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Abstract
Robotics as a technology has an incredible potential for improving our everyday lives. Robots could
perform household chores, such as cleaning, cooking, and gardening, in order to give us more time
for other pursuits. Robots could also be used to perform tasks in hazardous environments, such as
turning off a valve in an emergency or safely sorting our more dangerous trash. However, all of these
applications would require the robot to perform manipulation tasks with various objects. Today’s robots
are used primarily for performing specialized tasks in controlled scenarios, such as manufacturing. The
robots that are used in today’s applications are typically designed for a single purpose and they have been
preprogrammed with all of the necessary task information. In contrast, a robot working in a more general
environment will often be confronted with new objects and scenarios. Therefore, in order to reach their
full potential as autonomous physical agents, robots must be capable of learning versatile manipulation
skills for different objects and situations. Hence, we have worked on a variety of manipulation skills
to improve those capabilities of robots, and the results have lead to several new approaches, which are
presented in this thesis

Learning manipulation skills is, however, an open problem with many challenges that still need to
be overcome. The first challenge is to acquire and improve manipulation skills with little to no human
supervision. Rather than being preprogrammed, the robot should be able to learn from human demon-
strations and through physical interactions with objects. Learning to improve skills through trial and
error learning is a particularly important ability for an autonomous robot, as it allows the robot to han-
dle new situations. This ability also removes the burden from the human demonstrator to teach a skill
perfectly, as a robot is allowed to make mistakes if it can learn from them. In order to address this chal-
lenge, we present a continuum-armed bandits approach for learning to grasp objects. The robot learns
to predict the performances of different grasps, as well as how certain it is of this prediction, and selects
grasps accordingly. As the robot tries more grasps, its predictions become more accurate, and its grasps
improve accordingly.

A robot can master a manipulation skill by learning from different objects in various scenarios. Another
fundamental challenge is therefore to efficiently generalize manipulations between different scenarios.
Rather than relearning from scratch, the robot should find similarities between the current situation and
previous scenarios in order to reuse manipulation skills and task information. For example, the robot
can learn to adapt manipulation skills to new objects by finding similarities between them and known
objects. However, only some similarities between objects will be relevant for a given manipulation. The
robot must therefore also learn which similarities are important for adapting the manipulation skill.
We present two object representations for generalizing between different situations. Contacts between
objects are important for many manipulations, but it is difficult to define general features for representing
sets of contacts. Instead, we define a kernel function for comparing contact distributions, which allows
the robot to use kernel methods for learning manipulations. The second approach is to use warped
parameters to define more abstract features, such as areas and volumes. These features are defined as
functions of known object models. The robot can compute these parameters for novel objects by warping
the shape of the known object to match the unknown object.

Learning about objects also requires the robot to reconcile information from multiple sensor modali-
ties, including touch, hearing, and vision. While some object properties will only be observed by specific
sensor modalities, other object properties can be determined from multiple sensor modalities. For exam-
ple, while color can only be determined by vision, the shape of an object can be observed using vision or
touch. The robot should use information from all of its senses in order to quickly learn about objects. We
explain how the robot can learn low-dimensional representations of tactile data by incorporating cues
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from vision data. As touching an object usually occludes the surface, the proposed method was designed
to work with weak pairings between the data in the two sensor modalities.

The robot can also learn more efficiently if it reuses skills between different tasks. Rather than relearn
a skill for each new task, the robot should learn manipulation skills that can be reused for multiple tasks.
For an autonomous robot, this would require the robot to divide tasks into smaller steps. Dividing tasks
into smaller parts makes it easier to learn the corresponding skills. If a step is a part of many tasks,
then the robot will have more opportunities to practice the associated skill, and more tasks will benefit
from the resulting performance improvement. In order to learn a set of useful subtasks, we propose
a probabilistic model for dividing manipulations into phases. This model captures the conditions for
transitioning between different phases, which represent subgoals and constraints of the overall tasks.
The robot can use the model together with model-based reinforcement learning in order to learn skills
for moving between phases.

When confronted with a new task, the robot will have to select a suitable sequence of skills to execute.
The robot must therefore also learn to select which manipulation to execute in the current scenario.
Selecting sequences of motor primitives is difficult, as the robot must take into consideration the current
task, state, and future actions when selecting the next motor skill to execute. We therefore present a
value function method for selecting skills in an optimal manner. The robot learns the value function for
the continuous state space using a flexible non-parametric model-based approach.

Learning manipulation skills also poses certain challenges for learning methods. The robot will not
have thousands of samples when learning a new manipulation skill, and must instead actively collect
new samples or use data from similar scenarios. The learning methods presented in this thesis are,
therefore, designed to work with relatively small amounts of data, and can generally be used during
the learning process. Manipulation tasks also present a spectrum of different problem types. Hence, we
present supervised, unsupervised, and reinforcement learning approaches in order to address the diverse
challenges of learning manipulations skills.
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Zusammenfassung
Die Robotik hat als Technologie ein unglaubliches Potenzial für die Verbesserung unseres Alltags. Roboter
könnten Hausarbeiten, wie Putzen, Kochen und Gartenarbeiten durchführen, um uns mehr Zeit für an-
dere Aktivitäten zu geben. Roboter könnten auch Aufgaben in gefährlichen Umgebungen übernehmen,
wie z.B. das Ausschalten eines Ventils in einem Notfall oder das Sortieren von gefährlichen Abfällen. Alle
diese Anwendungsgebiete fordern von dem Roboter jedoch das Manipulieren von verschiedenen Objek-
ten. Heutzutage werden Roboter primär für spezielle Aufgaben in kontrollierten Szenarien, beispiel-
sweise der Produktion verwendet. Die Roboter, die in heutigen Anwendungen verwendet werden,
werden in der Regel für einen bestimmten Zweck entworfen und sind mit allen notwendigen Infor-
mationen zu der Aufgabe vorprogrammiert. Im Gegensatz dazu wird ein Roboter in einer allgemeineren
Umgebung oft mit neuen Objekten und Szenarien konfrontiert. Um ihr volles Potenzial zu erreichen,
müssen Roboter in der Lage sein eine Vielzahl von unterschiedlichen Objekten in unterschiedlichen Sit-
uationen manipulieren zu können. Basierend auf einer Vielzahl von Manipulationsaufgaben, haben wir
daran gearbeitet diese Fähigkeiten von Robotern zu verbessern. Die Ergebnisse davon haben zu einigen
neuen Ansätzen geführt, die wir in dieser Arbeit vorstellen.

Manipulationsfähigkeiten zu lernen ist jedoch ein offenes Problem mit vielen Herausforderungen,
welche noch zu überwinden sind. Die erste Herausforderung ist das Lernen oder Verbessern der Ma-
nipulationsfähigkeiten mit wenig bis keiner menschlichen Unterstützung. Anstatt das der Roboter vor-
programmiert wird soll dieser in der Lage sein von menschlichen Demonstrationen oder durch physische
Interaktion mit den Objekten zu lernen. Zu lernen wie Fähigkeiten durch Ausprobieren verbessert wer-
den können ist eine besonders wichtige Voraussetzung für einen autonomen Roboter, da es ihm erlaubt
neue Situationen zu bewältigen. Durch diese Fähgikeit muss die Demonstration nicht perfekt sein, da
der Roboter Fehler machen darf, wenn er von diesen lernen kann. Um dieser Herausforderung zu begeg-
nen, stellen wir ein continuum-armed bandits Ansatz vor um das Greifen von Objekten zu lernen. Der
Roboter lernt vorherzusagen wie gut verschiedene Griffe sind, als auch wie sicher er über die Vorher-
sage ist. Basierend darauf wählt er einen Griff aus. Durch Ausprobieren mehrerer Griffe werden die
Vorhersagen genauer und somit die Griffe besser.

Ein Roboter kann eine Manipulationsfähigkeit meistern indem er von unterschiedlichen Objekten in
unterschiedlichen Szenarien lernt. Eine weitere zentrale Herausforderung ist daher das effiziente Gen-
eralisieren von Manipulationen zwischen verschiedenen Szenarien. Anstatt immer wieder von Grund
auf zu lernen sollte der Roboter Ähnlichkeiten zwischen der momentanen Situation und vorherigen
Szenarien erkennen, um Manipulationsfähigkeiten und Aufgabeninformationen wiederzuverwenden.
Beispielsweise kann der Roboter lernen eine Manipulationsfähigkeit an neue Objekte anzupassen, in-
dem er Ähnlichkeiten zwischen diesen und bekannten Objekten findet. Allerdings können nur einige
Ähnlichkeiten zwischen Objekten für eine bestimmte Manipulation relevant sein. Der Roboter muss
daher auch lernen welche Ähnlichkeiten wichtig sind, um die Manipulationsfähigkeit anzupassen. Wir
präsentieren zwei Objektdarstellungen zur Generalisierung zwischen verschiedenen Situationen. Kon-
takte zwischen Objekten sind wichtig für viele Manipulationen, aber es ist schwierig generelle Eigen-
schaften für die Repräsentation von Kontakten zu definieren. Stattdessen definieren wie eine Kernel-
funktion zum Vergleichen von Kontaktverteilungen, welche es dem Roboter erlaubt Kernelmethoden
zum Lernen der Manipulationen zu verwenden. Der zweite Ansatz ist warped Parameter zu verwen-
den, um abstraktere Eigenschaften, wie Flächen und Volumen, zu definieren. Diese Eigenschaften sind
definiert als Funktionen von bekannten Objektmodellen. Der Roboter kann diese Parameter für neue
Objekte berechnen indem die Form des bekannten Objekts so verzerrt wird, dass es mit dem unbekannte
Objekt übereinstimmt.
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Um Objekteigenschaften zulernen muss der Roboter Informationen von mehreren Sensoren abgle-
ichen, einschließlich Tasten, Hören und Sehen. Während einige Objekteigenschaften nur von bestimmten
Sensoren beobachtet werden, können andere Objekteigenschaften von unterschiedlichen Sensoren bes-
timmt werden. Während Farbe zum Beispiel nur optisch bestimmt werden kann, kann die Form sowohl
optisch als auch durch Berührung bestimmt werden. Der Roboter sollte die Informationen von allen Sin-
nen verwenden, um schnell über Objekte zu lernen. Wir erklären, wie der Roboter niedrig dimensionale
Darstellungen von taktilen Daten lernen kann mit der Hilfe von visuellen Daten. Das Berühren eines
Objekts verdeckt normalerweise die Oberfläche. Deswegen benötigt die vorgeschlagene Methode nur
schwache Paarungen zwischen den visuellen und taktilen Daten.

Der Roboter kann auch effizienter lernen, wenn er Fähigkeiten zwischen verschiedenen Aufgaben
wiederverwendet. Anstatt eine Fähigkeit für jede Aufgabe wieder zu lernen, sollte der Roboter
Fähigkeiten lernen die er für mehrere Aufgaben verwenden kann. Ein autonomer Roboter sollte die
Aufgabe in mehrere Unteraufgaben teilen. Die Aufteilung in Unteraufgaben macht es einfacher die
entsprechende Fähigkeiten zu erlernen. Wenn eine Unteraufgabe Teil von vielen Aufgaben ist, hat der
Roboter mehr Möglichkeiten die zugehörige Fähigkeit zu üben. Dadurch profitieren mehr Aufgaben
von der Leistungsverbesserung. Um eine Reihe von nützlichen Unteraufgaben zu lernen, schlagen wir
ein probabilistisches Modell vor zur Unterteilung der Manipulation in Phasen. Dieses Modell erfasst
die Bedingungen für den Übergang verschiedener Phasen, die die Teilziele der Aufgaben darstellen.
Der Roboter kann das Modell zusammen mit modellbasierten Reinforcement Learning verwenden, um
Fähigkeiten für den Übergang zwischen den Phasen zu lernen.

Wird dem Roboter eine neue Aufgabe gestellt, muss er eine geeignete Folge von Fähigkeiten auswählen
um die Aufgabe durchzuführen. Der Roboter muss daher auch lernen welche Manipulation im momen-
tanen Szenario am Besten ausgeführt werden sollte. Der Roboter muss dabei den momentanen Zustand
und die Aufgabe berücksichtigen, sowie die zukünftigen Aktionen. Um die Beste Fähigkeit auszuwählen
nutzen wir eine Wertfunktion Methode. Der Roboter lernt die Wertfunktion für den kontinuierlichen
Zustandsraum mit einem flexiblen nicht-parametrischen modellbasierten Ansatz.

Das Lernen von Manipulationsfähigkeiten birgt auch gewisse Herausforderungen für die Lernmetho-
den. Der Roboter hat nicht Tausende von Beispielen beim Erlernen einer neuen Manipulationsfähigkeit,
sondern muss aktiv neue sammeln oder Beispiele von ähnlichen Szenarien benutzen. Die Lernmethoden
in dieser Arbeit können daher mit relativ geringen Mengen an Daten arbeiten, und können während des
Lernprozesses verwendet werden. Manipulationsaufgaben präsentieren deswegen auch ein Spektrum
verschiedener Problemtypen. Wir präsentieren supervised, unsupervised und reinforcement learning
Ansätze, um die vielfältigen Herausforderungen anzugehen.
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1 Introduction
There are countless applications for robots that can manipulate a wide range of different objects in
everyday environments. Such robots could be used to perform household chores and care for the elderly.
Their versatility and adaptability would allow them to provide assistance in emergency situations, e.g., by
clearing debris. These advanced robots could also be used in service industries such as serving food and
cleaning up litter. However, there are still many open problems that need to be solved before such robots
can be realized. These robots will be confronted with new objects and tasks, and they will need to be
capable of adapting to new scenarios. Hence, the necessary skill knowledge cannot be preprogrammed
into these robots. Instead, they will need to learn the skills for manipulating objects autonomously.

In this thesis, we explore different learning approaches for robot grasping and manipulation. There
are many challenges that a robot will need to overcome in order to learn a versatile set of manipulation
skills. In order to illustrate some of these challenges, we can consider a bartender robot as an example
application for a future service robot.

To begin its new job, the robot will first be shown a few of the tasks that it will need to perform
with a couple of objects. For example, a human may show how to prepare and serve a beverage. This
task however consists of multiple subtasks, such as placing a glass on the counter, grasping a bottle, and
sliding the glass across the counter. The first challenge is therefore to decompose the demonstrations into
smaller subtasks. It is not only easier to learn skills for smaller tasks, but it is also more straightforward
to reuse skills between tasks. Taking inspiration from human manipulation skills [1], we propose a
probabilistic model for segmenting tasks into phases. The model captures how the robot’s actions change
the state of the object in each phase, as well as the conditions needed to transition to different phases.
Using this model, the robot can determine a set of subtasks and learn manipulation skills for each of
them.

The next challenge is to learn the individual manipulation skills. Grasping is one of the most funda-
mental skills for manipulating objects, and one of the first skills the robot will need to master. Instead
of relying on additional human assistance, the robot will have to learn grasping by interacting with the
various glasses, bottles, and other assorted objects in its environment. The robot should not execute
the same grasp every time, but rather explore new grasps in order to improve its grasping abilities.
However, the robot should also not try completely random actions either. We therefore frame grasping
as a continuum-armed bandits problem in order to find a balance between exploring new grasps and
exploiting known grasps. We present a policy for actively selecting new grasps based on the outcomes of
previous grasp attempts.

The robot can learn skills more efficiently by generalizing between different objects. Many tasks, such
as operating a bar tap or stacking objects on a tray, are based on physical contacts between different
objects. A contact on the backside of a bar tap allows the robot to pull it, and a region of contact under
the base of a glass provides stability. Similar contacts on other objects will allow for similar interactions.
In order to learn which contacts are needed for a particular interaction, the robot will need to be able to
represent contacts between objects. Instead of defining various features, we propose a kernel that allows
the robot to directly compute the similarity between different contacts. This kernel allows the robot to
apply kernel methods for classifying and clustering interactions between objects.

Pouring is another important ability for a bartender robot, but it is not based on direct physical contact.
The important features for pouring are related to more abstract parameters of the objects, such as the
volume of the container and the size of its opening. The robot will therefore need to estimate these
parameters for new containers in order to generalize its pouring skills. We therefore propose warped
parameters for computing geometric features of objects. Warped parameters are defined as functions on
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the point cloud of a known object. Applying transformations to the point cloud, e.g., scaling, changes the
value of the parameter. The parameter can thus be computed for new objects using a warping process.

Once the robot has learned various manipulation skills, the next challenge is to combine them in order
to perform different tasks. For example, the robot may have been shown how to prepare a single drink
as part of its initial training. However, the robot should not simply execute the same sequence multiple
times when asked for multiple drinks. Instead, the drinks should be prepared in parallel. In order to
select skills in an optimal manner, we present a non-parametric method for learning value functions in
continuous state spaces.

Overtime, objects in the bar will experience natural wear and tear from being used. The bartender
robot should therefore be able to detect if a glass is chipped or if the counter is dirty or damaged.
Such defects can sometimes be observed by visually inspecting the relevant surfaces. However, these
changes in the surface texture can often be detected more reliably using the sense of touch. In order
to accurately classify different surfaces, we propose a method for reducing the dimensionality of tactile
data by learning from visual information when it is available. Once the robot has learned a suitable
representation for the tactile data, the vision information is no longer needed.

As the example of the bartender robot demonstrates, there are many different challenges that a service
robot would need to overcome in order to learn versatile manipulation skills. We therefore propose a
variety of learning methods for addressing these diverse problems. The approaches presented in this
thesis include supervised, unsupervised, and reinforcement learning methods. The bartender application
also illustrates how learning manipulation skills is a process. The robot will need to time to build up
its experiences to master different manipulation skills. In order to help the robot during the learning
process, we focus on methods that can be applied to relatively small amounts of data.

1.1 Contributions

This thesis presents several methods that have been specifically designed for robot manipulation tasks.
The methods have been applied to learning manipulation tasks, including pouring, stacking, and grasp-
ing. In this section, we outline the key contributions of this thesis to the state-of-the-art in robot learning
for manipulation.

Learning to Grasp using Reinforcement Learning

We proposed the continuum Gaussian bandits (CGB) policy for learning to grasp. While most grasp
learning methods focus on supervised learning approaches [2], we frame grasping as a continuum-
armed bandits problem and use a reinforcement learning approach. In this manner, the robot actively
selects grasps to evaluate and uses the outcomes of these grasps to select better grasps in the future. The
robot can thus autonomously improve its grasping abilities over time, and optimize grasps for specific
objects. The approach was inspired by the upper confidence bound (UCB) policies used for multi-armed
bandits problems [3]. The resulting algorithm is closely related to the UCB policies used in Bayesian
optimization [4]. However, rather than performing a global search, the proposed method performs a
sample-efficient local search for optimal grasps. This approach is well-suited for learning grasps without
relying on explicit information regarding the object’s shape and size. By applying this approach, the
robot was able to learn dexterous grasps that would have been difficult to program by hand.

Contact-Distribution Kernels and Warped Parameters

Contacts between objects are fundamental to many manipulations. A common problem is therefore to
determine whether a set of contacts allow for the desired manipulation or interaction between objects.
However, defining general features to represent sets of contacts is not trivial. We therefore proposed
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modeling the contact distributions using Gaussians and computing a kernel between these distributions.
By defining a kernel function, the robot can use a wide range of kernel methods. Using these kernels,
the robot learned to stack assorted blocks into towers and segment grasping actions into phases.

In order to define more abstract features for objects, we also present warped parameters. These geo-
metric parameters are defined as functions on the point clouds of known objects, and can be computed
for novel objects using a warping process. In the context of robot manipulation, warping has previously
been used to determine specific points in a scene, e.g. a contact point [5] or a via point [6]. In contrast,
warped parameters can represent more abstract parameters, such as the length of a blade or the volume
of a container. The robot could learn pouring skills, that generalize between different objects, by using
the warped parameters.

A Probabilistic Model for Decomposing Manipulations into Phases

Humans seem to separate manipulation skills into distinct phases, with phase transitions often corre-
sponding to the making and breaking of contacts [7, 1]. Such a change in contact state usually results in
the agent’s actions having different effects on its environment. In order to segment manipulation tasks,
we present the state-based transitions auto-regressive hidden Markov model (STARHMM) for represent-
ing phases. Rather than segmenting manipulations based on the actions [8, 9, 10], the proposed model
splits the task into parts based on the effects of the actions. Each phase is represented as a linear system
model. The proposed model also learns the conditions in which a phase transition is more likely to occur.
These conditions are then used to define individualized reward functions for learning motor primitives
for transitioning between different phases.

A Non-Parametric Approach to Learning Value Functions

Value functions are useful for selecting motor primitives, as they reduce the problem of selecting se-
quences of actions to greedily selecting the next action. However, the exact computation of the value
function remains an open problem for most systems with continuous state spaces [11]. We therefore
present non-parametric dynamic programming (NPDP) for computing value functions in a flexible man-
ner. The NPDP algorithm models the system dynamics using a kernel density estimate, and we show
that the value function for this model has a Nadaraya-Watson kernel regression form. We also show
how different modeling assumptions give rise to other common methods for learning value functions,
such as least-squared temporal difference learning [12] and kernelized temporal difference learning [13].
The NPDP approach was used to learn high-level policies for sequencing motor primitives for performing
manipulation tasks.

Using Vision Data to Learn Low-Dimensional Representations of Tactile Data

Dynamic tactile sensing plays an important part in manipulation tasks, as it is used both for determining
object properties as well as detecting key events during manipulation tasks [14, 15]. Data from dynamic
tactile sensing is however noisy, high-dimensional, and often includes vibrations from other sources. We
therefore present weakly-paired maximum covariance analysis (WMCA) and mean maximum covariance
analysis (µMCA) for reducing the dimensionality of the tactile data. These methods allow the robot to
incorporate vision information when learning a lower-dimensional representation of the tactile data. As
images of the surfaces capture the texture information but not the other vibrations, the vision data helps
the robot to extract the relevant components of the tactile data. Unlike sensor fusion approaches [16,
17, 18], the vision information is only needed when learning the dimensionality reduction. Afterwards,
the dimensionality reduction can be applied even when only tactile data is available.
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Figure 1.1: An overview of some of the overarching themes presented in this thesis, and the chapters that
they relate to.

1.2 Outline

The chapters of this thesis were written such that they can be read independently. We recommend read-
ers that are unfamiliar with dynamic motor primitives (DMPs) to read Chapter 2 first, as DMPs are used
throughout the majority of this thesis to represent manipulation skills. Chapters 2 and 3 present methods
for learning individual manipulation skills. Chapters 4 and 5 describe methods for learning sequences of
motor primitives. In Chapter 6, we discuss methods for performing dimensionality reduction on tactile
data by exploiting information from vision data. In Chapter 7, we summarize the main contributions of
the thesis and discuss some of the open challenges for learning grasping and manipulation skills. Fig-
ure 1.1 presents an overview of some of the topics covered in the thesis and their corresponding chapters.

Chapter 2 presents the Continuum Gaussian Bandits policy for learning how to grasp objects. The
chapter also gives an overview of dynamic motor primitives, and how they can be used for grasping.
This chapter is based on [19].

Chapter 3 describes a kernel between contact distributions, which generalizes between different ob-
jects. The kernel is evaluated on a block stacking task with assorted toy blocks. This chapter also
discusses warped parameters, and how they can be used to compute geometric parameters of containers
for pouring tasks. This chapter is based on [20, 21].

Chapter 4 explains a modified autoregressive hidden Markov model for segmenting manipulation into
smaller subtasks based on phases. The model forms the bases for learning libraries of motor primitives
for transitioning between different phases. The method was tested on a bimanual grasping task. This
chapter is based on [22, 23].
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Reach Load Lift

Figure 1.2: The figure illustrates the three phases of a basic grasping task: reach, load, and lift. The
orange circles indicate the locations where contacts are made or broken during the phase
transition. These mechanical events represent subgoals of the overall task. The changes
in contact result in small vibrations. The blue arrows indicate motor primitives M used to
transition from one phase to another.

Chapter 5 proposes a non-parametric model-based approach to learning value functions, and explains
how the value function can be used to learn a high-level controller for selecting motor primitives. This
approach was used to sequence the motor primitive library learned in Chapter 4. This chapter is based
on [24].

Chapter 6 presents methods for learning low-dimensional representations of dynamic tactile data us-
ing vision information. The proposed method is evaluated on a material classification task. This chapter
is based on [25].

Chapter 7 presents the main conclusions of the thesis. It also presents key ideas for developing and
selecting methods for learning manipulation skills. The chapter ends with a discussion on open problems
for grasping and manipulation.

Chapters 2 to 6 each end with a section on “Potentially Helpful Insights”. These sections are meant to
give additional insights into the work for future Ph.D. students. We explain the motivations for pursuing
the individual projects and try to provide deeper insights into the methods. We also discuss connections
to other approaches, and give ideas for how insights from these projects could be extended into new
research directions.

Although the chapters investigate different aspects of manipulation tasks, there are two overarching
topics that span this thesis. The first topic is phases, and deals with the general structure of manipula-
tions. The second topic is representations, which deals with defining manipulations in a useful way for
learning.

Manipulation Phases

The first overarching topic in this thesis is phases. Phases are a way of dividing manipulation tasks into
smaller parts, such that the transitions between phases correspond to mechanical events, e.g., making
or breaking contacts between objects [7, 1]. These events represent subgoals of the overall task. As an
example, we can consider learning a basic grasp from a continuous demonstration [7]. The three phases
of the grasping task, i.e. reach, load, and lift, are illustrated in Fig. 1.2.

The first challenge is to divide the demonstrated grasping action into phases, and learn the conditions
needed for transitioning between them. We present a modified autoregressive hidden Markov model for
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exactly this purpose in Chapter 4. Dividing the basic grasping task into phases results in two subtasks:
transitioning from the reach phase to the load phase, and transitioning from the load phase to the lift
phase.

