used to de-
termine various properties of a surface, including texture,
hardness, roughness, and friction [1, 14]. These proper-
ties can be used for tasks such as object identification and
determining suitable contact points for grasps.

Dynamic tactile sensing also obtains information about
the manipulation task. Vibrations are induced in the fin-
ger when it makes or breaks contact with objects, or when incipient slip occurs [7]. These signals help
coordinate the fingers, and allow humans to finely regulate the contact forces depending on the object’s
surface properties [14]. One can also detect the vibrations created when a held object is in contact with

81

another object. Such signals are crucial for dexterously using tools. Humans can even use rigid objects
as probes to determine the fine texture of surfaces [174].

The sense of touch should however not be seen in complete isolation, but rather as part of a multimodal
system. When recognizing materials and objects, humans often combine touch with vision and even
audition [175, 174]. Several studies have shown that the human brain even employs multi-sensory
models of objects [175]. By using such a shared model, humans can transfer knowledge about an object
from one sensory modality to another [176]. This sharing of information is especially useful when one
sense can not be used. For example, experiments with both vision and touch have shown that humans
rely more on touch when the texture has small details that are difficult to see [174]. Dynamic tactile
sensing can thus be combined with other senses for more accurate information and additional robustness
[17].

Given the various benefits of using tactile information in manipulation tasks, there is a considerable
interest in equipping robots with such capabilities [177, 178, 179]. The need for robust manipulation
skills is especially important for service robots in unstructured environments [180]. A variety of tactile
sensors are required to create a complete tactile sensor suite, as discussed in the review paper of Dahiya
et al. [181]. As one part of tactile sensing, a dynamic tactile sensor usually only mimics the fast afferent
nerves (FA) in human fingers. Human fingers have two types of fast afferent nerves in their fingers,
i.e., FA-I and FA-II. Type I afferents have a well-localized receptive field and are densely spaced on
the skin [182]. Examples of sensors that mimic type I afferents are tactile arrays [179, 183]. Type
II afferents have a larger receptive field, and therefore cannot localize the source of the vibrations as
well. FA-II afferents are used to sense the vibrations in held objects during manipulation tasks, and
are particularly important for tool usage [181]. Due to their large receptive fields, FA-II sensors often
struggle to differentiate between various sources of vibrations. Apart from the contact with the object,
vibrations also come from other sources [184, 178], such as the robot’s own vibrations and deformations
of the skin as the finger flexes.

A crucial ability of FA-II nerves is sensing temporal characteristics, such as those involved in recogniz-
ing a surface by stroking it. In this chapter, we want to reproduce this ability to recognize materials. As a
testbed for our proposed algorithms, we have created a basic sensor that represents a primitive technical
counterpart to an FA-II type mechanoreceptor. The design is based on a microphone with a probe on its
membrane, and was inspired by the work on haptography of Kuchenbecker et al. [185].

The raw time-series data received from the dynamic tactile sensor consists of the detected vibrations.
This signal will usually serve as the input for a classifier with task-specific labels. However, classification
of tactile data is a difficult task, since a time-series needs to be represented as a high-dimensional data
point to capture the details of the signal. Classification in high-dimensional spaces is however prone
to overfitting, due to “the curse of dimensionality” [33]. The overfitting results in the classifier often
performing poorly when applied to new data. This problem can be addressed using dimensionality
reduction approaches which project the data into lower-dimensional feature spaces. The goal is to discard
information that is not relevant, such as noise or redundant information.

As previously discussed, additional sources of vibrations are often present in the signal together with
the desired tactile signal. For good performance, the classifier needs to automatically determine the
relevant parts of the signal. We therefore take a human-inspired approach and transfer knowledge from
the vision modality.

In this chapter, we present approaches for combining vision and tactile information to improve the
performance of dynamic tactile sensors. The focus of this thesis is on service robots that need to perform
assorted tasks. However, the proposed approach is applicable to a wide range of robots with hand-eye
systems. The proposed approach is based on Maximum Covariance Analysis (MCA) [186], which is a
machine learning method for dimensionality reduction using sets of paired data. The MCA method is
described in Section 6.2.2. However, MCA requires perfect pairings between tactile and visual samples,
which is often a problem for robot systems in unstructured environments [187, 188]. We therefore pro-
pose Mean Maximum Covariance Analysis (µMCA) and using Weakly-paired Maximum Covariance Analysis

82

(WMCA) for robotic applications. These methods are more robust and only require weak pairings be-
tween the modalities. After learning, the tactile sensor can be used independently of the vision system,
while retaining its improved performance. Thus, the resulting system can be used even when conditions
are not suitable for visual inspection, e.g., dim lighting, occluded surfaces, perspective distortion, and
even damaged cameras.

Our initial work and evaluations of the WMCA algorithm were presented in [189]. The novel contri-
butions of this chapter include the µMCA method and a more robust implementation of WMCA based on
concepts from deterministic annealing [190]. These methods are presented in Section 6.3 and compared
through a series of benchmarking experiments in Section 6.4. The experiments show that the proposed
methods are robust and allow the robot to accurately discriminate between materials by only stroking
them.

6.2 Formalization in a Multimodal Dimensionality Reduction Setting

In this section, we formulate the problem in a machine learning framework (Section 6.2.1) and give a
brief review of multimodal dimensionality reduction methods (Section 6.2.2).

6.2.1 Problem Statement

Our goal is to have a robot accurately discriminate between different surfaces by only stroking them.
We initially allow the robot to learn about textures by both stroking and visually inspecting them. The
robot should subsequently transfer the additional visual information to improve its knowledge of tactile
sensing. As a result, the tactile sensor’s independent performance should also improve.

We now repose the problem in a general machine learning framework. The problem involves reducing
the dimensionality of a sensor’s data such that the relevant tactile information is retained. Not all
dimensionality reduction methods are suitable for our robot application. We must therefore first select
an appropriate type of method.

Dimensionality reduction algorithms are either inductive or non-inductive. Inductive methods create
a function f that can map the data X onto a lower dimensional representation ˆ

X. Inductive methods
include PCA [191], kernelPCA [192] and autoencoder networks [193]. Non-inductive methods, such as
probabilistic latent semantic analysis (pLSA) [194], and Isomap [195], also compute a lower-dimensional
representation ˆX from X , but do not provide a mapping function f .

Robots continue to collect more data as they explore their, often changing, environments. The mapping
function f of inductive methods can be used to reduce the dimensionality of the sensor’s data as it is
received. We therefore require an inductive method.

Definition 1 (Inductive Dimensionality Reduction) Let X = (x
1

, . . . ,xn) ⇢ Rd⇥n
be a set of data vec-

tors. Inductive dimensionality reduction procedures take the input X, and output a functional mapping

f : Rd ! Rq
with q < d. The lower dimensional representation of X is given by

ˆ

X = (ˆx
1

, . . . , ˆxn), i.e.,

ˆxi = f (xi).

We can further divide inductive dimensionality reduction techniques into discriminative and genera-
tive methods. Discriminative techniques, such as linear discriminant analysis (LDA) [196] and canonical
correlation analysis (CCA) [197, 198], identify lower-dimensional representations that are suitable for
one specific task, e.g. classification into a predefined set of classes. These techniques discard all informa-
tion that is irrelevant for this particular task. While the new representations ˆ

X are very good for this task,
they tend to be unsuitable for other tasks. In contrast, generative dimensionality reduction techniques
find lower-dimensional data representations that are suited for various subsequent tasks. Intuitively,
generative dimensionality reduction techniques are a form of lossy data compression methods.

Service robots will face a large range of tasks, which makes it difficult to predefine a set of suitable
labels. The robots will also encounter new objects and materials as they explore their unstructured

83

environments. If the robot discards information based only on its current set of labels, it may discard
information pertinent to new materials and objects. We therefore focus on generative methods.

Having decided on using generative inductive methods, we must determine how to transfer the visual
information into the tactile domain. The key to combining visual and tactile information is that both
contain spatial data, such as texture, about objects and materials [175]. The senses of vision and touch
are otherwise very distinct, and thus the additional sources of vibrations and noise in the tactile modality
will be excluded from the visual data. We can therefore use the visual information to determine which
parts of the tactile signal are relevant to the textured surface.

Audio signals can also be used to distinguish between textured surfaces [174]. Therefore, an alterna-
tive approach would be to combine the tactile sensing with hearing. However, a robot’s audio sensors
may also detect other vibrations, such as those from the robot’s motors. These vibrations would then be
present in both sensing modalities, and would therefore be incorrectly regarded as relevant for tactile
sensing. To avoid this error, we use vision as our second sensor modality.

In order to automatically extract the relevant information from the vision data, we make use of mul-
timodal dimensionality reduction. The general goal of multimodal dimensionality reduction is to com-
pute new representations of the high-dimensional data samples that lie in lower-dimensional feature
spaces. In comparison to unimodal dimensionality reduction, we expect the availability of multiple data
representations to give a better indication of the relevant parts of the signal, and which parts can be
suppressed. We formalize this concept in the following definition.

Definition 2 (Multimodal Dimensionality Reduction) Let X

1 = (x1

1

, . . . ,x

1

n1

) ⇢ Rd1⇥n1

, . . . ,X

m =
(xm

1

, . . . ,x

m
nm) ⇢ Rdm⇥nm

be m different data sets from potentially different spaces. Inductive dimen-

sionality reduction techniques are multimodal if they take inputs X

1

, . . . ,X

m
, and output functions

f
1

: Rd1 ! Rq
, . . . , fm : Rdm ! Rq

for all data domains.

Each of the m different modalities must have its own independent mapping function f based only on
the modality’s own data. This part of the definition is crucial, as it will allow the tactile sensor to be
used on its own. Thus, if the robot is in a dark room or cannot position the object to allow for visual
inspection, the robot can still use the transferred visual information for improved tactile sensing.

The canonical way to construct multimodal algorithms is to use the dependencies between paired
samples. Two samples are strongly paired if their sensors acquired them from the same source. For
example, consider a tactile sensor moving a short distance across a textured surface. The tactile reading
acquired during this motion would be strongly paired with an image of the surface area swept by the
tactile sensor. Acquiring perfectly paired samples across modalities is often problematic in practice,
especially in unstructured environments. Any inaccuracies in moving the object or the cameras for visual
inspection will result in incorrect pairings. The different sensors may also have different numbers of
samples that need to be paired. For example, while cameras can quickly acquire data from large surface
areas, tactile sensors obtain information from their relatively small contact region with the surface. We
therefore only assume weakly-paired data [189].

Definition 3 (Weakly-Paired Multimodal Data) A collection of data sets X

1

, . . . ,X

m
is weakly paired,

if each X

i
is split into g groups as

X

i = (Xi
1

, . . . ,X

i
g) 2 Rdi⇥ni

,

where each group of samples is given by

X

i
h = (x

i
h,1

, . . . ,x

i
h,ni

h
) 2 Rdi⇥ni

h
,

with ni =
Pg

l=1

ni
l . When ni

l = 1 for all i = 1, . . . , m and l = 1, . . . , g the data sets are fully paired with

strong pairings. When g = 1, all samples are weakly paired together, which means that they are all

unpaired.

84

A weak pairing implies that a group of samples from one modality is paired to a group of samples
in another modality. While strong pairings require samples to be obtained from the same source, weak
pairings only require the samples to be acquired from similar sources. Hence, the robot can acquire
samples from various regions of a textured surface and group these together. Alternatively, a robot
could weakly pair one tactile sensor reading to multiple images of the nearby surface. In both of these
examples, the samples can subsequently be used to infer suitable strongly-paired data. Ultimately, the
condition of weakly-paired data is a relaxation of the standard fully-paired requirement, and is therefore
easier for robots to fulfil.

The samples used for learning the dimensionality reductions should be acquired under conditions
suitable for both visual inspection as well as tactile sensing. The conditions for visual inspection can be
ignored only after the mapping functions have been learned.

Although our focus is on combining visual and tactile information, the described problem framework
is quite common in robotics. The algorithms described in this chapter were therefore designed to work
with weak pairings between a variety of sensors. However, different mapping functions are obtained for
a sensor when it is combined with different types of sensors. The features regarded as relevant are those
that both sensors observe of the source, and any features found only in one of the modalities will usually
be suppressed.

6.2.2 Introduction to Multimodal Dimensionality Reduction

This section gives a brief review of linear multimodal dimensionality reduction methods, including MCA.
To simplify the notation, we restrict the discussion to two sensor modalities, i.e., X 2 Rd⇥n and X

0 2
Rd0⇥n0 .

Linear dimensionality reduction functions can be written as f (x) =W

T
x for a matrix W 2 Rd⇥q, and

f 0(x0) =W

0T
x

0 for a matrix W

0 2 Rd0⇥q. The lower dimensional representations are thus ˆ

X =W

T
X and

ˆ

X

0 =W

0T
X

0. The orthogonal matrices W and W

0 contain the basis vectors of the q-dimensional subspaces.
A popular generative dimensionality reduction technique is principal component analysis (PCA). PCA

finds a lower-dimensional representation that retains as much of the original signal’s variance as possible.
Given that other sources of vibrations may also have large variances, PCA is not a suitable approach for
our purposes. The multimodal counterpart to PCA is maximum covariance analysis (MCA) [186].

MCA assumes that the data is fully paired, i.e., for every sample in X there is exactly one strongly
paired sample in X

0. The data sets X and X

0 are centered by subtracting their means from all of their
samples. MCA then optimizes the objective function max

W,W

0 tr
⇥
W

T
XX

0T
W

0⇤, where tr[.] is the standard
matrix trace operator, to determine suitable projection matrices W and W

0. The objective function can
be rewritten with tr

⇥
W

T
XX

0T
W

0⇤ =
Pq

p=1

⇥
W

T
X

⇤T
p

⇥
W

0T
X

0⇤
p, where the operator [.]p extracts the pth

column of the matrix, and q n. Thus MCA maximizes the covariances between the low dimensional
representations ˆ

X and ˆ

X

0
. The standard MCA method requires strong one-to-one pairings between the

modalities, and therefore n= n0. An implementation of MCA is given in Algorithm 3 .
MCA comes from the same family of standard statistical methods as PCA, LDA, and CCA. It also forms

the basis for partial least squares (PLS) regression [199]. The PCA, LDA, CCA, and PLS techniques have
all been kernelized into nonlinear versions [200, 201, 192]. The methods presented in this section can
also be kernelized (Section 6.3.3). Kernel canonical correlation analysis (kernelCCA) [202] is amongst the
most common methods for multimodal dimensionality reduction, but it is not generative. Furthermore,
kernelCCA requires the tuning of a regularization parameter for each modality. Alternative approaches
include multimodal pLSA [203] and Hilbert-Schmidt dependence maximization [204], but these require
more careful experimental setups and are computationally more demanding. In contrast, the classical
methods, and our proposed methods, can be implemented with standard matrix operations.

Even though MCA is a strong method for multimodal dimensionality reduction, robots in unstructured
scenarios often cannot provide the required fully-paired data. In the following section, we show how to
overcome this limitation, and make use of weakly-paired data.

85

Algorithm 3 Maximum Covariance Analysis (MCA)
INPUT:

Data covariance matrix XX

0T 2 Rd⇥d0

Desired output dimensionality q
COMPUTE MAPPINGS:

Compute Singular Value Decomposition of ¯

X

¯

X

0T

USV

T = svd(¯X¯

X

0T) where U 2 Rd⇥d , V 2 Rd0⇥d0

Find q largest elements in S 2 Rd⇥d0

Set W to corresponding q columns of U

Set W

0 to corresponding q columns of V

OUTPUT:
Projection matrices W and W

0

6.3 Maximum Covariance Analysis Algorithms for Multiple Robot Sensor Modalities

In this section, we explain µMCA and WMCA for robot applications. These methods incorporate vision
information to create an improved representation of the tactile data. Sensor fusion is another process
that combines data from multiple sensors to improve performance and the accuracy of measurements
[16, 17]. The data from sensors can be combined directly using data fusion, or classified separately and
then combined with classifier fusion [18]. These approaches rely on always having access to both sensor
modalities, while the methods proposed in this section only require both modalities during the learning
phase. After learning with the proposed methods, the sensors can be used independently. Hence, tactile
sensing performance is improved even when the conditions are unsuitable for visual inspection, or when
the camera is currently allocated to performing another task. A fundamental problem of combining
tactile and vision data is self-occlusion; i.e., the hand used for tactile sensing blocks visual inspection.
The proposed methods are well-suited for such situations.

Self-supervised learning is another framework that only requires both sensor modalities during the
learning phase. In self-supervised learning, the robot uses one modality to generate the labels for the
classification problem of another sensor modality [205, 206]. A large amount of information from the
supervising modality is lost during these procedures, as the data is reduced to a single value. The
methods proposed in this section use the entire signal of both sensors to improve the classification
performance. In this manner, the proposed methods can share information between different materials
at the level of individual features.

Self-supervised methods are sensitive to errors in the pairings between modalities [187, 188]. The
µMCA and WMCA methods overcome this problem by automatically inferring strong pairings from the
weakly-paired groups. The lower dimensional representations found by self-supervised methods are
usually only suited for the task they were trained on [205].

In the remainder of this section, we present the proposed µMCA (Section 6.3.1) and a robust imple-
mentation of WMCA (Section 6.3.2) for robotic applications, as well as extensions to nonlinear problems
(Section 6.3.3) and multiple sensor modalities (Section 6.3.4). We present straightforward algorithms
for both µMCA and WMCA to guide the reader through using these methods. These algorithms can be
implemented with standard matrix toolboxes.

6.3.1 Mean Maximum Covariance Analysis (µMCA)

When using different types of sensors, it is common to obtain different numbers of samples from them.
For example, vision sensors can easily obtain information about large parts of a surface, while tactile
sensors are limited to the regions they make contact with. Thus, there will usually be many visual

86

Algorithm 4 Mean Maximum Covariance Analysis (µMCA)
INPUT:

Weakly-paired data from sensors one X and two X

0
X has nh samples xh,1...nh

in group h= 1 . . . g
X

0 has n0h samples x

0
h,1...n0h

in group h= 1 . . . g

Desired output dimensionality q min({g, d, d 0})
INITIALIZATION:

¯

X = (¯x
1

, . . . , ¯xg) ⇢ Rd⇥g with means ¯x

1...g = 0

¯

X

0 = (¯x0
1

, . . . , ¯x

0
g) ⇢ Rd0⇥g with means ¯x

0
1...g = 0

COMPUTE MAPPINGS:
for h= 1 to g

for i = 1 to nh
Update ¯xh) ¯xh + (xh,i � ¯xh)(i + 1)�1

for i = 1 to n0h
Update ¯x

0
h) ¯x

0
h + (x

0
h,i � ¯x

0
h)(i + 1)�1

Obtain W and W

0 from MCA(¯X¯

X

0T
,q)

OUTPUT:
Projection matrices W and W

0

samples weakly-paired to a few tactile samples. Rather than selecting a single visual sample for each
tactile sample, µMCA combines the information from all of these samples.