The next step is to learn a motor primitive for each of these subtasks. For some tasks, the robot can
use the model to learn the motor primitive, as described at the end of Chapter 4. However, the robot
can also learn the motor primitive by attempting to grasp the actual object. In Chapter 2, we present a
reinforcement learning method for learning to grasp. This method implicitly learns how to approach an
object in order to transition to the load phase. By physically interacting with an object, the robot can
gather more information about which conditions result in the desired phase transitions.

The transitions between phases are often characterized by mechanical events, which the robot can
sense. For example, making and breaking contacts results in vibrations that can be detected through dy-
namic tactile sensing. In Chapter 6, we discuss methods for removing irrelevant components of dynamic
tactile sensing data by learning with visual cues. This approach was evaluated on a texture classification
task.

In order to grasp different objects, the robot will need to generalize the phase transition conditions
between objects. For the grasping task, these conditions are linked to the contacts between the hand,
the object, and the supporting surface. Rather than designing a set of features for representing these
contacts, the robot can use a kernel function for directly computing the similarity between sets of con-
tacts, as explained in Chapter 3. The robot can then learn to predict phases using methods such as kernel
logistic regression. Not all phase transitions correspond to making and breaking contacts though. For
example, a phase transition occurs when a container starts pouring. This phase transition depends on
the volume of the container and how much liquid it is holding. These kinds of features can be computed
using warped parameters, which are also explained in Chapter 3.

The robot has now decomposed the task into phases and learned a motor primitive for each phase
transition. The next step is to recombine these motor primitives to achieve the task. For the grasping
example, there is only one sequence of valid motor primitives. Let us instead consider the situation
where the robot has another motor primitive for sliding the object to the right in the load phase. If the
task gives the robot a reward for the height of the object, then the robot should quickly transition to the
lift phase. If the robot gets an additional reward for the horizontal position of the object, then it may
transition to the load phase, execute the sliding motor primitive, and then transition to the lift phase. In
Chapter 5, we present a dynamic programming method for learning motor primitive sequences.

As this example demonstrates, even basic manipulations can often be decomposed into phases. We
provide methods that allow the robot to learn motor primitives for transitioning between phases, and for
generalizing phase transition conditions between objects. We also explain how a demonstration can be
divided into phases and the resulting motor primitives then resequenced to perform other tasks.

Representations for Learning Manipulations

The second overarching topic in this thesis is representations. A robot can only learn a skill if it can
represent it in a meaningful way. One of the key challenges of learning manipulation skills is the need to
represent the various different components of manipulation tasks. The robot will needs to be capable of
representing actions, objects, and tasks.

In order to represent actions, we use dynamic motor primitives (DMPs). In Chapter 2, we describe
how reaching and grasping movements can be represented using DMPs. In Chapter 3, we also explain
how motor primitives can be scaled to account for differences in object size. When selecting an action
to execute, the robot must also take into consideration the future actions in the sequence. The influence
of these future actions can be concisely represented using a value function, such as the one described in
Chapter 5.

For generalizing manipulations, the robot needs to represent object properties such as the shape and
material. Geometric parameters of objects, e.g. lengths and volumes, can be grounded in point clouds
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Figure 1.3: The figure illustrates the diversity of representations needed for learning manipulations, and
how they are linked to the di�erent topics in this thesis.

using the warped parameters described in Chapter 3. This chapter also explains a kernel for implicitly
representing the shape of contacts between objects. In Chapter 6, we describe how the robot can learn
sensory representations of textured surfaces.

The robot also needs to represent different tasks. In general, a task can be defined using a reward
function. In Chapter 5, we explain how a robot can learn to select sequences of actions in order to
maximize the task reward. The reward function defines the goal of the task, but not necessarily its
structure. In order to represent the structure of tasks, we present a probabilistic model of manipulation
phases in Chapter 4.

An overview of the different representations presented in this thesis is shown in Fig. 1.3. As the
figure indicates, some of the representations fall between the object, action, and task labels. These
representations allow the robot to generalize actions between different tasks and objects. The robot can
learn versatile manipulation skills using the proposed representations.
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2 Learning to Grasp Through Trial and Error
Learning to perform a task through trial-and-error learning is a fundamental skill for robots working
in everyday environments. By learning from its own experiences, aß robot can autonomously acquire
new information about objects and improve its manipulation skills. However, performing completely
random exploratory movements will only rarely yield information that is relevant to the current task.
Performing the same action will also not result in a lot of new information. Hence, in order to learn
the manipulation skill quickly, the robot must find a balance between performing the current best action
and exploring new actions [26]. We therefore present a continuum-armed bandits approach for learning
to grasp, which explicitly models the exploration-exploitation trade-off. The performance of different
grasps is modeled using Gaussian process regression. The robot selects the next grasp to execute using
an upper confidence bound (UCB) policy, and uses the outcome of the grasp to improve its model. The
improved model allows the robot to select better grasps in the future. In this project, we also wanted
to explore whether the robot could optimize grasps without making assumptions about important object
properties, e.g., shape, appearance, or material, when selecting a grasp. The grasp is therefore simply
defined as the 3D position and orientation of the hand relative to the object frame.

2.1 Combining Active Learning and Reactive Control for Robot Grasping

One of the key challenges for robotics is the large variability inherent in the tasks and environments that
a robot may encounter. Preparing a robot completely beforehand for all possible situations is probably
impossible as it is prohibitively difficult to foresee all scenarios. Such a preparation is also inefficient,
as only a few of the situations will be required by the robot. Due to these limitations, it is important to
design robots that can adapt and learn from their own experiences.

Grasping an unknown object is an example of a task that is made particularly difficult by the large
variety of objects (see Figure 2.2). Many approaches have been proposed for robot grasping. Early
work [27, 28] found analytical solutions to the problem, but these approaches require precise infor-
mation about the environment (e.g., external forces, surface properties) that may not be accessible.
Supervised learning can be used to train robots how to recognize good grasping points [29], but requires
a considerable initial input from a human supervisor. Active and reinforcement learning methods have
focused on exploring the object to acquire complete affordance models [30, 31], but not on optimizing
grasps. However, finding good grasp locations is only a part of the problem.

The robot grasping task can be decomposed into two problems: deciding where to grasp the object,
and determining how to perform the grasping movement. These two sub-problems are closely related
and must be addressed together in order to perform a successful grasp. The choice of where to grasp an
object sets the context for determining how to grasp it. However, the execution of the grasp ultimately
determines whether the grasp location was well-chosen.

In this chapter, we present a hierarchical controller that reflects the structure of these two task com-
ponents, as shown in Figure 2.1. The upper level decides where to grasp the object, and the lower level
determines how to perform the grasping movements given the context of these grasp parameters and
the scene. The upper level subsequently receives a reward based on the grasp execution, and takes this
into consideration when selecting future grasps.

The system employs a hybrid architecture that uses reinforcement learning, imitation learning, and
reactive control. The core of the upper level is a reinforcement learning approach that uses the suc-
cessfulness of evaluated grasps to determine future grasps. It is crucial that its state-action space is
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Active and Reactive Controller Architecture

Figure 2.1: The controller architecture consists of a upper level based on reinforcement learning and a
bottom level based on reactive control. Both levels are supported by supervised/imitation
learning. The World and Supervisor are external elements of the system.

low dimensional for faster convergence [32, 33], and that information from other sources (e.g., demon-
strated grasps) can easily be incorporated. To reduce the action space, the reinforcement learner specifies
a grasp as a six dimensional hand pose in the object’s reference frame, and all remaining variables in-
herent to the grasping movements are handled by a lower level controller.

The lower level controller is responsible for action execution. A straightforward method of acquiring
an arbitrary motion policy is by imitation learning. One approach to imitation learning is to transform a
demonstrated trajectory into a standard dynamical systems motor primitive (DMP) [34, 35]. This policy
is adapted, in a task specific manner, to the grasp parameters specified by the reinforcement learner. The
resulting DMP is augmented by a reactive controller that takes the geometry of the object and scene into
consideration. The resulting action is executed by the robot, which returns a corresponding reward to
the upper level of the controller.

The complete hybrid controller is illustrated in Figure 2.1. It uses its own experiences to quickly
converge on good grasping locations. The grasping motions are taught by demonstration and adapted to
different grasp locations and the surrounding geometry. A key feature of this hybrid approach is that the
reactive controller is incorporated in the reinforcement learner’s action-reward feedback loop. Thus, the
hybrid system will learn an appropriate grasping action together with a corresponding grasp location,
and solve both of the sub-problems.

In the following sections, we discuss the proposed controller in a top-down manner. The active learner
and the reactive bottom level of the controller are detailed in Sections 2.2 and 2.3 respectively. In
Section 2.4, the system is evaluated both in simulation and on the robot platform shown in Figure 2.2.

2.2 High-Level Active Learner

The high-level controller chooses where on the object to apply the next grasp, and improves the grasp
locations using the acquired data. The reinforcement learning approach is inspired by the grasp learning
exhibited by infants [36, 37, 38], requiring relatively little prior knowledge and making few assumptions.
Young infants have a grasp reflex that allows them to crudely grasp objects [36]. They learn to improve
their grasps through trial and error, allowing them to later be able to perform precision grasps. The
reactive controller of the hybrid system represents a vision-based grasp reflex. The initial grasps may be
crude, but the learning system will adapt to the object and can learn to perform precision grasps.

To keep the number of assumptions low, we define the state as the object being grasped, and learn a
model for each object. The robot’s grasps are learned in the object’s reference frame, allowing the object
to be repositioned in the workspace. Similar to a young infant [36], learning to grasp an object is treated
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Figure 2.2: The robot used in our experiments and an example of a grasping task in a cluttered
environment.

as context independent and only based on the task constraints it has encountered. Thus, if an object
has always been presented as hanging on a string, both the robot and infant would initially not know
that grasping it from below does not work when the object is on a table [36]. The robot will assign an
expected reward to the grasp that reflects both situations and how often it has encountered each.

Another infant-like feature is that the robot has no vision-grasp mapping. Infants under nine months
do not orientate their hands to the orientation of object parts [38]. The robot also does not assume that
the geometry of a cup’s handle will imply a certain orientation of the hand as appropriate. Instead, it will
try different orientations and find one that is well-suited for it. Hence, several object properties do not
need to be modeled explicitly, e.g., friction. Ultimately, the reinforcement learning approach is highly
adaptive and is applicable to a wide range of situations.

In contrast, supervised learning of grasps has focused on methods using internal models of the world
[39, 40], or mappings between visual features of objects and grasps [29]. These approaches are more
characteristic of adult human grasping, and thus require large amounts of prior information.

To converge quickly to high rewarding grasp locations, the system must balance the exploitation of
good grasping points and the exploration of new, possibly better, ones [26]. From a machine learning
perspective, this selecting of grasps can be interpreted as a continuum-armed bandits problem [41].

The continuum-armed bandit problem is a generalization of the traditional n-armed bandit prob-
lem [32] where the agent must choose from a continuous range of locally dependent actions, instead of
a finite number. Under this interpretation, the action is given by the grasp applied and the reward is a
measure of the success of this grasp.

To date, most methods [42, 43] that solve the continuum-armed bandit problem are based on dis-
cretizing the space. For high-dimensional domains, such as robot grasping, any discrete segmenting
will scale badly due to the curse of dimensionality [33]. The hard segmentation will result in unnatural
borders and make the use of prior knowledge complicated. We propose a sample-based reinforcement
learner that models the distribution of expected rewards over the continuous space of actions using
Gaussian process regression (GPR) [44]. The proposed learner then searches for the most promising
grasp to evaluate next, using a method inspired by mean-shift clustering [45]. The resulting policy is
called Continuum Gaussian Bandits (CGB), and is outlined in Algorithm 1.

The following four sections detail the active learner and present the employed policy (Section 2.2.1),
the modeling of the expected rewards (Section 2.2.2), how the learner selects the next grasp (Sec-
tions 2.2.3), and then the method for implementing this selection on the reward model (Sections 2.2.4
and 2.2.5). Finally, Section 2.2.6 explains how supervised data can be incorporated into the active
learner as prior knowledge.
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2.2.1 Upper Confidence Bound Policy

Choosing where to grasp a novel object suffers from an exploration-exploitation problem. The traditional
machine learning framework for studying this dilemma is the n-armed bandits problem, wherein an
agent must repeatedly choose from a finite set of n possible actions to maximize the accumulated reward.

Among the more successful strategies [32] are upper confidence bound (UCB) policies. While there
are different versions of UCB policies [32, 3], the principle idea is to assign each action two variables, i.e.,
the expected reward µ for taking that action, and a confidence bound ±� indicating the range in which
the actual mean reward is. Both µ and � indicate how desirable executing the action is. A high expected
reward µ is valuable in the sense of exploitation and receiving rewards, while a large confidence bound
� indicates an informative action that is good for exploration. Using the exploration variable � leads
to a more structured exploration than regular randomized policies (e.g., ✏-greedy [32]). UCB policies
also provide performance guarantees, and have an upperbound on the expected regret that scales only
logarithmically with the number of trials [3].

The sum of the expected reward µ and the standard deviation � indicates how desirable executing
the action is overall. Adopting Bayesian optimization terminology, we refer to the value µ + � as the
acquisition function value. A UCB policy always selects the action for which the acquisition function is
the greatest [3]. Intuitively, a UCB policy optimistically chooses the action which could be the best, and
will thus only converge to an action when it knows that no other action could be better.

Adapting a UCB policy to the continuum-armed bandits requires a new approach that scales to the
high-dimensional spaces of grasping tasks. The first step towards realizing this approach is to create a
sample-based model of the exploration � and exploitation µ variables.

2.2.2 Expected Reward and Confidence Modeling with Gaussian Process Regression

Modeling the upper confidence bound for continuous actions requires the expected reward function and
its standard deviation to be approximated. A well-suited approach that satisfies these requirements is
Gaussian process regression (GPR) [44].

Rather than mapping inputs to specific output values, GPR returns a Gaussian distribution of the
expected rewards. This Gaussian distribution is characterized by its mean µ(x) and standard deviation
�(x), where the standard deviation is a confidence bound on the expected reward. This technique is
non-parametric, which implies that µ(x) and �(x) are functions that directly incorporate all previous
samples. Non-parametric methods are very adaptable, and apply few constraints on the model. The
GPR approach incorporates a prior that keeps the mean and variance bounded in regions without data.
Unexplored regions will thus have a large confidence bound �(x) and small expected rewards µ(x).
Sampling from these regions will shift µ(x) towards the actual expected reward at x, and decrease the
standard deviation �(x).

We employ the common Gaussian kernels k (x,y) = �2

a exp(�0.5(x� y)T W(x� y)) where W is a diag-
onal matrix of kernel widths. The parameter �a affects the convergence rate of the policy, as explained
in Section 2.2.6.

For grasping, the vectors x 2 R6 and y 2 R6 each contain three position and three orientation param-
eters of grasps, which describe the final position of the hand in the object’s reference frame. Working
in the object’s reference frame allows the object to be repositioned and reorientated in the workspace
without altering the grasp parameters. Additional grasp parameters are excluded to keep the number of
parameters minimal, and thus allow for rapid learning. All of the other motion parameters are handled
by the reactive low level controller, which modifies these parameters depending on the object and the
scene, as well as the parameters in x.
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The proposed UCB policy will base its decisions on the acquisition function M (x) = µ(x)+�(x), where
µ (x) and � (x) are the expected reward and standard deviation at grasp x respectively. The standard
GPR model [44] for the mean µ, variance �2, and standard deviation �, are

µ (x) = k (x,Y)T
�
K+�2

s I

��1

t,

� (x) =
p
�2 (x) =

«
k (x,x)� k (x,Y)T

�
K+�2

s I

��1

k (x,Y),

where [K]i, j = k(yi,y j) is the Gram matrix, the kernel vector k decomposes as [k(x,Y)] j = k(x,y j),
the hyperparameter �2

s indicate the noise variance, and the N previous data points are stored in Y =
[y

1

, . . . ,yn] with corresponding rewards t= [t
1

, . . . , tn].
Both the mean and variance equations can be rewritten as the weighted sum of Gaussians, giving

µ (x) =
PN

j=1

k
�
x,y j

�
↵ j,

�2 (x) = k (x,x)�PN
i=1

PN
j=1

k0
�
x, 0.5

�
yi + y j

��
�i j,

where k0 (x,y) = �2

a exp(�(x� y)T W(x� y)), and the constants are defined as ↵ j = [(K +�2

s I)�1

t] j and
�i j = [(K +�2

s I)�1]i, j exp(�0.25(yi � y j)T W(yi � y j)). Different upper confidence intervals � have been
used in UCB policies [46], and can be used by modeling them with a second GPR [47].

The previous rewards t occur in the exploitation term µ (x), but not in the standard deviation � (x)
as it represents the exploration, which is independent of the rewards. A similar acquisition function has
previously been employed for multi-armed bandits in metric spaces, wherein GPR was used to share
knowledge between discrete bandits [48].

Having chosen a UCB policy framework and a GPR reward model, the implementation of the policy
has to be adapted to the acquisition function.

2.2.3 UCB Policy for GPR Model

Given a model of the UCB acquisition function, the system requires a suitable method for determining
the action with the highest acquisition function value. Executing this grasping action will acquire the
greatest combination of reward and information.

The acquisition function will most likely not be concave and will contain an unknown number of
maxima with varying magnitudes [44]. Determining the global maximum of the acquisition function
analytically is therefore usually intractable [44]. However, numerically, we can determine a set of locally
optimal grasps. Such sets of grasps will contain many maxima of the acquisition function, especially
near the previous data points. Given a set of local maxima, the acquisition function is evaluated for each
candidate grasp, and the robot executes the grasp with the highest value.

The method for finding the local maxima was inspired by mean-shift [45], which is commonly used
for both mode detection of kernel densities and clustering. Mean-shift converges onto the local maxima
of a given point by iteratively applying

xn+1

=

PN
j=1

y jk
�
xn,y j

�
PN

j=1

k
�
xn,y j

� , (2.1)

where k(xn,y j) is the kernel function, and y j are the N previously tested maxima candidates as before.
The monotonic convergence via a smooth trajectory can be proven for mean-shift [45]. To find all of
the local maxima, mean-shift initializes the update sequence with all previous data point. The global
maximum is then determined from the set of local maxima, which is guaranteed to include the global
maximum [49].
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The intuition behind this approach for grasping is that all of the previous grasp attempts are locally
re-optimized based on the current empirical knowledge, as modeled by the acquisition function. Subse-
quently, we choose the best of these optimized grasps to execute and evaluate.

Mean-shift is however limited to kernel densities and does not work directly in cases of regression,
because the ↵ j and �i, j weights are not always positive [45]. In particular, the standard update rule (2.1)
can not be used, nor can we guarantee that the global maximum will be one of the detected maxima.
However, the global maximum is only excluded from the set of found maxima if it is isolated from all
previous samples by regions of low value.

As Equation (2.1) is not applicable in our regression framework, a new update step had to be devel-
oped, which monotonically converges upon the local maximum of our acquisition function.

2.2.4 Local Maxima Detection for GPR

Given the model in Section 2.2.2, the acquisition function takes the form

M (x) =
PN

j=1

k(x,y j)↵ j +
r

k (x,x)�PN
i=1

PN
j=1

k0
�
x, 0.5

�
yi + y j

��
�i j.

To use the policy described in Section 2.2.3 with this acquisition function, a monotonically converging
update rule is required that can determine local maxima. We propose an update rule consisting of the
current gradient of the acquisition function, divided by a local upper bound of the acquisition function’s
second derivative; Specifically, we propose

xn+1

=
@xµ+ @x�

q (µ) + q(�2)q
p(�2)

+ xn = s+ xn, (2.2)

where @xµ=
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ã
.

The function q(·) returns a local upper bound on the absolute second derivative of the input within the
xn to xn+1

range. Similarly, p(·) returns a local lower bound on the absolute value of the input.
This form of update rule displays the desired convergence qualities, as explained in Section 2.2.5. The

rule is only applicable because the Gaussian kernels have bounded derivatives resulting in finite q (µ)
and q (v ), and any real system will have a positive variance giving a real non-zero

p
p (v ).

To calculate the local upper and lower bounds, we first define a region of possible xn+1

values to
consider. Therefore, we introduce a maximum step size m> 0, where steps with larger magnitudes must
be truncated; i.e., kxn+1

� xnk  m. Having defined a local neighborhood, q (µ), q (v ), and p (v ) need
to be evaluated.

In Section 2.2.2, µ and v were represented as the linear weighted sums of Gaussians. Given a linear
sum, the rules of superposition can be applied to evaluate q (µ), q (v ), and p (v ). Thus, the upper bound
of a function in the region is given by the sum of the local upper bounds of each Gaussian, i.e.,

qm

ÄX
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k
�
x,y j

�
↵ j

äX
N
j=1
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�
k
�
x,y j

�
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�
.

As Gaussians monotonically tend to zero with increasing distance from their mean, determining an upper
bound value for them individually is trivial. In the cases of q (µ) and q (v ), the magnitudes of the second
derivatives can be bounded by a Gaussian; i.e.,

k@ 2

x k
�
x,y j

�k< �2

a exp

��(x� y j)
T
W(x� y j)/6

�
,

14



Algorithm 1 Continuum Gaussian Bandits (CGB)
Initialize:

Store N initial points in Y and t

Loop:
Calculate ↵ and �
Mbest = 0

for j = 1 to N
xo = y j
while not converged

Calculate update step s

xn+1

= s+ xn
end
if M(x)> Mbest

xbest = xn
Mbest = M(xbest)

end
end
Attempt and evaluate xbest
Store results in yN+1

and tN+1

N = N + 1

which can then be used to determine the local upper bound.
We have thus defined an update step and its implementation, which can be used to detect modes of a

Gaussian process in a regression framework. The final algorithm has a time complexity of O(N3), similar
to all other exact GPR methods [47]. However, this complexity scales linearly with the number of dimen-
sions, while discretization methods scale exponentially, making the proposed GPR method advantageous
when the problem dimensionality is greater than three. The mode detection algorithm can be easily
parallelized for efficient implementations on multiple computers or GPUs as an anytime algorithm.

This section concludes the details of the proposed reinforcement learner, which is outlined in Algo-
rithm 1. As shown, the final algorithm is quite compact and straightforward. It consists of modeling the
expected rewards using GPR, and applying a parallel search to determine a maximum to evaluate next.
The mode detection behavior is analyzed in the next section. Incorporating supervised data from other
data sources is described in Section 2.2.6 which completes the upper level of the controller design.

2.2.5 Mode Detection Convergence Analysis

Having specified the method for determining maxima of a GPR in Section 2.2.4, Lyapunov’s direct
method can be used to show that the method converges monotonically to stationary points. The un-
derlying principle is that an increased lower bound on the acquisition function reduces the set of
possible system states and, therefore, a continually increasing acquisition leads to convergence. The
following one dimensional analysis will show that only an upper bound on the magnitude of the second
derivative is required for a converging update rule.

The increase in the acquisition function value is given by M(xn+1

)�M(xn). Given an upper bound u
of the second derivative between xn and xn+1

, and the gradient g = @x M (xn), the gradient in the region
can be linearly bounded as

g � kx � xnku @x M (x) g + kx � xnku.
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Considering the case g � 0 and therefore xn+1

� xn, the change in the acquisition function is lower
bounded by

M (xn+1

)�M (xn) =
´ xn+1

xn
@x M (x) d x � ´ xn+1

xn
g � (x � xn)u d x .

This term is maximal when the linear integrand reaches zero; i.e, g � (xn+1

� xn)u= 0. This limit results
in a shift of the form s = xn+1

� xn = u�1 g, as was proposed in Equation (2.2). The same update rule can
be found by using a negative gradient and updating x in the negative direction. The acquisition function
thus always increases, unless the local gradient is zero or u is infinite. A zero gradient indicates that the
local stationary point has been found, and variable u is finite for any practical Gaussian process. In some
cases, the initial point may be within the region of attraction of a point at infinity, which can be tested
for by determining the distance from the previous data points.

The intuition underlying the results of the analysis is that at each step, the system assumes the gradient
will shift towards zero at the maximum possible rate within the region. The estimate of the maximum is
then moved to the first point where a zero gradient is possible. This concept can easily be generalized to
higher dimensional problems. The update rule guarantees that the gradient cannot shift sign within the
update step, and thus ensures that the system will not overshoot nor oscillate about the stationary point.
The update rule xn+1

= u�1 g + xn therefore guarantees that the algorithm monotonically converges on
the local stationary point.

2.2.6 Incorporating Supervised data

Having fully designed the central reinforcement learner, the upper level controller still requires a method
for allowing prior task information to be incorporated into the acquisition function to help reduce the
search space.

Similar to how a child learns a new task by observing a parent before trying it themselves [36], a robot
can use human demonstrations of good grasps to define its starting search region. However, whether
these grasps are suitable for the robot is initially unknown.

GPR makes incorporating prior information fairly straightforward. If the supervised data has a reward
associated to it, the data can be directly added to the data set. If the region suggested by the demonstra-
tion returns only low rewards, the system will begin searching neighboring areas where the acquisition
function is still high due to uncertainty. Thus, it defines an initial search region with soft boundaries that
can move during the learning process.

The parameter �a of the acquisition function specifies how conservative the policy is in expanding
these boundaries; i.e., a higher value will encourage more exploration, while a lower value will converge
faster. Hence, it can be seen as a learning rate. With the rewards in the grasping task set to be within
the range 0 to 1, the parameter is set to 0.75 to encourage exploration but also allow for a reasonable
rate of convergence.

The robot experiment was initialized with search regions defined by 7, 10, and 25 demonstrated grasps
for the box, watering can, and paddle respectively. The width parameters W of the Gaussian kernel were
also optimized on these initial parameters.

This section concludes the discussion of the upper level controller. It takes the rewards of grasps, the
pose of the object, and, optionally, demonstrated data as inputs, and returns the next grasp location
to attempt. This grasp location is passed to the robot via a lower level controller, which generates the
complete grasping motions based on these parameters.

2.3 Low-Level Reactive Imitation Controller

While the upper level of the controller selected grasp locations, the lower level is responsible for the
execution of the grasp, including the reaching and fingers’ motions. It is important that the system is
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adaptive at this level, as the success of a grasp depends on the execution. The finger motions should
particularly adapt to the geometry of the object, a process known as preshaping. The robot’s motions are
learned from human demonstrations, and subsequently modified to incorporate the grasp information
from the active learner and the scene geometry from the vision system.

A common approach to the grasp execution problem is to rely on specially designed sensors (e.g., laser
scanner, ERFID) to get accurate and complete representations of the object and environment [39, 50],
followed by lengthy planning phases in simulation [51]. We restrict the robot to only using stereo
cameras, and a fast reactive sensor-based controller [52].

Although densely sampling sensors such as time-of-flight cameras and laser range finders are favored
for reactive obstacle avoidance [53], the sparser information of stereo vision systems has also been
used for these purposes [54, 55]. Robot grasping research has focused on coarse object representations
of novel objects [56, 57, 58, 59], and using additional sensor arrays when in close proximity to the
object [60, 61]. Learning to grasp objects is also often done in simulation [56, 40] which allows for
many virtual grasp attempts on a model of the object. In contrast, the proposed hybrid system relies on
relatively few real-world grasps and does not rely on having accurate dynamics and contact models.

For the lower level system, we propose a sensor-based robot controller that can perform human in-
spired motions, including preshaping of the hand, smooth and adaptive motion trajectories, and obstacle
avoidance, using only stereo vision to detect the environment. Unlike previous approaches, we work with
a sparse visual representation of objects, which maintains a high level of geometric details. The controller
uses potential field methods [52], which treat the robot’s state as a particle in a force field; i.e. the robot
is attracted to a goal state, and repelled from obstacles.

The attractor field needs to be capable of encoding complex trajectories and adapting to different
grasp locations. We therefore use the dynamical system motor primitive (DMP) [62, 35] framework.
The DMPs are implemented as passive dynamical systems superimposed with external forces; i.e.,

¨y = ↵z(�z⌧
�2(g � y)�⌧�1

˙y) + a⌧�2 f (x), (2.3)

where ↵z and �z are constants, ⌧ controls the duration of the primitive, a is an amplitude, f (x) is a
nonlinear function, and g is the goal for the state variable y . The variable x 2 [0, 1] is the state of a
canonical system ˙x = �⌧x , which acts as a shared clock amongst different DMPs; i.e. it ensures that
the finger and arm motions are synchronized. The function f (x) encodes the trajectory for reaching the
goal state, and takes the form

f (x) =

PM
j=1

 j (x)wj x
PM

i=1

 i (x)
,

where (x) are M Gaussian basis functions, and w are weights. The weights w are acquired by imitation
learning, using locally weighted regression [62, 34]. The DMPs treat the goal state g as an adjustable
variable and ensure that this state is always reached. However, their capability to generalize can be
further improved by using a task-specific reference frame based on the active learner’s grasp parameters,
as detailed in Section 2.3.2. This adaptation of the action to different goals allows the object to be
repositioned and reorientated in the robot’s workspace.

More important is the choice of the scene’s visual representation, which is used to augment the at-
tractor field and forms the basis of the detractor field. The scene description needs to be in 3D, work
at a fine scale to maintain geometric details, and represent the scenes sparsely to reduce the number of
calculations required per time step. The Early Cognitive Vision system of Pugeault et al. [63, 64] (see
Figure 2.3 ) fulfills these requirements by extracting edge features from the observed scene. The system
subsequently localizes and orientates these edges in 3D space [65], with the resulting features known as
early cognitive vision descriptors (ECVD) [63]. By using a large amount of small ECVDs, any arbitrary
object or scene can be represented. Given an ECVD model of an object, the object’s position and orien-
tation can be determined [66] and the ECVDs of the object model can be superimposed into the scene
representation.
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ECV Descriptors Scene and Hand

Figure 2.3: The left image shows the ECVD representation of the scene on the right. The paddle is the
object to be grasped, while the surrounding objects clutter. The coordinate frame of the third
finger of the lower finger in the image and the variables used in Section 2.3 are shown. The
x -y -z coordinate system is located at the base of the finger, with z orthogonal to the palm,
and y in the direction of the finger. The marked ECVD on the left signifies the jth descriptor,
with its position at v j = (v j x , v j y , v jz)T , and edge direction e j = (ejx , ej y , ejz)T of unit length.
The position of the finger tip is given by p= (px , py , pz)T .

As a hybrid system, the lower-level controller supplies a complex adaptive action policy that the upper
level can indirectly modify. The top level controller only needs to modify the action for a given object,
which can be done more efficiently than having to learn the entire action. To allow for quick learning,
the actions given by the reactive controller should be repeatable, while still adaptive. By making the
rewards for grasps depend on the reactive controller, the reinforcement learner finds both good grasp
locations as well as matching grasp executions.

In Sections 2.3.1 and 2.3.2, we describe the DMPs for grasping, followed by their augmentation using
the ECVD based detractor field in Section 2.3.3.

2.3.1 Attractor Fields based on Dynamical Systems Motor Primitives

Generating the grasp execution begins with defining an attractor field as a DMP, which encodes the
desired movements given no obstacles. The principle features that need to be defined for these DMPs
are the goal positions, and the generic shape of the trajectories.

The high-level grasp controller gives the goal location and orientation of the hand, but not the fingers.
Using the ECVDs, the goal position of each finger is approximated by first estimating a locally linearized
contact plane for the object in the finger coordinate system (see Figure 2.3). The purpose of this step is
to get the fingers close to the object’s surface during preshaping to allow for more control of the object
during grasping. It is not intended to infer exact surface properties or whether the grasp is suitable. If the
selected surface is unsuitable for grasping, a low reward will be received and the upper level controller
will adapt its policy accordingly.

A contact plane is approximated for each finger to allow for a range of object shapes. The influence
of the ith ECVD is weighted by wi = exp(���2

x v 2

i x ���2

y v 2

i y ���2

z v 2

iz), where �x , �y , and �z are length
constants that reflect the finger’s length and width, and vi is the position of the ECVD in the finger
reference frame. The hand orientation is such that the Z direction of the finger should be approximately
parallel to the contact plane, which reduces the problem to describing the plane as a line in the 2D X -Y
space. The X -Y gradient of the plane is approximated by � = (

PN
i=1

wi)�1

PN
i=1

wi arctan(ei y/eix), where
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N is the number of vision descriptors, and ei is the direction of the ith edge. The desired Y position of
the fingertip is then given by

˜py =

PN
i=1

(wi vi y � tan(�)wi vi x)PN
i=1

wi

,

which can be converted to joint angles using the inverse kinematics of the hand. The proposed method
selects the goal postures of the fingers in a deterministic manner, which depends on the object’s geometry
as well as the grasp parameters specified by the active learner. Thus, the hybrid system’s active learner
indirectly selects the posture of the fingers through a reactive mechanism based on the visual model of
the object.

The next step defines the reaching and grasping trajectories. Many beneficial traits of human move-
ments, including smooth motions and small overshoots for obstacle avoidance [67, 68, 37], can be
transferred to the robot through imitation learning. To demonstrate grasping motions, we used a VICON
motion tracking system to record human movements during a grasping task. The grasped object can be
different to the robot’s. VICON markers were only required at the hand and finger tips. The tracking
system samples the human’s motions, generating position q, velocity ˙

q, and acceleration ¨

q data, as well
as the samples’ time stamps. The weights wi of the DMP are then given by

wi =

Ç TX

k=1

 i (xk) x2

k

å�1 TX

j=1

 i

�
x j

�
x j

�
⌧2

¨qj �↵z(�z(g � qj)�⌧1

˙qj)
�

a�1

,

where x j is the state of the canonical system corresponding to the jth time stamp. The solution is eaily
computed in closed form. Further information on imitation learning of DMPs can be found in Ijspeert’s
paper [34]. As the reaching trajectories are encoded in task space the correspondence problem of the
arm was not a problem.

The DMPs are provably stable [35] and the goal state, as specified by the upper level controller, will
always be achieved. Alterations added by the reactive controllers must stay within the bounds of the
framework to ensure that this stability is maintained.

2.3.2 Transformed Dynamical Motor Primitives for Grasping

While DMPs generalize to arbitrary goal positions, the grasps’ approach direction can not be arbitrarily
defined, and the amplitude of the trajectory is unnecessarily sensitive to changes in the start position
y

0

and the goal position g if y
0

⇡ g during training. These limitations can be overcome by including a
preprocessor that modifies the DMPs’ hyperparameters.

The system can maintain the correct approach direction by using a task-specific coordinate system. Due
to the translation invariance of DMPs, only a rotation R 2 SO(3) between the two coordinate systems
needs to be determined. The majority of the reaching motions will lie in a plane defined by the start and
goal locations, and the final approach direction. These components of the plane are supplied by the high
level controller, with the approach direction defined by the final hand orientation.

The first new in-plane axis xp is set to be along the approach direction of the grasp; i.e., xp = �a as
shown in Figure 2.4 . The approach direction is thus easily defined and only requires that the Yp and Zp
DMPs reach their goal before the Xp primitive. The second axis, yp, must be orthogonal to xp and also in
the plane, as shown in Figure 2.4. It is set to yp = b�1((g�s)�xp(g�s)T xp), where b�1 is a normalization
term, and s and g are the motion’s 3D start and goal positions respectively. The third axis vector is given
by zp = xp ⇥ yp. The DMPs can thus be specified by the preprocessor in the Xp-Yp-Zp coordinate system,
and mapped to the Xw-Yw-Zw world reference frame by multiplying by R

T = [xp,yp,zp]T .

19



Zw

Xw

Yw

pY
pX

s

a

g

Figure 2.4: The diagram shows the the change in coordinate systems for the reaching DMPs. The axes
Xw-Yw-Zw are the world coordinate system, and Xp-Yp-Zp is coordinate system in which the
DMP is specified. The trajectory of the DMP is shown by the curved line, starting at point s,
and ending at point g. Xp is parallel to the approach direction of the hand, the arrow a. The
axis Yp is perpendicular to Xp, and pointing from s towards g.

The change of coordinate system is a fundamental step for the hybrid system. It places the reactive
controller, together with all of its modifications, within the reinforcement learner’s action-reward feed-
back loop. Therefore, the system learns pairings of grasp locations and grasp executions that lead to
high rewards.

The second problem relates to the scaling of motions with ranges greater than ky
0

� gk, which are
required to move around the outside of objects. In the standard form a = g � y

0

[62], which leads to
motions that are overly sensitive to changes in g and y

0

if g ⇡ y
0

during training. The preprocessor can
reduce the sensitivity by using a more robust scaling term, for which we propose the amplitude

a = k⌘(g � y
0

) + (1�⌘)(gT � y
0T )k ,

where gT and y
0T are the goal and start positions of the training data respectively, and ⌘ 2 [0,1] is a

weighting hyperparameter. This amplitude is always between the training amplitude and the standard
generalization value a = g � y

0

, and ⌘ controls how conservative the generalization is to new goals (see
Figure 2.5) . By taking the absolute value of the amplitude, the approach direction is never reversed
(see Figure 2.5). The amplitude previously proposed by Park et al. [58] corresponds to the special case
of ⌘= 0. Example generalizations of a reaching trajectory are shown in Figure 2.6.

The described transformations allow a single DMP to perform a larger range of grasps, which im-
plies that fewer DMPs are required in total. Using different DMPs for different sections of the object
or workspace should be avoided as it creates unnecessary discontinuities in the rewards, which can
slow down the hybrid system’s learning process. Only one grasp had to be learned for the entire robot
experiment, which was then adapted to the various situations.

2.3.3 Detractor Fields based on ECVDs

Detractor fields refine the motions generated by the DMPs to avoid obstacles during the reaching motion
and ensure that the finger tips do not collide with the object during the hand’s approach.

The detractor field is based on ECVDs, which represent small line segments of an object’s edges lo-
calized in 3D, as shown in Figure 2.3. The detractive forces of multiple ECVDs describing a single line
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Figure 2.5: This is a demonstration of the e�ects of transforming the amplitude variable a of DMPs. The
hashed black lines represent boundaries. The solid green line shows the trained trajectory of
the DMP going to 0.05. If goal is then placed at 0.1 and the workspace is limited to ±0.075

(top boundary), the dashed red line is the standard generalization to a larger goal, while the
solid plot uses the new amplitude. If the goal is �0.05, and needs to be reached from above
(lower right boundary), then the dashed blue line is the standard generalization to a negative
goal, and the solid grey trajectory uses the new amplitude. Both of the new trajectories were
generated with ⌘= 0.25.

should not superimpose, nor should the field stop DMPs from reaching their ultimate goals. The system
therefore uses a Nadaraya-Watson model [69, 70] of the form

ua = �v (x)

PN
i=1

ri caiPN
j=1

rj

,

to generate a suitable detractor field, where ri is a weight assigned to the ith ECVD, s is the strength of the
overall field, x is the state of the DMPs’ canonical system, cai is the detracting force for a single descriptor,
and subscript a specifies if the detractor field is for the finger motions or the reaching movements.

The weight of an ECVD for collision avoidance is given by ri = exp(�(vi � p)Th(vi � p)), where vi
is the position of the ith ECVD in the local coordinate system, h is a vector of positive length scale
hyperparameters, and p is the finger tip position, as shown in Figure 2.3. The detractor puts more
importance on ECVDs in the vicinity of the finger.

The reaching and finger movements react differently to edges and employ different types of ba-
sis functions ci for their respective potential fields. For the fingers, the individual potential fields
are logistic sigmoid functions about the edge of each ECVD of the form ⇢(1 + exp(di�

�2

c ))
�1, where

di =
��(p� vi)� ei(p� vi)Tei

�� is the distance from the finger to the edge, ⇢ � 0 is a scaling parameter,
and �c � 0 is a length parameter. Differentiating the potential field results in a force of

cf i = ⇢
�
1+ exp

�
di�
�2

c

���2

exp

�
di�
�2

c

�
.

As the sigmoid is monotonically increasing, the detractor always forces the fingers open further to move
their tips around the ECVDs and ensure that they approach the object from the outside. A similar
potential function can be employed to force the hand closed when near ECVDs pertaining to the scene
rather than the object.

The reaching motion uses the Gaussian basis functions of the form % exp(�0.5d

T

i di�
�2

d ), where di =
(q�vi)�ei(q�vi)Tei is the distance from the end effector position, q, to the edge, and % � 0 and �d � 0

are scale and length parameters respectively. Differentiating the potential with respect to di gives a force
term in the Y direction of

chi = %(di.Y)��2

d exp(�0.5d

T

i di�
�2

d ),

21



Figure 2.6: Workspace trajectories where the x and y values are governed by two synchronized DMPs.
The semicircle indicates the goal positions, with desired approach directions indicated by the
red straight lines. The approach direction DMP was trained on an amplitude of one, and
⌘ = 0.25.

which thus apply a radial force from the edge with an exponentially decaying magnitude.
The strength factor s(x) controls the precision of the movements, ensuring that the detractor forces

tend to zero at the end of a movement and do not obstruct the DMPs from achieving its goal state.
Therefore, the strength of the detractors is coupled to the canonical system of the DMP. Hence, v (x) =
(
PM

j=1

 j)�1

PM
i=1

 iwi x , where x is the value of the canonical system,  are its basis functions, and w
specify the varying strength of the field during the trajectory.

Modelling the human tendency towards more precise movements during the last 30% of a motion [67],
the strength function, v (x), was set to give the highest strengths during the first 70% of the motion for
the reaching trajectories, and the last 30% for the finger movements. Setting the strength in this manner
is also beneficial to the reinforcement learner. The reward of the learner depends mainly on the final
position of the hand, and the closing of the fingers. If these parts of the motion are more repeatable,
then it is easier for the upper-level controller to learn.

The detractor fields of both the grasping and reaching components have been defined, and are super-
imposed into the DMP framework as

¨y =
�
↵z(�z⌧

�2(g � y)�⌧�1

˙y) + a⌧�2 f (x)
��⌧�2ua,

which represents the entire ECVD and DMP based potential field.
Combining the ECVD based DMPs with the new coordinate system for reaching and motion amplitude,

we have fully defined the low-level controller. Its main contribution is to learn a grasping movement by
imitation and then to reactively adapt these motions to new situations in a manner suited to the task and
specified by the upper level controller.

2.4 Evaluations

The following sections evaluate the system both in simulation and on a real robot platform. The first part
of the evaluation (Section 2.4.1) tests the upper-level controller against other continuum UCB policies
on a simulated benchmark problem. The real world evaluation, presented in Section 2.4.2, demonstrates
the complete controller working on a real robot grasping novel objects in cluttered environments.

2.4.1 Comparative UCB Analysis

This section focuses on the reinforcement learner and shows that the CGB algorithm (see Algorithm
1) performs well in practice, and can be scaled to the more complex domain of grasp learning. The
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UPPER CONFIDENCE BOUND POLICY COMPARISON
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Figure 2.7: The expected rewards over 100 experiments are shown for the four compared methods. The
results were filtered for clarity. Due to the di�erences in experiment lengths, the x-axis uses a
logarithmic scale. The dashed horizontal line represents the maximum expected reward given
the noise.

comparison is between four UCB policies, including our proposed method, on a 1D benchmark example
of the continuum-armed bandits problem. The policies were tested on the same set of 100 randomly
generated 7th order spline reward functions. The rewards were superimposed with uniform noise of
width 0.1, but restricted to a range of [0, 1]. The space of bandits was also restricted to a range between
0 and 1. None of the policies were informed of the length of the experiment in advance, and each policy
was tuned to achieve high rewards.

2.4.1.1 Compared Methods

The tested competing policies are UCBC [42], CAB1 [43], and Zooming [71]. These algorithms represent
standard UCB policy implementations for continuum-armed bandits in the literature. A key issue for any
policy that uses discretizations is selecting the number of discrete bandits to use. Employing a coarser
structure will lead to faster convergence, but the expected rewards upon convergence are also further
from the optimal. Balancing this trade-off is therefore important for a policy’s success.

The UCBC policy of Auer [42] divides the bandits space into regular intervals and treats each interval
as a bandit in a discrete UCB policy. After choosing an interval, a uniform distribution over the region
selects the bandit to attempt. The number of intervals sets the coarseness of the system, and was tuned
to 10.

Instead of using entire intervals, the CAB1 policy of Kleinberg [43] selects specific grasps at uniform
grid points. A discrete UCB policy is then applied to these points, for which we chose UCB1 [3], as
suggested in [43]. The discretization trade-off is dealt with by resetting the system at fixed intervals with
larger numbers of bandits, thus ensuring that the points becomes denser as the experiment continues.

The zooming algorithm, of Kleinberg et al. [71], also uses a grid structure to discretize the bandits. In
contrast to CAB1, the grid is not uniform and additional bandits can be introduced at any time in high
rewarding regions. A discrete policy is then applied to this set of active bandits. Similar to CAB1, the
zooming algorithm works in time intervals and resets its grid after fixed numbers of trials.

Our proposed Continuum Gaussian Bandits (CGB) method was initialized with 4 equispaced points.
Demonstrated data was not used in order to test its performance without the benefits of such data. All
four methods were initially run for 55 trials, as shown in Figure 2.7. The CAB1, UCBC, and Zooming
methods extended to 1000 trials to demonstrate their convergence behavior.
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UCBC CAB1 Zoom CGB
Mean Reward 0.6419 0.4987 0.6065 0.9122

1D computation time 46 µs 47 µs 27 µs 2.9 sec
6D computation time 4.6 sec 6.7 ms 5.6ms 17.6 sec
1D initialization run

time
10 min 12 min 24 min 4 min

6D initialization run
time

1.9 yrs 1.2 days 4.2 days 24 min

Table 2.1: These results pertain to the first 50 grasp attempts in the benchmark problem. The table
shows the mean computation times for the di�erent algorithms, and how they would scale to
six dimensions, given the computational complexity of the algorithms [43, 42, 71]. Similarly,
the table shows the amount of time needed to initialize the systems by trying each of the initial
grasps once.

2.4.1.2 Results

The expected rewards for the four UCB policies during the experiment can be seen in Figure 2.7. The
computation and run times were also acquired for the experiments for comparison, and estimated for
the 6 dimensional problem, as shown in Table 2.1.

Apart from our proposed policy, Zooming was the most successful over the 1000 trials at achieving
high rewards, as it adapts its grid to the reward function. However, only CGB consistently determined
the high rewarding regions and converged on them. In several trails, the reward function had two
distinct peaks with near-optimal rewards, and the CGB policy converged onto both.

The convergence of UCB policies is frequently described by the acquisition function’s percentage of
exploitation µ(x⇤)/(µ(x⇤) + �(x⇤)), where x

⇤ is the current action selected by the policy. This value is
initially zero and increases as the policy returns to previously explored actions with high rewards. The
97.5% exploitation mark was reached by the CGB policy on average at the 33rd trial. Another measure
of convergence is found by directly comparing the different maxima found by CGB. The policy converges
when the expected value µ(x⇤) of the selected action is greater than the highest acquisition function
value µ(x) +�(x) of the other candidate actions. This criterion is based on the fact that the acquisition
function µ(x) +�(x) tends to µ(x) as the exploration of an action is exhausted. Using this criteria, the
policy converged on average at the 37th trial.

As parametric policies, the standard methods assume that the optimal solution can be represented
by their fixed features and corresponding parameters. These policies can therefore only converge to
an optimal solution if it is representable by these features. Both CAB1 and the Zooming algorithm will
converge onto the true optimum, but only as the number of samples tends to infinity, as indicated in
Figure 2.7.

In terms of computation times, the previous methods were faster than the proposed method, although
CGB and UCBC exhibit similar orders of magnitude. One reason for CGB being slower is that this
implementation performs the parallel search for maxima sequentially. Parallelizing this search would
reduce the expected 6D computation time of CGB to 0.65 seconds.

Most of the system’s time is however used to perform the actions (i.e., the run times). For this compar-
ison we focused on the time required to initialize the systems by trying each initial grasp once. Not only
is the proposed method the fastest in terms of run times (see Table2.1), it also shows that implementing
the other methods for grasping is not practical due to the curse of dimensionality.

The UCBC algorithm has both longer computation and running times than CAB1 and the Zooming al-
gorithm. However, as CAB1 and the Zooming algorithm increase the number of active actions throughout
the experiment, these would ultimately exhibit computation and run times greater than UCBC.
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A. Preshaping B. Grasping C. Lifting

Figure 2.8: The three main phases of a basic grasp are demonstrated. (A) Preshaping the hand poses the
fingers to match the object’s geometry. (B) Grasping closes the three fingers at the same rate
to secure the object. (C) The object is lifted and the fingers adjust to the additional weight.
The objects at the bottom of A and B are clutter.

The memory requirements of the previous methods increases exponentially with the dimensionality,
and CGB will only require more memory than UCBC once it has performed a million grasps. The memory
requirements of CGB scale with the number of samples, and sufficient memory should be made available
depending on the difficulty of the learned task.

In cases where large numbers of samples have been accumulated, suitable implementations of GPR
(e.g., Sparse GP [72]) reduce the computational complexity. The loss of accuracy incurred by such
implementations is comparable to the accuracy limits inherent to discretization methods, making these
methods suitable alternatives to standard GPR.

Ultimately the experiment shows that the proposed method outperforms the other methods in a low
dimensional setting, and is the most practical method for higher dimensions due to the curse of dimen-
sionality.

2.4.2 Robot Grasping Task

Having shown that the proposed CGB algorithm is an efficient UCB policy, the robotics evaluation focuses
on including the lower level controller for improved actions in a robot grasping scenario. This experiment
involves the complete system being implemented on a real robot platform. The following sections detail
the running of the experiment (Section 2.4.2.1) and the results of the experiment (Section 2.4.2.2).

In this experiment, we implement only the methods proposed in this chapter. The methods described
in Section 2.4.1.1 were not tested on the real system.

2.4.2.1 Grasping Experiment

The robot is a basic hand-eye system consisting of a 7 degrees of freedom Mitsubishi PA-10 arm, a
Barrett hand, and a Videre stereo camera. The robot only uses sensors essential for the task and forgoes
additional hardware such as tactile sensors and laser rangefinders. The robot’s task was to learn several
good grasps of novel objects through trial and error. All grasps were executed on the real robot and not
in simulation.

Each trial begins by estimating the object’s position and orientation to convert between world and
object reference frames, and to project the ECVD model of the object into the scene representation.
The stereo camera allows the object position and orientation to be reliably estimated using the pose
estimation method of Detry et al. [66].
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A. Flat B. Slanted C. Cylindrical Handle

D. Arched Handle E. Knob F. Extreme Point

Figure 2.9: Various preshapes are shown. A and B show the system adjusting to di�erent plane angles. C
and D demonstrate the preshaping for di�erent types of handles. E shows the preshaping for
a circular disc structure, such as a door knob, and gets its fingers closely behind the object. F
shows where the object was out of the reach of two fingers, but still hooks the object with
one finger.

The CGB algorithm then determines the parameters of the next grasp, which the reactive lower level
controller uses to modify the grasping action. If the robot grasps the object, the robot attempts to lift
the object from the table, as shown in Fig. 2.8. Thus, the robot ensures that the table is not supporting
the object. Trials are given rewards depending on how little the fingers moved while lifting the ob-
ject, thereby encouraging more stable grasps. The rewards are not deterministic due to errors in pose
estimation and effects caused by the placement of the object.