The µMCA method assumes that each of the g groups, as specified in Definition 3, represents a series
of observations of the same surface. The variations within each group can then be modeled as a standard
Gaussian model, i.e., xi, j ⇠ N(¯xi, (�i)2) and x

0
i, j ⇠ N(¯x0i, (�0i)2). The mean values ¯xi 2 Rd and ¯x

0
i 2 Rd0

are thus suitable representations of the ith surface group, and can be strongly paired together.
Service robots should generally be autonomous and automatically gather the information they re-

quire. We therefore assume that additional prior information is not available. Given a set of collected
samples, the robot should fit a model of the surface that best represents this data. We therefore propose
a maximum likelihood estimation to determine the values of ¯xi and ¯x

0
i that best represent the collected

samples.
Given the centered and weakly-paired data X and X

0, the µMCA method solves

max

W,W

0 tr
⇥
W

T
¯

X

¯

X

0T
W

0⇤
, (6.1)

where ¯

X = (¯x
1

, . . . , ¯xg) ⇢ Rd⇥g with group means ¯xh = (nh)�1

Pnh
j=1

xh, j, and ¯

X

0 = (¯x0
1

, . . . , ¯x

0
g) ⇢ Rd0⇥g

with group means ¯x

0
h = (n

0
h)
�1

Pn0h
j=1

x

0
i, j. This problem can be solved using the µMCA algorithm shown

in Algorithm 4 . When q is small, the singular value decomposition can be efficiently computed using
techniques based on random projections [207]. Intuitively, µMCA uses the groups of samples to estimate
archetypes that are more representative of the surface than any one sample. Since the rank of the ˜

X

˜

X

0T
matrix is limited by the number of groups g, the output dimensionality is limited to q g. The µMCA
algorithm has a computational complexity of O (g3).

The sequential updates of the group means in Algorithm 4 allows new data to be easily incorporated.
Hence, the memory requirements of µMCA depend on the number of groups and not the number of
samples. The µMCA approach is therefore suitable for large amounts of data.

87

Algorithm 5 Weakly-Paired Maximum Covariance Analysis (WMCA) with annealing
INPUT:

Weakly-paired data from sensors one X and two X

0
Desired output dimensionality q min({n, n0, d, d 0})

INITIALIZATION:
⌘= 1

ˆ⇧= diag(ˆ⇧1

, . . . ,

ˆ⇧
g) and ⇧! ˆ⇧ wherein

[ˆ⇧h]i, j =min(nh, n0h)�18i = 1, . . . , nh, j = 1, . . . , n0h
ANNEALING WMCA:

while ⌘ � 0

Run Alternating Maximization
Reduce ⌘

ALTERNATING MAXIMIZATION:
while trace value of W

t
X⇧X

0t
W

0 increases
Step 1) Maximize with respect to W and W

0:
Obtain W and W

0 from MCA(X⇧X

0T
,q)

Step 2) Maximize with respect to ⇧:
Set all elements of ⇧ to zero
for h= 1 to g

Compute the cost matrix C= [X0th W

0
W

t
Xh]t

Solve linear assignment problem for C

Set elements of ⇧ to 1 for assigned pairings
Anneal) Relax pairings:
⇧! ⌘ˆ⇧+ (1�⌘)⇧

OUTPUT:
Projection matrices W and W

0

6.3.2 Weakly-Paired Maximum Covariance Analysis (WMCA)

While µMCA combined samples into more informative representations, WMCA’s approach is to infer
strong pairings between individual samples in a weakly-paired group. Inferring strong pairings is done
by including a n ⇥ n0 pairing matrix ⇧. The elements of the pairing matrix are either one or zero
⇧ 2 {0,1}n⇥n0 . A one in the ith row and the jth column implies a pairing between the ith sample of
the first modality and the jth sample of the second modality. Each sample is only paired to at most one
sample in the other modality, i.e.,

Pn
i=1

⇧i, j 1 for all j = 1, . . . , n0 and
Pn0

j=1

⇧i, j 1 for all i = 1, . . . , n.
Assuming that the samples are ordered according to their weakly-paired groups, the pairing matrix will
have a block diagonal structure ⇧ = diag(⇧1

, . . . ,⇧g). This structure ensures that samples are only
paired within their own group.

Given the described pairing matrix, WMCA optimizes

max

W,W

0
,⇧ tr

⇥
W

T
X⇧X

0T
W

0⇤
, (6.2)

to determine projection matrices W and W

0, where the trace operator tr[.] sums the diagonal elements
of the matrix. The optimization of (6.2) requires both continuous optimization for W and W

0, and
combinatoric optimization for ⇧. There is therefore no single closed form solution to this optimization.
Furthermore, it is a high-dimensional non-convex problem, such that finding the global optimum with
a numeric procedure is usually impossible. We can, however, efficiently find a locally optimal solution
by alternating maximization, as shown in Algorithm 5. Step one can be efficiently solved using the same
singular value decomposition methods used for µMCA. To efficiently solve the linear assignment problem

88

Algorithm 6 Example method for applying learned mappings to process new tactile data
Input:

Tactile sensor data Y

Labels L of training data OR the number of clusters c
Learning:

Determine W with WMCA or µMCA
Processing:

Project Y using ˆ

Y =W

t
Y

If labels L are given, supervised learning:
Sort ˆ

Y with labels into ˆ

Yt rain, and rest into ˆ

Ytest
Train Nearest Neighbor classifier with L and ˆ

Yt rain
Apply classifier to ˆ

Ytest
Else, unsupervised learning:

apply k-means clustering with c clusters
Output:

Labels for ˆ

Ytest OR cluster assignments for ˆ

Y

in step two, we suggest using the Hungarian algorithm [208] or LAPJV [209]. In this manner, we can
apply WMCA to data with thousands of dimensions. The computational complexity of WMCA is given by
O (min({nn02, n2n0})).

In both steps of the algorithm, we maximize the same objective function, which will thus increase
monotonically with the number of iterations. Given that the objective function has an upper bound,
the algorithm is guaranteed to converge to a local maximum. Unfortunately, the objective function will
often have multiple local maxima. Hence, WMCA may converge to a local maximum with a relatively
low covariance. In order to avoid many local maxima of poor quality, we propose incorporating concepts
from deterministic annealing [190].

The annealing process for WMCA is shown in Algorithm 5. The annealing introduces the mean pairing
matrix ˆ⇧, which pairs together the groups’ means. The pairing matrix⇧ is a mix between the assignments
found in step two and this mean pairing matrix ˆ⇧. The mixing is controlled by parameter ⌘, which is
initially set to one and monotonically decreases to zero.

Intuitively, a larger value for the parameter ⌘makes the data points within each group more correlated.
When ⌘ = 1, all of the data points are effectively equal to their respective group’s mean. Applying the
alternating maximization results in the globally optimal W and W

0 when ⌘ = 1. The manner in which ⌘
decreases is known as the cooling schedule. The additional local maxima gradually emerge as ⌘ decreases.
Since the results of each maximization are used to initialize the next one, the alternating maximization
continuous to track the best local maximum as ⌘ decreases. When ⌘ = 0, the true objective function
is recovered. The annealing does not guarantee that the global maximum is recovered. However, the
annealing process is a systematic and efficient approach to avoiding many poor local maxima.

The idea of treating unknown correspondences as latent variables and optimizing over them has been
used in previous applications, including the classical k-means [210] algorithm and the optimization in
[204]. However, in both of these cases the assignments are between sample and clusters, not between
samples in different data modalities.

Given the projection matrices W and W

0 from either µMCA or WMCA, we apply them to new tactile
data, as suggested in Algorithm 6.

6.3.3 Kernelization for Nonlinear Problems

Nonlinear dimensionality reduction techniques are often more powerful than linear ones, as they can
create more diverse dimensionality reduction functions. µMCA and WMCA can be made into nonlinear

89

techniques by kernelization, and thus applied to problems in robotics that cannot be solved using linear
representations. As the necessary steps are very similar to those for deriving kernelPCA [192] from PCA,
we only outline them here. We refer the reader to [98] for a more detailed description of kernelization.

For kernelization, we require positive definite and symmetric similarity measures between samples,
called kernel functions, that we denote by k : Rd ⇥ Rd ! R and k0 : Rd0 ⇥ Rd0 ! R. Any such kernel
function corresponds to an inner product in a latent Hilbert space, and induces a latent feature map from
the original data domain to this space [98]. The kernelized methods thus consist of mapping the input
data into the latent Hilbert spaces and performing the corresponding linear method on the resulting data
sets.

For example, the kernelized form of (6.2) becomes

max

A,A

0
,⇧ tr

⇥
A

¯

K⇧¯

K

0
A

0T⇤
, (6.3)

where ¯

K and ¯

K

0 are the centered kernel matrices. ¯

K is computed by forming the kernel matrix K 2 Rn⇥n

as [K]i j = k(xi,x j) and then centering it using the formula ¯

K = K � 1

n1nK � 1

nK1n +
1

n2

1nK1n, where 1n

denotes the n ⇥ n matrix in which all elements are 1. ¯

K

0 is computed from kernel k0 in the analogous
way. Centering the kernels ensures that the implicitly defined feature vectors have zero mean in the
latent feature space. One can solve (6.3) with an alternating optimization similar to the one described
in Section 6.3.2. In contrast to W,W

0, the matrices A 2 Rn⇥q and A

0 2 Rn0⇥q are not orthogonal matrices,
but are orthogonal in the latent feature space, i.e., A

T
KA = I and A

0T
K

0
A

0 = I, where I is the identity
matrix of size q⇥ q. We obtain the rows of A and A

0 from a generalized eigenvalue problem:Å
0 K⇧K

0
K

0⇧t
K 0

ãÅ
a

a

0
ã
= �

Å
K 0

0 K

0
ãÅ

a

a

0
ã

. (6.4)

Equation (6.4) can be efficiently solved for q eigenvectors using the power method [211]. Ultimately, the
kernelized methods provide reduction functions f : Rd ! Rq and f 0 : Rd0 ! Rq by setting f (x) = A

T
K(x)

with K(x) = (k(x,x

1

), . . . , k(x,xn))T and f 0(x0) = A

0T
K

0(x0) with K

0(x0) = (k0(x0,x0
1

), . . . , k0(x0,xn0))T .
Kernelization usually requires more computation time, but can also reduce them in certain situations.

When solving for A and A

0, the matrix K⇧K is of size n ⇥ n0 instead of d ⇥ d 0. Thus, if the number
of samples is less than the input dimensionalities, the computation is faster in the kernelized form. To
perform the optimization, one uses linear kernels k(x, ˜x) = x

T
˜x and k0(x0, ˜x

0) = x

0T
˜x

0 and obtains the
linear solutions as W = A

T
X and W

0 = A

0T
X

0.

6.3.4 Incorporating Additional Sensor Modalities

To keep the notation simple, we have been describing µMCA and WMCA for only two sensor modalities.
An extension to more than two data sources is straightforward by reformulating the objective function
as the sum of all pairwise covariances between the modalities. The linear µMCA objective function thus
becomes

max

W

1

,...,W

m
tr

⇥ mX

i, j=1

W

i
¯

X

iT
¯

X

j
W

jT
⇤
,

which can be solved as an eigenvalue problem. For WMCA, (6.2) becomes

max

W

1

,...,W

m

⇧1,2

,...,⇧m�1,m

tr

⇥ mX

i, j=1

W

i
X

iT⇧i, j
X

j
W

jT
⇤
,

with the convention that ⇧i,i = 0 and ⇧i, j = ⇧ j,iT . The WMCA problem can again be solved by an alter-
nating maximization approach. The step of finding the projection directions is solvable as an eigenvalue
problem. Finding the sample pairings requires solving 0.5m(m � 1) linear assignment problems. The
quadratic scaling in the number of modalities m does not pose a practical problem. Unless the sensor
suite is highly redundant, usually only a few sensor modalities will produce related samples. Using
multiple modalities to supervise one sensor also suffers from diminishing returns.

90

Afferent
Nerve

TEXTURED
SURFACE

Pacinian
Corpuscl

Vibrations

Ridges

SKIN

A. Tactile Sensor B. Human FA-II

Figure 6.2: A) The robot’s tactile sensor. B) Diagram of how type II fast a�erent nerves obtain tactile
information (based on [15]). Both the sensor’s pin and the human skin are compliant and
move along the surfaces. When making and breaking contact with the surface, vibrations are
created at the human’s epidermal ridges and the tip of the sensor’s pin. These vibrations are
transferred through the skin and the pin respectively. When the vibrations reach the pacinian
corpuscle, this mechanoreceptor transfers the signal to the human nervous system. Similarly,
when the pin’s vibrations reach the microphone’s membrane, the microphone transfers the
signal to the robot.

6.4 Robot Experiments with Dynamic Touch and Vision

Three experiments were performed to show that the µMCA and WMCA methods are useful for learning
dynamic tactile sensing. The first experiment tests the robot’s performance on the supervised classifi-
cation and the unsupervised clustering of tactile data. The second experiment evaluates the system’s
ability to generalize between materials, and involves classifying materials that it had not encountered
during the learning phase. The final experiment investigates the robustness to incorrectly paired data.
In all of these experiments, we assume that both tactile and visual information is available for learning
the dimensionality reduction, but only the tactile sensor is available during the testing stage.

6.4.1 Tactile Sensor and Surface Materials

In order to explore various textured surfaces, we equipped a Mitsubishi PA-10 robotic arm with a single
basic tactile sensor. The experimental setup is shown in Fig. 6.1. The aim of the experiments is to
test the data processing procedure. We therefore used a straightforward oscillator-based design for the
sensor. The dynamic tactile sensor consists of a compliant pin that makes contact with the surface, and
a capacitor microphone that can detect the pin’s vibrations at 44.1 kHz. Mechanisms in the human
finger tip resemble this structure, as shown in Fig. 6.2 . In particular, the sensor acts similar to an
FA-II afferent, and the pin can be seen as either a part of the finger or as an object held by the robot.
Given the compliance of the plastic pin, the location of the contact point with the surface could not be
precisely determined. This sensor design is similar to other dynamic tactile sensors, such as the “whisker”
sensor [212, 213]. The resulting apparatus is a suitable platform for testing the proposed WMCA and
µMCA algorithms and showing that they can be applied to dynamic tactile sensors. Given that humans
can discriminate between textures by probing them with a stylus [174], a single dynamic tactile sensor
should be sufficient to perform the task.

The experiments were run on a set of 26 surfaces of 17 different materials. A common trait of these
surfaces is that they have rich multi-scale textures. For example, a mosaic has the coarse texture set by
the placement of the tiles, as well as the fine texture created by the surface of the tiles and cement (see

91

Vi
si

on
:

Ta
ct

ile
:

Figure 6.3: Examples of the multimodal data. The top images show the vision data while the bottom
images show the corresponding time series of the tactile sensor signals. The x -axes of the
tactile sensor plots represent time, while the y -axes represent the signal’s magnitude. The
samples for the plots were recorded over a four second time span.

Fig. 6.3). The data set includes materials that are similar and thus difficult to discriminate, as well as
materials that are distinct and thus hard to generalize between.

The robot acquired samples by sliding the tactile sensor in a straight line across the surfaces. In
this manner, each textured surface was probed in five different regions. The robot used similar task-
space movements for each region. If very different movements had been used, the data would require
additional preprocessing to compensate for the different velocity profiles. Experiments have shown that
humans also need to take into account the relative velocity between the finger and surface to accurately
discriminate between textured surfaces [214]. After the robot had explored a surface with the tactile
sensor, the object was repositioned 20 cm in front of the robot’s camera for visual inspection. Four
pictures were taken of each surface with different in-plane-rotations. The resulting grayscale images
have resolutions of 512⇥ 768, as shown in Fig. 6.3. The pictures were taken in a well lit room.

6.4.2 Tactile and Visual Features

The information from both the tactile sensor and the camera were preprocessed to obtain suitable feature
spaces. The robot probed five different surface regions from each of the 26 surfaces, resulting in 130
time series of tactile data. Textures are characterized by repeated local features. We therefore propose
using a bag-of-features model [215, 216], which represents each region by a normalized histogram of
local features. Local features are found by dividing each time series into 450 segments of 50ms, with
12.5ms overlaps between segments. In order to make the local features invariant to changes in phase
and amplitude, each time segment was centered and its cepstrum was computed. The power cepstrum
of a signal z is given by C(z) = |F(log(|F(z)|2))|2, where the function F is the Fourier transform, and
describes the harmonic structure of the signal. It is often used to discriminate between different sources
of acoustic signals [217]. Intuitively, the cepstrum represents the differences in the sound made by a
brass and a string instrument playing the same note. In order to generate the desired histograms, we
need to partition the cepstrum space. Hence, we partition the cepstrums into 1000 groups using k-means
clustering. By using 1000 clusters, we ensure that the resulting feature vectors are sparse. Each of the
n= 130 probed regions in X is thus represented as a normalized histogram of d = 1000 partitions, which
indicate the relative occurrences of local cepstrum features.

92

Figure 6.4: The 58 vision filters used to represent the textured images. Each 3⇥3 box represents a uniform
binary pattern. The grey middle pixel defines the threshold value of the patch. A black pixel
indicates that it is darker than the threshold, while a white pixel indicates that it is lighter or
identical.

The vision data was obtained by segmenting each of the 104 images into 32 equally-spaced strips. Each
strip is three pixels wide. Similar to the regions probed by the tactile sensor, each strip is represented
using a bag-of-features model. Along each strip, we compute local binary patterns over 3⇥3 pixel regions
using uniform patterns, as suggested by Ojala et al. [218]. These 58 local features, shown in Fig. 6.4 ,
are invariant to shifts in grayscale and rotations. Each of the n0 = 3328 strips in X

0 is thus represented
by a normalized histogram of d 0 = 58 partitions, which indicate the relative frequency of the local binary
patterns.

The vision and tactile histograms can thus each be represented as 58 and 1000 dimensional vectors
respectively. For both the image and tactile data, the feature dimensions were normalized to have zero
mean and unit variance. This normalization step reduces the artifacts caused by having some histogram
partitions being more populated than others.

6.4.3 Testing Performance, Ability to Generalize, and Robustness

Three experiments were run to compare the proposed µMCA and WMCA algorithms. The experiments’
tasks were also performed with the standard PCA approach as well as the naive approach of not using any
dimensionality reduction. The PCA method gives a baseline for using dimensionality reduction without
the multi-modal data. The WMCA method used a ten step cooling schedule to reduce ⌘ from one to
zero. The dimensionality reduction methods’ only hyperparameter is the number of output dimensions
q. The experiments were repeated for each output dimensionality in the range 1 to 55.

Each experiment consists of a learning phase and a testing phase. The learning phase corresponds to
a robot exploring different object surfaces in a setting that allows for both visual and tactile inspection.
The robot subsequently learns a mapping matrix W using one of the dimensionality reduction methods.
The set of data used during the learning phase is known as the learning set.

The testing phase corresponds to a robot sorting different materials using only data from the tactile
sensor. Visual inspection is not possible during the testing phase. The classification and clustering of the
surfaces is performed, as described in Fig. 6, with the mappings W from the learning phase. The set of
data used during the testing phase is known as the testing set. The classification tasks were evaluated
using a leave-one-out scheme, i.e., we removed a data vector xi from the testing set, trained a classifier
on the remaining data, classified the removed vector xi, and then reinserted the data vector into the
testing set. We repeated this procedure for each data vector in the testing set. The leave-one-out scheme
makes efficient use of all of the available data for the evaluation. The labels used for classification are
defined as the material from which the data was obtained.

93

Figure 6.5: An illustration of the three experimental setups. The top row shows how the data was struc-
tured for the learning phase. Each small square represents the data from one surface region,
and adjoining squares are grouped together. The shading of the squares indicates the ma-
terials that the sample was obtained from. The arrows indicate groups of samples that are
weakly paired together between tactile and vision modalities. The bottom row indicates the
materials that the learned system was tested on. Each square represents a type of material
tested in the classification and clustering tasks. Testing data is limited to tactile data and,
therefore, does not contain any groups or weak pairings. This figure does not show the true
number of samples and materials used in the experiments.

The materials and groupings used to generate the learning and testing sets were altered for each of
the three experiments in order to test different aspects of the dimensionality reduction algorithms. An
overview of how the data was allocated to the learning and testing sets is shown in Fig. 6.5 .

The first experiment investigates the performance at classifying and clustering surfaces. The learning
set is generated by randomly selecting half of the tactile and visual data for each of the 17 materials.
All of the data taken from the same textured surface is weakly paired together such that g = 17. The
testing set consists of the other half of the tactile data. Thus, the learning and training sets both include
examples from all 17 materials, as shown in the left column in Fig. 6.5. For the clustering experiment, the
number of clusters is set to the number of materials c = 17, and would otherwise need to be estimated
from the data [219]. Additionally, the time required to learn the dimensionality reduction was recorded
for each method.

The second experiment tests the ability to generalize to new materials. The learning set consists of
the tactile and visual data from 10 randomly selected materials. All of the data taken from the same
textured surface is weakly paired together such that g = 10. The testing consists of the tactile data
from the seven materials excluded from the learning set. Hence, the learning and training sets consist of
different materials. This experiment demonstrates how information can be transferred between related
tasks using dimensionality reduction [220].

The third experiment tests the robustness to incorrectly paired data, which is a common problem for
self-supervised approaches [187, 188]. Similar to the first experiment, the learning set is generated by
randomly selecting half of the tactile and visual data for each of the 17 materials. However, rather than
forming groups of the same material, the data is randomly allocated to the g = 17 groups. Hence,
each weakly-paired group contains a mix of different materials, as illustrated in the right column of Fig.
6.5. The testing set is the same as in the first experiment, and consists of the other half of the tactile
data. Thus, the learning and training sets both include examples from all 17 materials. This situation is
contrived and represents a worst case scenario that is unlikely to occur in practice.

Each experiment was run 500 times for each output dimensionality. For each run, A different seed
value was used to initialize the randomization.

94

10 20 30 40 50
10

0

10
1

10
2

Output Dimensions

P
e

rc
e

n
ta

g
e

 E
rr

o
r

None
PCA
µMCA
WMCA

10 20 30 40 50
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Output Dimensions

C
o

n
d

iti
o

n
a

l E
n

tr
o

p
y

None
PCA
µMCA
WMCA

A. SUPERVISED CLASSIFICATION B. UNSUPERVISED CLUSTERING

Figure 6.6: The performance of the tested methods for di�erent numbers of output dimensions. Plot A
shows the results from a classification problem. This plot uses a log scale for the y-axis. Plot B
shows the results from a clustering experiment. In both plots, a lower value indicates a better
performance. Error bars are also plotted, indicating +/- two standard errors of the mean.

6.4.4 Results

The first experiment’s classification and clustering results are shown in Fig. 6.6A and Fig. 6.6B respec-
tively. The conditional entropy indicates how much information about the true material label is given by
the cluster it has been assigned to. It is therefore a suitable measure of clustering performance [221].
The µMCA method achieved the best performance in both the supervised classification task, with an
accuracy of 95.15%, and the unsupervised clustering task, with a conditional entropy of 0.262. The
WMCA method achieved a similar classification accuracy, but a conditional entropy of only 0.335 for
the clustering task. The unimodal PCA approach performed considerably worse than the multimodal
approach with a best classification accuracy of 90.85% and a conditional entropy of 0.520. The naive
approach gives a benchmark accuracy of 72.14% and a conditional entropy of 0.900. Both WMCA and
µMCA display plateau structures of similar performance for a wide range of output dimensions.

The mean times required to compute matrix W are 1617ms for WMCA, 22ms for µMCA, 19ms for
PCA, and 0ms for the naive approach, when run on a 3.0 GHz Intel Duo Core processor in python. The
time required by µMCA can be decomposed into 7ms for computing the group means, and 15ms for
computing the mapping matrix W from these means.

The results of the second experiment are shown in Fig. 6.7. These error rates are lower than in the first
experiment, as this classification task only uses seven classes rather than 17. The WMCA, µMCA, and
PCA approaches achieved similar classification accuracies of approximately 96.5%. The naive approach
obtained an accuracy of 92.0%. The standard deviations in this experiment are approximately one and
a half times as great as in the first experiment.

The results of the robustness experiment are shown in Fig. 6.8. The µMCA method’s classification
accuracy is similar to that of PCA. The WMCA method, with annealing, achieves performance levels
similar to those of the first experiment.

6.4.5 Discussion

The results show that the use of the multi-modal data in the dimensionality reduction significantly im-
proves the performance of the system. When the number of output dimensions increases, each method
is selecting additional directions in the input space to keep. If the signals in these directions contain

95

10 20 30 40 50
10

0

10
1

10
2

Output Dimensions

P
e
rc

e
n
ta

g
e
 E

rr
o
r

None
PCA
µMCA
WMCA

Figure 6.7: The graph shows the classification error incurred when classifying seven textures that were
excluded from the learning set. The error bars indicate +/- two standard errors of the mean.

10 20 30 40 50
10

0

10
1

10
2

Output Dimensions

P
e
rc

e
n
ta

g
e
 E

rr
o
r

None
PCA
µMCA
WMCA

Figure 6.8: This graph shows the e�ects on classification performance when WMCA and µMCA are
trained on incorrectly-paired data. Each weakly-paired group consists of a mix of materi-
als, rather than a single material. The error bars indicate +/- two standard errors of the mean.

96

information relevant for tactile sensing, the performance improves. When the performance of a method
decreases, it is including signals that are irrelevant to the tactile sensing, even though they have a high
variance. Such signals could be caused by additional factors in the tactile modality, such as the vibrations
of the robot [184, 178].

The PCA approach performs the best around q = 16 output dimensions. Deviations from this value
lead to worse performance. In contrast, the WMCA method uses the vision information to determine
which dimensions are relevant. By actively trying to exclude irrelevant signals, WMCA creates a plateau
of good performance around the optimal q value. Hence, the WMCA method is less sensitive to changes
in q and easier to tune.

By performing MCA on the group means ¯x and ¯x

0, the µMCA method automatically omits the dimen-
sions describing variations within the groups. The resulting low-dimensional representations therefore
contains less noise, which leads to better performance. These representations are especially well-suited
for representing cluster centers, as shown by the clustering task’s results. The µMCA method’s plateau
structure is the result of its limited output dimensionality q g. Similar to WMCA, the µMCA method
uses the vision data to include the relevant dimensions first. Hence, the final dimensions added tend to
be the worst and decrease performance levels.

Both WMCA and µMCA perform well in the classification and clustering tasks of the first experiment.
However, a one-tailed z-test at a 99% significance level confirms that µMCA’s performance is significantly
better. The WMCA method also requires considerably more computation time than µMCA and PCA.
However, most applications will not require the learning to be performed in real time.

The second experiment shows that the abilities of µMCA and WMCA to generalize to new materials
is similar to that of PCA. The good performance in this experiment suggests that the dimensionality
reductions keep most of the pertinent information. The additional vision samples that WMCA did not
find a pairing for may therefore be removed to save memory. The standard deviations are larger in this
experiment because the performance is affected by the similarity between the learning and testing data
sets. If the learning set includes materials similar to those in the testing set, the methods perform better.

Although the groups in the third experiment contained large amounts of incorrect data, the WMCA
automatically found good pairings between samples. This result suggests that WMCA can be used with
more complicated vision data and still find good pairings. Unlike WMCA, the µMCA method could not
find suitable low-dimensional representations due to the incorrect data.

Since µMCA is less robust to incorrect data, it requires a more structured environment for the learning
phase. The environment should allow for surfaces to be easily inspected through both vision and touch.
The inspected surfaces should be easy to identify in the images and should ideally be large and flat.
Since the µMCA method only requires weakly-paired samples, the objects may be freely manipulated by
the robot between the tactile and vision inspections. Given these conditions, the environment should
effectively resemble an infant’s playpen.

The additional robustness of WMCA allows it to learn in more complicated environments. The ex-
periments suggest that WMCA can handle situations such as having multiple objects in an image, and
visually inspecting surfaces from multiple angles. The images must still contain some good data, but the
robot is also allowed to collect some incorrect data while exploring. The WMCA may therefore be able to
learn in everyday environments, as long as the conditions allow for both tactile and visual inspection of
surfaces. The ability to learn by inspecting everyday objects is however beyond the scope of this thesis,
and will need to be thoroughly tested.

In the future, the effects of varying the tactile sensor’s velocity should also be experimentally inves-
tigated. Altering this velocity, or observing the surface at an angle, has a similar effect to scaling the
textured surface. The performance of the proposed approach can be improved by incorporating prepro-
cessing of the data to make it invariant to such changes. In this manner, the robot could learn in even
more complicated situations.

97

Once the dimensionality reduction has been learned with either µMCA or WMCA, the tactile sensor
can be used in a wide range of situations. The tactile sensing will still benefit from the multimodal
learning phase, even if the conditions do not allow for visual inspection.

6.5 Conclusion

Dynamic tactile sensing represents an important form of feedback when performing manipulation tasks.
These sensors will therefore be vital for the many tasks that service robots may encounter. However, the
data from tactile sensors is usually high dimensional and can contain vibrations from spurious sources.
Hence, the data is difficult to use for discriminating between different surfaces.

In this chapter, we presented the µMCA and WMCA methods for using tactile sensors to accurately
and robustly classify textured surfaces. These methods use a second sensor modality, i.e. vision, during
the learning phase to determine suitable lower-dimensional representations of the tactile data. The
proposed approach relies on both sensors observing the relevant information from the environment, i.e.
the texture of a surface. Any additional information is only observed by one of the modalities. For
example, the surface’s color is only seen by the camera and the robot’s vibrations are only detected
by the tactile sensor. Hence, the relevant part of the data is correlated between the modalities. A
common problem when using multimodal data is the need to perfectly pair the data samples across
modalities. The proposed methods were therefore designed to work with groups of weakly-paired data.
After learning a mapping to a lower dimensionality, the vision modality is no longer required. Therefore,
unlike sensor fusion approaches [16, 17, 18], the tactile sensor can be used in conditions where visual
inspection in not possible, while still benefiting from the multimodal learning.

The experiments show that the µMCA approach performs well in both classification and clustering
tasks. The mapping to lower-dimensions can also be quickly learned from a set of samples. The experi-
ments also showed that the WMCA approach is robust and can even handle heavily mixed groups. The
proposed methods can learn suitable dimensionality-reduction mappings from only weakly-paired data
obtained in semi-structured environments.

6.6 Potentially Helpful Insights

A key motivation for this project was to investigate the complimentary nature of visual and tactile texture
data. While certain aspects of the environment are captured by both of these sensing modalities, others
are only captured by one of them. It is this interplay between the two sensors that allows the robot
to extract the relevant texture information from the tactile data. Although audio data contains texture
information, it would not be a suitable replacement for the vision data, as it also captures many of the
additional vibrations detected by the tactile sensor. A core difference between the vision and tactile data
is that the texture is captured spatially by the camera, but it is a temporal signal for the tactile sensing.
This difference helps to keep the data from the modalities distinct, and it explains why audio data could
replace the tactile data but not the vision data.

Despite the relatively basic sensor, the robot was able to detect distinct signals for certain tactile
events. For example, the edges between the mosaic pieces are clearly observable in the tactile signal.
The vibrations were largely due to the sensor’s tip slipping from the raised surfaces into the grooves.
Despite the rather small movement of the tip, the sensor managed to capture these tactile events. The
robot could then extract the relevant parts of the signal using a machine learning approach.

A similar approach could be used to detect other contact events as well. For example, the making or
breaking of contact between a held tool and another object could be detected. These contacts could occur
at different locations on an objects. It would therefore be important to research how the vibration signals
generalize between different contact locations on more complex objects. The temporal information of the
detected vibrations could again be combined with the spatial vision information to distinguish between
contact events and other vibration sources.

98

7 Conclusion
In this thesis, we presented steps towards creating autonomous robots with versatile manipulation skills.
We investigated different machine learning approaches, and showed how they could be applied to learn
grasping and manipulation skills. In this chapter, we summarize the main contributions of the thesis.
Section 7.2 describes the general structure of manipulation skills and identifies various elements of the
skills that a robot could learn. Section 7.3 presents ideas to consider when selecting or developing
learning methods for robot manipulation skills. Both of these sections emphasize the importance of
structuring the learning problem. The learning method is often a direct result of how the problem
is structured. The chapter ends with a discussion on open problems for learning robot grasping and
manipulation skills.

7.1 Summary

In Chapter 2, we focused on learning grasps through trial and error. Rather than using a supervised learn-
ing approach, grasping was framed as a continuum-armed bandits problem [32]. The robot learned to
predict the performance of different grasps, based on its previous grasp attempts, using Gaussian pro-
cess regression [222]. This Bayesian approach also provides the robot with a measure of how certain
the predicted performance is. Using this model, the robot selected grasps according to an upper confi-
dence bound policy. This policy explores new grasps in an optimistic manner. The proposed method was
evaluated on a real robot, which successfully learned to grasp different objects.

Methods for generalizing manipulation skills between different objects were discussed in Chapter 3.
Contacts play an important part in many manipulation tasks. However, it is difficult to define general
features for representing the contacts between two objects. We therefore proposed a kernel approach for
computing the similarities between different contact distributions. The contact distributions are modeled
using multi-variate Gaussians. The kernel value is greater if the two contact distributions overlap more.
The kernel was used to classify stable placements of assorted blocks and, in Chapter 4, to cluster samples
from human demonstrations.

The second method for generalizing between objects was to use warped parameters to compute ge-
ometric features of objects. A warped parameter is defined as a function on a point cloud of a known
object. The value of the parameter changes when transformations, such as scaling, are applied to the
point cloud. The parameter is computed for a new object by warping the point cloud to match the new
object’s shape. We used a simple warping method and showed that the resulting parameters could be
used to generalize pouring actions between different objects.

In Chapter 4, we presented a probabilistic model for dividing tasks into phases. The state-based
transitions auto-regressive hidden Markov model captures the effects of the robot’s actions in each phase,
as well as the conditions for transitioning between different phases. The conditions for a phase transition
represent the subgoals of the overall task. We therefore also showed how the model could be used
together with a policy search algorithm in order to learn motor primitives for transitioning between
different phases. The robot learned to perform two-handed grasps of an object using the proposed
approach.

Chapter 5 focused on learning how to sequence manipulation skills. We presented a non-parametric
model-based method for learning value functions in continuous state spaces. We used a kernel density
estimate to model the system in a flexible manner. We then showed that the value function for this type
of system has the form of a Nadaraya-Watson kernel regression [69, 70]. The resulting non-parametric

99

dynamic programming (NPDP) algorithm was used to learn high-level controllers for both a bimanual
grasping task and a pushing task.

The sixth chapter addressed the topic of dynamic tactile sensing. This sensor modality provides a lot
of information to the robot about the surfaces of the objects that it is manipulating. This information
is however high dimensional, noisy, and often includes irrelevant vibrations. We therefore proposed a
dimensionality-reduction method for preprocessing the data before using it to classify different materials.
The proposed technique is based on maximum covariance analysis, and uses weakly-paired vision data
to determine relevant dimensions of the tactile data. After learning, the robot can apply the projection
to tactile data even if vision data is not available.

In this thesis, we have presented machine learning methods for addressing a range of challenges
posed by manipulation tasks. We also showed how these methods could be used to learn a variety of
manipulation tasks on several different robot platforms.

7.2 Learning Elements of Manipulation Skills

In this section, we discuss the overall structure of manipulation skills and how different elements of
the skills can be learned. The section is divided into three parts corresponding to core components of
manipulation skills, i.e., the context, the effect, and the skill execution. The context corresponds to
the initial state and the conditions needed to execute a skill. The effect describes the changes in state
resulting from the skill execution. The execution is the controller that the robot uses in order to achieve
the effect given the context. For each component, we identify key challenges that an autonomous robot
can address using learning.

7.2.1 The Context

The first core component of a manipulation skill is the context. The context defines which parts of the
environment need to be taken into consideration for performing the manipulation skill. This step is
particularly important for manipulation skills, as objects may be added, removed, or replaced between
different instances of the task. The goal is to establish a specific state space, which will then be used for
executing the actual skill. Without establishing the state space, the manipulation skill may be ill-defined.
For example, the skill may depend on the position of a non-existent object.

A robot could learn to perform tasks directly from its sensor data [223, 224, 225], or by detecting
scene-wide correspondences across task instances [6]. However, it is often easier to generalize and
reason about manipulation skills at the level of objects. One of the key challenges for autonomously
establishing the context is, therefore, to determine which objects are in the scene [226, 227]. A robot
can learn models of novel objects by observing them from different views and interacting with them
[228, 229, 230, 231, 232]. These interactions are usually aimed specifically at exploring the object,
although some parameters can also be inferred while performing the task.