The robot task was made more difficult by adding clutter to the scene. After each grasp attempt,
the hand reverses along the same approach direction, but without employing the detractor fields or
preshaping of the hand, to determine if collisions would have occurred if the reactive controller had not
been used.

The system was run three times on a table tennis paddle to show that it is repeatable. To show that
the system can adapt to various scenarios and objects, the experiment was also run twice on both a toy
watering can and a wooden box.

The experiments for learning to grasp a paddle consisted of 55 trials, while only 40 trials were required
for the watering can and box experiments. Overall 325 different grasp attempts were executed with the
combined active and reactive system.

2.4.2.2 Results

The active learner and reactive controller were successfully integrated and the complete system con-
verged onto high-rewarding grasp regions in all of the trials. The imitation learning was straightforward,
requiring only one demonstration and allowing for continuous smooth motions to be implemented. Ex-
amples of the estimated finger goal locations can be seen in Fig. 2.9. The preshaping adapted to a range
of geometries, and consistently placed the fingers close enough to the object for a controlled grasp to be
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DEMONSTRATION OF A CONTROLLED GRASP

A. Preshaping B. Grasping

Figure 2.10: A controlled grasp, made possible by the hybrid system’s preshaping ability. (A) The preshap-
ing matchs the geometry of the object. When grasping, the two fingers on the left pinch
the paddle. The finger on the right turns the paddle clockwise about the pinched point. (B)
The grasping ends when the paddle has become aligned with all three finger tips.

executed. This preshaping gave more control over the object when grasping, leading to higher rewards
and allowing for more advanced grasps to be performed (see Fig. 2.10). Similar to human grasps [73],
some of the learned grasps implicitly exploited constraints in order to improve the grasp success rate.

The detractor field and preshaping of the hand allowed the system to work in cluttered environments,
which was not a trivial task. The hand came into contact with the clutter for an estimated 8.3% of
the grasp attempts, but never more than a glancing contact. These contacts were usually with visually
occluded parts of the objects, and thus not fully modelled by the ECVDs. Accumulating the scene rep-
resentation from multiple views solves this problem. During the reversing phases, when the reactive
controller is deactivated, the hand collided with one or more pieces of clutter during 85.4% of the at-
tempts. Thus, the reactive control decreases the number of contacts with the clutter by a factor of ten.
The fingers always opened sufficiently to accept the object without colliding with it.

The rewards during the experiment are shown in Figure 2.11. In all of the experiments, the proposed
hybrid system found suitable grasps for the object. The watering can and box experiments converged
faster than the paddle experiments, due to their initial search region being smaller. While all experiments
acquired low rewards for the initial grasps, the soft boundaries allowed the system to explore beyond
these regions and find neighbouring regions of better grasps.

Thus, by limiting the robot to evaluating local optima of the acquisition function and using fixed
hyperparamters, the policy resulted in a local search for better grasps. This is in contrast to the global
optimization performed by UCB Bayesian optimization approaches [48]. The local search was well-suited
for the proposed task, as the robot had to select grasps without explicit information regarding the shape
and size of the object. A global search could potentially learn more grasps with higher performance, but
it would also result in a lot of exploratory grasps that do not even make contact with the object.

Amongst the most important results of this experiment is that the central loop of the hybrid controller
works in practice. The system did not just quickly learn a graspable location on an object, but rather
the hybrid system quickly learned an entire fluid motion for grasping the object, including preshaping.
The system took a single demonstrated action and learned modifications that generalized the action to
three different objects. The learning process was significantly hastened by the hybrid approach, as the
reactive controller allowed the dimensionality of the reinforcement learner to be kept relatively low,
while simultaneously performing complicated grasping motions.

One of the main motivations of this project was to create a reinforcement learner that could generate
new grasps for training a supervised grasp learner. Although the system successfully learned grasps
which could be used as training data, learning from these grasps is not trivial. Some of the grasps, e.g.
Fig. 2.10, involved moving the object around with the fingers before achieving the final grasp. These
grasps do not just depend on the local shape of the object, but also the interactions between the object
and the environment. Hence, these grasps are not guaranteed to succeed if the object were resting in
the middle of a table or wedged between two other objects. The supervised learner would also need to
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EXPECTED REWARDS THROUGHOUT EXPERIMENT
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Figure 2.11: The graph shows the expected reward of the attempted grasps over the run of the experi-
ment for the three di�erent objects. All values are averaged over the runs of the experiment,
with error bars of +/- two standard deviations. The dashed horizontal line indicates the upper
confidence bound of a point at infinity.

take into consideration the interactions between the object and its environment when selecting a grasp.
In the future, it would be useful to investigate whether similar types of grasps would be learned if the
robot used a kernel that was based on the features used by the supervised learner, e.g., the local shape
of the object.

The upper and lower levels divide the grasping problem into two sub-problems: determining where to
grasp an object and deciding how to correctly execute the grasp. By incorporating the reactive controller
in the learning loop, the hybrid system learned an action that solves both of these sub-problems.

2.5 Conclusion

The first contribution of this chapter was to formulate grasping as a reinforcement learning problem.
Other approaches have mainly focused on supervised learning paradigms [74, 75], or active learning
approach to guide exploration [30, 31]. By using a reinforcement learning approach, the robot can
optimize grasps for specific objects.

The second contribution was to present a hierarchical hybrid controller that can efficiently determine
good grasps of objects and execute them. The upper level controller is based on reinforcement learning
to allow the robot to learn from its own experiences, but capable of incorporating supervised data from
other sources if available. Grasp execution is handled by a lower level controller based on imitation
learning and reactive control. This hybrid structure allowed the system to learn both good grasp locations
and corresponding grasp executions simultaneously, while keeping the dimensionality of the learning
problem low.

We have shown that the presented algorithms and learning architectures work well both in simulation
and on a real robot. In simulation, the active learner outperformed several standard UCB policies de-
signed for the continuum-armed bandits problem. The entire system was successfully implemented on a
real robot platform, which consistently found high-reward grasps for various objects.
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2.6 Potentially Helpful Insights

The main goal of this project was to develop a method that would allow robots to learn better grasps of
objects without relying on prior assumptions regarding “good” grasps. We also wanted to determine if
learning grasps in this manner is feasible given the limited amount of information provided to the robot
and the precision needed for executing some grasps.

By determining better grasps of an object, the robot can autonomously expand its training dataset
for a supervised learner in order to predict grasps of novel objects. These predicted grasps can then be
used as the initialization for optimizing grasps of other objects. The robot could then iterate between
these supervised and reinforcement learning methods in order to master grasping. Although the robot
managed to find better grasps, the results also highlight the need to investigate the interactions between
different learning methods.

Supervised learning approaches to grasping often try to predict whether a grasp will succeed based on
local features of the object at the grasp point . However, the grasps learned by our robot often involved
moving the object during the grasping process. The success of these grasps therefore depends on the
interactions between the object and its environment, which may not be captured using only local shape
information. In our experiments, the effects of the environment were increased by using a smaller stand
to support the object. The effects were also more noticeable for the the table tennis paddle, which tended
to be grasped vertically, and could therefore not exploit the sliding movements of the object.

The issue of environmental interactions could be addressed in several different manners. One ap-
proach would be to explicitly incorporate the interactions in the learning process. The robot could
represent the interactions using an additional kernel, such as the one described in Chapter 3. The kernel
would effectively weight samples based on the similarity of the environmental interactions. The super-
vised learner could also explicitly take into consideration the environmental interactions when selecting
a grasp. Including this kind of state information would make the proposed approach more robust to
changes in the object’s state during learning. If the robot does not explicitly incorporate the interactions,
then the model would treat them as additional sources of noise in the reward. In other words, the ex-
pected reward would be lower if a grasp only performs well in a few situations. The robot would thus
attempt to learn grasps that are robust to such variations, but may also restrict the robot from exploiting
certain environmental interactions.

Rather than using supervised learning to generalize grasps and reinforcement learning to improve
grasps, one could also attempt to merge these two components by using a kernel that generalizes be-
tween objects. For example, one could use a kernel based on the local shape of the object near the grasp
frame. This approach would allow the robot to directly learn to improve grasps from multiple objects.
The kernel would however not capture some relevant information, e.g. the object’s mass distribution
and material properties, which the current kernel incorporates implicitly. Hence, the robot may not be
able to learn optimal grasps of individual objects, but could potentially learn grasps that generalize well
between objects. An early attempt at this approach [76], using the expected reward as the acquisition
function, gave promising results and could quickly adapt to novel objects.
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3 Generalizing Between Objects with
Di�erent Geometries

When generalizing manipulation skills between different scenarios, the robot must take into consid-
eration the geometry of the object that it is manipulating. The robot should therefore use object
representations that allow it to determine similarities between known and novel objects in order to
generalize between them. These representation should capture the parts of the object that are relevant
to the manipulation task.

In this chapter, we present two representations for generalizing manipulations between objects. The
first part of the chapter presents a kernel for contact distributions. Contacts between objects are fun-
damental to many manipulations, but defining general features to represent contacts is difficult. The
kernel allows the robot to compute the similarity between different contact distributions, and use a wide
range of kernel methods for learning. The second part of the chapter presents warped parameters for
computing geometric features. This approach is based on finding correspondences between objects by
warping one object to fit the other’s shape. The warped shape is used to compute geometric parameters
such as volumes and lengths. These parameters can then be used to learn manipulations that generalize
between different objects.

3.1 Learning From Contact Distributions

Figure 3.1: The Darias robot performing a block
stacking task. The robot learns suitable
block placements using a kernel function
for comparing contact distributions.

Manipulation tasks almost always involve direct
physical contact between two or more objects.
These contacts can be between different objects
in the robot’s environment, or between an object
and the robot. Depending on the locations of the
contacts, different types of interactions and ma-
nipulations can occur. For example, a contact on
the side of an object may allow for pushing and
sliding the object, while a contact on the bottom
can be used for lifting or supporting the object. In
order to successfully perform a manipulation task,
a robot must be able to determine the potential
interactions between objects and utilize them to
accomplish the task’s goal.

Utilizing contact information in an efficient
manner is however not a trivial task. Analytical
approaches tend to require accurate models of the
objects, and rely on simplified contact models [2].
In an effort to make robots more autonomous,
learning approaches have become more widely
adopted in the field of robot manipulation [77, 78, 79]. However, representing contacts between ob-
jects often relies on hand-crafted features for the given task.

In this chapter, we propose an example-based learning approach to detect interactions between objects
from their contact distributions. We pose the problem of detecting interactions as a binary classification
problem, wherein the robot has to predict whether or not a certain interaction is occurring based on the
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geometry and relative poses of the objects. The robot first computes which regions of the objects are in
contact with each other. The resulting cloud of contact points is subsequently modeled as a Gaussian
distribution. A Bhattacharyya kernel function [80] can then be used to compute the similarities between
the contact distributions and, thus, classify them using kernel logistic regression. In this manner, the
robot uses the similarity between the current contact distribution and previous distributions in order to
classify the potential interaction. The details of the approach are explained in Section 3.2.

Classifying interactions between objects is closely related to learning affordances [81]. If an object
allows a robot to perform an action with it, than the object is said to “afford” that action. Affordances
have been widely studied in robotics [82, 83, 84], and especially in the field of robot grasp synthesis
[2]. Recently, several papers have proposed template-based approaches for detecting where an object
can be grasped [85, 86, 87, 88, 76]. These approaches predict where to grasp an object based on the
local shape of the object relative to the hand.

Learning symbolic representations of geometric relations between objects, e.g. object A is ON object
B, is an important skill for performing complex manipulation tasks. Rosman and Ramamoorthy [89]
proposed the use of a contact network to learn the spatial relations between objects. Contact points
were detected using a support vector machine to separate the point clouds of the objects. The vectors
between the objects’ contact points were then computed and used to classify relations such as on and
adjacent using a k-nearest neighbors classifier. Kulick et al. use an active learning approach to efficiently
learn a symbolic representation of the relations between objects [90]. Using features such as the heights
of objects and the relative positions between objects, they train a Gaussian process classifier to learn in
which geometric states the predicate is true.

Contact information can also be represented in the form of tactile sensor readings [91, 92]. Bekiroglu
et al. [91] proposed learning to predict stable grasps of objects using kernel logistic regression. Their
approach used a product of three separate kernels based on the position of the hand relative to the
object, the approach direction of the hand, and moment features of the tactile sensor arrays’ readings. In
the work of Dang et al. [92], the locations of the sensed contact points are defined relative to the palm,
and modeled using a bag-of-words representation. A support vector machine is then trained to classify
stable and unstable grasps.

The features used by learning algorithms can also be designed to capture specific aspects of the con-
tacts between objects [79, 77, 93]. In [79], a classifier was trained on simulated data to predict inter-
actions, such as support and location control, between pairs of objects. The classifier was provided with
93 features, such as the total contact patch area, and the vector between the closest contact point and
the other object. Automatic relevance determination was then used to effectively select a subset of these
features. Jiang et al. [77] addressed the problem of learning to place objects in a scene. The placement
of an object was represented by a set of 145 features, including features for modeling supporting con-
tacts and the caging of objects. A support vector machine with a shared sparsity structure was then used
to classify good and bad placements of objects.

The proposed kernel approach was implemented on the robot shown in Fig. 3.1. In the first experi-
ment, the robot was given the task of predicting which grasps allow it to steadily pick up an elongated
object. The second experiment required the robot to stack assorted blocks. The details of the experiments
are given in Section 3.3.

3.2 Computing a Kernel for Contact Distributions

In Sections 3.2.1 to 3.2.3, we explain how contacts between objects are detected and used to create con-
tact distributions. In Sections 3.2.4 and 3.2.8, we provide a kernel function for computing the similarity
between contact distributions and explain how it is used to classify the distributions using kernel logistic
regression.

32



3.2.1 Contact Points

In order to determine the contacts between objects, we first need a suitable representation of the object
and its geometry. Given an object Oi, where i specifies the index of the object, we define its geometry
as a point cloud with ni points at positions pi j and corresponding normals ui j for j 2 {1, . . . , ni}. Point
clouds are flexible object representations that are widely used in robotics [94]. The normals of the points
are straightforward to compute using the covariance of nearby points and the viewing direction.

The point cloud defines the surface of the object and, hence, also where contacts can potentially be
made with another object. In order to obtain a set of contact points, each point in the point cloud is
classified as either being in contact with the other object or not. In our experiments, we used logistic
regression to classify the points, although other methods for detecting contacts are also applicable. The
probability of a point pic being in contact Cic j with the object Oj is given by

p(Cic j|pic,uic,Oj) =
�
1+ exp

�
�T⇢

���1

,

where � is a vector of feature functions and ⇢ is a vector of corresponding weights. We used three
features, including a density estimation
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where � is the length scale of the density. We also include a bias term �
3

= 1.
These three features are well-suited for detecting arbitrary contacts between two objects. Some inter-

actions however require specific types of contacts, e.g., cutting requires contact with a sharp edge. The
set of features can be easily extended for more specific types of contacts.

Computing a set of weights ⇢ that maximizes the likelihood of the training data is a convex optimiza-
tion problem, and can be solved using iterative reweighted least squares, as explained in [47]. A point
is classified as a contact point if the probability of contact is greater than 0.5.

3.2.2 Object Centers

In addition to the shape of the object, we also define a set of object centers for each object. Object
centers are used to define interaction-relevant coordinate frames for the object. Each center cik, where
k is the index of the center for object Oi, is associated with a position xik and at least one axis aik. For
example, the position of an object’s center of gravity is given by the mean point of its mass, and an axis
pointing down in the direction of gravity. For an articulated object, such as a hand winch or door handle,
the position and axis of rotation of the revolute joint defines another center. Although an object may
have many centers, usually only one center is used for predicting an interaction. In this thesis, we only
consider a single object center ci, and leave automatically selecting the relevant center to future work.

Once the contact points have been found, they need to be defined with respect to the center’s coordi-
nate frame. If the axes of the center already define three orthogonal axes a

x
i , a

y
i , and a

z
i , then this step

is trivial. However, the center of gravity or the center of a revolute joint only define a single axis a

x
i and

not a full 3D coordinate frame. In order to define the other two axes, we first project the contact points
into a 2D plane, with the normal of the plane given by the first axis of the center a

x
i . We then compute
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the matrix of second moments about the center position for the contact points, and subsequently com-
pute the eigenvectors of the matrix. The second axis a

y
i is defined by the eigenvector with the largest

eigenvalue, such that the mean of the contact points is in the positive direction. Using this approach, the
contact point clouds are aligned according to the radial direction with the largest variance. The third
axis is simply given by the cross product of the first two a

z
i = a

x
i ⇥ a

y
i .

The positions of the ˜ni contact points in the object center’s coordinate frame are denoted as ˜

pi j with
corresponding normals ˜

ui j for j 2 {1, . . . , ˜ni}.

3.2.3 Computing Contact Distributions

Having computed a set of contact points, we now want to compare this set of contacts to previously
observed ones. Rather than comparing points individually, we first model the set of contact points as a
distribution. In particular, we model them as a 6D Gaussian distribution, where the first three dimensions
correspond to the positions of points, and the last three model the normals. In the lifting experiment
in Section 3.3, we also investigate replacing the normals of each point with an estimate of the force.
However, the forces are in most cases not known, especially when the interaction is between two objects
and not with the robot.

Given a set of contacts, we now define a distribution over contact points as a Gaussian distribution.
The mean vector µi and variance ⌃i of the distribution are given as

µi =
1
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Near-singular covariance matrices can lead to numerical issues, which can be alleviated by enforcing
a lower limit on the eigenvalues, or by including additional noise as described in Section 3.2.7. The
Gaussian model provides a compact representation of the mean contact position and normal orientation,
as well as the correlations between the parameters around the mean.

3.2.4 Kernel Between Contact Distributions

Having converted the contact points into a contact distribution, we can now use a kernel to compute the
similarity between distributions. We use the Bhattacharyya kernel [80] which is given by

k((µi,⌃i), (µ j,⌃ j)) =
ˆ∆N (x|µi,⌃i)

qN (x|µ j,⌃ j)dx.

The computation of the kernel is given in [95], and we include it again here for completeness. The
kernel function is computed as

k((µi,⌃i), (µ j,⌃ j)) = C exp (�M/4) ,

where the values of C and M are given by

C = 0.5
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The vector ˆµ is given by ˆµ = ⌃�1

i µi +⌃�1

j µ j, and the matrix ˆ⌃ is computed as ˆ⌃ = (⌃�1

i +⌃
�1

j )
�1. The

parameter d = 6 is the dimensionality of the Gaussians. The kernel function computes a value from zero
to one, where a value of one is achieved if the contact distributions are identical. As the overlap between
the distributions decreases, the kernel function tends to zero.
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3.2.5 Extension to Multiple Gaussians

Although we focus on representing contact distributions using single Gaussians, the proposed framework
is straightforward to extend to multiple Gaussians. By representing the contact distribution as a mixture
of Gaussians, the model can capture more details of the distribution. The resulting kernel can therefore
distinguish between different contact distributions more easily.

However, the Bhattacharyya kernel is not suitable for comparing Gaussian mixture models. Instead,
given that the contact distribution of object Oi has the form

fi(x) =
HiX

h=1

⌫ihN (x|µih,⌃ih),

where ⌫i are the mixture components of the Hi Gaussians, one can compute the kernel function

k( fi(x), f j(x)) =

´
fi(x) f j(x)dx

∆´
fi(x) fi(x)dx

q´
f j(x) f j(x)dx

,

in closed-form. This kernel function also has a value of 1 when the contact distributions are the same,
and tends to zero as the overlap decreases. The kernel is based on the expected likelihood kernel [95]
and is closely related to the Cauchy-Schwarz divergence [96]. Although multiple Gaussians can model
the contact distribution more precisely, this level of detail is often not needed when learning robust
manipulation skills [97].

3.2.6 Shape Kernel

The proposed approach can also be used to compare the shapes of object parts [76]. In this case, rather
than selecting points that are in contact with another object, the robot selects all of the points within a
certain region relative to the object center. Alternatively, the robot can use all of the points in the object’s
point cloud and weight them according to their location. For example, the robot can use a Gaussian
weighting function centered on the object center in order to give the points nearer to the center more
importance.

Shape kernels are more useful for comparing parts of objects rather than the shapes of whole objects.
In these cases, the object center defines a coordinate frame associated to that part of the object. For
example, the object center could define a grasp frame on a handle part. A motor primitive, as described
in Chapter 2, can then be used to define a grasping trajectory for moving the hand relative to this grasp
frame. Using this approach, the robot can learn to detect parts of objects that afford certain actions
based on their shapes [76].

3.2.7 Interaction-Specific Contact Similarity

Although the contact distribution is defined in a 6D space, not all of the dimensions will be equally
relevant for predicting a given interaction. For example, when pushing open a door, the horizontal
distance from the axis of rotation is more relevant than the vertical position along the axis. As a result,
two contacts are more similar if they are offset vertically rather than horizontally from each other.

We can model this additional similarity by adding interaction-specific Gaussian noise N (0,

˜⌃) to the
contact points. Thus, each contact point is represented as a Gaussian distribution N ([ ˜

p

T
ik ˜

u

T
ik ]

T
,

˜⌃)
instead of just a single point. If the offset between two contact points corresponds to a direction with a
larger variance, then their distributions will overlap more and they will be considered as more similar.
In practice, the interaction-specific covariance matrix ˜⌃ is added to the standard covariance matrices ⌃i
and ⌃ j before computing the kernel value. The experiment in Section 3.3.2 shows that the robot can use
this additional similarity information to increase the sample efficiency of the learning algorithm.
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3.2.8 Classifying Contact Distributions

Having defined a kernel between contact distributions, we can now use a wide range of kernel methods
from machine learning [98]. In order to classify a contact distribution, we use kernel logistic regression.
Kernel logistic regression uses the similarity to previously observed distributions, with known labels, to
classify new contact distributions. The probability that a contact distribution N (x|µi,⌃i) allows for a
certain interaction I is given by

p(I |µi,⌃i) = (1+ exp (↵))�1

,

where

↵= ✓
0

+
mX

j=1

✓ jk((µi,⌃i), (µ0j,⌃0j)),

and we have m previous examples of contact distributions N (x|µ0j,⌃0j). The weight parameters ✓ can
be learned using iterative reweighted least squares. Contact distributions that are not similar to any
previous distributions will have a probability defined by ✓

0

. As kernel logistic regression is a probabilistic
classifier, it can model a contact distribution that only sometimes allows for the interaction. Previous
contact distributions that allowed for the interaction will generally have more negative weights, which
will result in a probability closer to one.

3.3 Experiments

The proposed approach was implemented on a real robot, as shown in Fig. 3.1. The robot consists of
two Kuka lightweight robot arms, each equipped with a DLR five-fingered hand [99], and a Microsoft
Kinect. The robot was evaluated on two tasks: picking up an elongated object, and stacking assorted toy
blocks.

3.3.1 Picking up Elongated Objects

In the first experiment, we applied the framework to the problem of predicting whether a given grasp
allows an elongated object to be steadily lifted.

Experimental Setup

The robot performed 60 randomly selected grasps along the length of a spaghetti box. The first half of the
grasps were performed with a three-fingered grasp and the other 30 were executed with a four-fingered
grasp, as shown in Fig. 3.2. The robot subsequently tried to lift the box 13 cm above the table. The
picking up of the box was considered successful if the object was no longer in contact with the table, and
a failure otherwise, as shown in Fig. 3.3. Before lifting the box, the robot recorded the state of the scene
and computed the contact distribution. Based on this information, the robot had to predict whether or
not the lift would be successful. In order to detect contact points, we labeled ten points in one scene to
train the contact classifier. The contact distribution is defined relative to the center of gravity. Although
the box has a simple shape, which affords a continuous range of grasps along its length, it is not trivial
to predict stable lifts for this object. The robot’s hand has to match the shape of the object such that it
can conteract the torque caused by gravity to achieve a stable lift. The magnitude of the torque depends
on where the object is grasped relative to its center of mass.

In addition to evaluating the method explained in Section 3.2, referred to here as NORMAL+POS, we
also evaluated several benchmark approaches. The first benchmark approach, MEANONLY, performs the
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3-Fingered Grasp 4-Fingered Grasp

Figure 3.2: The two types of grasps that were used during the lifting experiment. The three-fingered
grasp uses the tips of the thumb, middle, and index fingers in order to pinch the object. The
ring and little finger are not touching the box. The four-fingered grasp additionally uses the
back of the ring finger on the top of the box in order to provide additional support.

Failed Lift Successful Lift

Figure 3.3: Examples of failed and successful lifts. A lift was considered a failure if the object was still
touching the table at the end of the trial.
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Figure 3.4: The expected error rates for the lifting task. The error bars indicate one standard deviation.
An error rate of 1 indicates that none of the test samples were correctly classified, and an
error rate of 0 is achieved when the classifier evaluates all of the samples correctly.

classification using only the mean contact µi. The POS approach uses only the position distribution of
the contact points and not the normals. As a result, the contact distribution is only 3D. Although the
fingers do not have tactile sensors, forces can be roughly approximated using the joint torque sensors
of the fingers and the relative positions of the contact points. The FORCE+POS approach is the same
as NORMAL+POS, except that the normals ui have been replaced by force estimates. The final method
HANDRELATIVE uses the positions and estimated forces of the contact points, but defines the contact distri-
bution relative to the hand rather than the object center.

The performance of the various methods were tested for different numbers for training samples. In
each evaluation, ten grasps were selected as test samples. From the remaining grasp samples, a subset
of samples were selected as training data. The classifier was then trained on the training data and used
to classify the test samples. The error rate is given by the percentage of correctly classified grasps in the
test set. This process was repeated 250 times for each classifier and each number of training samples.
The results of the evaluation are shown in Fig. 3.4 .