Apart from segmenting an object from the rest of the scene, the robot also has to recognize the object.
As the goal is to manipulate the object, it is generally more useful for a robot to recognize the affor-
dances of the object, e.g. graspable and fillable, rather than more traditional object classes, e.g., cup,
glass, and bowl [81, 82]. The affordances have the important benefit of being grounded in the robot’s
actions. Hence, the robot can autonomously learn the affordances of objects by interacting with the
objects and observing the effects [233]. Determining the affordances may require the robot to recognize
the affordance-bearing parts of an object and to establish affordance relevant coordinate frames and
parameters [234, 76, 235].

Each detected object adds dimensions to the state representation corresponding to its degrees of free-
dom. These DoFs include the articulated joints between objects, and affordance-specific state variables,
e.g. the amount of fluid in a container. Usually, only a few of the objects in the scene will be relevant for

100

performing a specific task. The robot will therefore need to select a subset of the scene’s state space for
defining the skill’s context.

Given the selected state space, the second goal of establishing the context is to determine whether or
not the skill is executable from this state. Although the robot may have detected the elements it requires
to establish the state space, the objects may not be in a configuration that affords the manipulation, e.g.,
an object may be outside of the robot’s workspace. Learning the situations in which a skill is applicable
is an important ability for an autonomous robot, and can help the robot to determine subgoals of the
overall task [124, 23]. For example, if the skill is not valid, then the robot would need to select another
manipulation skill to reach a state where it is valid [236].

7.2.2 The E�ect

The second core component of a manipulation skill is the effect. The effect determines how the state of
the manipulated objects changes due to the manipulation skill. Manipulation skills are usually executed
in order to achieve a certain intended effect, although they may not be guaranteed to achieve this effect.

A key challenge for autonomous robots is to predict the effects of actions in order reason about them
more efficiently. The robot could learn the effects of individual actions, or it could capture the effects by
learning a forward model that generalizes between actions [78, 237, 238, 239]. Predicting the effects
of actions is usually considered a supervised learning problem. Hence, the robot can use regression and
classification methods for predicting the effects of continuous and discrete states respectively. These
predictions are usually based on the initial state and the action parameters. Rather than predicting a
single point estimate of the effect, it is more useful to learn a distribution over the effects [240, 237].
This probability distribution models the uncertainty of the outcome and can be useful for reasoning
about different actions. For example, the robot may choose an action because it is more likely to have
the desired effect.

Even for continuous states, the robot may observe distinct types of effects [241]. For example, pushing
actions can cause the object to ROLL, SLIDe, TOPPLE, or remain STATIONARY. These labels represent a more
abstract representation of the effects, which can often generalize better between different scenarios. For
example, pushing a sphere causes it to ROLL, but the amount of rotation and translation depends on its
size and how it was pushed. The robot can learn these labels in an unsupervised manner by clustering
the continuous effects [242, 243]. If the labels are already given, then the robot can learn how they are
grounded in the continuous state using a supervised learning approach.

Once the robot has learned the effects of its skills, it can use this information to make single- or multi-
step predictions. These predictions can be used to plan action sequences for performing different tasks.
Rather than learning the effects of skills, the robot can also learn skills for achieving specific effects. A
desired effect can be modelled using a reward function [244, 19]. The reward provides a compact rep-
resentation of the intended effects, with desirable effects increasing the reward and undesirable effects
decreasing it. The robot can then use reinforcement learning to learn a skill that maximizes the reward
[245]. The reward function is usually specified by a human as part of the task description, but it can also
be learned from expert demonstrations using inverse reinforcement learning [246, 247, 248, 249]. The
robot can learn to predict the rewards of different actions directly or by first predicting the effects of the
action. These predictions can then be used to optimize the skills using a model-based approach.

7.2.3 The Execution

The third core component of a manipulation skill is the skill execution. This component is the behaviour
(a.k.a., controller or policy) that the robot uses to alter the state of the objects being manipulated. It
creates the link between the context and the effects. Given that the context has been established, the
controller can assume that a fixed set of state signals are available for control, and the objects afford the
desired manipulation skill. The execution may be intended to achieve a desired effect.

101

Before the robot can learn manipulation skills, it requires a suitable skill representation. These rep-
resentations usually include several subcomponents, such as a desired trajectory generator, a feed-
back control loop, and a set of termination conditions. Although one can use a non-parameteric ap-
proach, skill representations usually include parameters that define how the skills should be executed
[34, 250, 114, 251]. Thus, the problem of learning motor skills can be reformulated as learning the
values of these parameters. The robot will need to use these parameterized representations in order
to adapt its actions to specific objects and situations. For some tasks, the robot may be able to learn
lower-dimensional parameter spaces in order to learn the skills more efficiently [252, 253].

The robot can use different skill learning approaches depending on the available sources of informa-
tion. A human teacher is an invaluable source of information for learning manipulation skills. Humans
can provide expert demonstrations of the manipulation skills that they want the robot to perform. The
robot can learn these skills through imitation learning in a supervised manner [34, 250, 114]. Given
multiple demonstrations, the robot can learn how to generalize the skill to different situations, and to
determine a suitable task frame. As part of a scaffolding framework, the human can also provide feed-
back on the robot’s performance, and structure tasks such that they become gradually more challenging
[254, 134, 244]. In this manner, the human can provide additional guidance for the robot during the
skill learning process.

If the robot is learning to perform a specific task, then the robot could also learn the skills through
trial-and-error. In particular, the robot could use a reinforcement learning approach to maximize its task
performance [245, 138, 255, 19]. This approach involves the robot attempting the task multiple times
in order to evaluate variations of the skill. The robot then uses the information from these experiences
to improve the skill. This learning process can be initialized with a skill learned from demonstrations, or
a skill from a similar task. The robot can then autonomously master the skill through trial-and-error.

Given no additional information, nor a specific task, the robot can learn by simply trying out different
actions and clustering the trajectories according to their effects. These action sequences can then be used
as training data for learning a skill for achieving a specific effect. Rather than simply relying on motor
babbling, a structured exploration could allow the robot to learn new skills more quickly. This exploration
could have the robot actively search for new affordances, DoFs, or phases within its environment, and
then master the corresponding skills [133, 150, 140].

Many tasks will require the robot to execute a sequence of skills. If the task has not already been
decomposed into subtasks or skills, then the robot will first need to learn a suitable decomposition.
For example, the robot can learn skills by segmenting human demonstrations into individual skills [8,
9, 256]. Once the robot has learned the low-level skills, it can learn a high-level policy for selecting
the skills [8, 119, 118]. This policy needs to sequence the skills such that the effects of one skill fulfil
the context conditions of the next skill. The context and effects are therefore similar to the inputs and
outputs of the skill. These components provide structure and scope to the problem of learning the skill
execution.

7.3 Key Ideas to Consider When Developing and Selecting Learning Methods

When developing or selecting learning methods for manipulation skills, one should first clearly estab-
lish the learning problem that the method should address. Structuring the learning problem generally
involves determining what information is provided to the algorithm and what the outcome should be.
Although this may seem trivial, manipulation tasks are incredibly complicated and incorporate many
different elements. It is therefore easy to accidentally leave out important aspects of the problem, which
would ultimately lead to a different approach being used. In this section, we will discuss three key ideas
to keep in mind when developing methods for learning manipulation skills. These ideas are linked to
three key questions: 1) What are the available sources of information? 2) Is this task an instance of
a more general task? and 3) what information should the robot learn explicitly? These questions are

102

meant to help one keep the big picture in mind when establishing the problem and selecting a suitable
learning approach.

7.3.1 Sources of Information

The main purpose of a learning method is to allow the robot to structure relevant information in a useful
manner. It is therefore important to first consider which sources of information are available to the robot,
and how they may be incorporated. The type of learning method will generally be a direct consequence
of the selected information. Learning methods also often make certain assumptions about the data that
they are using, and can therefore also be used to incorporate different prior information.

As an example, we can consider the task of learning to grasp. The output of a grasp is usually some con-
figuration of the object and the hand. We know that there are distinct types of outcomes, e.g. dropping
and lifting, which the robot can learn through clustering the outcomes. Given these distinct outcomes
and a set of features for describing the grasps, the robot could learn a classifier for predicting the out-
comes. If the goal is to predict continuous values for the outcome, then a regression approach would be
more suitable. If not all of the features may be relevant or they have a hierarchical structure that can
be exploited, than the robot could use a feature selection or deep learning approach respectively. The
robot may also have information regarding neighbouring grasp locations, which could be incorporated
using a structured prediction approach for more robust predictions. A robot may have a method for gen-
erating untested grasps, e.g. a simulator or grasp heuristic, which could be used with a semi-supervised
approach. If the robot can choose which grasps to execute, then it could apply an active learning or
reinforcement learning approach.

The above list is far from exhaustive, and it does not even consider different types of sensory informa-
tion nor sequences of actions. However, it does demonstrate how the available sources of information
and prior task information may lead to different types of learning approaches. One should therefore con-
sider which relevant information is available, and the implicit prior assumptions of different methods,
when establishing the problem and selecting a learning approach.

7.3.2 Learning General Tasks

Although it is important to provide robots with relevant information and priors, one should also not
provide too much prior information. The problem is that prior knowledge is often specific to certain
types of tasks. As a result, using this knowledge limits the applicability of the methods that they are
based on it. Instead, an autonomous robot should ideally be provided with more general methods, and
learn the task specific information from additional experiences. In this manner, the robot needs fewer
learning methods and is more likely to be capable of handling unforeseen tasks.

The most straightforward approach to keeping a method general is simply to consider a couple of other
tasks that the method should be applicable to. One could either have a fixed set of tasks, or attempt to
expand the set as much as possible. The latter approach is particularly useful as it helps identify the
differences in tasks and the limits of the method. Often, a minor change to the method will already
increase its applicability and may even help to isolate the core problem that needs to be addressed.

This approach to developing general methods is especially important for research into general-purpose
service robots. For these kinds of robots, the tasks evaluated in an experimental setting are only a small
fraction of the various tasks that the robot will actually need to handle. Hence, it is relatively easy to
over-design for the specific tasks being evaluated. One should instead consider other potential tasks
during the development process.

Obviously, one should not aim for every method to cover every possible task. Certain tasks have spe-
cific nuances that need to be addressed, and prior knowledge can make skill learning problems more
tractable. The exclusion of task-specific prior information has to be compensated for by additional data

103

from the task. If the robot would require a vast amount of data to learn the prior information au-
tonomously, or learning the skill becomes intractable, then the prior information is valuable and should
be incorporated. One should aim at developing methods that are applicable to different tasks, and have
the robot learn the task-specific information, while still making the learning process tractable.

7.3.3 Explicit vs Implicit Learning

One of the most difficult design choices for developing manipulation learning methods is determining
how explicit certain information should be. Modelling information explicitly can often help the robot to
learn more quickly and to generalize between different situations. However, it also results in additional
complexity and may introduce invalid assumptions regarding the task.

As an example, we can consider the effects of executing a manipulation skill. A robot could capture
the effects by learning a forward model, or it could directly learn a high-level policy for selecting skills.
In the latter case, the effects of the skills are implicit. The forward model would allow the robot to
simulate the effects of different actions in various situations. It is however usually more difficult to learn
the model than the policy, and errors in the model could adversely affect the final learned policy. A
similar trade off can be found when considering the role of contacts in grasping. A robot could attempt
to explicitly predict the contact locations of a grasp, or it could model the pose of the hand relative to
the object with a parameterized motion for closing the fingers. In the latter case, the contact points are
implicit. By predicting the contact points, the robot can ignore irrelevant changes in the object’s shape,
and can be generalized between different objects and preshapes of the hand. The robot would however
also need to learn to predict the contacts, and errors in this prediction could result in bad grasps. For
both the effects and the contacts example, there is a spectrum of alternative approaches that achieve
different compromises.

By modeling information more explicitly, the robot can extract the relevant details of a task. The robot
can learn the skill faster and generalize it to a wider range of situations by focusing on the relevant
information. Problems occur when the model does not match reality or it accentuates irrelevant details
instead of relevant ones. In these cases, the robot is effectively making an incorrect assumption about
the task. If the assumption was introduced as part of the algorithm’s design, then the invalid assumption
should be removed. The robot may also make the assumptions due to a lack of data. These errors can be
mitigated by modeling the uncertainty and taking it into account during decision making. If learning the
explicit model is simply too difficult for the robot to learn, then a more implicit approach may be more
suitable. The best choice obviously depends on the actual task and how much the robot may benefit from
using a more general approach. The robot can benefit a lot in terms of learning speed and generalization
by using explicit approaches, but one must also be aware of introducing incorrect assumptions about the
task.

7.4 Open Problems

The methods presented in this thesis have contributed to the state-of-the-art in robot grasping and ma-
nipulation. However, there are still many open problems that need to be addressed before we can realize
robots with versatile manipulation skills. In this section, we will discuss some of the next challenges to
be overcome.

Learning Task-Specific Grasps

Certain grasps are more suitable for a given task than others. For example, even though a milk carton
can be grasped from the top, a side grasp is more useful for pouring. The robot can also learn task-
specific grasps using a reinforcement learning approach. The simplest approach would be to use the

104

task to define a reward function for optimizing grasps. The optimization could be performed using a
similar method to the one described in Chapter 2. Alternatively, the robot could divide the problem
into determining task-independent grasps and selecting grasps for specific tasks. Going back to the milk
carton example, the robot could learn the reward function for pouring with grasps at different locations
relative to the opening of the container and its center of mass. If the object is used for multiple tasks,
the reward functions could simply be added together.

Learning from Real Grasps and Simulated Grasps

Learning to grasp could also benefit from incorporating semi-supervised learning approaches. These
methods allow the robot to incorporate unlabeled data into a supervised learning problem in order to
model the structure of the data. For grasping, the robot can easily obtain unlabeled grasps by using a
grasp simulator, and labeled grasps by executing grasps on the real object. The unlabeled data helps
the robot to find clusters of similar grasps. For example, when grasping a can, the unlabelled data may
indicate that there is one region of potential grasps at either end of the can, and another region around
the side of the can. A successful side grasp, would then indicate that other side grasps are also more
likely to succeed. Using semi-supervised learning would therefore allow the robot to merge simulated
and real grasps in a straightforward manner.

Dexterous Manipulation

Manipulating objects using the fingers is difficult, as it requires coordinating multiple fingers and main-
taining contact constraints. Certain in-hand manipulation also require the robot to perform a controlled
slip in order to reposition the object in the hand. Learning dexterous manipulation skills would increase
the robot’s workspace. It would also allow the robot to reposition objects within its hand. As the object
will be occluded by the hand, the robot will need to rely more on tactile data in order to localize the
object in the hand. These manipulations may require the robot to learn a feedback controller based on
tactile sensations [145].

Learning to Utilize the Environment

The robot can use fixed parts of the environment, e.g. a wall or table, to reposition objects in its hand
[257]. For example, a robot could reposition a held object by pushing a part of it against a wall. The robot
would need to rely less on dexterous in-hand manipulation if it can learn these abilities. Manipulating
a held object in this manner is similar to manipulating the robot’s own hand using the environment.
Several compliant underactuated hands have recently been proposed [73, 258]. The high compliance of
these hands allows them to adapt to a wide range of object shapes, and it allows for safe interactions
with the environment. The robot can use the compliance and the environment to bend and preshape
the fingers. For example, the robot could use a nearby surface in order to bend the fingers back more
when attempting to grasp a large object. Alternatively, the robot could use a surface to close three
of the fingers and thus isolate one for pressing a button. Methods could therefore be developed for
manipulating compliant underactuated fingers and held objects.

Learning from Phase Transitions

In Chapter 4, we discussed how a robot can learn to predict phase transitions when manipulating an
object. These transitions often depend on object properties, such as the mass of the object or a friction
coefficient. By learning from multiple objects with different properties, the robot could learn to estimate

105

these properties from the phase transitions. For example, when picking up an object, the phase transi-
tions from loading to lifting when the object breaks contact with the supporting surface. A heavier object
will break contact later as the robot ramps up the force. Hence the object’s mass could be estimated
from the timing of the phase transition. Alternatively, if the robot is using impedance control, the next
motor primitive could simply be defined relative to the desired hand position when the phase transition
occurred. In this manner, the motor primitive implicitly compensates for the additional offset caused
by the object’s mass. This approach could even be used when using different stiffnesses. Before the
robot can learn from phase transitions, it must first learn to detect when they occur. This problem is
particularly challenging as the dynamic tactile sensations may vary between objects and materials.

Learning in Complex Environments

One of the main challenges for robots working in everyday environments is dividing the state space into
manageable parts. These environments contain a lot of different objects, and many of these objects will
be interacting with each other. Imagine a robot that defined the state space of a learning task based on
the state of every object in the room. The robot would try to learn how to butter bread depending on
how the glasses are arranged in the cupboard. This approach would require the robot to learn in an
incredibly high-dimensional space, and learning even simple manipulations would become intractable.
This problem is exacerbated in cluttered environments, where many objects are in contact with each
other. Most of the objects will however not be directly interacting with the object that the robot is trying
to manipulate and therefore they do not directly influence the task. The robot therefore needs to learn
which objects are important, and which ones can be safely ignored. One possible approach would be to
learn priors based on geometric relations between objects. For example the distances between objects
and their relative sizes determine, to some extent, how much they can affect each other.

Reasoning about Potential Objects

The robot should be able to reason about objects that may potentially be relevant to a task. For example,
a robot may be given the task of screwing together two wooden boards with some screws. However,
the robot cannot perform this task using only the objects provided, as it does not have a screwdriver.
The robot should first determine that the task can be performed using a screwdriver, and it should then
search for a suitable tool. If there is no screwdriver available, the robot may need to use a break knife
or a coin of a suitable size instead. The main challenge is to reason about potential objects that could be
used for performing a task, and then expanding the set of task objects accordingly. Rather than simply
adding objects that are nearby, the robot should expand the set of objects in a goal-directed manner.

Combining One-Handed and Two-Handed Skills

Multi-armed robots will need to consider how they allocate their arms to different tasks. Some tasks,
such as grasping a bottle and grasping a glass, can be performed at the same time. Other tasks, such
as opening a bottle, will require the use of two hands. The robot will therefore need to be capable
of executing skills in parallel as well as sequentially. The robot will also need to plan skill sequences
that switch between one-handed and multi-handed skills. This problem requires the robot to schedule
actions, as some executions will need to finish earlier then others. Some skills can only be started when
both hands are available. This issues also poses a challenge for segmenting demonstrations. Standard
methods assume that the agent is performing a single action at any point in time. These approaches are
not well-suited for learning from demonstrations that include multi-tasking.