Discussion

Using only the mean contact or the distribution relative to the hand resulted in poor performance. The
task was especially challenging for the HANDRELATIVE approach, as the object has the same shape along
its length. Despite this challenge, the approach still obtained an error rate of 25.04%.

Using only the position of the contact points relative to the object center resulted in an error rate of
18.36%, which is only marginally better than the performance of HANDRELATIVE. In comparison, the NOR-
MAL+POS and the FORCE+POS achieved error rates of 4.88% and 5.28% respectively. The contact normals
clearly capture a considerable amount of information, as they allow side contacts to be differentiated
from top contacts.

Both NORMAL+POS and FORCE+POS performed well on the task, and learned to accurately predict steady
lifts. However, both approaches also have their limitations. The NORMAL+POS approach cannot differ-
entiate between the robot gently placing its fingers on the box and the fingers applying forces at the
contacts. This approach can therefore sometimes only predict whether an interaction is possible, given
the contacts, but not if the interaction is being performed. The FORCE+POS approach can differentiate
between these two scenarios, and using it together with tactile sensing is a promising direction for future
research. However, as the forces between objects will often not be directly observed, the NORMAL+POS

approach is generally more applicable.
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Positive Example Negative Example

Figure 3.5: Point cloud examples of a stable and an unstable stacking of blocks

3.3.2 Stacking Objects

In the second experiment, the robot was given the task of classifying whether one object was supporting
another. The robot then used the trained classifier to stack assorted toy blocks.

Classifying Stable Block Placements

The robot was provided with 60 example scenes, each containing two interacting toy blocks, such as the
ones shown in Fig. 3.5 . For the 30 negative examples, physically impossible static scenes were created
by hand. The models of the blocks were acquired using a turn table setup and a Kinect. The object
center is again defined by the center of gravity. To train the contact point classifier, ten points were hand
labelled in one scene. The points of the object were classified as contacts based on the features described
in Section 3.2.1. Using additional features, such as the position and orientation of the points relative to
the object’s center, were also tested, but had no significant effects on the outcome of the experiment.

The performance of the contact point classifier was evaluated in the same manner as for the previous
experiments. A set of ten test samples were randomly selected and removed from the pool of 60 samples.
A subset of the remaining samples were then used to train the classifier. The classifier was subsequently
applied to the ten test samples, and the error rate was recorded. The error rate is 1 if all ten samples were
incorrectly classified, and 0 if all of them were correctly classified. The test samples were subsequently
put back into the pool of samples. This process was repeated 250 times for each number of training
samples.

In addition to the standard approach, we also evaluated adding an interaction-specific covariance
matrix ˜⌃, as explained in Section 3.2.7. The elements of the diagonal matrix were recomputed for each
trial using a basic hill-climbing approach to minimize the leave-one-out cross-validation error rate on the
training set.

The results of this experiment are shown in Fig. 3.6 . Starting with error rates close to 50%, the clas-
sifiers’ performances gradually improves as more samples are provided. Given 50 samples, the standard
classifier achieved an expected error rate of 5.0%, and could accurately predict when the object was
being supported. Using the additional interaction-specific covariance matrix, the classifier achieved an
expected error rate of 0.4% for 50 samples, and only required 20 samples to achieve an expected error
rate of 3.84%. The sample efficiency of the algorithm can therefore be increased by incorporating the
interaction-specific covariance. In many of the trials, the covariance matrix ˜⌃ indicated that the verti-
cal position of the supporting contacts was less relevant than the horizontal position. The experiment
demonstrates the classifier’s ability to generalize between different object shapes.
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Figure 3.6: The expected error rate for the block stacking task. The red line indicates the perfor-
mance when using the standard covariance matrix. The blue line shows the performance
when adding the interaction-specific covariance matrix. The error bars indicate one standard
deviation.

Figure 3.7: An example scene with three objects, wherein the green and blue objects are supporting the
triangular red block.

Generalization to Multiple Objects

In order to demonstrate the classifier’s ability to generalize to multiple objects, it was applied to the
scene of three objects shown in Fig. 3.7. In this scene, the top object is being supported by both of
the lower objects. When the classifier is applied to the top block and only one of the bottom blocks,
the interaction is classified as not supporting. However, we can also combine the blue and green point
clouds of the bottom objects in order to create one compound object. When applying the classifier to the
top object and this compound object, the top object is labeled as being supported by the bottom object.
Thus, as one would expect, the classifier detects that the top is being supported by both objects jointly,
and by neither one separately. The classifier was tested on two more similar scenes of three blocks, with
the same results.

Building Block Towers

In the final part of the experiment, the real robot used the classifier from the first part to perform block
stacking. The interaction-specific covariance matrix was not used in this experiment. The robot was
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Figure 3.8: examples of block towers constructed by the robot.

provided with a small wooden board, on which to stack the blocks. In order to avoid all of the blocks
being placed directly on the board, the placing of the blocks was limited to a single strip along the
middle of the board. For every block, the robot observed the current scene using the Kinect and used
the resulting point cloud as the supporting object in the interaction. As the focus is not on the planning
aspects of the problem, the sequence of blocks was predefined.

In order to determine a suitable placement for the current block, the robot sampled different positions
in the scene. For each sample, the contact points were estimated and the probability of the block being
supported was computed. The robot then attempted to place the block at the position with the highest
probability.

Randomly sampling positions in the scene led to poor performance. One of the main challenges for
the robot was the noisy partial point cloud of the current scene. The kinect usually only captured the top
and front of the current block stack, but not the back or sides. The lack of reliable points on the sides of
objects resulted in unforeseen collisions between blocks. This problem could be alleviated by obtaining
more views of the scene, completing the point cloud based on symmetries [75, 100], or applying a
penalty for placing the block into occluded regions.

In order to reduce the number of accidental collisions, we also implemented a sampling approach that
mimics the movement of the block when it is being put down. The robot sampled 20 horizontal positions
at 7.5mm increments across the width of the board. For each horizontal position, the robot sampled
vertical placements at 5mm increments in a top-down manner until contact was detected between the
block and the stack.

In order to evaluate the proposed approach, the robot was given the task of creating five towers
consisting of five blocks each. Using the improved sampling approach, the robot successfully placed 96%

of the blocks without knocking any blocks down. Only one block was misplaced by a few millimeters and
fell down. The robustness of the system could be further improved by also considering the probability of
success of neighboring positions [101].

The robot currently ignores the interactions between blocks further down in the stack. As a result the
robot may select a block placement that causes a supporting block to fall down. One potential solution
to this problem would be to recheck the interactions between objects further down the stack. For each
interaction, the objects higher up in the stack would then be treated as a single compound object, with
a corresponding object center. This approach would however require the robot to keep a model of the
current scene’s geometry.

The results of the experiment show that the robot was able to construct multiple block towers, such as
the ones shown in Fig. 3.8 ,using the proposed approach.
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3.4 Generalizing Between Objects with Warped Parameters

As objects of the same type may have different shapes and sizes, the robot will have to adapt its actions
to the geometry of the specific object that it is manipulating. The shape of objects is particularly impor-
tant when manipulating liquids, e.g., pouring a glass of water, as liquids conform to the shape of their
container. The robot must therefore take into consideration a container’s geometry when using it in a
pouring task.

Although containers come in a wide variety of shapes and sizes, the important differences can usually
be defined by a few geometric parameters [102, 103]. For example, the volume of a container indicates
how much fluid it can hold, regardless of whether it has a spherical, or cylindrical shape. A robot can
generalize pouring actions between different containers by using these geometric parameters. However,
the robot will not be provided with the geometric parameters for most of the novel objects that it en-
counters. While a human may annotate the geometric information for a couple of objects, the robot will
usually need to compute these parameters on its own.

In the remainder of this chapter, we investigate using warped parameters to generalize pouring skills
between different objects. A warped parameter is defined as a function on the points of a known object’s
point cloud. For example, a warped parameter may compute the volume of a set of points’ convex hull.
When the robot encounters a novel object, it warps the point cloud of the known object to the new
object’s shape. As a result of the warping, the value of the warped parameter changes to match the
geometry of the new object. Once the geometric parameters have been computed, the robot can use
them to generalize actions and task constraints between different objects.

Figure 3.9: The robot performs a pouring task with
two previously unknown objects. The
pouring action was learned from human
demonstrations using a taller cup and a
wider container to pour into.

Several previous works have used warping to
generalize manipulations between objects. Hil-
lenbrand et al. [5, 104] used warping to map
contact points onto novel objects, in order to
transfer grasps between objects. A similar ap-
proach was used by Rainer et. al [105, 106]
for transferring coordinate frames of task con-
straints between objects. However, the size and
shape of the constraint regions were not adapted
to the new object’s geometry. Rather than warp-
ing only the points on the object, Schulman et
al. [6] computed a warping functions for the
entire scene. The warping was then applied to
the demonstrated trajectory of the source scene
in order to obtain a trajectory for the current
scene. These approaches focus on mapping spe-
cific points from the source scene to the target
scene, and are therefore especially well-suited for
contact-based manipulations. Warped parameters
can be used to model more abstract features of the
objects, such as areas and volumes.

Several methods have also been proposed for
learning to perform pouring tasks. Pastor et al. [107] learned dynamic motor primitives (DMPs) for
pouring from human demonstrations, and used these to generalize to different cup placements. Simi-
larly, Muehlig et al. [108] encoded demonstrated bimanual pouring trajectories using Gaussian mixture
models. Rozo et al. [109] proposed learning a controller for pouring tasks based on the observed forces.
The work on learning pouring from demonstration has mainly focused on learning with the same set of
objects. In comparison, we propose learning in a feature space defined by the warped parameters, in
order to automatically generalize between objects.
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Some work has also been done on generalizing pouring actions between different objects using rein-
forcement learning. Kroemer et al. [76] learned a pouring DMP from human demonstrations, and then
used a trial-and-error approach to learn the location of a novel container’s opening. The opening was
detected using a shape-similarity kernel. Tamosiunaite et al. [110] used reinforcement learning to learn
the shape of the pouring DMP, as well as the goal point. Trial-and-error learning was also used to adapt
the learned motion to novel objects, without explicitly considering the differences in geometry.

In Section 3.5, we explain the process of computing the warped parameters. In Section 3.6, we
describe how the robot can learn pouring actions and task constraints that generalize between objects
using the warped parameters. The proposed method was successfully evaluated both in simulation and
on the robot shown in Fig. 3.9. The results of the experiments are detailed in Section 3.7.

3.5 Computing Warped Parameters

In this section, we describe how a robot can compute geometric parameters of an object by warping a
known object to match its shape. The object models and the warping process used in this section are
described in Sections 3.5.1 to 3.5.3. The computation of the warped parameters for pouring tasks is
described in Section 3.5.4.

3.5.1 Geometric Object Models

In order to generalize manipulations to a novel object, the robot first computes correspondences between
a known source object Os and the unknown target object Ot . An object Oi is modeled as a set of ci points
located at positions pi j 2 R3 with corresponding normals ni j 2 R3, where j 2 {1, ..., ci}.

Objects often consist of multiple parts, and a manipulation may only depend on the shape of a part of
an object. Hence, geometric parameters often describe the shape of a part rather than the whole object.
We therefore also assign each point pi j a vector li j of length ⇢ with binary labels, which indicate which
of the ⇢ object parts the point corresponds to. The labels of the target object Ot are initially unknown,
but can be computed using the warping process.

An example of an annotated cup can be seen in Fig.3.10. The first part is the CONTAINER, which holds
the liquids. The second part is the RIM around the opening. We also label the HANDLE as a dummy part.
As not all containers have handles, it is not used to define any warped parameters for the pouring task,
and is only included to help align objects during the warping process.

3.5.2 Warping

Given a source object and a target object, the robot can compute correspondences between the two
objects. These correspondences are determined by warping the shape of the source object onto that of
the target object. There are various methods for computing 3D warpings between object [111, 112], and
the proposed approach does not depend on a specific warping algorithm. We therefore employ a basic
warping algorithm for finding correspondences between the containers. The warping process consists of
two stages: 1) object alignment, and 2) point mapping

In the first stage, the source object is coarsely aligned with the target object, such that their corre-
sponding object parts are close together. This alignment is accomplished by computing a coordinate
system based on the objects’ parts. The origin of the coordinate frame is the mean of the container
points. The first axis is given by the direction to the mean of the rim points, and the second axis is the
orthogonal direction to the mean of the handle points. The third axis is computed by the cross product
of the first two axes. As the part labels of the target object lt are unknown, an initial estimate of the
labels is computed using logistic regression. One classifier is trained for each of the three object parts.
Each point pt i is classified based on the local distribution of points in its neighborhood. The features
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Figure 3.10: The left column shows the point cloud of the source object, annotated by a human user.
The middle column shows the point clouds of two target objects. The points were labelled
using a classifier based on local features. This intial estimate is only used to compute a coarse
alignment with the source object. The point clouds were pre-aligned for this figure to show
more clearly how the labels change during the warping process. The right column shows the
final results of the label mapping approach.

used to describe the local distribution of points include the eigenvalues of the covariance matrix, and
the distance from the point pt i to the mean of the neighborhood points. The classifiers were trained on
the labelled points of the source object. An example of the initial labeling can be seen in Fig. 3.10 .
The coordinate frame of the object is estimated using this initial labeling of points. Once the two objects
are aligned, the source object was scaled in each direction such that the variances of its container part
matched those of the target object. We denote the aligned source objects and target objects by ˜Os and ˜Ot
respectively.

In the second stage of the warping algorithm, the points from the source object ˜Os are mapped onto
the target object ˜Ot . This step is similar to the approach proposed by Hillenbrand [113]. Each point of
the aligned source object is mapped to the mean of the k nearest neighbors in the aligned target object.
In our experiments, we set k = 1. Hence, the warped source point pwi, with corresponding normal nwi
and labels lwi, is given by

pwi = pt j , nwi = nt j , and lwi = lsi,

s.t. j = argmin

��
˜

psi � ˜

pt j

�� and ˜

n

T
si ˜nt j > 0.

Thus, each source point is mapped to the closest target point with a normal pointing in the same direc-
tion. The warped object and its point cloud are denoted by Ow.

3.5.3 Point Mapping vs. Label Mapping

The warping process defines a new position and normal for each of the cs point of the source object
Os. The location of these new points can be used to define warped parameters, as detailed in the next
section. We refer to this approach as point mapping, as the points of the source object are mapped onto
the target object.
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However, if the source object has considerably fewer points than the target object, then some details
of the target object may not be captured by the warped object. This issue can be addressed by warping
the target object to match the source object. The alignment and scaling of the objects is performed as
before. However, the points of the target object are mapped onto the source object. The label of each of
the target points is then determined using a k-nearest neighbors classifier. In our experiments, we again
used k = 1, such that

pwi = pt i , nwi = nt i , and lwi = ls j,

s.t. j = argmin

��
˜

psi � ˜

pt j

�� and ˜

n

T
si ˜nt j > 0.

We refer to this approach as label mapping, as the labels of the source object are mapped onto the target
object. When using multiple neighbors k > 1, the point is assigned to a part if the majority of its k
neighbors belong to that part.

The benefit of using the label mapping approach is that it guarantees that all of the points of the target
object are used for computing the warped parameters. However, when using label mapping, points can
only be referred to by their label and not as individual points. In comparison, when using point mapping,
one can refer to individual points, e.g., pw72

, which correspond to specific points on the source object.
The right column of Fig. 3.10 shows an example of using label mapping.

3.5.4 Warped Parameters

Having computed the correspondences between the known source object and the novel target object,
the robot can compute the warped parameters for the target object. A warped parameter is defined
as a function on the warped point cloud f (Ow). Warped parameters can be used to define geometric
reference parameters, such as lengths, areas, and volumes, of an object’s part. Warped parameters can
also be used to define task frames.

For pouring, the task frame is defined by the lip point of the first container, and the center of the
second container’s opening. The center of the opening is defined as the mean of the rim points. The lip
point is defined as the rim point that is the closest to the other container. A pouring motion is defined
by the trajectory of the held container’s lip point relative to the center of the second container’s opening.
The trajectory includes the relative 3D position and the tilt of the first container about its lip point. The
other two rotation dimensions are usually assumed to be zero. If there is no second container, the lowest
rim point is defined as the lip point.

The geometric reference parameters for pouring include the radius of the opening, the volume of the
container, the height of the container, and a reference angle for tilting the cup. The radius of the opening
is given by the mean distance between the rim points and the center of the opening. The volume of
the container is given by the volume of the container points’ convex hull. The height of the container
is given by the range of all of the points along the first dimension. A tilt reference angle is defined by
the amount that the cup must be rotated about the lip point, such that half of the container’s volume is
above the lip point. As the warping process reshapes the points of the source object, the estimates of the
reference parameters will change accordingly. In this manner, the warped parameter function defines
how the parameter’s value is grounded in the object’s geometry.

As the above examples show, warped parameters can be used to define various object properties, and
can even build on each other. These parameters can then be automatically computed for new objects
using the warping process.

3.6 Learning with Warped Parameters

In this section, we describe how a robot can learn pouring actions and task constraints that generalize to
new objects using the warped parameters.
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3.6.1 Learning Task Constraints

When performing a pouring task, the liquid should remain in the cup while it is being transported,
and it should only be poured out if it will be transferred to another container. These task constraints
correspond to phase transitions [22] and can be fulfilled by learning to predict when the held container
will start to pour and when the poured liquid will fill the second container. The conditions for pouring
and filling are learned by training a classifier for each condition. The classification is performed using
logistic regression, which is a form of probabilistic classifier. The probability of pouring yp = 1 from the
first container is given by

p(yp = 1|xu) = (1+ exp(�!T'(xu)))�1

where '(x) is a vector of features describing the state of the container x, and the weight vector ! is
computed from training data using iterative reweighted least squares. The features '(x) are of the form
↵/↵r , where ↵ is a variable and ↵r is a reference value defined by a warped parameter. For predicting
pouring, the features include the tilt angle of the cup divided by the tilt reference angle, and the fluid
volume divided by the volume of the container. The resulting features are dimensionless quantities that
automatically adapt to the geometry of the container.

For predicting when the poured liquid increases the fluid volume in the second container yf = 1,
we expand the set of features to include both objects and their relative positions. The vertical distance
between the containers is divided by the height of the cup. The horizontal distances between the con-
tainers are divided by the radius of the second container. These features allow the robot to learn when
the poured liquid will miss the second container, as well as predict when the container will overflow.

3.6.2 Learning Motor Primitives in Warped Spaces

The proposed warping approach can also be used to learn motor primitives that adapt to the shape
of the objects being manipulated. Motor primitives are often used to define desired trajectories that
can be easily adapted to different situations. In order to model distributions of trajectories, we use the
probabilistic motor primitives (ProMPs)[114]. These motor primitives encode correlations between the
different dimensions of the trajectory, and can be conditioned on the initial state of the objects.

The learned motor primitive defines a desired trajectory in the task space described in Section 3.5.4.
Similar to the features used to generalize task constraints, the trajectories are defined as dimensionless
quantities. The vertical distance between the objects is divided by the height of the held cup, and the
tilt angle is divided by the reference tilt angle. The horizontal distances are divided by the radius of the
second container.

The motor primitives are learned by scaling the demonstrated trajectories according to the warped
parameters of the objects used in the demonstrations. In order to execute a pouring action, the robot
samples a trajectory from the ProMP, and rescales it according to the current objects’ warped parameters.

3.7 Experiments

The proposed method was implemented and evaluated both in simulation and on a real robot. The robot,
shown in Fig. 3.9, consists of two Kuka light weight robot arms, each equipped with a five-fingered DLR
hand [99]. The robot observes the table-top scene from above using a Microsoft Kinect camera. Ten
different cups and bowls were scanned from multiple views, and 3D mesh models were generated using
an implicit surface representation and marching cubes [115].
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Figure 3.11: The figure shows the ROC curves for the learned classifiers for both the pouring experiment
and the filling experiment. The dashed lines indicate the performance when the classifier is
applied to data from the same object that was used for training the classifier. The solid lines
indicate the performance when the classifiers are applied to novel objects, for which they
had no training data. A classifier is generally considered to perform better if it gets closer to
the top left corner. Classifiers were trained using features based on the warped parameters
computed using both the label mappings and point mappings approaches. The standard
features approach did not use the reference values given by the warped parameters.

3.7.1 Simulated Pouring and Filling Experiments

In the first experiment, we evaluated how well task constraints generalize between objects when using
warped parameters. The objects were simulated using the Bullet physics engine [116] together with
Fluids 2 for incorporating smoothed particle hydrodynamics [117].

Each object was filled 1000 times with a random amount of liquid, and tilted by a random angle
around the lip point. If the volume of the fluid in the cup decreased, the trial was labelled as pouring
yp = 1. Otherwise it was labelled as not pouring yp = 0. The classifiers were trained on sets of 50

samples. The classifiers were tested on two test sets: the 950 other samples from the same object,
and the 9000 samples from the other objects. The latter dataset is used to test how well the classifiers
generalize between different objects.

A similar procedure was used for the filling experiment. However, the cup used for pouring always
contained 10 particles at the start of the trial, and the second container was filled by a random amount.
The cup was always tilted by 120

�. The relative positions of the cups were varied between trials. A trial
was considered as successful yf = 1 iff none of the particles ended up outside of the second container.

For each training set, three classifiers were computed. The first two classifiers were trained using the
warped parameters from the point mapping and the label mapping approaches respectively. The features
used for training the classifiers were described in Section 3.6.1. As a benchmark, we also evaluated the
classifiers without using the warped parameters. In this case, all of the reference values ↵r were set to
one, regardless of the objects being manipulated, and the relative positions of the objects were defined
by their centers.

The results of the pouring and filling experiments can be seen in Fig. 3.11 . As one would expect,
the classifiers generally achieved similar levels of performance when evaluated on the training object.
The standard features performed considerably worse in the filling experiment, as different cups were
used for pouring even though the second container remained the same. The ROC curves show that the
performance of all three classifiers decreases when generalizing to novel objects. However, the drop in
performance is considerably less when using the warped parameters. The features based on the warped
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Figure 3.12: The figure shows the ROC curves for the learned classifiers for both the pouring experiment
and the filling experiment. Classifiers were trained using the warped parameters of the
label mapping and point mapping approaches as additional features. The standard features
approach did not use the warped parameters.

parameters are therefore better at separating the positive and negative examples across different objects.
While the two warping methods performed similarly well on the filling experiment, the label mapping
approach performed better in the pouring experiment, detecting more than 50% of the true positives
with almost no false positives. The results show that the warping parameters can be used to reliably
generalize the constraints of the pouring task between different containers.

3.7.2 Warped Parameters as Additional Features

Rather than using the warped parameters to construct features, the warped parameters can also be used
as additional features for representing the object. However, these features will be the same for the entire
training set if the robot only learns from one object. Hence, the robot must learn from multiple objects
in order to learn how to generalize.

For the second experiment, we use the same simulated pouring and filling setup as in the previous
experiment. However, rather than learning from one object, the robot now learns from nine of the ten
objects. The test set is given by 200 samples from one of the objects. The training set consists of 20

samples from each of the other nine objects, giving a total of 180 samples. We cycled through all of the
containers, such that each one was used for testing. Rather than using features of the form ↵/↵r , the ↵
and ↵r values were simply concatenated into one extended feature vector. The results of the experiment
are shown in Fig. 3.12 .

The standard features perform better than in the previous experiment due to the additional training
data. The classifier is also less likely to overfit to a single object when learning from nine different
containers. The warped parameter features lead to better performance in both the pouring and the
filling tasks. For the pouring experiment, including the warped parameters increased the area under
the curve (AUC) from 0.854 to 0.923 and 0.936 for the label mapping and point mapping approaches
respectively. Similarly, the warped parameters increased the AUC from 0.880 to 0.913 and 0.963 for
the filling experiment. Using the warped parameters there lead to an average increase in the AUC of
approximately 6.5% over just using the standard features.

The experiment shows that the robot can use the warped parameters as additional features, when
learning from multiple objets. In this manner, the robot can learn to generalize between different objects.
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Figure 3.13: The plots show the distribution over trajectories learned by the ProMPs in the generalized
space. The blue line indicates the mean trajectory, and the shaded regions correspond to +/-
two standard deviations. The black horizontal lines indicate when the value is one. The tilt
is one when the cup is tilted such that half of the container’s volume is above the lip points.
The X and Y values are one when the lip point is one radius away from the second container’s
center. The Z value is one when the vertical distance between the cup and the container is
the same as the height of the cup. The red region indicates when the X-Y position of the
cup’s lip point is within one radius of the container’s center.

3.7.3 Robot Pouring Experiment

In the second experiment, the robot used warped parameters to generalize pouring actions between
different objects. The robot was provided with ten demonstrations of a pouring task using kinaesthetic
teaching. All of the demonstrations were performed with the same two objects shown in the left picture
of Fig. 3.14. For safety reasons, the task was performed with gel balls rather than an actual liquid. The
cup was half full at the start of each trial. Using the ten demonstrations, the robot learned a ProMP for
pouring, as described in Section 3.6.2. The learned distribution over trajectories is shown in Fig. 3.13.
The robot was then given the task of pouring with different objects. The robot successfully learned to
pour from a shorter cup into a bigger bowl, a smaller cup, and a square bowl, as shown in Fig. 3.14.
Only a couple of gel balls were spilled during the experiments.

As the cups were half-full, pouring usually commenced when the tilt value went above one. Figure
3.13 shows that the distribution over trajectories remains safely below this value until the lip point is
above the opening. When moving the cup back, most of the liquid has been poured out, and hence the
cup can be tilted more. The pictures in Fig. 3.14 show that the cup was often placed close to the rim
of the second container, which indicates that the robot was able to adapt the learned trajectory to the
geometry of the object being manipulated.