106

Life Long Learning

For a robot to acquire versatile manipulation skills, it will need to learn continuously over long periods
of time. It will also need a learning architecture that combines different learning methods. The learning
methods will need to work together. For example, the robot may use reinforcement learning to learn a
pouring action for container objects, and supervised learning to recognize the containers. These types
of interactions can cause problems for the robot, as one method can effectively change the problem for
the other. In the pouring example, the supervised learned may suddenly learn that both bottles and cups
are containers, and not just cups. The reinforcement learner may have already learned a skill that works
for cups, but not for bottles, and it would need to relearn. The problem is particularly noticeable for
feature learning. Task-specific features would allow the robot to capture the relevant task information
in a compact manner, and they would allow the robot to generalize better to new scenarios. However,
creating a new set of features would also require the methods using the features to adapt and relearn.
The robot therefore needs to use learning methods that are compatible with each other. It also needs to
integrate the methods together such that they achieve synergy and can adapt to each other.

107

7.5 Publications

The work presented in this thesis contributed to the following publications.

Journal Papers

1. van Hoof, H.; Kroemer, O.; Peters, J.; Probabilistic Segmentation and Targeted Exploration of Objects in
Cluttered Environments, IEEE Transactions on Robotics (T-Ro), 2014

2. Muelling, K.; Kober, J.; Kroemer, O.; Peters, J.; Learning to Select and Generalize Striking Movements in
Robot Table Tennis, International Journal of Robotics Research (IJRR), 2013

3. Kroemer, O.; Lampert, C. H.; Peters, J.; Learning Dynamic Tactile Sensing with Robust Vision-based
Training, IEEE Transactions on Robotics (T-Ro), 2011

4. Piater, J.; Jodogne, S.; Detry, R.; Kraft, D.; Krueger, N.; Kroemer, O.; Peters, J.; Learning Visual Represen-
tations for Perception-Action Systems, International Journal of Robotics Research (IJRR), 2011

5. Detry, R.; Kraft, D.; Kroemer, O.; Peters, J.; Krueger, N.; Piater, J.; Learning Grasp Affordance Densities,
Paladyn Journal of Behavioral Robotics, 2011

6. Kroemer, O.; Detry, R.; Piater, J.; Peters, J.; Combining Active Learning and Reactive Control for Robot
Grasping, Robotics and Autonomous Systems (RAS), 2010

Conference Papers

1. Kroemer, O.; Daniel, C.; Neumann, G.; van Hoof, H.; Peters, J.; Towards Learning Hierarchical Skills for
Multi-Phase Manipulation Tasks, IEEE International Conference on Robotics and Automation (ICRA), 2015
accepted (BEST PAPER AWARD FINALIST)

2. Kroemer, O.; van Hoof, H.; Neumann, G.; Peters, J.; Learning to Predict Phases of Manipulation Tasks as
Hidden States, IEEE International Conference on Robotics and Automation (ICRA), 2014 (BEST COGNITIVE

ROBOTICS PAPER FINALIST)

3. Ben Amor, H.; Neumann, G.; Kamthe, S.; Kroemer, O.; Peters, J.; Interaction Primitives for Human-Robot
Cooperation Tasks, IEEE International Conference on Robotics and Automation (ICRA), 2014

4. Lioutikov, R.; Kroemer, O.; Peters, J.; Maeda, G.; Learning Manipulation by Sequencing Motor Primitives
with a Two-Armed Robot, International Conference on Intelligent Autonomous Systems (IAS), 2014

5. Daniel, C.; Viering, M.; Metz, J.; Kroemer, O.; Peters, J.; Active Reward Learning, Robotics: Science &
Systems (R:SS), 2014 (⇡ 30% ACCEPTANCE RATE)

6. Chebotar, Y.; Kroemer, O.; Peters, J.; Learning Robot Tactile Sensing for Object Manipulation, IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2014

7. Kroemer, O.; Peters, J.; Predicting Object Interactions from Contact Distributions, IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2014

8. Brandl, S.; Kroemer, O.; Peters, J.; Generalizing Manipulations Between Objects using Warped Parame-
ters, IEEE-RAS International Conference on Humanoid Robots (Humanoids), 2014

9. Peters, J.; Kober, J.; Muelling, K.; Kroemer, O.; Neumann, G.; Towards Robot Skill Learning: From Simple
Skills to Table Tennis, European Conference on Machine Learning (ECML), 2013 (27.7% ACCEPTANCE RATE)

10. van Hoof, H.; Kroemer, O .; Peters, J.; Probabilistic Interactive Segmentation for Anthropomorphic
Robots in Cluttered Environments, IEEE-RAS International Conference on Humanoid Robots (Humanoids),
2013

108

11. Daniel, C.; Neumann, G.; Kroemer, O.; Peters, J.; Learning Sequential Motor Tasks, IEEE International
Conference on Robotics and Automation (ICRA), 2013

12. Kroemer, O.; Ugur, E.; Oztop, E.; Peters, J.; A Kernel-based Approach to Direct Action Perception, IEEE
International Conference on Robotics and Automation (ICRA), 2012

13. Peters, J.; Kober, J.; Muelling, K.; Nguyen-Tuong, D.; Kroemer, O.; Robot Skill Learning, European Confer-
ence on Artificial Intelligence (ECAI), 2012 (28.5% ACCEPTANCE RATE)

14. Boularias, A.; Kroemer, O.; Peters, J.; Structured Apprenticeship Learning, European Conference on Ma-
chine Learning (ECML), 2012 (23.7% ACCEPTANCE RATE)

15. van Hoof, H.; Kroemer, O.; Ben Amor, H.; Peters, J.; Maximally Informative Interaction Learning for
Scene Exploration, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012

16. Boularias, A.; Kroemer, O.; Peters, J.; Algorithms for Learning Markov Field Policies, Neural Information
Processing Systems (NIPS), 2012 (25.5% ACCEPTANCE RATE)

17. Ben Amor, H.; Kroemer, O.; Hillenbrand, U.; Neumann, G.; Peters, J.; Generalization of Human Grasping
for Multi-Fingered Robot Hands, IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2012

18. Muelling, K.; Kober, J.; Kroemer, O.; Peters, J.; Learning to Select and Generalize Striking Movements in
Robot Table Tennis, AAAI 2012 Fall Symposium on Robots that Learn Interactively from Human Teachers,
2012

19. Kroemer, O.; Ben Amor, H.; Ewerton, M.; Peters, J.; Point Cloud Completion Using Symmetries and
Extrusions, IEEE-RAS International Conference on Humanoid Robots (Humanoids), 2012

20. Kroemer, O.; Peters, J.; A Non-Parametric Approach to Dynamic Programming, Neural Information Pro-
cessing Systems (NIPS), 2011 (ORAL PRESENTATION: 1.4% ACCEPTANCE RATE)

21. Kroemer, O.; Peters, J.; A Flexible Hybrid Framework for Modeling Complex Manipulation Tasks, IEEE
International Conference on Robotics and Automation (ICRA), 2011

22. Kroemer, O.; Peters, J.; Active Exploration for Robot Parameter Selection in Episodic Reinforcement
Learning, IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learn-
ing (ADPRL), 2011

23. Boularias, A.; Kroemer, O.; Peters, J.; Learning Robot Grasping from 3D Images with Markov Random
Fields, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2011

24. Erkan, A.; Kroemer, O.; Detry, R.; Altun, Y.; Piater, J.; Peters, J.; Learning Probabilistic Discriminative
Models of Grasp Affordances under Limited Supervision, IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2010

25. Lampert, C. H.; Kroemer, O.; Weakly-Paired Maximum Covariance Analysis for Multi-modal Dimension-
ality Reduction and Transfer Learning, European Conference on Computer Vision (ECCV), 2010 (27.9%

ACCEPTANCE RATE)

26. Kroemer, O.; Detry, R.; Piater, J.; Peters, J.; Adapting Preshaped Grasping Movements using Vision
Descriptors, International Conference on the Simulation of Adaptive Behavior (SAB), 2010

27. Kroemer, O.; Detry, R.; Piater, J.; Peters, J.; Grasping with Vision Descriptors and Motor Primitives,
International Conference on Informatics in Control, Automation and Robotics (ICINCO), 2010 (BEST PAPER

AWARD)

28. Kober, J.; Muelling, K.; Kroemer, O.; Lampert, C. H.; Schölkopf, B.; Peters, J.; Movement Templates for
Learning of Hitting and Batting, IEEE International Conference on Robotics and Automation (ICRA), 2010

109

29. Peters, J.; Kober, J.; Muelling, K.; Nguyen-Tuong, D.; Kroemer, O.; Towards Motor Skill Learning for
Robotics, International Symposium on Robotics Research (ISRR), 2009

30. Kroemer, O.; Detry, R.; Piater, J.; Peters, J.; Active Learning by Mean-Shift for Robot Grasping, IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2009

31. Piater, J.; Jodogne, S.; Detry, R.; Kraft, D.; Krueger, N.; Kroemer, O.; Peters, J.; Learning Visual Represen-
tations for Interactive Systems, International Symposium on Robotics Research (ISRR), 2009

32. Detry, R.; Baseski, E.; Popovic, M.; Touati, Y.; Krueger, N.; Kroemer, O.; Peters, J.; Piater, J.; Learning Object-
specific Grasp Affordance Densities, International Conference on Development and Learning (ICDL), 2009

110

List of Figures
1.1 An overview of some of the overarching themes presented in this thesis, and the chapters

that they relate to. 4
1.2 The figure illustrates the three phases of a basic grasping task: reach, load, and lift. The

orange circles indicate the locations where contacts are made or broken during the phase
transition. These mechanical events represent subgoals of the overall task. The changes
in contact result in small vibrations. The blue arrows indicate motor primitivesM used
to transition from one phase to another. 5

1.3 The figure illustrates the diversity of representations needed for learning manipulations,
and how they are linked to the different topics in this thesis. 7

2.1 The controller architecture consists of a upper level based on reinforcement learning and a
bottom level based on reactive control. Both levels are supported by supervised/imitation
learning. The World and Supervisor are external elements of the system. 10

2.2 The robot used in our experiments and an example of a grasping task in a cluttered envi-
ronment. 11

2.3 The left image shows the ECVD representation of the scene on the right. The paddle is
the object to be grasped, while the surrounding objects clutter. The coordinate frame of
the third finger of the lower finger in the image and the variables used in Section 2.3
are shown. The x-y-z coordinate system is located at the base of the finger, with z or-
thogonal to the palm, and y in the direction of the finger. The marked ECVD on the left
signifies the jth descriptor, with its position at v j = (v j x , v j y , v jz)T , and edge direction
e j = (ejx , ej y , ejz)T of unit length. The position of the finger tip is given by p= (px , py , pz)T . 18

2.4 The diagram shows the the change in coordinate systems for the reaching DMPs. The axes
Xw-Yw-Zw are the world coordinate system, and Xp-Yp-Zp is coordinate system in which
the DMP is specified. The trajectory of the DMP is shown by the curved line, starting at
point s, and ending at point g. Xp is parallel to the approach direction of the hand, the
arrow a. The axis Yp is perpendicular to Xp, and pointing from s towards g. 20

2.5 This is a demonstration of the effects of transforming the amplitude variable a of DMPs.
The hashed black lines represent boundaries. The solid green line shows the trained
trajectory of the DMP going to 0.05. If goal is then placed at 0.1 and the workspace is
limited to ±0.075 (top boundary), the dashed red line is the standard generalization to a
larger goal, while the solid plot uses the new amplitude. If the goal is �0.05, and needs to
be reached from above (lower right boundary), then the dashed blue line is the standard
generalization to a negative goal, and the solid grey trajectory uses the new amplitude.
Both of the new trajectories were generated with ⌘= 0.25. 21

2.6 Workspace trajectories where the x and y values are governed by two synchronized DMPs.
The semicircle indicates the goal positions, with desired approach directions indicated by
the red straight lines. The approach direction DMP was trained on an amplitude of one,
and ⌘= 0.25. 22

2.7 The expected rewards over 100 experiments are shown for the four compared methods.
The results were filtered for clarity. Due to the differences in experiment lengths, the x-axis
uses a logarithmic scale. The dashed horizontal line represents the maximum expected
reward given the noise. 23

111

2.8 The three main phases of a basic grasp are demonstrated. (A) Preshaping the hand poses
the fingers to match the object’s geometry. (B) Grasping closes the three fingers at the
same rate to secure the object. (C) The object is lifted and the fingers adjust to the
additional weight. The objects at the bottom of A and B are clutter. 25

2.9 Various preshapes are shown. A and B show the system adjusting to different plane an-
gles. C and D demonstrate the preshaping for different types of handles. E shows the
preshaping for a circular disc structure, such as a door knob, and gets its fingers closely
behind the object. F shows where the object was out of the reach of two fingers, but still
hooks the object with one finger. 26

2.10 A controlled grasp, made possible by the hybrid system’s preshaping ability. (A) The
preshaping matchs the geometry of the object. When grasping, the two fingers on the left
pinch the paddle. The finger on the right turns the paddle clockwise about the pinched
point. (B) The grasping ends when the paddle has become aligned with all three finger tips. 27

2.11 The graph shows the expected reward of the attempted grasps over the run of the ex-
periment for the three different objects. All values are averaged over the runs of the
experiment, with error bars of +/- two standard deviations. The dashed horizontal line
indicates the upper confidence bound of a point at infinity. 28

3.1 The Darias robot performing a block stacking task. The robot learns suitable block place-
ments using a kernel function for comparing contact distributions. 31

3.2 The two types of grasps that were used during the lifting experiment. The three-fingered
grasp uses the tips of the thumb, middle, and index fingers in order to pinch the object.
The ring and little finger are not touching the box. The four-fingered grasp additionally
uses the back of the ring finger on the top of the box in order to provide additional support. 37

3.3 Examples of failed and successful lifts. A lift was considered a failure if the object was still
touching the table at the end of the trial. 37

3.4 The expected error rates for the lifting task. The error bars indicate one standard devia-
tion. An error rate of 1 indicates that none of the test samples were correctly classified,
and an error rate of 0 is achieved when the classifier evaluates all of the samples correctly. 38

3.5 Point cloud examples of a stable and an unstable stacking of blocks 39

3.6 The expected error rate for the block stacking task. The red line indicates the performance
when using the standard covariance matrix. The blue line shows the performance when
adding the interaction-specific covariance matrix. The error bars indicate one standard
deviation. 40

3.7 An example scene with three objects, wherein the green and blue objects are supporting
the triangular red block. 40

3.8 examples of block towers constructed by the robot. 41

3.9 The robot performs a pouring task with two previously unknown objects. The pouring
action was learned from human demonstrations using a taller cup and a wider container
to pour into. 42

3.10 The left column shows the point cloud of the source object, annotated by a human user.
The middle column shows the point clouds of two target objects. The points were labelled
using a classifier based on local features. This intial estimate is only used to compute a
coarse alignment with the source object. The point clouds were pre-aligned for this figure
to show more clearly how the labels change during the warping process. The right column
shows the final results of the label mapping approach. 44

112

3.11 The figure shows the ROC curves for the learned classifiers for both the pouring exper-
iment and the filling experiment. The dashed lines indicate the performance when the
classifier is applied to data from the same object that was used for training the classifier.
The solid lines indicate the performance when the classifiers are applied to novel objects,
for which they had no training data. A classifier is generally considered to perform bet-
ter if it gets closer to the top left corner. Classifiers were trained using features based
on the warped parameters computed using both the label mappings and point mappings
approaches. The standard features approach did not use the reference values given by the
warped parameters. 47

3.12 The figure shows the ROC curves for the learned classifiers for both the pouring exper-
iment and the filling experiment. Classifiers were trained using the warped parameters
of the label mapping and point mapping approaches as additional features. The standard
features approach did not use the warped parameters. 48

3.13 The plots show the distribution over trajectories learned by the ProMPs in the generalized
space. The blue line indicates the mean trajectory, and the shaded regions correspond to
+/- two standard deviations. The black horizontal lines indicate when the value is one.
The tilt is one when the cup is tilted such that half of the container’s volume is above the
lip points. The X and Y values are one when the lip point is one radius away from the
second container’s center. The Z value is one when the vertical distance between the cup
and the container is the same as the height of the cup. The red region indicates when the
X-Y position of the cup’s lip point is within one radius of the container’s center. 49

3.14 The pictures show the key results of the real robot experiment. The robot was provided
with multiple demonstrations of the pouring task using kinaesthetic teaching, as shown
on the left. Using the warped parameters approach, the robot successfully generalized the
demonstrated actions to novel objects with different shapes and sizes, as shown on the
right. 50

4.1 The Darias robot performing a bimanual grasp of a box. The motor primitives used to
perform the task were learned using a model-based policy search approach. The model of
the task’s phases was learned from human demonstrations. 53

4.2 Graphical model of the standard STARHMM and the modified version with entry and exit
conditions. The orange nodes indicate observed variable. The white nodes indicate hidden
variables. The models include the states s, actions a, and phases ⇢. The model on the
right also includes the termination variable ". 57

4.3 Graphical model of the task model and motor primitive controller. The orange nodes in-
dicate observed variable. The white nodes indicate hidden variables. The model includes
the states s, actions a, motor primitives M , termination variables � , and the phases ⇢.
The top half of the graphical model depicts the motor primitive controller. The bottom
half of the model defines the multi-phase model of the system. 61

4.4 The five phases detected in the task demonstrations. The pictures show the contacts
between the objects in each of the phases. The arrows show the phase transitions that
were observed during the demonstrations. The robot learns a motor primitive for each of
these transitions. 62

4.5 The success rates of the motor primitive evaluations. The robot performed the sequences
of three motor primitives (first hand, second hand, and then lift) as observed in the human
demonstrations. The different colored bars indicate different approaches to learning the
motor primitives. 63

113

4.6 The figure shows the ability of the the learned DMPs to adapt to the geometry of different
objects. The top three columns show example grasps for each of the six objects. The
bottom row shows example lifts. The first two lifts of the metal box in column two failed
due to material differences. The last two lifts of the bottle failed due to differences in
dynamics. The other 14 grasps lead to successful lifts. 65

5.1 Value functions obtained by the evaluated methods. The black lines show the reward
function. The blue lines show the value function computed from the trajectories of 50,000

uniformly sampled points. The LSTD, KTD, DSDP, and NPDP methods evaluated the policy
using only 500 points. The presentation was divided into two plots for improved clarity . 74

5.2 The images show two sequences of the bimanual grasping task. In the top row, the box
was placed towards the left, and the high-level controller approached the box first with
the left hand. In the bottom row, the robot chose to approach the grasp with the right
hand first, as the box was located more towards the right. 77