3.8 Conclusion

In order to learn manipulation skills more efficiently, the robot should generalize between different
objects in order to learn manipulation skills more efficiently. In order to generalize between objects, the
robot requires representations that capture the relevant parts of the objects. In this chapter, we presented
two different approaches for generalizing manipulation skills between objects.

As many manipulations are based on physical contacts, we proposed a kernel for computing the sim-
ilarity between contact distributions. The contact distributions are modeled using multi-variate Gaus-
sians, and the resulting kernel can be computed in closed-form. The robot used the proposed kernel to
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DEMONSTRATION GENERALIZATION

Pouring Task Larger Container Smaller Container Square Container

Figure 3.14: The pictures show the key results of the real robot experiment. The robot was provided
with multiple demonstrations of the pouring task using kinaesthetic teaching, as shown on
the left. Using the warped parameters approach, the robot successfully generalized the
demonstrated actions to novel objects with di�erent shapes and sizes, as shown on the
right.

predict stable placements for stacking assorted blocks. The kernel circumvents the problem of explicitly
defining a general set of features for representing contacts between objects.

The second part of this chapter focused on warped parameters. This approach allows the robot to com-
pute geometric parameters, such as areas and volumes, of novel object with various shapes and sizes.
The warped parameter is defined as a function on a known object’s point cloud. The parameter is com-
puted for another object by warping the point cloud to match its shape. Using the warped parameters,
the robot could generalize a pouring action between different objects.

3.9 Potentially Helpful Insights

The motivation for the contact-kernel project was to create a flexible representation for contacts between
objects. Using this representation, the robot can address the general challenges of establishing contacts
between objects, which includes specific tasks, such as grasping, placing, and pushing. The representa-
tion should provide the robot with relatively direct access to the contact information to allow the robot
to learn which contacts are suitable for a specific interaction or manipulation. Our early work therefore
focused on representing each contact as a separate Gaussian. Representing the set of contacts as a single
Gaussian provides a more coarse and compact representation of the contacts’ structure. The single Gaus-
sian representation captures the overall correlations between the contact points and normals, as well as
the space spanned by the contacts.

The proposed kernels are closely related to bag-of-features representations. While the bag-of-features
model is based on histograms, the kernels are based on continuous density estimates, i.e., Gaussians
and kernel density estimates. For the histograms, the discretization of the input space leads to a feature
vector of finite length. Similarly, the continuous density estimates define an infinite dimensional feature
mapping [80]. This representation of the contact distribution is very flexible, can capture an arbitrary
level of detail, and allows us to compare distributions directly. The kernel approach allows us to use
this infinite dimensional feature space implicitly by directly computing the inner product of the feature
maps.

One of the key characteristics of the proposed approach is that it explicitly models the contacts between
objects. Depending on the learning task, the robot will either need to estimate the current set of contacts
or predict potential contacts between objects. Although estimating contacts is not trivial, advances in
3D vision and tactile sensing are making the problem easier. The proposed representation can be used
to capture the coarse structure of the contacts, and does not rely on very precise contact estimates.
The alternative approach would be to learn the contacts implicitly. For example, a robot can learn to
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predict grasps based on the local shape of the object. In this case, the robot would consider the object’s
shape near to the entire hand, rather than near to the contact points. This approach works well for
learning grasps, where one of the objects is always the hand. For a more general task, the robot would
need to consider the shape of both objects in contact, e.g., the supporting surface and the object being
placed for stacking. Thus, the general implicit approach would require the robot to learn compatible
pairs of shapes. In contrast, for the explicit approach, both of the objects’ shapes are already taken into
consideration when estimating the contact points. The robot then just needs to take into consideration
the shape of the contact regions.

The motivation for the warped parameter project was to create a method for computing various geo-
metric parameters of objects directly from their point clouds. In this manner, the parameters are directly
grounded in the shape of the object and can be computed for novel objects. By grounding the parame-
ters in the point cloud data, the robot can use the same computation of an object’s volume regardless of
whether it is a cube, sphere, cone, or tapered cylinder.

The grounding of parameters provides useful insights into the geometric characteristics of parameters.
For example, the length of an object part can be defined by the distance between two points on the object.
Although the parameter itself is a scalar value, it is linked to a position (the mean of the two points) and a
direction (the direction from one point to another). Other parameters, e.g., areas, volumes, and masses,
can similarly be characterized by additional geometric information. Although this information provides
useful clues about the parameter, it is lost when the parameter is reduced to only its scalar value. In
our experiments, the motor primitives were scaled according to parameters which were aligned with
the movement directions. For example, the vertical component of the movement was scaled with the
height of the cup, and the horizontal movements were scaled according to the horizontal distribution
of the rim points. Using this prior information, the robot could generalize the pouring motor primitive
between different objects. This prior could potentially also be learned by the robot. In particular, the
robot could learn to predict which warped parameters are relevant for adapting motor primitives based
on the parameters’ geometric characteristics.
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4 Learning Motor Primitives for
Multi-Phase Tasks

In order to learn new tasks in an efficient manner, a robot should decompose tasks into smaller subtasks.
Learning a manipulation skill for each subtask is generally easier than learning one monolithic skill for
the entire task. As many tasks will consist of similar subtasks, the robot can also reuse skills between
different tasks. Transitioning between phases is a common subtask for manipulations [7, 1].

In this chapter, we present a probabilistic model for segmenting manipulations into discrete phases.
The model captures the dynamics of each phase, and explicitly models the conditions for transitioning
between phases. These two components of the model provide the basis for learning motor primitives for
transitioning between different phases. Hence, the robot can learn a library of motor primitives using
imitation learning and model-based reinforcement learning.

4.1 Learning Libraries of Motor Primitives for Multi-Phase Tasks

Figure 4.1: The Darias robot performing a biman-
ual grasp of a box. The motor prim-
itives used to perform the task were
learned using a model-based policy
search approach. The model of the
task’s phases was learned from human
demonstrations.

Manipulation tasks can usually be decomposed
into sequences of simpler subtasks. One of the
most common subgoals in manipulation tasks
is transitioning between different phases [7, 1].
Phase transitions often occur when contacts are
made or broken, and result in the robot’s actions
having different effects. For example, a robot can
apply forces to an object by first moving into con-
tact with it. It can then exert the neccessary forces
for lifting the object up. Both the making of robot-
object contacts the the breaking of object-table
contacts correspond to phase transitions and rep-
resent important subgoals of the grasping task.

Manipulation tasks require the robot to first
transition to a phase that allows the desired ma-
nipulation to be performed. Often, the robot will
need to transition through a sequence of phases
before reaching the desired phase. The conditions
needed for transitioning between phases repre-
sent subgoals of the task, and can be used to guide
the robot’s skill learning process.

In this paper, we propose an approach for learn-
ing to perform multi-phase manipulation tasks.
The robot first learns a model of the task from
demonstrations, using a state-based transitions autoregressive hidden Markov model (STARHMM) [22].
The STARHMM models both the effects of the robot’s actions in each phase, as well as the conditions
needed to transition between phases. Using this model, the robot can apply imitation learning and
model-based policy search methods in order to learn robust motor primitives for moving between differ-
ent phases. In this manner, the robot decomposes the task into subtasks, and learns a motor primitive for
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each of these subtasks. The learned motor primitives represent building blocks for performing different
tasks. In the next chapter, we will discuss how the robot can learn to sequence these motor primitives.

The proposed method was evaluated on a bimanual grasping task using the robot shown in Fig. 4.1.
Given only two demonstrations, the robot successfully decomposed the task into five phases. The robot
learned robust motor primitives for transitioning between these phases by using model-based policy
search. The learned motor primitives generalize to different object locations, as well as objects with
different shapes.

Previous work on learning sequences of motor primitives for manipulation tasks has mainly focused on
learning from human demonstrations. Some imitation learning methods assume that a library of motor
primitives already exists and focus on sequencing these primitives [118, 119, 120]. Other approaches
have additionally learned the individual skills by segmenting the human demonstrations directly [8, 121,
122, 9, 10, 123].

Most of these works have focused on segmenting the demonstrated movements, and then learning a
classifier for determining which motor primitive to execute next. As a result, the segments are linked
to specific movements, and the sequencing is done according to the demonstrated task. Instead of
performing the segmentation based on the demonstrated actions, our goal is to detect phase transitions
based on the effects of the actions. We also apply a reinforcement learning approach to learn a high-level
controller for learning to select the next motor primitive to execute.

Some methods have also been proposed for using reinforcement learning to improve the performance
of skill sequences [124, 125, 126]. Stulp et al. [125] proposed the PI2Seq policy search algorithm to
optimize both the weight parameters and the goal points for a specific sequence of DMPs. The reward
function was defined for the overall task and the segmentation into DMPs was predefined. Konidaris et
al. [124] proposed the CST algorithm for learning skill trees. Demonstrations are segmented by applying
changepoint detection to the samples’ estimated future rewards. The goal state of one skill in a sequence
is defined by the starting states of the next skill in the sequence. Sequences are merged into trees if both
sequences execute the same skill at some point, and all future skills are also the same.

These approaches learn to optimize sequences of skills for specific tasks, and the skills are generally
executed in a fixed order. Our proposed approach learns motor primitives for phase transitions, which
can be reused for different tasks. In Chapter 5, we present a value function method for sequencing
motor primitives to achieve different tasks. By learning a multi-phase forward model, the robot can use
a model-based approach to reinforcement learning in order to efficiently improve and adapt its actions.
The model’s phase transition probabilities are used to guide the learning process. The phase models
can also be used for learning new skills, and for determining the effects of executing the same motor
primitive in different phases.

Multi-modal planning methods have been used to sequence primitive actions in order to achieve differ-
ent manipulation goals [127, 128, 129]. However, the model of the system is usually predefined rather
than learned. One could therefore consider using the methods proposed in this chapter to create a basis
for multi-modal manipulation planning.

Our approach to learning both low- and high- level policies is a form of hierarchical reinforcement
learning[130, 131, 132, 133]. Kober and Peters [132] proposed a method for learning the high-level
and low-level policies in parallel in order to learn throwing movements for hitting a set of targets. The
state for the high-level controller is discrete and defined by the current score of the game. Hart and
Grupen [134] presented an intrinsically-motivated reinforcement learning approach to learning a hier-
archy of control programs from a combinatorial control basis. A hierarchy of controllers for performing
a bimanual grasp is learned incrementally as part of a scaffolding framework. Soni and Singh [133]
presented an intrinsically motivated approach for learning policies for reaching predefined salient events
with a Sony Aibo. In contrast, our proposed approach first learns a model of the system in order to
determine the salient events.

Previous work in robotics has already shown the benefits of incorporating phases into the design of
controllers [135, 136], and several methods have been proposed for learning controllers for multi-phase
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tasks [137, 138, 139, 140]. Levine and Abbeel [138] proposed a method for learning neural network
controllers for multi-phase manipulation tasks. Koval et al. [137] decompose a grasping policy into pre-
and post- contact policies. Mugan and Koipers [140] learn a model by discretizing the entire state and
action spaces, and then applying reinforcement learning to the discrete domain.

In this chapter, we propose a model for representing phases and the transitions between them. The
multi-phase model is defined using a modified hidden Markov model. We describe the structure of
the model in Section 4.2.1. We explain how the model parameters are learned using expectation-
maximization in Section 4.2.2. The parameters are learned from human demonstrations of the task
using kinaesthetic teaching. There are different ways to initialize the model learning procedure. In Sec-
tion 4.2.3, we discuss methods for selecting the number of phases and we present a spectral clustering
approach to initializing the model based on contacts between objects. Given the model, the robot learns
a library of motor primitives for transitioning between the different phases. The motor primitives are
first learned from human demonstrations using the standard linear regression approach [34]. In Sec-
tion 4.3.1, we explain a method for computing task frames based on contacts. Using these initial motor
primitives and the learned model, we apply a policy search method to optimize the motor primitives
for achieving specific phase transitions, as explained in Section 4.3.2. The robot thus learns a motor
primitive for each of the phase transitions observed in the human demonstrations. The results of the real
robot evaluations are presented in Section 4.4.

4.2 Multi-Phase Models

This section explains how a multi-phase model can be learned. We assume that the robot is initialized
with demonstrations of the multi-phase task. As the robot attempts to perform the task, the model can
be updated to incorporate the additional data. The structure of the model is outlined in Section 4.2.1.
The robot learns the parameters of the model using the approach explained in Sections 4.2.2 and 4.2.3.

4.2.1 Modeling Multi-Phase Manipulation Tasks

The observed state of the robot and its environment at time t are given by the state st 2 Rn. The robot
then performs an action at 2 Rm, which results in the state transitioning to the next state st+1

2 Rn. This
change in state depends on the current phase ⇢t 2 {1, ...,}, which is hidden. In this paper, the phase
corresponds to the hidden state of an HMM, and the state refers to the observed state. As the phases
are not directly observed, the robot needs to infer the phase from the observed states and the actions’
effects.

The effects of performing an action at in state st and phase ⇢t are modeled by the transition probability
p(st+1

|st ,at ,⇢t). We represent the state transitions p(st+1

|st ,at ,⇢t) using a linear Gaussian model.
Therefore, the distribution of the next state is given by the Gaussian

st+1

⇠N (A⇢t st + B⇢t at ,⌃⇢t ),

where Ai 2 Rn⇥n, Bi 2 Rn⇥m, and ⌃i 2 Rn⇥n are matrices corresponding to phase ⇢ = i.
The phase transition distribution depends on the current state and the previous phase p(⇢t |st ,⇢t�1

).
The dependency on the previous phase allows the model to represent hysteresis effects, and transient
state information. For example, the making and breaking of a contact can be detected by dynamic tactile
sensing, indicating a transition to the next phase [7]. However, once the contact event is over, the
sensor’s readings may return to their previous values even though the phase has changed. At that point,
the model has already switched to the new phase.

In order to learn the entry and exit conditions of phases, we incorporate a binary termination variable
"t 2 {0, 1}, which is distributed according to the termination distribution p("t |st+1

,⇢t). If the termina-
tion variable is zero "t = 0, no phase transition can occur and the next phase is the same as the current
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state, i.e., p(⇢t+1

= ⇢t |⇢t ,"t = 0) = 1. If the termination variable is one "t = 1, the next phase ⇢t+1

is distributed according to the initiation distribution, i.e., p(⇢t+1

|st ,"t = 1). The next phase can be the
same as the current phase ⇢t+1

= ⇢t even if the termination variable is one "t = 1. The phase transition
distribution can be computed by marginalizing out the termination variable

p(⇢t |st ,⇢t�1

) = p(⇢t |⇢t�1

,"t�1

= 0)p("t�1

= 0|st ,⇢t�1

) + p(⇢t |st ,"t�1

= 1)p("t�1

= 1|st ,⇢t�1

).

The termination and initiation distributions of phases are modeled using probabilistic classifiers. We
model the phase termination probabilities using logistic regression

p("t�1

= 1|st ,⇢t�1

= i) = (1+ exp(� ˆ!T
i �(st)))�1

where ˆ! j 2 Rd is a weight vector for terminating phase ⇢ = j, and �(st) is a function mapping the
state st to a d dimensional feature vector. Features may, for example, be a subset of the full state vector
or additionally include the positions of objects relative to each other. Similarly, we represent the phase
initiation distribution as

p(⇢t = j|st ,"t�1

= 1) =
exp( ˇ!T

j �(st))P
k exp( ˇ!T

k�(st))

where ˇ! j 2 Rd is a weight vector for initiating phase ⇢ = j. We assume that the previous phase
terminated at the start of the trajectory, such that p(⇢

1

= j|s
1

) = p(⇢
1

= j|s
1

,"
0

= 1). The policy for
selecting actions will be discussed in Section 4.3. In order to improve clarity, we can assume that the
actions are drawn from some fixed distribution p(at) when learning the multi-phase model.

Given the individual components of the model, the probability of observing a sequence of N samples
of states s

1:N = {s1

, . . . , sN}, actions a

1:N = {a1

, . . . ,aN}, phases ⇢
1:N = {⇢1

, . . . ,⇢N}, phase terminations
"

0:N�1

= {"
0

, . . . ,"N�1

}, and next states s

2:N+1

= {s
2

, . . . , sN+1

} is given by

p(s
1:N+1

,a

1:N ,⇢
1:N ,"

0:N�1

) = p("
0

,⇢
1

, s

1

)
NY

t=1

p(st+1

|st ,at ,⇢t)p(at)
NY

t=2

p(⇢t ,"t�1

|st ,⇢t�1

),

where p("
0

,⇢
1

, s

1

) = p(s
1

,"
0

)p(⇢
1

|s
1

,"
0

) and

p(⇢t ,"t�1

|st ,⇢t�1

) = p(⇢t |st ,⇢t�1

,"t�1

)p("t�1

|st ,⇢t�1

).

The graphical model of this probability factorization, as well as the general STARHMM model, is shown
in Fig. 4.2 . The key difference to an autoregressive HMM is the additional edge from the current state
to the current phase. As a result of this edge, the transitions between phases depend on the observed
state. The graphical model also illustrates the Markov property of the model: given the state st and the
phase state ⇢t , all future states are independent of the past states. This property is important, as it will
allow us to learn the model parameters in a computationally efficient manner.

The extended STARHMM, with entry and exit conditions, presents several benefits over the original
model. Rather than having to learn + 1 multi-class classifiers, the robot only needs to learn  binary
classifiers and one multi-class classifier. In this manner, the robot can share information between tran-
sitions from different phases. The extended version also results in a more consistent mapping from the
state space to phases. For example, the original STARHMM could learn that for some states the phase
transitions are given by p(⇢t = 2|st ,⇢t�1

= 1)⇡ 1 and p(⇢t = 1|st ,⇢t�1

= 2)⇡ 1. As a result, the phase
would switch at every time step, which is unlikely to occur in reality. Although the STARHMM with entry
and exit conditions can also represent hysteresis effects, it cannot force this kind of behavior.

In the proposed model, we assumed that the state is observable. This assumption is common for
segmenting manipulations movements [9, 8]. However, similar to the model proposed by Barber [141],
one could also extend the STARHMM model to use observations of hidden state variables.
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STANDARD STARHMM STARHMM WITH ENTRY AND EXIT CONDITIONS

�t�1 �t+1�t

st�1 st+1st

at�1 at

�t�1 �t+1�t

st�1 st+1st

at�1 at

�t�t�1

Figure 4.2: Graphical model of the standard STARHMM and the modified version with entry and exit
conditions. The orange nodes indicate observed variable. The white nodes indicate hidden
variables. The models include the states s, actions a, and phases ⇢. The model on the right
also includes the termination variable ".

4.2.2 Model Learning Using Expectation-Maximization Algorithm

Having defined the structure of the model, we now focus on learning the model parameters ˆ!, ˇ!, A,
B, and ⌃, which we will refer to jointly as ✓ = { ˆ!,

ˇ!,A,B,⌃}. Given a set of sampled trajectories of
states and actions, we propose using the expectation-maximization (EM) algorithm [142] to estimate the
parameters. The EM algorithm iterates between an expectation step and a maximization step in order
to find maximum likelihood estimates of the model parameters ✓ given that some of the variables are
hidden H = {⇢

1:N ,"
0:N�1

}, i.e., the phases and the phase terminations of the samples are not known.
The steps of the algorithm are explained below.

EXPECTATION STEP

The first step of the EM algorithm is the expectation step. In this step, we need to compute the distri-
bution over the hidden states, i.e., the phases, given the observed sequence of variables. In particular,
we need to compute the distribution p(⇢t ,"t ,⇢t+1

|s
1:N+1

,a

1:N ) for the computations in the maximization
step. We compute these marginal probabilities efficiently by using a forward-backward message passing
approach. During the expectation step, we assume that the parameters ✓ of our model are fixed.

In order to improve the clarity of the methodology below, we will define zt = {st ,at} as the observed
state and actions together. The final sample is given by zN+1

= sN+1

. Thus, we have p(zt+1

|⇢t ,zt) =
p(st+1

|⇢t , st ,at)p(at+1

), and p(⇢t |⇢t�1

,zt) = p(⇢t |⇢t�1

, st) as ⇢t is not conditioned on at . We also
marginalize out the termination variables " and use p(⇢t |st ,⇢t�1

) to define the messages.
We first send a series of messages forward through the network from t = 1 to t = N . The forward

messages give the probability of observing the sequence of states, actions, and next state up to the current
time step are defined as

↵ j(t) = p(z
1:t+1

,⇢t = j).

The first message, starting at t = 1, is initialized according to

↵ j(1) = p(z
2

|⇢
1

,z

1

)p(⇢
1

= j|z
1

)p(z
1

).
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The subsequent messages are computed recursively as

↵ j(t) = p(zt+1

|⇢t = j,zt)
X

i

↵i(t � 1)p(⇢t = j|⇢t�1

= i,zt).

The second set of messages are sent backwards through the network from t = N to t = 1. The backward
messages give the probability of observing the remainder of the observed sequence of states, actions,
and next states given the current phase and next state

� j(t) = p(zt+2:N |⇢t = j,zt+1

).

We initialize the backward messages at time t = N as

� j(N) = 1,

and we recursively compute the messages backwards in time according to the formula

� j(t � 1) =
X

i

p(⇢t = i|⇢t�1

= j,zt)p(zt+1

|⇢t = i,zt)�i(t).

Given the forward and backward messages, we can easily compute the joint distribution of a phase,
the phase termination, and the next phase as

p(⇢t = i,"t = j,⇢t+1

= k|z
1:N+1

) =
↵i(t)p(zt+2

,"t = j,⇢t+1

= k|⇢t = i,zt+1

)�k(t + 1)P
l ↵l(t)�l(t)

,

where p(zt+2

,⇢t+1

= k,"t = j|⇢t = i,zt+1

) is given by

p("t = j|⇢t = i,zt+1

)p(⇢t+1

= k|⇢t = i,"t = j,zt+1

)p(zt+2

|⇢t+1

= k,zt+1

).

Having computed these probabilities, we can now proceed to the maximization step of the algorithm.

MAXIMIZATION STEP

In the maximization step of the EM algorithm, we must compute the parameters that maximize the
expected log-likelihood of the observed and hidden variables

✓ new = arg max

✓

X

⇢,"

p(H |z
1:N+1

;✓ old) ln p(H ,z

1:N+1

;✓ ),

where the hidden variables H are given by H = {⇢
1:N ,"

0:N�1

}, the summation is over all possible
sequences of ⇢ and ", and the conditional distributions p(H |z

1:N+1

;✓old) are computed using the old
model parameters ✓ old as indicated. By factorizing the joint distribution p(H ,z

1:N+1

;✓ ), decomposing
the log of a product into a summation of logs, and marginalizing out variables, the maximization problem
can be rewritten as

✓ new= argmax

✓

NX

t=1

X

⇢t

p(⇢t |z1:N+1

;✓ old) ln p(zt+1

|⇢t ,zt ;✓ )

+
NX

t=1

X

⇢t

p(⇢t ,"t�1

=1|z
1:N+1

;✓ old) ln p(⇢t |"t�1

=1,zt ;✓ )

+
N�1X

t=1

X

⇢t

X

"t

p(⇢t ,"t |z1:N+1

;✓ old) ln p("t |⇢t ,zt+1

;✓ ).
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The marginal distributions p(⇢t |z1:N+1

,✓ old), p(⇢t ,"t�1

=1|z
1:N+1

;✓ old), and p(⇢t ,"t |z1:N+1

;✓ old) are
straightforward to compute from the joint distributions computed in the expectation step. The new pa-
rameters can then be computed for the phase- and state- transition distributions. For the state transition
distribution, the matrices A and B are computed using weighted linear regression. When learning the
matrices Ai and Bi, the weight for sample {st ,at , st+1

} is given by p(⇢t = i|s
1:N+1

,a

1:N ,✓ old).
The phase transition parameters ˆ! and ˇ! are computed using weighted logistic regression. Logis-

tic regression does not have a closed-form solution and it must instead be computed iteratively using
gradient decent. However, the optimization is convex and, therefore, a global optimum can be easily
found. When learning the phase termination model for phase ⇢ = i, the sample {"t , st} is weighted by
p(⇢t = i,"t |s1:N+1

,a

1:N ,✓old). Similarly, the sample {⇢t , st} is weighted by p(⇢t ,"t = 1|s
1:N+1

,a

1:N ,✓old)
when learning the phase initiation model p(⇢t |st ,"t�1

= 1). Regularization can be added to both the lin-
ear regression and the logistic regression in order to incorporate prior information and avoid overfitting.

After the maximization step has been completed, the algorithm computes the expectation step again
with the new parameters. The process iterates between the two steps until the model has converged to
a solution.

4.2.3 Initialization

The EM learning method converges to a local optimum and, hence, the quality of the learned model
depends on the initialization. The number of phases  also needs to be specified. The value of  can
be selected using a model selection criterion such as the Akaike information criterion (AIC) or Bayesian
information criterion (BIC) [143, 144]. Alternatively, one could also use a cross-validation approach to
select a suitable value.

Given that phase transitions often correspond to the making or breaking of contacts, we instead ini-
tialized the model by clustering samples according to their contact distributions [145]. The clustering
was performed using spectral clustering [146]. The clustering is performed on the concatenated samples
from all of the observed trajectories. For a set of v samples, one first has to compute a weight matrix
W 2 Rv⇥v , which defines the similarity between the samples. We computed the similarity using a contact
distribution kernel [20], as described in Chapter 3. The kernel is computed using a point cloud model
of the object. A point on the object is considered to be a contact point if it is within 1cm of the robot’s
fingers or the table. We compute one kernel for the contacts between the object and the robot’s hands,
and another for the contacts between the object and the table. A kernel’s value is set to one if the objects
did not make contact in either sample, and it is set to zero if the objects made contact for one of the
samples, but not the other. The overall kernel value is given by the product of these two kernel values.
In the future, one could also consider differentiating between static and sliding contacts.

The output of the clustering is an assignment of each sample to a cluster, where ci 2 {1, ...,} denotes
the assignment of the ith sample. The clustering of the samples does not take into account the temporal
ordering of the samples. In order to improve robustness, segments with a duration of less than five
samples were reassigned to the previous cluster in the trajectory. The goal of the clustering is to assign
samples with high weights to the same cluster, and samples with low weights to different clusters. We
can therefore define a score for a cluster assignment c as

score(c) =
vX

i

X

c j=ci

[W]i j +
X

c j 6=ci

1� [W]i j,

where [W]i j is the weight between the ith and jth samples. We performed the clustering multiple times,
with different values of , and selected the clustering with the highest score. The samples assigned to a
cluster are used to compute initial parameters for the state-transition distribution of the corresponding
phase. The cluster assignments are also used to determine initial parameters for the phase initiation
distribution.
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The outcome of this clustering can also be used to define features for representing the contacts between
objects. For each phase, we selected the sample which contributed the most to the clustering score as
the basis for a feature. The feature is then defined by the kernel value between this basis sample and the
current contact distribution.

The clustering also allows additional prior information to be incorporated into the model. For learning
a phase’s state transition distribution p(st+1

|st ,at ,⇢t), the regularization between a hand’s actions and
the object’s state was increased if they were not in contact for most of the cluster’s samples. In this
manner, we include our prior knowledge that a hand is less likely to manipulate an object if they are not
in contact.

This approach to initializing the model worked well in the experiments, and found the correct number
of phases for the demonstrated task.

4.3 Learning Motor Primitive Libraries for Multi-Phase Tasks

Having learned a multi-phase model, the next step is to learn movements for transitioning between
the different phases. In this manner, the model decomposes the original task into a series of subtasks
and learns a motor primitive policy for each subtask. The learned motor primitives should generalize
between different scenarios and be reusable for different tasks. The process of learning a library of motor
primitives is explained in Sections 4.3.1 and 4.3.2.

4.3.1 Dynamic Motor Primitives

In order to perform multi-phase tasks, the robot needs to perform actions to transition between differ-
ent phases. The robot’s movements are represented using dynamic motor primitives (DMPs) [62, 35].
These motor primitive representations are easily adapted to different situations and can be learned in a
straightforward manner [34, 35]. The robot learns one DMP for each of the phase transitions observed
in the human demonstrations. For more details on DMPs, we refer the reader to Chapter 2, where they
were explained in detail.

In order to set the goal state g of the motor primitives, we define a set of task frames according
to the object’s current pose and its shape. The robot first learns a -class logistic regression classifier
for predicting phases from contacts by using the contact features described in Section 4.2.3. Using a
model of the hand and point cloud of the object, the robot then samples different potential hand poses
relative to the object. In our experiments, we sampled grasps in a 3D grid with 2 cm intervals and
discarded samples that did not make contact with the object. Each of the hand poses is evaluated by the
classifier and weighted by the probability of being assigned to the goal phase. Mean-shift clustering [45]
is subsequently applied to the weighted samples, and the mode with the highest likelihood is used to
define the task frame. If the hand is already in contact with the object, or making contact would reduce
the likelihood of reaching the next phase, the current pose of the hand is used as the task frame. If the
object is in contact with the table, we also test whether removing the table would increase the likelihood.
In the future, one could extend this approach to sampling different object poses in the scene.

The DMPs are incorporated into the model as shown in Fig. 4.3. At time step t, the robot is executing
motor primitive Mt , which includes the linear systems as well as the canonical system. The robot
performs an action a according to the desired trajectory and the current state p(at |Mt , st). Once a DMP
has finished, a new DMP is selected according to the current state p(Mt |Mt�1

, st). The graphical model
illustrates the complementary nature of motor primitives and phases.

4.3.2 Learning Motor Primitives using Policy Search

The performance and robustness of the DMPs can be further improved by adapting the goal state g

and weights w using model-based reinforcement learning. The purpose of each DMP is to bring the
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Figure 4.3: Graphical model of the task model and motor primitive controller. The orange nodes indicate
observed variable. The white nodes indicate hidden variables. The model includes the states
s, actions a, motor primitives M , termination variables � , and the phases ⇢. The top half
of the graphical model depicts the motor primitive controller. The bottom half of the model
defines the multi-phase model of the system.

robot from one phase to another. The model’s phase transition distribution p(⇢t |⇢t�1

, st) can be used
to define a reward function for transitioning between different phases. The parameters of the DMP are
then learned using relative entropy policy search (REPS) [147].

In order to learn motor primitives for transitioning between from phase ⇢
0

to ⇢g , we define the reward
at each time step as the probability of transitioning to the goal phase p(⇢t+1

= ⇢g |st+1

,⇢t). This reward
is discounted over time by the probability of transitioning to a phase other than ⇢

0

or ⇢g . In this manner,
the reward function directs the robot towards the goal phase’s conditions, while avoiding other phases.
A squared cost term was also applied to penalize large actions as well as large deviations of the goal state
from the task frame’s origin to keep the goal grounded. By including smooth features for modelling the
phase transition distribution p(⇢t |⇢t�1

, st), the reward function can guide the robot during the learning
process. This reward function worked well in the experiments, but other reward functions could also be
constructed using the phase transition distribution.

Given the reward function and a set of starting states, the parameters g and w of the the DMP are
learned using episodic REPS. The robot begins by learning the goal parameters g, which are defined rel-
ative to the task frame. The distribution over the parameters is modeled as a Gaussian g⇠N (µg0

,⌃g0

),
where the initial mean µg0

is given by the origin of the task frame. Parameters are sampled from the
distribution and evaluated for each starting state using the learned multi-phase model. The rewards are
averaged over the starting states.

After evaluating multiple samples of parameter sets from the current policy N (µg ,⌃g), a policy up-
date is performed to determine a new policy N (µ0g ,⌃0g). REPS computes a new policy that maximizes
the expected reward, while limiting the Kullback Leibler divergence between the old and new policies
✏ � DKL(N (µ0g ,⌃0g)||N (µg ,⌃g)). Limiting the KL divergence between the policies makes the learning
process more robust to noisy rewards, and the robot is less likely to converge prematurely to a poor
local optimum. For more details on REPS, we refer the reader to the survey of Deisenroth et al. on
policy search methods in robotics [148]. The weight parameters w are learned in a similar manner. The
parameters g and w could also be learned jointly [125].
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Phase 3

Phase 4

Phase 2

Phase 5

Phase 1

Figure 4.4: The five phases detected in the task demonstrations. The pictures show the contacts between
the objects in each of the phases. The arrows show the phase transitions that were observed
during the demonstrations. The robot learns a motor primitive for each of these transitions.

Once a motor primitive has been learned, it can be executed using the learned model to get the starting
states for the next phase. This process is repeated until motor primitives have been learned for all of the
phase transitions. The model can also be used to learn motor primitives for specific tasks by defining a
suitable reward function, e.g., moving to a goal location while remaining in the current phase.

4.4 Evaluations

The proposed method was evaluated on a bimanual grasping task. The robot consists of two Kuka
light-weight robot arms, and two five-fingered DLR hands [99].The robot’s arms were controlled using
impedance control in task space. The fingers are also compliant, which gives them shape adaptability
[97]. The object was tracked using a marker-based Optitrak system. The box is too large for the robot
to grasp with a single hand.

4.4.1 Setup and Model Learning

The robot was given two demonstrations of a bimanual grasping task using kinaesthetic teaching. In the
first demonstration, the robot’s right hand made contact with the box first. In the second demonstration,
the left hand makes the first contact with the object. In both demonstrations, the object was subsequently
grasped with both hands and lifted up from the table. The robot performed the task again by replaying
the demonstrated trajectories with the objects placed at the same positions and orientations as in the
demonstrations. The trajectories were sampled at 10 Hz. The two trajectories were coarsely segmented
into phases using the method described in Section 4.2.3. The five detected phases, as well as the observed
transitions between them, are illustrated in Fig. 4.4 .

The state s includes the position and orientation of the box, the positions of the robot’s hands, and
the contact state. Although the robot does not have tactile sensors, the joints of the robot’s fingers have
torque sensors. Rather than using the joint angles and torques directly, principal component analysis
was used to reduce the dimensionality of the data from 60 to eight dimensions, i.e., two dimensions
for position and two dimensions for torques for each hand. The state transition distributions learned
the change in state rather than the absolute state, except for the contact features. The actions were
defined by the change in the desired trajectory. The robot uses an impedance controller to follow the
desired trajectory. The features for the phase transition distributions include the distances between the
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Figure 4.5: The success rates of the motor primitive evaluations. The robot performed the sequences
of three motor primitives (first hand, second hand, and then lift) as observed in the hu-
man demonstrations. The di�erent colored bars indicate di�erent approaches to learning
the motor primitives.

box and the finger tips, the distance between the box and the table, and the joint angle and torque data.
The contact features, as described in Section 4.2.3, were also used for computing the phase initiation
distribution.

4.4.2 Learning a Library of Motor Primitives for Phase Transitions

Using the method described in Section 4.3, the robot learned a library of five motor primitives corre-
sponding to the five phase transitions observed in the demonstrations. Three different approaches for
learning DMP libraries were evaluated for comparison. The first approach used only imitation learning
to learn the DMPs. The goal states were set to the origins of the task frames, except for the 3! 4 phase
transition. For this motor primitive, the goal state for each hand was manually set to 10 cm above its task
frame in order to achieve a lifting movement. The second approach used the model-based reinforcement
learning together with the imitation learning in order to create the DMP library, as described in Section
4.3. The third approach also used imitation learning and reinforcement learning. However, rather than
sampling from the model in a stochastic manner, the maximum-likelihood state transitions were used
and the phase was kept the same for the entire trial. In this manner, the variance in the trials’ rewards
is reduced. For both model-based reinforcement learning approaches, the goal states g of the motor
primitives were learned using 10 policy updates of 50 episodes. The weights w were learned using 10

policy updates of 100 episodes each. The bound was set to ✏= 0.5 for both sets of parameters.
The robot executed the motor primitives according to the phase transition sequences observed in the

demonstrations, i.e., 1 ! 2 ! 3 ! 4 and 1 ! 5 ! 3 ! 4. Each sequence of motor primitives was
executed 25 times using each of the three approaches, giving a total of 450 motor primitive executions.
At the start of each sequence, the box was placed at a random position and orientation on the table
within the robot’s workspace. The successes and failures of the motor primitives were labelled by hand.
A transition to phases 2 or 5 was considered successful if the robot’s right or left hand made contact with
the object. A transition to phase 3 was considered a success if the hands were touching opposite sides of
the box, and the box was in contact with the table. A transition to phase 4 was considered a success if
the robot succeeded in lifting the box from the table with both hands for more than 15 seconds.
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The results of the experiment are shown in Fig. 4.5. All three methods learned to generalize to
different object poses. Both reinforcement learning approaches succeeded in lifting the box in more
than 90% of the trials. Using imitation learning, without additional reinforcement learning resulted in
a success rate of only 38%. These motor primitives often resulted in a single finger tip making contact
with the object, which lead to more delicate grasps. In comparison, the motor primitives learned using
reinforcement learning pushed the box a few centimeters, which resulted in the object becoming aligned
with the hand. The motor primitives for transitioning from phase 3 to 4 tended to apply less horizontal
force to the object at the end of the motion than at the start. This may be a result of the demonstrations,
which also tended to apply less force once the object was lifted from the table without dropping the
object.

The results of the experiment showed that reinforcement learning leads to more robust motor prim-
itives for transitioning between phases. The model captured a sufficient amount of detail to allow the
robot to learn the required motor primitives. Apart from using more data, there are several ways that the
model could be improved. Rather than using a fixed number of phases, a Dirichlet process prior could
be included to model the number of phases [9, 10, 8]. The forward model could also be improved by
explictly enforcing the contact constraints corresponding to each phase [149].

4.4.3 Guarded Motor Primitives

The motor primitives learned with deterministic sampling should be executed using a guarded DMP,
such that the movement is terminated once a phase change is detected. Humans can accurately detect
phase changes based on tactile sensations [7, 1]. However, as the robot does not have tactile sensors, we
can only provide a preliminary study using the joint angles and torques of the robot’s hand. Using the
first principal components of this data, the robot learned a classifier for distinguishing between phase 3

and the previous phases 2 and 5. The robot then executed each of the two phase sequences ten times,
and stopped the motor primitive if the classifier detected the phase transition. The robot succeeded in
performing the lifting trial in 17 out of the 20 trials. The DMPs terminated on average 3.38 cm before
reaching the goal state, with a standard deviation of 2.03 cm. As the robot was using impedance control,
the goal states were 5.57cm inside the object, and the hands made contact with the object in all of the
trials. By stopping the DMPs early, the robot simply applied less force to the object. The results of this
test demonstrate that guarded motions can be incorporated into the proposed framework, and are a
promising direction for further research.

4.4.4 Generalization to Other Objects

In order to evaluate how well the learned motor primitives generalize to new objects, the robot was
additionally given the task of grasping six novel objects with different shapes and sizes. Each object
was grasped three times with orientations at 45 intervals. The robot performed the grasps using the
1! 2! 3! 4 phase sequence. The point cloud models of the objects were created by exploiting their
extruded shapes [100]. The task frames were computed using these models.

The grasps are shown in Fig. 4.6 . The second and third grasps of the bottle failed, as a result of the
bottle’s tendency to tilt rather than slide across the table. The robot could lift the bottle in both of these
trials, but the bottle slipped back down afterwards. The first and second grasps of the large green tin box
also failed. The other 14 grasps were all successful and could be used to lift and hold the objects above
the table.

As one would expect, the motor primitives are not applicable to objects with very different dynamics,
such as the bottle. However, as the robot did succeed in briefly lifting the bottle, the learned DMPs could
be used as a starting point for learning how to grasp and manipulate the bottle. The learned DMPs also
have problems with low-friction contacts, such as those between the green tin can and the back of the
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Figure 4.6: The figure shows the ability of the the learned DMPs to adapt to the geometry of di�erent
objects. The top three columns show example grasps for each of the six objects. The bottom
row shows example lifts. The first two lifts of the metal box in column two failed due to
material di�erences. The last two lifts of the bottle failed due to di�erences in dynamics. The
other 14 grasps lead to successful lifts.

robot’s thumb. This problem could be addressed by taking into consideration the material properties of
the objects. The grasps could also be made more robust to slip by incorporating slip detection into the
controller. With an overall success rate of 78%, the results of the experiment indicate that the learned
motor primitives do generalize to other objects.

4.5 Conclusion

In this chapter, we presented a model for representing the phase structure of manipulation tasks. The
most important part of this model is the dependency of the hidden phase on the observed state. This
dependency allows the robot to learn the subgoals corresponding to the phase transitions. This transition
model also results in more accurate multi-step predictions than standard ARHMMs [22]. The parameters
of the model were learned using an expectation-maximization method.

The second contribution of this chapter is to learn a library of task-independent motor primitives for
transitioning between phases. Rather than just using imitation learning, the robot used reinforcement
learning to improve the motor primitives’ performance and robustness. Instead of optimizing sequences
of motor primitives for a specific task, the robot learned the motor primitives individually based on the
subgoals defined by the phase model.

The proposed method was evaluated on a bimanual grasping task. The results of the experiments show
that the policy search method significantly increases the performance of the learned motor primitives.
The experiments also showed that the motor primitives generalize between objects with different shapes.

4.6 Potentially Helpful Insights

The motivation for this project was to model the structure of manipulation tasks in order to extract their
inherent subgoals and constraints. At an abstract level, the goal of manipulations is to change variables
of the environment to desired values. In order to change a variable, the robot must first obtain access to
the variable, which it can do by setting other variables. Phases capture this concept of accessing different
sets of variables. For example, in order to manipulate an object, the robot usually needs to first transition
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to a phase that allows it to apply forces to the object. Once the robot has access to a set of variables, it
can change them to accomplish different subtasks. The robot can learn a separate skill for performing
each of the subtasks. As a result, the manipulation skills tend to mirror the phase structure of the task.

Our original approach to learning skills for multi-phase manipulation tasks did not employ contact
frames. Instead, the robot learned the goal and trajectory parameters as a linear function of the object’s
position. The robot learned to shift the goal states together with the object and it could thus successfully
perform the task. However, as the shape of the object was not taken into consideration, the grasps
tended to be rather crude and relied heavily on the compliance of the hands to adapt. Larger objects
would be squeezed too tightly, and the hands would not make contact with smaller objects. In both
cases, the fundamental problem was that the robot did not consider where the fingers were making
contact with the object’s surface. Establishing contacts between objects is also the core problem for grasp
synthesis. We therefore employed a similar approach to determine the task/contact frames. However,
rather than estimating hand poses for grasping, the robot selects a task frame for reaching the next phase.
Grasping can thus be seen as a specific type of phase transition. As a result, a lot of ideas from grasping
research can be reused for learning to transition between phases. Similarly, when developing methods
for grasping, one should also consider which other phase transitions the method could be applied to.

The STARHMM is a forward model of the task, which the robot can use to simulate the effects of its
actions and optimize its motor primitives accordingly. It can also use the model to predict the effects of
other motor primitives, as shown in Chapter 5. However, unlike a standard simulator, the STARHMM
also explicitly learns the phase structure and the conditions for transitioning between phases. As these
transitions represent inherent subgoals, the robot is effectively learning to structure the skill learning
problem. This structure comes from detecting specific instances of a more general task, i.e., transitioning
between phases. Similarly, curiosity and intrinsically-motivated frameworks also give the robot general
tasks, such as finding and controlling salient events or degrees of freedom in the environment [133, 134,
150]. Defining more general tasks gives the robot more autonomy and the ability to handle a larger
range of tasks. It is also important for roboticist to try and define these more general problems in order
to determine the fundamental challenges facing robots.
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5 Sequencing Robot Manipulation Skills
A robot will often need to execute a sequence of motor primitives in order to perform a task. Each
motor primitives may result in a specific manipulation of an object, or a transition to a phase wherein
the desired manipulation can be performed. When selecting the next motor primitive to execute, the
robot must take into consideration the current situation, the task, and the actions that it will perform in
the future. The value function V⇡(s) models this information in a compact manner. The value function
represents the future task rewards that the robot can expect to obtain, given its current state and its
policy for selecting actions. Once the value function has been computed, the robot selects the motor
primitive with the greatest immediate reward plus the expected value of the next state.

Defining a value function for continuous state spaces is, however, not trivial [11]. In this chapter, we
present a non-parametric approach to computing value functions. The resulting value function represen-
tation has the form of a Nadaraya-Watson kernel regression [69, 70], and is flexible enough to model a
wide range of value functions. In the evaluations, we show how the robot can learn to sequence motor
primitives using the proposed value function approach.

5.1 A Non-Parametric Approach to Dynamic Programming

Value functions are an essential concept for determining optimal policies in both optimal control [151]
and reinforcement learning [32, 152]. Given the value function of a policy, an improved policy is straight-
forward to compute. The improved policy can subsequently be evaluated to obtain a new value function.
This loop of computing value functions and determining better policies is known as policy iteration. How-
ever, the main bottleneck in policy iteration is the computation of the value function for a given policy.
Using the Bellman equation, only two classes of systems have been solved exactly: tabular discrete state
and action problems [153] as well as linear-quadratic regulation problems [154]. The exact computation
of the value function remains an open problem for most systems with continuous state spaces [11]. This
chapter focuses on steps toward solving this problem.

As an alternative to exact solutions, approximate policy evaluation methods have been developed in
reinforcement learning. These approaches include Monte Carlo methods, temporal difference learning,
and residual gradient methods. However, Monte Carlo methods are well-known to have an excessively
high variance [155, 32], and tend to overfit the value function to the sampled data [32]. When using
function approximations, temporal difference learning can result in a biased solution[156]. Residual
gradient approaches are biased unless multiple samples are taken from the same states [157], which is
often not possible for real continuous systems.

In this chapter, we propose a non-parametric method for continuous-state policy evaluation. The
proposed method uses a kernel density estimate to represent the system in a flexible manner. Model-
based approaches are known to be more data efficient than direct methods, and lead to better policies
[158, 159]. We subsequently show that the true value function for this model has a Nadaraya-Watson
kernel regression form [69, 70]. Using Galerkin’s projection method, we compute a closed-form solu-
tion for this regression problem. The resulting method is called Non-Parametric Dynamic Programming
(NPDP), and is a stable as well as consistent approach to policy evaluation.

The second contribution of this section is to provide a unified view of several sample-based algorithms
for policy evaluation, including the NPDP algorithm. In Section 5.3, we show how Least-Squares Temporal
Difference learning (LSTD) in [12], Kernelized Temporal Difference learning (KTD) in [13], and Discrete-
State Dynamic Programming (DSDP) in [153, 160] can all be derived using the same Galerkin projection
method used to derive NPDP. In Section 5.4, we compare these methods using empirical evaluations.
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In reinforcement learning, the uncontrolled system is usually represented by a Markov Decision Process
(MDP). An MDP is defined by the following components: a set of states S; a set of actions A; a transition
distribution p(s0|a, s), where s

0 2 S is the next state given action a 2 A in state s 2 S; a reward function
r, such that r(s,a) is the immediate reward obtained for performing action a in state s; and a discount
factor � 2 [0, 1) on future rewards. Actions a are selected according to the stochastic policy ⇡(a|s). The
goal is to maximize the discounted rewards that are obtained; i.e., max

P1
t=0

�t
r(st ,at). The term system

will refer jointly to the agent’s policy and the MDP.
The value of a state V (s), for a specific policy ⇡, is defined as the expected discounted sum of rewards

that an agent will receive after visiting state s and executing policy ⇡; i.e.,

V (s) = E
�P1

t=0

�t
r(st ,at)

��
s

0

= s,⇡
 

. (5.1)

By using the Markov property, Eq. (5.1) can be rewritten as the Bellman equation

V (s) =
´
A
´
S⇡ (a|s) p

�
s

0|s,a

� ⇥
r (s,a) + �V

�
s

0�⇤ds

0da. (5.2)

The advantage of using the Bellman equation is that it describes the relationship between the value func-
tion at one state s and its immediate follow-up states s

0 ⇠ p(s0|s,a). In contrast, the direct computation
of Eq. (5.1) relies on the rewards obtained from entire trajectories.

5.2 Non-Parametric Model-based Dynamic Programming

We begin describing the NPDP approach by introducing the kernel density estimation framework used
to represent the system. The true value function for this model has a kernel regression form, which can
be computed by using Galerkin’s projection method. We subsequently discuss some of the properties of
this algorithm, including its consistency.

5.2.1 Non-Parametric System Modeling

The dynamics of a system are compactly represented by the joint distribution p(s,a, s

0). Using Bayes
rule and marginalization, one can compute the transition probabilities p(s0|s,a) and the current policy
⇡(a|s) from this joint distribution; e.g. p(s0|s,a) = p(s,a, s

0)/
´

p(s,a, s

0)ds

0. Rather than assuming that
certain prior information is given, we will focus on the problem where only sampled information of the
system is available. Hence, the system’s joint distribution is modeled from a set of n samples obtained
from the real system. The ith sample includes the current state si 2 S, the selected action ai 2 A, and the
follow-up state s

0
i 2 S, as well as the immediate reward ri 2 R. The state space S and the action space A

are assumed to be continuous.
We propose using kernel density estimation to represent the joint distribution [161, 162] in a non-

parametric manner. Unlike parametric models, non-parametric approaches use the collected data as
features, which leads to accurate representations of arbitrary functions [163]. The system’s joint dis-
tribution is therefore modeled as p(s,a, s

0) = n�1

Pn
i=1

 i (s0)'i (a)�i (s), where  i (s0) =  
�
s

0
, s

0
i

�
,

'i (a) = ' (a,ai), and �i (s) = � (s, si) are symmetric kernel functions. In practice, the kernel functions
 and � will often be the same. To ensure a valid probability density, each kernel must integrate to one;
i.e.,
´
�i (s)ds = 1, 8i, and similarly for  and '. As an additional constraint, the kernel must always

be positive; i.e.,  i (s0)'i (a)�i (s)� 0, 8s 2 S. This representation implies a factorization into separate
 i (s0), 'i (a), and �i (s) kernels. As a result, an individual sample cannot express correlations between
s

0, a, and s. However, the representation does allow multiple samples to express correlations between
these components in p(s,a, s

0).
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The reward function r(s,a) must also be represented. Given the kernel density estimate representa-
tion, the expected reward for a state-action pair is denoted as [69]

r(s,a) = E[r|s,a] =

Pn
k=1

rk'k (a)�k (s)Pn
i=1

'i (a)�i (s)
.

Having specified the model of the system dynamics and rewards, the next step is to derive the corre-
sponding value function.

5.2.2 Resulting Solution

In this section, we propose an approach to computing the value function for the continuous model
specified in Section 5.2.1. Every policy has a unique value function, which fulfills the Bellman equation,
Eq. (5.2), for all states [32, 164]. Hence, the goal is to solve the Bellman equation for the entire state
space, and not just at the sampled states. This goal can be achieved by using the Galerkin projection
method to compute the value function for the model [165].