5.3 Two examples of manipulation sequences learned for pushing the box to the left (robot’s
perspective). 78

6.1 Robot learning about materials by stroking and visually inspecting different surfaces . . . 81
6.2 A) The robot’s tactile sensor. B) Diagram of how type II fast afferent nerves obtain tactile

information (based on [15]). Both the sensor’s pin and the human skin are compliant
and move along the surfaces. When making and breaking contact with the surface, vibra-
tions are created at the human’s epidermal ridges and the tip of the sensor’s pin. These
vibrations are transferred through the skin and the pin respectively. When the vibrations
reach the pacinian corpuscle, this mechanoreceptor transfers the signal to the human ner-
vous system. Similarly, when the pin’s vibrations reach the microphone’s membrane, the
microphone transfers the signal to the robot. 91

6.3 Examples of the multimodal data. The top images show the vision data while the bottom
images show the corresponding time series of the tactile sensor signals. The x-axes of the
tactile sensor plots represent time, while the y-axes represent the signal’s magnitude. The
samples for the plots were recorded over a four second time span. 92

6.4 The 58 vision filters used to represent the textured images. Each 3⇥ 3 box represents a
uniform binary pattern. The grey middle pixel defines the threshold value of the patch.
A black pixel indicates that it is darker than the threshold, while a white pixel indicates
that it is lighter or identical. 93

6.5 An illustration of the three experimental setups. The top row shows how the data was
structured for the learning phase. Each small square represents the data from one surface
region, and adjoining squares are grouped together. The shading of the squares indicates
the materials that the sample was obtained from. The arrows indicate groups of samples
that are weakly paired together between tactile and vision modalities. The bottom row
indicates the materials that the learned system was tested on. Each square represents a
type of material tested in the classification and clustering tasks. Testing data is limited to
tactile data and, therefore, does not contain any groups or weak pairings. This figure does
not show the true number of samples and materials used in the experiments. 94

6.6 The performance of the tested methods for different numbers of output dimensions. Plot
A shows the results from a classification problem. This plot uses a log scale for the y-
axis. Plot B shows the results from a clustering experiment. In both plots, a lower value
indicates a better performance. Error bars are also plotted, indicating +/- two standard
errors of the mean. 95

6.7 The graph shows the classification error incurred when classifying seven textures that
were excluded from the learning set. The error bars indicate +/- two standard errors of
the mean. 96

114

6.8 This graph shows the effects on classification performance when WMCA and µMCA are
trained on incorrectly-paired data. Each weakly-paired group consists of a mix of materi-
als, rather than a single material. The error bars indicate +/- two standard errors of the
mean. 96

115

List of Algorithms
1 Continuum Gaussian Bandits (CGB) . 15

2 Non-Parametric Dynamic Programming . 70

3 Maximum Covariance Analysis (MCA) . 86
4 Mean Maximum Covariance Analysis (µMCA) . 87
5 Weakly-Paired Maximum Covariance Analysis (WMCA) with annealing 88
6 Example method for applying learned mappings to process new tactile data 89

117

List of Tables
2.1 These results pertain to the first 50 grasp attempts in the benchmark problem. The table

shows the mean computation times for the different algorithms, and how they would scale
to six dimensions, given the computational complexity of the algorithms [43, 42, 71].
Similarly, the table shows the amount of time needed to initialize the systems by trying
each of the initial grasps once. 24

5.1 Each row corresponds to one of the four tested algorithms for policy evaluation. The
columns indicate the performance of the approaches during the experiment. The perfor-
mance indexes include the mean squared error evaluated uniformly over the zero to one
range, the mean squared error evaluated at the 500 sampled points, and the maximum
error. The results are averaged over 500 trials. The standard errors of the means are also
given. 74

119

Bibliography
[1] R. S. Johansson and J. R. Flanagan, “Coding and use of tactile signals from the fingertips in object

manipulation tasks,” Nature Review Neuroscience, vol. 10, no. 5, pp. 345–359, 2009.

[2] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp synthesis - a survey,” IEEE Trans-
actions on Robotics, 2014.

[3] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed bandit problem,”
Machine Learning, vol. 47, 2002.

[4] N. Srinivas, A. Krause, S. Kakade, and M. Seeger, “Gaussian process optimization in the bandit
setting: No regret and experimental design,” in International Conference on Machine Learning
(ICML), 2010.

[5] U. Hillenbrand and M. Roa, “Transferring functional grasps through contact warping and local
replanning,” in International Conference on Intelligent Robots and Systems (IROS), 2012.

[6] J. Schulman, J. Ho, C. Lee, and P. Abbeel, “Learning from demonstrations through the use of
non-rigid registration,” in International Symposium on Robotics Research (ISRR), 2013.

[7] J. R. Flanagan, M. C. Bowman, and R. S. Johansson, “Control strategies in object manipulation
tasks.” Current Opinion in Neurobiology, vol. 16, no. 6, pp. 650–659, 2006.

[8] S. Niekum, S. Chitta, B. Marthi, S. Osentoski, and A. G. Barto, “Incremental semantically grounded
learning from demonstration,” in Robotics: Science and Systems (R:SS), 2013.

[9] J. Butterfield, S. Osentoski, G. Jay, and O. Jenkins, “Learning from demonstration using a multi-
valued function regressor for time-series data,” in International Conference on Humanoid Robots
(Humanoids), 2010.

[10] D. Grollman and O. Jenkins, “Incremental learning of subtasks from unsegmented demonstra-
tion,” in International Conference on Intelligent Robots and Systems (IROS), 2010.

[11] W. B. Powell, Approximate Dynamic Programming: Solving the Curses of Dimensionality (Wiley
Series in Probability and Statistics). Wiley-Interscience, 2007.

[12] J. A. Boyan, “Least-squares temporal difference learning,” in International Conference on Machine
Learning (ICML), 1999.

[13] Taylor, Gavin and Parr, Ronald, “Kernelized value function approximation for reinforcement learn-
ing,” in ICML. New York, NY, USA: ACM, 2009, pp. 1017–1024.

[14] R. S. Johansson and G. Westling, “Roles of glabrous skin receptors and sensorimotor memory in
automatic control of precision grip when lifting rougher or more slippery objects,” Experimental
Brain Research, vol. 56, no. 3, pp. 550–564, 1984.

[15] J. Scheibert, S. Leurent, A. Prevost, and G. Debregeas, “The role of fingerprints in the coding of
tactile information probed with a biomimetic sensor.” Science, vol. 323, pp. 1503–6, 2009.

[16] D. L. Hall and J. Llinas, Handbook of Multisensor Data Fusion. CRC Press, 2001.

121

[17] P. K. Allen, A. T. Miller, P. Y. Oh, and B. S. Leibowitz, “Integration of vision, force and tactile sensing
for grasping,” International Journal of Intelligent Mechatronics, vol. 4, pp. 129–149, 1999.

[18] I. Halatci, C. a. Brooks, and K. Iagnemma, “A study of visual and tactile terrain classification and
classifier fusion for planetary exploration rovers,” Robotica, vol. 26, no. 6, pp. 767–779, 2008.

[19] O. Kroemer, R. Detry, J. Piater, and J. Peters, “Combining active learning and reactive control for
robot grasping,” Robotics and Autonomous Systems, no. 9, pp. 1105–1116, 2010.

[20] O. Kroemer and J. Peters, “Predicting object interactions from contact distributions,” in Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2014.

[21] S. Brandl, O. Kroemer, and J. Peters, “Generalizing manipulations between objects using warped
parameters,” in International Conference on Humanoid Robots (HUMANOIDS), 2014.

[22] O. Kroemer, H. van Hoof, G. Neumann, and J. Peters, “Learning to predict phases of manipulation
tasks as hidden states,” in International Conference on Robotics and Automation (ICRA), 2014.

[23] O. Kroemer, C. Daniel, G. Neumann, H. van Hoof, and J. Peters, “Towards learning hierarchical
skills for multi-phase manipulation tasks,” in International Conference on Robotics and Automation
(ICRA), 2015.

[24] O. Kroemer and J. Peters, “A non-parametric approach to dynamic programming,” in Advances in
Neural Information Processing Systems (NIPS), 2011.

[25] O. Kroemer, C. Lampert, and J. Peters, “Learning dynamic tactile sensing with robust vision-based
training,” IEEE Transactions on Robotics (T-Ro), no. 3, pp. 545–557, 2011.

[26] D. Katz, Y. Pyuro, and O. Brock, “Learning to manipulate articulated objects in unstructured en-
vironments using a grounded relational representation,” in Robotics: Science and Systems (R:SS),
2008.

[27] A. Bicchi and V. Kumar, “Robotic grasping and contact: a review,” in International Conference on
Robotics and Automation (ICRA), 2000.

[28] M. Mason and J. Salisbury, Robot Hands and the Mechanics of Manipulation. MIT Press, 1985.

[29] A. Saxena, J. Driemeyer, J. Kearns, C. Osondu, and A. Ng, Learning to Grasp Novel Objects Using
Vision, ser. Springer Tracts in Advanced Robotics. Springer, 2008, vol. 39, ch. 4, pp. 33–42.

[30] M. Salganicoff, L. H. Ungar, and R. Bajcsy, “Active learning for vision-based robot grasping,” Ma-
chine Learning, vol. 23, no. 2-3, pp. 251–278, 1996.

[31] A. Morales, E. Chinellato, A. H. Fagg, and A. P. Pobil, “An active learning approach for assessing
robot grasp reliability,” in Intelligent Robots and Systems (IRS), 2004.

[32] R. S. Sutton and A. G. Barto, Reinforcement Learning an Introduction. The MIT Press, 2000.

[33] R. E. Bellman, Adaptive control processes - A guided tour. Princeton University Press, 1961.

[34] J. A. Ijspeert, J. Nakanishi, and S. Schaal, “movement imitation with nonlinear dynamical systems
in humanoid robots,” in International Conference on Robotics and Automation (ICRA), 2002.

[35] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “learning movement primitives,” in International
Symposium on Robotics Research (ISRR), 2004.

[36] E. Oztop, N. S. Bradley, and M. A. Arbib, “Infant grasp learning: a computational model,” Experi-
mental Brain Research, pp. 480–503, 2004.

122

[37] E. Oztop and M. Kawato, Sensorimotor Control of Grasping: Physiology and Pathophysiology. Cam-
bridge University Press, 2009, ch. Models for the control of grasping.

[38] D. A. Rosenbaum, Human Motor Control. Academic Press, 1991.

[39] A. Morales, T. Asfour, P. Azad, S. Knoop, and R. Dillmann, “Integrated grasp planning and visual
object localization for a humanoid robot with five-fingered hands,” in International Conference on
Intelligent Robots and Systems (IROS), 2006.

[40] D. Kragic, A. T. Miller, and P. K. Allen, “Real-time tracking meets online grasp planning,” in Inter-
national Conference on Robotics and Automation (ICRA), 2001.

[41] R. Agrawal, “The continuum-armed bandit problem,” SIAM Journal of Control and Optimization,
vol. 33, pp. 1926–1951, 1995.

[42] P. Auer, R. Ortner, and C. Scepesvari, “Improved rates for the stochastic continuum-armed bandit
problem,” in Conference on Learning Theory (COLT), 2007.

[43] R. Kleinberg, “Nearly tight bounds for the continuum-armed bandit problem,” in Advances in
Neural Information Processing Systems (NIPS), 2004.

[44] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning. MIT Press, 2006.

[45] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space analysis,” in
Transactions on Pattern Analysis and Machine Intelligence, 2002.

[46] O. Teytaud, S. Gelly, and M. Sebag, “Anytime many-armed bandits,” in Conference sur
l’Apprentissage automatique, 2007.

[47] C. M. Bishop, Pattern Recognition and Machine Learning, 1st ed. Springer, 2007.

[48] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger, “Gaussian process bandits without regret:
An experimental design approach,” Computing Research Repository, 2009.

[49] R. Martinez-Cantin, “Active map learning for robots: Insights into statistical consistency,” Ph.D.
dissertation, University of Zaragoza, 2008.

[50] Z. Xue, A. Kasper, J. M. Zoellner, and R. Dillmann, “An automatic grasp planning system for service
robots,” in International Conference on Advanced Robotics, 2009.

[51] D. Bertram, J. Kuffner, R. Dillmann, and T. Asfour, “An integrated approach to inverse kinemat-
ics and path planning for redundant manipulators,” in International Conference on Robotics and
Automation (ICRA), 2006.

[52] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control. John Wiley and
Sons, 2005.

[53] M. Khatib, “Sensor-based motion control for mobile robots,” Ph.D. dissertation, LAAS-CNRS,
1996.

[54] K. Sabe, M. Fukuchi, J.-S. Gutmann, T. Ohashi, K. Kawamoto, and T. Yoshigahara, “Obstacle
avoidance and path planning for humanoid robots using stereo vision,” in International Conference
on Robotics and Automation (ICRA), 2004.

[55] S. Lenser and M. Veloso, “Visual sonar: Fast obstacle avoidance using monocular vision,” in Inter-
national Conference on Intelligent Robots and Systems (IROS), 2003.

123

[56] J. Tegin, S. Ekvall, D. Kragic, J. Wikander, and B. Iliev, “Demonstration based learning and control
for automatic grasping,” Intelligent Service Robotics, pp. 23–30, 2008.

[57] A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen, “Automatic grasp planning using shape
primitives,” in International Conference on Robotics and Automation (ICRA), 2003.

[58] D.-H. Park, H. Hoffmann, P. Pastor, and S. Schaal, “Movement reproduction and obstacle avoid-
ance with dynamic movement primitives and potential fields,” in International Conference on Hu-
manoid Robots (Humanoids), 2008.

[59] F. Bley, V. Schmirgel, and K.-F. Kraiss, “Mobile manipulation based on generic object knowledge,”
in Symposium on Robot and Human Interactive Communication, 2006.

[60] K. Hsiao, P. Nangeroni, M. Huber, A. Saxena, and A. Y. Ng, “Reactive grasping using optical prox-
imity sensors,” in International Conference on Robotics and Automation (ICRA), 2009.

[61] J. Steffan, R. Haschke, and H. Ritter, “Experience-based and tactile-driven dynamic grasp control,”
in Intelligent Robots and Systems (IRS), 2007.

[62] A. Ijspeert, J. Nakanishi, and S. Schaal, “learning attractor landscapes for learning motor primi-
tives,” in Advances in Neural Information Processing Systems (NIPS), 2003.

[63] N. Pugeault, Early Cognitive Vision: Feedback Mechanisms for the Disambiguation of Early Visual
Representation. Vdm Verlag Dr. Mueller, 2008.

[64] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cambridge University
Press, 2003.

[65] N. Krueger, M. Lappe, and F. Woergoetter, “Biologically motivated multi-modal processing of visual
primitives,” The Interdisciplinary Journal of Artificial Intelligence and the Simulation of Behaviour,
1(5), pp. 417–427, 2004.

[66] R. Detry, N. Pugeault, and J. Piater, “Probabilistic pose recovery using learned hierarchical object
models,” in International Cognitive Vision Workshop, 2008.

[67] M. Jeannerod, Sensorimotor Control of Grasping: Physiology and Pathophysiology. Cambridge Uni-
versity Press, 2009, ch. The study of hand movements during grasping. A historical perspective,
pp. 127–140.

[68] ——, Perspectives of Motor Behaviour and Its Neural Basis. S Karger AG, 1997, ch. Grasping
Objects: The Hand as a Pattern Recognition Device, pp. 19–32.

[69] E. Nadaraya, “On estimating regression,” Theory of Probability and its Applications, vol. 9, pp.
141–142, 1964.

[70] G. Watson, “Smooth regression analysis,” Sankhya, Series, vol. A, no. 26, pp. 359–372, 1964.

[71] R. Kleinberg, A. Slivkins, and E. Upfal, “Multi-armed bandits in metric spaces,” in ACM Symposium
on Theory of Computing, 2008.

[72] E. Snelson and Z. Ghahramani, “Sparse gaussian processes using pseudo-inputs,” in Advances in
Neural Information Processing Systems (NIPS), 2005.

[73] R. Deimel, C. Eppner, J. Alvarez-Ruiz, M. Maertens, and O. Brock, “Exploitation of environmen-
tal constraints in human and robotic grasping,” in International Symposium on Robotics Research
(ISRR), 2013.

124

[74] A. Saxena, J. Driemeyer, and A. Y. Ng, “Robotic grasping of novel objects using vision,” Interna-
tional Journal of Robotics Research (IJRR), 2008.

[75] J. Bohg, M. Johnson-Roberson, B. León, J. Felip, X. Gratal, N. Bergström, D. Kragic, and
A. Morales, “Mind the gap - robotic grasping under incomplete observation,” in International
Conference on Robotics and Automation (ICRA), 2011.

[76] O. Kroemer, E. Ugur, E. Oztop, and J. Peters, “A kernel-based approach to direct action perception,”
in International Conference on Robotics and Automation (ICRA), 2012.

[77] Y. Jiang, M. Lim, C. Zheng, and A. Saxena, “Learning to place new objects in a scene,” International
Journal of Robotic Research (IJRR), vol. 31, no. 9, pp. 1021–1043, 2012.

[78] M. S. Kopicki, S. Zurek, R. Stolkin, T. Morwald, and J. L. Wyatt, “Learning to predict how rigid ob-
jects behave under simple manipulation.” in International Conference on Robotics and Automation
(ICRA), 2011.

[79] K. Sjoo and P. Jensfelt, “Learning spatial relations from functional simulation,” in International
Conference on Intelligent Robot Systems (IROS), 2011.

[80] T. Jebara and R. Kondor, “Bhattacharyya and expected likelihood kernels,” in Conference on Learn-
ing Theory (COLT), ser. Lecture Notes in Computer Science, 2003.

[81] J. J. Gibson, The Ecological Approach To Visual Perception. Lawrence Erlbaum Associates, 1986.

[82] E. Sahin, M. Cakmak, M. R. Dogar, E. Ugur, and G. Ucoluk, “To Afford or Not to Afford: A New
Formalization of Affordances Toward Affordance-Based Robot Control,” Adaptive Behavior, no. 4,
pp. 447–472, 2007.

[83] H. Koppula and A. Saxena, “Anticipating human activities using object affordances for reactive
robotic response,” in Robotics: Science and Systems (R:SS), 2013.

[84] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “Modeling affordances using
bayesian networks,” in International Conference on Intelligent Robot Systems (IROS), 2007.

[85] A. Herzog, P. Pastor, M. Kalakrishnan, L. Righetti, J. Bohg, T. Asfour, and S. Schaal, “Learning of
grasp selection based on shape-templates,” Autonomous Robots, 2013.

[86] R. Detry, C. H. Ek, M. Madry, J. Piater, and D. Kragic, “Generalizing grasps across partly similar
objects,” in International Conference on Robotics and Automation (ICRA), 2012.

[87] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic grasps,” 2013.

[88] Y. Jiang, S. Moseson, and A. Saxena, “Efficient grasping from rgbd images: Learning using a new
rectangle representation,” 2011.

[89] B. Rosman and S. Ramamoorthy, “Learning spatial relationships between objects.” International
Journal of Robotic Research, vol. 30, no. 11, pp. 1328–1342, 2011.

[90] J. Kulick, T. Lang, M. Toussaint, and M. Lopes, “Active Learning for Teaching a Robot Grounded
Relational Symbols,” in International Joint Conference on Artificial Intelligence (IJCAI), 2013.

[91] Y. Bekiroglu, R. Detry, and D. Kragic, “Learning tactile characterizations of object- and pose-
specific grasps,” in International Conference on Intelligent Robots and Systems (IROS), 2011.

[92] H. Dang and P. K. Allen, “Learning grasp stability.” in International Conference on Robotics and
Automation (ICRA), 2012.

125

[93] T. Hermans, F. Li, J. M. Rehg, and A. F. Bobick, “Learning contact locations for pushing and
orienting unknown objects,” in International Conference on Humanoid Robots (Humanoids), 2013.

[94] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in International Conference on
Robotics and Automation (ICRA), 2011.

[95] T. Jebara, R. Kondor, and A. Howard, “Probability product kernels,” Journal of Machine Learning
Research (JMLR), vol. 5, pp. 819–844, 2004.

[96] R. Jenssen, J. C. Principe, D. Erdogmus, and T. Eltoft, “The cauchy-schwarz divergence and parzen
windowing: Connections to graph theory and mercer kernels,” Journal of the Franklin Institute,
vol. 343, no. 6, pp. 614–629, 2006.

[97] C. Eppner and O. Brock, “Grasping unknown objects by exploiting shape adaptability and en-
vironmental constraints,” in International Conference on Intelligent Robots and Systems (IROS),
2013.

[98] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond, 1st ed. The MIT Press, 2001.

[99] Z. Chen, N. Y. Lii, T. Wimboeck, S. Fan, M. Jin, C. Borst, and H. Liu, “Experimental study on
impedance control for the five-finger dexterous robot hand dlr-hit ii.” in International Conference
on Intelligent Robots and Systems (IROS), 2010.

[100] O. Kroemer, H. Ben Amor, M. Ewerton, and J. Peters, “Point cloud completion using extrusions,”
in the International Conference on Humanoid Robots (Humanoids), 2012.

[101] A. Boularias, O. Kroemer, and J. Peters, “Learning robot grasping from 3d images with markov
random fields,” in International Conference on Intelligent Robot Systems (IROS), 2011.

[102] G. Bartels, I. Kresse, and M. Beetz, “Constraint-based movement representation grounded in geo-
metric features,” in International Conference on Humanoid Robots (Humanoids), 2013.

[103] M. Tenorth, S. Profanter, F. Balint-Benczedi, and M. Beetz, “Decomposing cad models of objects
of daily use and reasoning about their functional parts,” in International Conference on Intelligent
Robots and Systems (IROS), 2013.

[104] H. Ben Amor, O. Kroemer, U. Hillenbrand, G. Neumann, and J. Peters, “Generalization of human
grasping for multi-fingered robot hands,” in International Conference on Intelligent Robots and
Systems (IROS), 2012.

[105] R. Jäkel, “Learning of generalized manipulation strategies in service robotics,” Ph.D. dissertation,
Institut für Anthropomatik, Karlsruhe, 2013.

[106] R. Jäkel, S. R. Schmidt-Rohr, S. W. Rühl, A. Kasper, Z. Xue, and R. Dillmann, “Learning of planning
models for dexterous manipulation based on human demonstrations,” International Journal of
Social Robotics, vol. 4, no. 4, pp. 437–448, 2012.

[107] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and generalization of motor skills by
learning from demonstration,” in International Conference on Robotics and Automation (ICRA),
2009.

[108] M. Muehlig, M. Gienger, S. Hellbach, J. J. Steil, and C. Goerick, “Task-level imitation learning
using variance-based movement optimization,” in International Conference on Robotics and Au-
tomation (ICRA), 2009.

126

[109] L. Rozo, P. Jimenez, and C. Torras, “Force-based robot learning of pouring skills using parametric
hidden markov models,” in Robot Motion and Control, 2013, pp. 227–232.

[110] M. Tamosiunaite, B. Nemec, A. Ude, and F. Wörgötter, “Learning to pour with a robot arm combin-
ing goal and shape learning for dynamic movement primitives,” Robotics and Autonomous Systems,
2011.

[111] A. W. F. Lee, D. Dobkin, W. Sweldens, and P. Schröder, “Multiresolution mesh morphing,” in Con-
ference on Computer Graphics and Interactive Techniques, 1999.

[112] F. Steinke, B. Schölkopf, and V. Blanz, “Learning dense 3d correspondence.” in Advances in Neural
Information Processing Systems (NIPS). MIT Press, 2006.

[113] U. Hillenbrand, “Non-parametric 3d shape warping,” in International Conference on Pattern Recog-
nition, 2010.

[114] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Probabilistic movement primitives,” in Ad-
vances in Neural Information Processing Systems (NIPS), 2013.

[115] S. Dragiev, M. Toussaint, and M. Gienger, “Gaussian process implicit surfaces for shape estimation
and grasping,” in International Conference on Robotics and Automation (ICRA), 2011.

[116] (2013, October) Bullet physics library. [Online]. Available: bulletphysics.org

[117] (2013, October) Bullet-fluids project. [Online]. Available: https://github.com/rtrius/Bullet-
FLUIDS/

[118] P. Pastor, M. Kalakrishnan, L. Righetti, and S. Schaal, “Towards associative skill memories,” in
International Conference on Humanoid Robots (Humanoids), 2012.

[119] S. Manschitz, J. Kober, M. Gienger, and J. Peters, “Learning to sequence movement primitives
from demonstrations,” in International Conference on Intelligent Robots and Systems (IROS), 2014.

[120] F. Meier, E. Theodorou, F. Stulp, and S. Schaal, “Movement segmentation using a primitive library,”
in International Conference on Intelligent Robots and Systems (IROS), 2011.

[121] A. L. Pais, K. Umezawa, Y. Nakamura, and A. Billard, “Learning robot skills through motion seg-
mentation and constraints extraction,” 2013.

[122] L. Rozo, P. Jiménez, and C. Torras, “A robot learning from demonstration framework to perform
force-based manipulation tasks,” Intelligent Service Robotics, vol. 6, no. 1, pp. 33–51, 2013.

[123] M. Wächter, S. Schulz, T. Asfour, E. Aksoy, F. Wörgötter, and R. Dillmann, “Action sequence repro-
duction based on automatic segmentation and object-action complexes,” in International Confer-
ence on Humanoid Robots (Humanoids), 2013.

[124] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto, “Robot learning from demonstration by
constructing skill trees,” International Journal of Robotics Research, vol. 31, no. 3, pp. 360–375,
2012.

[125] F. Stulp, E. Theodorou, and S. Schaal, “Reinforcement learning with sequences of motion primi-
tives for robust manipulation,” Transactions on Robotics, vol. 28, no. 6, pp. 1360–1370, 2012.

[126] C. Daniel, G. Neumann, O. Kroemer, and J. Peters, “Learning sequential motor tasks,” in Interna-
tional Conference on Robotics and Automation (ICRA), 2013.

127

[127] J. Barry, L. P. Kaelbling, and T. Lozano-Pérez, “A hierarchical approach to manipulation with diverse
actions,” in International Conference on Robotics and Automation (ICRA), 2013.

[128] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical planning in the now,” in International Conference
on Robotics and Automation (ICRA), 2011.

[129] K. Hauser and V. Ng-Thow-Hing, “Randomized multi-modal motion planning for a humanoid robot
manipulation task.” International Journal of Robotic Research, vol. 30, no. 6, pp. 678–698, 2011.

[130] C. K. Tham, “Reinforcement learning of multiple tasks using a hierarchical CMAC architecture,”
Robotics and Autonomous Systems, vol. 15, no. 4, pp. 247–274, 1995.

[131] O. Fuentes, R. Rao, and M. Van Wie, “Hierarchical learning of reactive behaviors in an autonomous
mobile robot,” in International Conference on Systems, Man and Cybernetics, 1995.

[132] J. Kober and J. Peters, “Learning elementary movements jointly with a higher level task,” in
International Conference on Intelligent Robots and Systems (IROS), 2011.

[133] V. Soni and S. Singh, “Reinforcement learning of hierarchical skills on the sony aibo robot,” in
International Conference on Development and Learning (ICDL), 2006.

[134] S. Hart and R. Grupen, “Learning generalizable control programs,” Transactions on Autonomous
Mental Development, vol. 3, no. 3, pp. 216–231, 2011.

[135] J. Romano, K. Hsiao, G. Niemeyer, S. Chitta, and K. J. Kuchenbecker, “Human-inspired robotic
grasp control with tactile sensing,” IEEE Transactions on Robotics, vol. 27, pp. 1067–1079, 2011.

[136] T. Debus, P. E. Dupont, and R. D. Howe, “Contact state estimation using multiple model estimation
and hidden markov models.” in International Symposium on Experimental Robotics (ISER), ser.
Springer Tracts in Advanced Robotics, vol. 5. Springer, 2002.

[137] M. Koval, N. Pollard, and S. Srinivasa, “Pre- and post-contact policy decomposition for planar
contact manipulation under uncertainty,” in Robotics: Science and Systems (R:SS), 2014.

[138] S. Levine, N. Wagener, and P. Abbeel, “Learning contact-rich manipulation skills with guided policy
search,” in International Conference on Robotics and Automation (ICRA), 2015.

[139] S. Andrews and P. Kry, “Goal directed multi-finger manipulation: Control policies and analysis,”
Computers and Graphics, vol. 37, no. 7, pp. 830 – 839, 2013.

[140] J. Mugan and B. Kuipers, “Autonomous learning of high-level states and actions in continuous
environments,” IEEE Transactions on Autonomous Mental Development (TAMD), vol. 4, no. 1, pp.
70–86, 2012.

[141] D. Barber, “Expectation correction for smoothed inference in switching linear dynamical systems,”
Journal Machine Learning Research, vol. 7, pp. 2515–2540, 2006.

[142] L. E. Baum, “An equality and associated maximization technique in statistical estimation for prob-
abilistic functions of markov processes,” Inequalities, vol. 3, pp. 1–8, 1972.

[143] H. Akaike, “A new look at the statistical model identification,” IEEE Transactions on Automatic
Control, vol. 19, no. 6, pp. 716–723, 1974.

[144] G. Schwarz, “Estimating the dimension of a model,” The Annals of Statistics, pp. 461–464, 1978.

[145] Y. Chebotar, O. Kroemer, and J. Peters, “Learning robot tactile sensing for object manipulation,” in
International Conference on Intelligent Robots and Systems (IROS), 2014.

128

[146] F. R. K. Chung, Spectral Graph Theory. American Mathematical Society, 1997.

[147] J. Peters, K. Muelling, and Y. Altun, “Relative entropy policy search,” in AAAI, 2010.

[148] M. P. Deisenroth, G. Neumann, and J. Peters, “A survey on policy search for robotics,” Foundations
and Trends in Robotics, pp. 388–403, 2013.

[149] D. Belter, M. Kopicki, S. Zurek, and J. Wyatt, “Kinematically optimised predictions of object mo-
tion,” in International Conference on Intelligent Robot Systems (IROS), 2014.

[150] S. Otte, J. Kulick, M. Toussaint, and O. Brock, “Entropy based strategies for physical exploration
of the environment’s degrees of freedom,” 2014.

[151] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vol. II. Athena Scientific, 2007.

[152] H. Maei, C. Szepesvari, S. Bhatnagar, D. Precup, D. Silver, and R. Sutton, “Convergent temporal-
difference learning with arbitrary smooth function approximation,” in Advances in Neural Infor-
mation Processing Systems (NIPS), 2009.

[153] R. Bellman, “Bottleneck problems and dynamic programming,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 39, no. 9, pp. 947–951, 1953.

[154] R. Kalman, “Contributions to the theory of optimal control,” 1960.

[155] R. Munos, “Geometric variance reduction in markov chains: Application to value function and
gradient estimation,” Journal of Machine Learning Research, vol. 7, pp. 413–427, 2006.

[156] R. Schoknecht, “Optimality of reinforcement learning algorithms with linear function approxima-
tion,” in Advances in Neural Information Processing Systems (NIPS), 2002.

[157] L. Baird, “Residual algorithms: Reinforcement learning with function approximation,” in Interna-
tional Conference on Machine Learning (ICML), 1995.

[158] Christopher G. Atkeson and Juan C. Santamaria, “A Comparison of Direct and Model-Based Rein-
forcement Learning,” in International Conference on Robotics and Automation (ICRA), 1997.

[159] H. Bersini and V. Gorrini, “Three connectionist implementations of dynamic programming for op-
timal control: A preliminary comparative analysis,” in International Workshop on Neural Networks
for Identification, Control, Robotics, and Signal/Image Processing (NICROSP), 1996.

[160] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming. Athena Scientific, 1996.

[161] M. Rosenblatt, “Remarks on Some Nonparametric Estimates of a Density Function,” The Annals of
Mathematical Statistics, vol. 27, no. 3, pp. 832–837, Sep. 1956.

[162] E. Parzen, “On Estimation of a Probability Density Function and Mode,” The Annals of Mathemat-
ical Statistics, vol. 33, no. 3, pp. 1065–1076, 1962.

[163] G. S. Kimeldorf and G. Wahba, “Some results on Tchebycheffian spline functions,” Journal of
Mathematical Analysis and Applications, vol. 33, no. 1, pp. 82–95, 1971.

[164] R. Munos, “Error bounds for approximate policy iteration,” in International Conference on Machine
Learning (ICML), 2003.

[165] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind. Cambridge
University Press, 1997.

129

[166] D. Wied and R. Weissbach, “Consistency of the kernel density estimator: a survey,” Statistical
Papers, pp. 1–21, 2010.

[167] Yaakov Engel, Shie Mannor, and Ron Meir, “Reinforcement learning with Gaussian processes,” in
International Conference on Machine Learning (ICML), 2005.

[168] X. Xu, T. Xie, D. Hu, and X. Lu, “Kernel least-squares temporal difference learning,” International
Journal of Information Technology, vol. 11, pp. 54–63, 1997.

[169] J. Z. Kolter and A. Y. Ng, “Regularization and feature selection in least-squares temporal difference
learning,” in International Conference on Machine Learning (ICML). ACM, 2009.

[170] N. K. Jong and P. Stone, “Model-based function approximation for reinforcement learning,” in
International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2007.

[171] D. Ormoneit and S. Sen, “Kernel-Based reinforcement learning,” Machine Learning, vol. 49, no. 2,
pp. 161–178, Nov. 2002.

[172] B. W. Silverman, Density estimation: for statistics and data analysis, Chapman and Hall, Eds.,
London, 1986.

[173] J. Hawkins and S. Blakeslee, On Intelligence. Times Books, October 2004.

[174] S. J. Lederman and R. I. Klatzky, Multisensory Texture Perception. The MIT Press, 2004.

[175] S. Lacey, C. Campbell, and K. Sathian, “Vision and touch: Multiple or multisensory representations
of objects?” Perception, vol. 36, no. 10, pp. 1513 – 1521, 2007.

[176] F. N. Newell, M. O. Ernst, B. S. Tjan, and H. H. Bülthoff, “Viewpoint dependence in visual and
haptic object recognition,” Psychological Science, vol. 12, pp. 37–42, 2001.

[177] B. S. Eberman and J. K. S. Jr., “Application of change detection to dynamic control contact sens-
ing,” International Journal Robotics Research, vol. 13, no. 5, pp. 369–394, 1994.

[178] J. S. Son, E. A. Monteverde, and R. D. Howe, “A tactile sensor for localizing transient events in
manipulation,” in International Conference on Robotics and Automation (ICRA), 1994.

[179] G. Heidemann and M. Schöpfer, “Dynamic tactile sensing for object identification,” in International
Conference on Robotics and Automation (ICRA), 2004.

[180] D. Kragic and H. I. Christensen, “Biologically motivated visual servoing and grasping of real world
tasks,” in International Conference on Intelligent Robot Systems (IROS), 2003.

[181] R. S. Dahiya, G. Metta, M. Valle, and G. Sandini, “Tactile sensing: from humans to humanoids,”
IEEE Transactions on Robotics, vol. 26, no. 1, pp. 1–20, 2010.

[182] H. P. Saal, S. Vijayakumar, and R. S. Johansson, “Information about complex fingertip parameters
in individual human tactile afferent neurons,” Journal of Neuroscience, vol. 29, no. 25, pp. 8022–
8031, 2009.

[183] D. Johnston, P. Zhang, J. Hollerbach, Z. Hollerbach, and S. Jacobsen, “A full tactile sensing suite
for dextrous robot hands and use in contact force control,” in International Conference on Robotics
and Automation (ICRA), 1996.

[184] R. D. Howe and M. R. Cutkosky, “Sensing skin acceleration for slip and texture perception,” in
International Conference on Robotics and Automation (ICRA), 1989.

130

[185] K. J. Kuchenbecker, J. Fiene, and G. Niemeyer, “Improving contact realism through event-based
haptic feedback,” Transactions on Visualization and Computer Graphics, pp. 219–230, 2006.

[186] L. R. Tucker, “An inter-battery method of factor analysis,” Psychometrika, vol. 23, no. 2, 1958.

[187] B. Sofman, E. Lin, J. A. D. Bagnell, J. Cole, N. Vandapel, and A. T. Stentz, “Improving robot
navigation through self-supervised online learning,” Journal of Field Robotics, vol. 23, no. 1, 2006.

[188] D. Kim, J. Sun, S. Min, O. James, M. Rehg, and A. F. Bobick, “Traversability classification using
unsupervised on-line visual learning for outdoor robot navigation,” in International Conference on
Robotics and Automation (ICRA), 2006.

[189] C. H. Lampert and O. Kroemer, “Weakly-paired maximum covariance analysis for multimodal
dimensionality reduction and transfer learning,” in European Conference on Computer Vision, 2010.

[190] K. Rose, “Deterministic annealing for clustering, compression, classification, regression, and re-
lated optimization problems,” in Proceedings of the IEEE, 1998, pp. 2210–2239.

[191] K. Pearson, “On lines and planes of closest fit to systems of points in space,” Philosophical Magazine
Series 6., vol. 2(11), no. 11, pp. 559–572, 1901.

[192] B. Schölkopf, A. J. Smola, and K.-R. Müller, “Kernel principal component analysis,” in International
Conference on Artificial Neural Networks (ICANN), 1997.

[193] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,”
Science, vol. 313(5786), no. 5786, p. 504, 2006.

[194] T. Hofmann, “Probabilistic latent semantic indexing,” in ACM SIGIR Conference on Research and
development in information retrieval, 1999.

[195] J. B. Tenenbaum, V. Silva, and J. C. Langford, “A global geometric framework for nonlinear di-
mensionality reduction,” Science, vol. 290(5500), no. 5500, p. 2319, 2000.

[196] R. A. Fisher, “The use of multiple measurements in taxomic problems,” Ann. Eugenics, vol. 7, pp.
179–188, 1936.

[197] F. R. Bach and M. I. Jordan, “A probabilistic interpretation of canonical correlation analysis,” Tech.
Rep. 688, Department of Statistics, University of California, Berkeley, 2005.

[198] H. Hotelling, “Relation between two sets of variates,” Biometrika, vol. 28, pp. 322–377, 1936.

[199] H. Wold, “Estimation of principal components and related models by iterative least squares,”
Multivariate Analysis, vol. 1, pp. 391–420, 1966.

[200] G. Baudat and F. Anouar, “Generalized discriminant analysis using a kernel approach,” Neural
computation, vol. 12(10), no. 10, pp. 2385–2404, 2000.

[201] R. Rosipal and L. J. Trejo, “Kernel partial least squares regression in reproducing kernel Hilbert
space,” Journal Machine Learning Reasearch, vol. 2, pp. 97–123, 2002.

[202] D. Hardoon, S. Szedmak, and J. Shawe-Taylor, “Canonical correlation analysis: an overview with
application to learning methods,” Neural Computation, vol. 16(12), no. 12, pp. 2639–2664, 2004.

[203] R. Lienhart, S. Romberg, and E. Hörster, “Multilayer pLSA for multimodal image retrieval,” in
International Conference on Image Video Retreival, 2009.

[204] M. Blaschko and A. Gretton, “Learning taxonomies by dependence maximization,” Advances in
Neural Information Processing Systems (NIPS), 2009.

131

[205] A. Angelova, L. Matthies, D. Helmick, and P. Perona, “Dimensionality reduction using automatic
supervision for vision-based terrain learning,” in Robotics: Science and Systems (R:SS), 2007.

[206] L. Matthies, M. Turmon, A. Howard, A. A. B. Tang, E. Mjolsness, J. Mulligan, and G. Grudic,
“Learning for autonomous navigation: Extrapolating from underfoot to the far field,” in NIPS
Workshop Machine Learning Based Robotics in Unstructured Environments, 2005.

[207] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala, “Latent semantic indexing: A
probabilistic analysis,” Computer and System Sciences, vol. 61(2), no. 2, pp. 217–235, 2000.

[208] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval Research Logistics Quar-
terly, vol. 2, 1955.

[209] R. Jonker and A. Volgenant, “A shortest augmenting path algorithm for dense and sparse linear
assignment problems,” Computing, vol. 38(4), no. 4, pp. 325–340, 1987.

[210] J. MacQueen, “Some methods for classification and analysis of multivariate observations,” 5th
Berkeley Symposium on Mathematics, Statistics, and Probability, 1967.

[211] G. H. Golub and C. F. Van Loan, Matrix computations. Johns Hopkins Univ. Press, 1996.

[212] M. Fend, “Whisker-based texture discrimination on a mobile robot,” in European Conference on
Artificial Life (ECAL), 2005.

[213] S. N’Guyen, P. Pirim, and J.-A. Meyer, “Tactile texture discrimination in the robot-rat psikharpax,”
in International Conference on Bio-Inspired Systems and Signal Processing, 2010.

[214] M. Hollins, A. Fox, and C. Bishop, “Imposed vibration influences perceived tactile smoothness.”
Perception, vol. 29, no. 12, pp. 1455–65, 2000.

[215] J. Zhang, S. Lazebnik, and C. Schmid, “Local features and kernels for classification of texture and
object categories: a comprehensive study,” International Journal of Computer Vision, vol. 73, 2007.

[216] A. Schneider, J. Sturm, C. Stachniss, M. Reisert, H. Burkhardt, and W. Burgard, “Object identifi-
cation with tactile sensors using bag-of-features,” in International Conference on Intelligent Robot
Systems (IROS), 2009.

[217] B. Logan, “Mel frequency cepstral coefficients for music modeling,” in International Symposium
on Music Information Retrieval, 2000.

[218] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rotation invariant tex-
ture classification with local binary patterns,” Pattern Analysis and Machine Intelligence, vol. 24(7),
no. 7, pp. 971–987, 2002.

[219] D. Pelleg and A. Moore, “X-means: Extending K-means with efficient estimation of the number of
clusters,” in International Conference on Machine Learning (ICML), 2000, pp. 727–734.

[220] S. J. Pan, J. T. Kwok, and Q. Yang, “Transfer learning via dimensionality reduction,” in AAAI, 2008.

[221] A. Rosenberg and J. Hirschberg, “V-measure: A conditional entropy-based external cluster evalu-
ation measure,” in Conference on Empirical Methods in Natural Language Processing, 2007.

[222] C. E. Rasmussen and M. Kuss, “Gaussian processes in reinforcement learning,” in Advances in
Neural Information Processing Systems (NIPS), 2004.

[223] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-End Training of Deep Visuomotor Policies,”
ArXiv e-prints, Apr. 2015.

132

[224] S. Lange, M. A. Riedmiller, and A. Voigtländer, “Autonomous reinforcement learning on raw vi-
sual input data in a real world application,” in International Joint Conference on Neural Networks
(IJCNN), 2012.

[225] B. Boots, A. Byravan, and D. Fox, “Learning predictive models of a depth camera and manipulator
from raw execution traces,” in International Conference in Robotics and Automation (ICRA), 2014.

[226] H. S. Koppula, A. Anand, T. Joachims, and A. Saxena, “Semantic labeling of 3d point clouds for
indoor scenes,” in Advances in Neural Information Processing Systems (NIPS), 2011.

[227] K. Lai, L. Bo, and D. Fox, “Unsupervised feature learning for 3d scene labeling,” in International
Conference on Robotics and Automation (ICRA), 2014.

[228] D. Kraft, N. Pugeault, E. Baeski, M. Popovic, D. Kragic, S. Kalkan, F. Woergoetter, and N. Krueger,
“Birth of the object: Detection of objectness and extraction of object shape through object action
complexes,” International Journal of Humanoid Robotics, pp. 247–265, 2008.

[229] H. van Hoof, O. Kroemer, and J. Peters, “Probabilistic segmentation and targeted exploration of
objects in cluttered environments,” IEEE Transactions on Robotics, no. 5, pp. 1198–1209, 2014.

[230] K. Hausman, S. Niekum, S. Osentoski, and G. S. Sukhatme, “Active articulation model estimation
through interactive perception,” in International Conference on Robotics and Automation (ICRA),
2015.

[231] J. Kulick, S. Otte, and M. Toussaint, “Active exploration of joint dependency structures,” in Inter-
national Conference on Robotics and Automation (ICRA), 2015.

[232] K. Hausman, F. Balint-Benczedi, D. Pangercic, Z.-C. Marton, R. Ueda, K. Okada, and M. Beetz,
“Tracking-based interactive segmentation of textureless objects,” in International Conference on
Robotics and Automation (ICRA), 2013.

[233] A. Stoytchev, “Some basic principles of developmental robotics,” Transactions on Autonomous Men-
tal Development, vol. 1, no. 2, pp. 122–130, 2009.

[234] J. Sung, S. H. Jin, and A. Saxena, “Robobarista: Object part-based transfer of manipulation tra-
jectories from crowd-sourcing in 3d pointclouds,” Cornell University, Tech. Rep., 2015.

[235] H. Dang and P. K. Allen, “Robot learning of everyday object manipulations via human demonstra-
tion,” in International Conference on Intelligent Robots and Systems (IROS), 2010.

[236] M. Gupta and G. S. Sukhatme, “Using manipulation primitives for brick sorting in clutter,” in
International Conference on Robotics and Automation (ICRA), 2012.

[237] A. Kupcsik, M. Deisenroth, J. Peters, and G. Neumann, “Data-efficient generalization of robot skills
with contextual policy search,” in AAAI, 2013.

[238] N. Abdo, H. Kretzschmar, L. Spinello, and C. Stachniss, “Learning manipulation actions from a
few demonstrations,” in International Conference on Robotics and Automation (ICRA), 2013.

[239] M. Madry, L. Bo, D. Kragic, and D. Fox, “ST-HMP: Unsupervised Spatio-Temporal Feature Learning
for Tactile Data,” in International Conference on Robotics and Automation (ICRA), 2014.

[240] B. Bischoff, D. Nguyen-Tuong, A. van Hoof, H. McHutchon, C. Rasmussen, A. Knoll, J. Peters,
and M. Deisenroth, “Policy search for learning robot control using sparse data,” in International
Conference on Robotics and Automation (ICRA), 2014.

133

[241] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “Learning object affordances: From
sensory motor maps to imitation,” Transactions on Robotics, 2008.

[242] S. Griffith, J. Sinapov, V. Sukhoy, and A. Stoytchev, “A behavior-grounded approach to forming
object categories: Separating containers from noncontainers,” IEEE Transactions on Autonomous
Mental Development, vol. 4, no. 1, pp. 54–69, 2012.

[243] E. Ugur and J. Piater, “Bottom-up learning of object categories, action effects and logical rules:
From continuous manipulative exploration to symbolic planning,” in International Conference on
Robotics and Automation (ICRA), 2015.

[244] C. Daniel, M. Viering, J. Metz, O. Kroemer, and J. Peters, “Active reward learning,” in Robotics:
Science and Systems (R:SS), 2014.

[245] J. Kober, D. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,” International
Journal of Robotics Research, no. 11, pp. 1238–1274, 2013.

[246] P. Abbeel, A. Coates, and A. Y. Ng, “Autonomous helicopter aerobatics through apprenticeship
learning,” International Journal Robotics Research, vol. 29, no. 13, pp. 1608–1639, 2010.

[247] A. Boularias, O. Kroemer, and J. Peters, “Structured apprenticeship learning,” in European Confer-
ence on Machine Learning (ECML), 2012.

[248] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich, “Maximum margin planning,” in International
Conference on Machine Learning (ICML), 2006.

[249] B. D. Ziebart, A. Maas, J. A. D. Bagnell, and A. Dey, “Maximum entropy inverse reinforcement
learning,” in AAAI, 2008.

[250] S. Calinon, F. Guenter, and A. Billard, “On learning, representing, and generalizing a task in a
humanoid robot,” Transactions on Systems, Man, and Cybernetics, vol. 37, pp. 286–298, 2007.

[251] J. Felip, J. Laaksonen, A. Morales, and V. Kyrki, “Manipulation primitives: A paradigm for ab-
straction and execution of grasping and manipulation tasks.” Robotics and Autonomous Systems,
vol. 61, no. 3, pp. 283–296, 2013.

[252] M. Ciocarlie and P. Allen, “Hand posture subspaces for dexterous robotic grasping,” The Interna-
tional Journal of Robotics Research, vol. 28, pp. 851–867, 2009.

[253] E. Rueckert and A. d’Avella, “Learned parametrized dynamic movement primitives with shared
synergies for controlling robotic and musculoskeletal systems,” Frontiers in Computational Neuro-
science, no. 138, 2013.

[254] M. Cakmak, C. Chao, and A. Thomaz, “Designing interactions for robot active learners,” IEEE
Transactions on Autonomous Mental Development, vol. 2, no. 2, pp. 108–118, 2010.

[255] K. Muelling, J. Kober, O. Kroemer, and J. Peters, “Learning to select and generalize striking move-
ments in robot table tennis,” International Journal of Robotics Research, no. 3, pp. 263–279, 2013.

[256] D. Kulic, W. Takano, and Y. Nakamura, “Online segmentation and clustering from continuous
observation of whole body motions,” Transactions on Robotics, pp. 1158–1166, 2009.

[257] N. Chavan-Dafle, A. Rodriguez, R. Paolini, B. Tang, S. Srinivasa, M. Erdmann, M. T. Mason,
I. Lundberg, H. Staab, and T. Fuhlbrigge, “Extrinsic dexterity: In-hand manipulation with ex-
ternal forces,” in International Conference on Robotics and Automation (ICRA), 2014.

[258] A. M. Dollar and R. D. Howe, “The highly adaptive sdm hand: Design and performance evalua-
tion,” The International Journal of Robotics Research, 2010.

134

Curriculum Vitae - Oliver Kroemer
Technische Universität Darmstadt Tel: +49 6151 16 5669
Hochschulstr. 10 Email: kroemer@ias.tu-darmstadt.de
64289 Darmstadt, Germany http://robot-learning.de/Member/OliverKroemer

Current Position

Ph.D. Student, Technische Universität Darmstadt
Thesis Topic: Machine Learning for Robot Grasping and Manipulation
Supervisor: Prof. Dr. Jan Peters
Department: Intelligent Autonomous Systems

Sept 2011 -

Education

Ph.D. Student with Scholarship, Max Planck Institute for Intelligent Systems
Thesis Topic: Machine Learning for Robot Grasping and Manipulation
Supervisor: Dr. Jan Peters
Department: Empirical Inference and Machine Learning (Prof. Bernhard Schölkopf)

Jan 2009 - Aug 2011

M.Eng. Instrumentation and Control with Merit, Cambridge University
Thesis Topic: Design and Implementation of a One DoF Robotic Elbow Orthosis
Supervisor: Prof. Daniel Wolpert

Oct 2004 - June 2008

B.A. Engineering with First (I), Cambridge University
Oct 2004 - June 2008

International Baccalaureate, Southbank International School London
Sept 2002 - June 2004

Languages:
English (Native), German (Nearly Mother Tongue), Norwegian (Advanced), French (Basic)

Internships

Advanced Telecommunications Research (ATR), Japan, Learning Affordances, June to Aug 2011

Max Planck Institute for Biological Cybernetics, System Integration of a Robot Hand-Eye System,
July to Dec 2008

Oceaneering Norway, Electronics and MIMIC Simulation, July and Aug 2007

Cambridge University Engineering Department, Sensorimotor Control Group, Polhemus Motion
Tracking System and EEG, July and Aug 2006

135

Honors and Awards

Georges Giralt Ph.D. Award (best 2014 robotics Ph.D. thesis in Europe) Finalist, 2015
ICRA Best Cognitive Robotics Paper Finalist, 2014
Robotics and Automation Society ICRA Student Travel Grant, 2014
JSPS Summer Research Fellowship Award, 2011
ICINCO Best Paper Award, 2010
Best Practice in Robotics Research Camp Scholarship, 2010
Worshipful Company of Scientific Instrument Makers Award, 2008
Group F Thesis Presentation Award, 2008
Trinity College Tripos Awards, 2005, 2006, 2007, 2008
Trinity College Junior Scholar, 2005, and Senior Scholar, 2006
Undergraduate European Student Scholarship Trinity College, 2004
Undergraduate Scholarship from the Institution of Mechanical Engineers, UK, 2004
European Council of International Schools Award for International Understanding, 2004

Teaching Experience

Robot Learning Lectures, Teaching Assistant, TU Darmstadt, (Winter 2011, Winter 2012)

Machine Learning I Lectures, Teaching Assistant, TU Darmstadt, (Summer 2012)

Robot Learning Project Classes, Teaching Assistant, TU Darmstadt,
(Winter 2011, Winter 2012, Summer 2013, Summer 2014)

Student Supervision

Yevgen Chebotar (Master), Learning Robot Tactile Sensing for Object Manipulation,
Supervisors: Oliver Kroemer and Prof. Jan Peters, 2014, Publication: Chebotar et al.; IROS, 2014
Obtained fully funded Ph.D. position offers based on this thesis from University of Washington and USC.

Sascha Brandl (Bachelor), Learning to Pour Using Warped Features,
Supervisors: Oliver Kroemer and Prof. Jan Peters, 2014, Publication: Brandl et al.; Humanoids, 2014

Hong Linh Thai (Bachelor), Laplacian Mesh Editing for Interaction Learning
Supervisors: Heni Ben Amor, Oliver Kroemer, and Prof. Jan Peters, 2014

External Funding Acquired with My Assistance

EU STREP: Tactile Manipulation (Tacman), TU Darmstadt: e770,522

FP7-ICT-2013-10 Grant #610967,
Made key contributions for winning this grant for the Technische Universitaet Darmstadt

EU STREP: Semi-Autonomous 3rd Hand (3rdHand), TU Darmstadt: e680, 180

FP7-ICT-2013-10 Grant. #610878,
Made key contributions for winning this grant for the Technische Universitaet Darmstadt

136

Workshop Organization

Renaud Detry, Oliver Kroemer, and Danica Kragic; Autonomous Grasping and Manipulation: An Open
Challenge, ICRA, 2014

Heni Ben Amor, Ashutosh Saxena, Oliver Kroemer, and Jan Peters; Beyond Robot Grasping: Mod-
ern Approaches for Learning Dynamic Manipulations, IROS, 2012

Professional Activities

Journal Reviewer
Journal of Intelligent and Robotic Systems (2014), Robotics and Autonomous Systems Journal (2013),
Robotics and Automation Magazine (2011), Autonomous Robots (2009)

Program Committee
International Joint Conference on Artificial Intelligence (2013), AAAI Fall Symposium on Robots Learn-
ing Interactively from Human Teachers (2012), European Workshop on Reinforcement Learning (2012)

Conference Reviewer
Neural Information Processing Systems (2014, 2010), International Conference on Robotics and Automa-
tion (2014, 2013, 2012, 2011, 2010, 2009), International Conference on Intelligent Robots and Systems
(2014, 2013, 2011), International Conference on Humanoid Robots (2014, 2013, 2012, 2011), Confer-
ence on Decision and Control (2014), Robot and Human Interactive Communication (2010), Robotics:
Science and Systems (2010)

E.U. Project Member

Generalizing Robot Manipulation Tasks (GeRT), 2010-2013,
German Aerospace Center (DLR), University of Birmingham, TU Darmstadt, and Orebro University

Semi-Autonomous 3rd Hand (3rdHand), 2014-present,
Inria Bordeaux Sud-Ouest, TU Darmstadt, University of Innsbruck, and Stuttgart University

Invited Presentations

TU Berlin;Machine Learning for Robot Grasping and Manipulation, Host: Prof. O. Brock, 2014

Stuttgart University; Learning to Grasp Through Experience and Object Generalization, Host: Prof.
M. Toussaint, 2013

Tokyo Institute of Technology; Learning Dynamic Tactile Sensing with Robust Vision-based Train-
ing, Host: Prof. M. Sugiyama, 2011

137