The Galerkin method involves first projecting the integral equation into the space spanned by a set
of basis functions. The integral equation is then solved in this projected space. To begin, the Bellman
equation, Eq. (5.2), is rearranged as
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´
A
´
S⇡ (a|s) r (s,a) p
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,
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ˆ
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p
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s

0
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�
V
�
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0�ds

0
. (5.3)

Before applying the Galerkin method, we derive the exact form of the value function. Expanding the
reward function and joint distributions, as defined in Section 5.2.1, gives
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Therefore, p(s)V (s) = n�1

Pn
i=1

✓i�i (s), where ✓ are value weights. Given that p(s) = n�1

Pn
j=1

� j (s),
the true value function of the kernel density estimate system has a Nadaraya-Watson kernel regression
[69, 70] form

V (s) =

Pn
i=1

✓i�i (s)Pn
j=1

� j (s)
. (5.4)

Having computed the true form of the value function, the Galerkin projection method can be used to
compute the value weights ✓ . The projection is performed by taking the expectation of the integral
equation with respect to each of the n basis function �i. The resulting n simultaneous equations can be
written as the vector equation

ˆ
S
� (s) p(s)V (s)ds=

ˆ
S
� (s)n�1� (s)T rds+ �

ˆ
S

ˆ
S
� (s)n�1

�
� (s)T  

�
s

0��V (s0)ds

0ds,

where the ith elements of the vectors are given by [r]i = ri, [� (s)]i = �i (s), and [ (s0)]i =  i (s0).
Expanding the value functions gives
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Algorithm 2 Non-Parametric Dynamic Programming
INPUT: COMPUTATION:

n system samples: Reward vector:
state si, next state s

0
i, and reward ri [r]i = ri

Kernel functions: Transition matrix:
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r

OUTPUT:

Value function: V (s) =
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C✓ = Cr+ �C�✓ ,

where C =
´
S� (s)� (s)

T ds, and � =
´
S(
Pn

i=1

�i (s0))�1 (s0)� (s0)T ds

0 is a stochastic matrix; i.e., a
transition matrix. The matrix C can become singular if two basis functions are coincident. In such cases,
there exists an infinite set of solutions for ✓ . However, all of the solutions result in identical values. The
NPDP algorithm uses the solution given by

✓ = (I� ��)�1

r, (5.5)

which always exists for any stochastic matrix �. Thus, the derivation has shown that the exact value
function for the model in Section 5.2.1 has a Nadaraya-Watson kernel regression form, as shown in
Eq. (5.4), with weights ✓ given by Eq. (5.5). The non-parametric dynamic programming algorithm is
summarized in Algorithm 2 . The NPDP algorithm ultimately requires only the state information s and
s

0, and not the actions a. In Section 5.3, we will show how this form of derivation can also be used to
derive the LSTD, KTD, and DSDP algorithms.

5.2.3 Properties of the NPDP Algorithm

We will now discuss some of the key properties of the proposed NPDP algorithm, including precision,
accuracy, and computational complexity. Precision refers to how close the predicted value function is to
the true value function of the model, while accuracy refers to how close the model is to the true system.

One of the key contributions of this chapter is providing the true form of the value function for policy
evaluation with the non-parametric model described in Section 5.2.1. The parameters of this value
function can be computed precisely by solving Eq. (5.5). Even if � is evaluated numerically, a high level
of precision can still be obtained.

As a non-parametric method, the accuracy of the NPDP algorithm depends on the number of samples
obtained from the system. It is important that the model, and thus the value function, converges to that
of the true system as the number of samples increases; i.e., that the model is statistically consistent. In
fact, kernel density estimation can be proven to have almost sure convergence to the true distribution
for a wide range of kernels [166].

Given that � is a stochastic matrix and 0  � < 1, it is well-known that the inversion of (I � ��)
is well-defined [160]. The inversion can therefore also be expanded according to the Neumann series;
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i.e., ✓ =
P1

i=0

[��]ir. Similar to other kernel-based policy evaluation methods [167, 168], NPDP has a
computational complexity of O (n3) when performed naively. However, by taking advantage of sparse
matrix computations, this complexity can be reduced to O (nz), where z is the number of non-zero
elements in (I� ��).

5.3 Relation to Existing Methods

The second contribution of this chapter is to provide a unified view of Least Squares Temporal Difference
learning (LSTD), Kernelized Temporal Difference learning (KTD), Discrete-State Dynamic Programming
(DSDP), and the proposed Non-Parametric Dynamic Programming (NPDP). In this section, we utilize the
Galerkin methodology from Section 5.2.2 to re-derive the LSTD, KTD, and DSDP algorithms, and discuss
how these methods compare to NPDP. A numerical comparison is given in Section 5.4.

5.3.1 Least Squares Temporal Di�erence Learning

The LSTD algorithm allows the value function V (s) to be represented by a set of m arbitrary basis
functions ˆ�i(s), see [12]. Hence, V (s) =

Pm
i=1

ˆ✓i
ˆ�i (s) = ˆ� (s)T ˆ✓ , where ˆ✓ is a vector of coefficients

learned during policy evaluation, and [ ˆ� (s)]i = ˆ�i (s). In order to re-derive the LSTD policy evaluation,
the joint distribution is represented as a set of delta functions p (s,a, s
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0), where
�i(s,a, s

0) is a Dirac delta function centered on (si,ai, s
0
i). Using Galerkin’s method, the integral equation

is projected into the space of the basis functions ˆ� (s). Thus, Eq. (5.3) becomes
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and thus A
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. The final

weights are therefore given by
ˆ✓ = A

�1

b.

This equation is also solved by LSTD, including the incremental updates of A and b as new samples are
acquired [12]. Therefore, LSTD can be seen as computing the transitions between the basis functions
using a Monte Carlo approach. However, Monte Carlo methods rely on large numbers of samples to
obtain accurate results.

A key disadvantage of the LSTD method is the need to select a specific set of basis functions. The
computed value function will always be a projection of the true value function into the space of these
basis functions [156]. If the true value function does not lie within the space of these basis functions,
the resulting approximation may be arbitrarily inaccurate, regardless of the number of acquired samples.
However, using predefined basis functions only requires inverting an m ⇥ m matrix, which results in a
lower computational complexity than NPDP.

The LSTD may also need to be regularized, as the inversion of A becomes ill-posed if the basis functions
are too densely spaced. Regularization has a similar effect to changing the transition probabilities of the
system [169].
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5.3.2 Kernelized Temporal Di�erence Learning Methods

The proposed approach is of course not the first to use kernels for policy evaluation. Methods such as
kernelized least-squares temporal difference learning [168] and Gaussian process temporal difference
learning [167] have also employed kernels in policy evaluation. Taylor and Parr demonstrated that these
methods differ mainly in their use of regularization [13]. The unified view of these methods is referred
to as Kernelized Temporal Difference learning.

The KTD approach assumes that the reward and value functions can be represented by kernelized
linear least-squares regression; i.e., r(s) = k(s)T K

�1

r and V (s) = k(s)T ˆ✓ , where [k(s)]i = k(s, si),
[K]i j = k(si, s j), [r]i = ri, and ˆ✓ is a weight vector. In order to derive KTD using Galerkin’s
method, it is necessary to again represent the joint distribution as p (s,a, s

0) = n�1

Pn
i=1

�i(s,a, s

0).
The Galerkin method projects the integral equation into the space of the Kronecker delta functions
[ˇ�(s)]i = ˇ�i(s,ai, s

0
i), where ˇ�i(s,a, s

0) = 1 if s

0 = s

0
i, a = ai, and s = si; otherwise ˇ�i(s,a, s

0) = 0. Thus,
Eq. (5.3) becomes

ˆ
S

ˇ� (s) p (s)k(s)T ˆ✓ds=
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ˇ� (s) p (s) r (s)ds+ �
ˆ
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By substituting p(s,a, s

0) and applying the sifting property of delta functions, this equation becomes

nX

i=1

ˇ�(si)k(si)T ˆ✓ =
nX

j=1

ˇ�(s j)k(s j)T K

�1

r+ �
nX

k=1

ˇ�(sk)k(s0k)T ˆ✓ ,

and thus K

ˆ✓ = r+ �K0 ˆ✓ , where [K0]i j = k(s0i, s j). The value function weights are therefore

ˆ✓ = (K� �K0)�1

r,

which is identical to the solution found by the KTD approach [13]. In this manner, the KTD approach
computes a weighting ˆ✓ such that the difference in the value at si and the discounted value at s

0
i equals

the observed empirical reward ri. Thus, only the finite set of sampled states are regarded for policy
evaluation. Therefore, some KTD methods, e.g. Gaussian process temporal difference learning [167],
require that the samples are obtained from a single trajectory to ensure that s

0
i = si+1

.
A key difference between KTD and NPDP is the representation of the value function V (s). The form

of the value function is a direct result of the representation used to embody the state transitions. In the
original paper [13], the KTD algorithm represents the transitions by using linear kernelized regression
ˆ

k(s0) = k(s)T K

�1

K

0, where [ˆk(s0)]i = E[k(s0, si)]. The value function V (s) = k(s)T ˆ✓ is the correct
form for this transition model. However, the transition model does not explicitly represent a conditional
distribution and can lead to inaccurate predictions. For example, consider two samples that start at s

1

= 0

and s
2

= 0.75 respectively, and both transition to s0 = 0.75. For clarity, we use a box-cart kernel with a
width of one k(si, s j) = 1 iff

��si � s j

�� 0.5 and 0 otherwise. Hence, K = I and each row of K’ corresponds
to (0, 1). In the region 0.25  s  0.5, where the two kernels overlap, the transition model would
then predict ˆk(s) = k(s)T K

�1

K

0 = [ 0 2 ]. This prediction is however impossible as it requires that
E[k(s0, s

2

)] >maxs k(s, s
2

). In comparison, NPDP would predict the distribution  (s0) ⌘ 
1

(s0) ⌘ 
2

(s0)
for all states in the range �0.5 s  1.25.

Similar as for LSTD, the matrix (K � �K0) may become singular and thus not be invertible. As a
result, KTD usually needs to be regularized [13]. Given that KTD requires inverting an n⇥ n matrix, this
approach has a computational complexity similar to NPDP.
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5.3.3 Discrete-State Dynamic Programming

The standard tabular DSDP approach can also be derived using the Galerkin method. Given a system with
q discrete states, the value function has the form V (s) = ˇ�(s)T v, where ˇ�(s) is a vector of q Kronecker
delta functions centered on the discrete states. The corresponding reward function is r(s) = ˇ�(s)T¯

r. The
joint distribution is given by p(s0, s) = q�1�(s)T P�(s0), where P is a stochastic matrix

Pq
j=1

[P]i j = 1, 8i
and hence p(s) = q�1

Pq
i=1

�i(s). Galerkin’s method projects the integral equation into the space of the
states ˇ�(s). Thus, Eq. (5.3) becomesˆ
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v= (I� �P)�1

¯

r, (5.6)

which is the same computation used by DSDP [160]. The DSDP and NPDP methods actually use similar
models to represent the system. While NPDP uses a kernel density estimation, the DSDP algorithm uses
a histogram representation. Hence, DSDP can be regarded as a special case of NPDP for discrete state
systems.

The DSDP algorithm has also been the basis for continuous-state policy evaluation algorithms [170,
171]. These algorithms first use the sampled states as the discrete states of an MDP and compute the
corresponding values. The computed values are then generalized, under a smoothness assumption, to
the rest of the state-space using local averaging. Unlike these methods, NPDP explicitly performs policy
evaluation for a continuous set of states.

5.4 Numerical Evaluation

In this section, we compare the different policy evaluation methods discussed in the previous section,
with the proposed NPDP method, on an illustrative benchmark system.

5.4.1 Benchmark Problem and Setup

In order to compare the LSTD, KTD, DSDP, and NPDP approaches, we evaluated the methods on a
discrete-time continuous-state system. A standard linear-Gaussian system was used for the benchmark
problem, with transitions given by s0 = 0.95s+! where ! is Gaussian noise N (µ = 0,� = 0.025). The
initial states are restricted to the range 0.95 to 1. The reward functions consist of three Gaussians, as
shown by the black line in Fig. 5.1 .

The KTD method was implemented using a Gaussian kernel function and regularization. The LSTD
algorithm was implemented using 15 uniformly-spaced normalized Gaussian basis functions, and did
not require regularization. The DSDP method was implemented by discretizing the state-space into 10
equally wide regions. The NPDP method was also implemented using Gaussian kernels.

The hyper-parameters of all four methods, including the number of basis functions for LSTD and
DSDP, were carefully tuned to achieve the best performance. As a performance base-line, the values
of the system in the range 0 < s < 1 were computed using a Monte Carlo estimate based on 50000

trajectories. The policy evaluations performed by the tested methods were always based on only 500

samples; i.e. 100 times less samples than the base-line. The experiment was run 500 times using
independent sets of 500 samples. The samples were not drawn from the same trajectory.
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Figure 5.1: Value functions obtained by the evaluated methods. The black lines show the reward func-
tion. The blue lines show the value function computed from the trajectories of 50,000 uni-
formly sampled points. The LSTD, KTD, DSDP, and NPDP methods evaluated the policy using
only 500 points. The presentation was divided into two plots for improved clarity

5.4.2 Results

The performance of the different methods were compared using three performance measures. Two
of the performance measures are based on the weighted Mean Squared Error (MSE) [32] E(V ) =´

1

0

W (s) (V (s)� V ?(s))2 ds where V ? is the true value function and W (s)� 0, for all states, is a weighting
distribution

´
1

0

W (s)ds = 1. The first performance measure Eunif corresponds to the MSE where W (s) = 1

for all states in the range zero to one. The second performance measure Esamp corresponds to the MSE
where W (s) = n�1⌃n

i=1

�i(s) respectively. Thus, Esamp is an indicator of the accuracy in the space of the
samples, while Eunif is an indicator of how well the computed value function generalizes to the entire
state space. The third performance measure Emax is given by the maximum error in the value function.
This performance measure is the basis of a bound on the overall value function approximation [164].

The results of the experiment are shown in Table 5.1. The performance measures were averaged
over the 500 independent trials of the experiment. For all three performance measures, the NPDP
algorithm achieved the highest levels of performance, while the DSDP approach consistently led to the
worst performance.

Eunif Esamp Emax
NPDP 0.5811± 0.0333 0.7185± 0.0321 1.4971± 0.0309

LSTD 0.6898± 0.0443 0.8932± 0.0412 1.5591± 0.0382

KTD 0.7585± 0.0460 0.8681± 0.0270 2.5329± 0.0391

DSDP 1.6979± 0.0332 2.1548± 0.1082 2.9985± 0.0449

Table 5.1: Each row corresponds to one of the four tested algorithms for policy evaluation. The columns
indicate the performance of the approaches during the experiment. The performance indexes
include the mean squared error evaluated uniformly over the zero to one range, the mean
squared error evaluated at the 500 sampled points, and the maximum error. The results are
averaged over 500 trials. The standard errors of the means are also given.
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5.4.3 Discussion

The LSTD algorithm achieved a relatively low Eunif value, which indicates that the tuned basis functions
could accurately represent the true value function. However, the performance of LSTD is sensitive to
the choice of basis functions and the number of samples per basis function. Using 20 basis functions
instead of 15 reduces the performance of LSTD to Eunif = 2.8705 and Esamp = 1.0256 as a result of
overfitting. The KTD method achieved the second best performance for Esamp, as a result of using a non-
parametric representation. However, the value tended to drop in sparsely-sampled regions, which lead
to relatively high Eunif and Emax values. The discretization of states for DSDP is generally a disadvantage
when modeling continuous systems, and resulted in poor overall performance for this evaluation. The
NPDP approach out-performed the other methods in all three performance measures. The performance
of NPDP could be further improved by using adaptive kernel density estimation [172] to locally adapt
the kernels’ bandwidths according to the sampling density. However, all methods were restricted to using
a single global bandwidth for the purpose of this comparison.

5.5 Sequencing Motor Primitives

In this section, we explain how the proposed NPDP framework can be used to learn a high-level policy
for selecting motor primitives. This section builds on the work presented in Chapter 4. We assume that
the robot has learned a library of motor primitives for transitioning between different phases, and that
it has access to a multi-phase model of the task.

5.5.1 Learning a High-Level Policy with Policy Iteration

Given a library of motor primitives, such as the one learned in the previous chapter, the robot must now
sequence these motor primitives M in order to perform different manipulation tasks. When selecting
the next motor primitive, the robot must take into consideration the goal of the task, the current state,
and its future actions. The robot should also reuse motor primitives when performing similar tasks.

We assume that the task is defined in the form of a reward function r(s,a), which we can use to
compute an expected reward function r(˜s,M ) for motor primitives, where the extended state ˜

s includes
the state s and the robot’s estimate of the phase ˜⇢. The robot’s high-level policy ⇡(M |˜s) selects motor
primitivesM , according to the current state and phase. The motor primitives should be selected such
that they maximize the reward accumulated over time

max

⇡

1X

t=1

�t r(˜s(t),M (t)),

where � is a discount factor on future rewards 0 �< 1 and t indicates the steps in the motor primitive
sequence. In our experiments, all of the motor primitives had the same duration. However, one could
also use different discount factors for motor primitives with different durations. The value function
V⇡(˜s) is defined as the expected future rewards when in state s and phase ⇢, and following policy ⇡.
The value function therefore represents how useful it is to be in the extended state ˜

s given the current
task and the robot’s policy for selecting future actions.

The NPDP algorithm models the system dynamics as a kernel density estimate of the form

p(˜s,M ,

˜

s

0) = m�1

Pm
i=1
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where ˜

s is the extended state before executing motor primitive M , and ˜

s

0 is the extended state af-
terwards. We model � (˜s,

˜

si) using a squared exponential kernel for the state s and multiply it by a
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Kronecker delta function for the phase ˜⇢. As we have a discrete set of motor primitives, the function '
is defined as a delta function. The function  

�
˜

s

0
,

˜

s

0
i

�
is not explicitly defined and instead approximated

using samples from the multi-phase model described in Chapter 4.
In order to learn the value function, we first compute a set of m prototypical samples {˜si} for i 2
{1, ..., m}. Given a set of starting states, the prototype samples can be obtained by sampling different
sequences of motor primitives using the multi-phase model. In our experiments, we sampled every
sequence of motor primitives using the maximum-likelihood state transitions.

The value function for this joint distribution has the form

V (˜s) =

Pm
i=1

✓i� (˜s,

˜

si)Pm
j=1

�
�
˜

s,

˜

s j

�
.

The parameters ✓ of the value function are given by

✓ = (I� ��)�1

¯

r,

where the ith element of ¯

r is the expected reward [¯r]i = r(˜si,Mi), and the elements of the transition
matrix P are defined as

[�]i j =
ˆ
�
�
˜

s,

˜

s j

�
 (˜s,

˜

si)Pm
k=1

� (˜s,

˜

sk)
d˜

s.

This integral is computed by drawing samples from the multi-phase model, starting at ˜

si and executing
Mi, in order to approximate the function (˜s,

˜

si). Even though some of the DMPs are meant to transition
to specific phases, some of the samples will not reach this desired phase due to the stochasticity of the
multi-phase model. The model thus also incorporates the failure rates of the DMPs, and the robot can
learn a high-level controller that avoids motor primitives that tend to fail.

Given the value function V (˜s), the policy is updated by selecting new motor primitives for each of the
prototypical samples. For each of these samples, the robot selects the motor primitive that maximizes
the expected immediate reward plus the expected discounted value for the next state

M new
i = argmaxM E(r(˜si,M ) + �V (˜s0i)).

The rows of the matrix � and the vector ¯

r are then updated accordingly, and a new value function is
computed. This policy iteration process is repeated until the value function and the policy converge. The
resulting policy is given by

⇡(M |˜s) =
Pm

i=1

' (M ,Mi)� (˜s,

˜

si)Pm
k=1

� (˜s,

˜

sk)
,

which is a similar form to the multi-class classifier policies that are commonly used by imitation learning
approaches [119, 8].

5.5.2 Motor Primitive Sequencing Experiment

The proposed approach to learning high-level policies was evaluated using the same robot setup as in the
previous chapter. The goal of this experiment was to learn high-level controllers for sequencing motor
primitives in order to perform manipulation tasks. The robot was given the library of motor primitives
learned in Chapter 4. Two motor primitives were added to the library in order to increase the range
of possible actions. The first motor primitive moves both hands 10 cm to the left. The second motor
primitive raises both hands by 10 cm. Unlike the motor primitives for transitioning between phases,
these task motor primitives can be executed from any phase. Hence, at least two motor primitives can
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Figure 5.2: The images show two sequences of the bimanual grasping task. In the top row, the box was
placed towards the left, and the high-level controller approached the box first with the left
hand. In the bottom row, the robot chose to approach the grasp with the right hand first, as
the box was located more towards the right.

be executed from every phase. The effects of executing one of the task motor primitives depend on the
current phase.

The robot was given two tasks in this experiment. For each task, the robot had to learn a high level
controller that would bring it to a suitable phase and then execute one of the task motor primitives. A
trial was finished once a task motor primitive had been executed. The end of a trial was modeled by
an additional absorbing state, in which no further rewards can be obtained and the robot’s actions are
limited to waiting. Executing a task motor primitive always resulted in transitioning to the absorbing
state.

The high-level controller was learned using the method described in Section 5.5. The phase estimates
˜⇢ were computed using the model’s phase transition distribution p(⇢t |st ,⇢t�1

) and the trajectory from
the previous motor primitive. For computing the kernel function � (˜s,

˜

si), we used the 3D position of the
box and the positions of the hands relative to the box. For this evaluation, the robot always selected the
most likely next motor primitive argmaxM ⇡(M |˜s). The robot computed 137 prototype samples based
on 20 start-state samples.

In the first task, the robot was given a reward for the final height of the box and a penalty for the
left-right deviation of the box from the center of the table. The discount factor was set to � = 0.99. The
task was executed 20 times on the robot. The box was placed on the left side of the table for ten of the
trials, and on the right side for the other ten trials. In all of the trials, the robot grasped the box with
both hands and successfully lifted it off of the table. When the box was placed on the left side of the
table, the robot always approached the box with the left hand first, as shown in Fig. 5.2 . When the
box was placed on the right side of the table, the robot approached the box first with the right hand in
nine of the ten trials. In this manner, the robot tended to push the box towards the center of the table
before lifting it up. In two of the trials, the robot failed to detect the 3 ! 4 phase transition. In these
trials, the robot had used the back of the thumb to hold the side of the box. As a result the fingers were
pushed together rather than apart by the grasp. This problem could be addressed by using a task-space
representation of the forces.

For the second task, the robot was given a reward for quickly moving the box to the left, and a penalty
for the height of the box. The discount factor was set to � = 0.95 in order to encourage the robot to
perform the task quickly. The task was again executed 20 times on the robot with the box placed at
different locations on the table. In all of the trials, the robot placed its right hand on the box and then
moved both hands to the left, as shown in Fig. 5.3.

The first task showed that the robot was able to reconstruct the original sequences of phase transitions
and then execute the task motor primitive. The robot additionally learned that it could exploit the DMPs
such that they push the box towards the center of the table for a higher reward. The second task showed
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Figure 5.3: Two examples of manipulation sequences learned for pushing the box to the left (robot’s
perspective).

that the robot could learn to create new sequences by reusing DMPs from the demonstrated task. The
experiments also showed that the robot could use the model of the phases to determine the effects of
applying the motor primitives in each of the phases. Even though the task DMPs were originally not given
as part of a sequence, in both of the tasks, the robot transitioned to a suitable phase before executing the
correct task primitive. The robot even used the motor primitive that moves both hands left in order to
achieve a one-handed push. The sequences of motor primitives were fairly consistent within each task.
As a future step, the robot could learn to optimize the DMPs for these task sequences [124, 125, 126] .

The results of the experiment demonstrated that the proposed value function approach is suitable for
creating medium-length sequences of DMPs. The high-level controller takes into account the current
state, as well as the future actions.

5.6 Conclusion

In this chapter, we presented a non-parametric approach to computing value functions for continuous
state-spaces. The proposed method is based on modeling the system using a kernel density estimate
with a factorized kernel. We then showed that the value function for this type of system has the form
of a Nadaraya-Watson kernel regression, and we explained how the parameters can be computed. We
also explained how different modeling assumptions give rise to other common methods for computing
value functions, such as least-squares temporal difference learning and kernelized temporal difference
learning.

The proposed NPDP method was used to learn high-level policies for sequencing motor primitives.
The learning process was based on the library of motor primitives and the multi-phase model presented
in Chapter 4. The robot learned to perform a bimanual grasping task using the proposed approach.
The robot learned selected motor primitives such that the object would be moved towards the center of
the table. The robot also learned to perform a pushing task by reusing the motor primitives from the
previous task. The sequencing of motor primitives was therefore not limited to those observed in the
human demonstrations.

5.7 Potentially Helpful Insights

The main motivation for the non-parametric dynamic programming project was to obtain insights into
continuous value function features and how they can be constructed. These features could then be used
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for learning to select motor primitive actions. We achieved our goal by determining the form of the value
function for a flexible model representation. The key component of our kernel density estimate model
p(s,a, s

0), was the use of a factorized kernel, which resulted in a value function form that is consistent
under the Bellman equation. The factorisation implies that a single term cannot represent correlations
between the state and the next state. This result is generally valid for mixture models that exhibit this
form of factorisation. These insights could therefore also be used to construct features for other methods,
such as LSTD, if one assumes this form of factorization.

The NPDP approach is well-suited for sequencing actions that funnel the states into specific regions.
Motor primitive actions generally fit the NPDP assumption if the goal is defined as a fixed point. Trig-
gering a motor primitive will usually result in the robot ending up near the goal state, with only a minor
correlation between the starting state and the final state. The initial and final states become more cor-
related if the goal state changes with the position of another object, or a collision would occur when
executing the motor primitive from certain start states. These correlations are captured by using multi-
ple samples to the model the system, and hence adding more features to the value function. The number
of features needed to represent the value function therefore generally depends on how the state space
is defined. For example, when reaching for an object placed at different locations on a table, it is more
efficient to define the state of the hand relative to the object rather than the world frame. From an
object-relative perspective, grasping would result in a large region of initial hand poses being funnelled
into a small region near the desired grasp.

In the robot experiments, we investigated using NPDP to learn a high-level policy for selecting motor
primitives. However, value functions could also be used to optimize continuous action parameters. For
example, the robot could compute a value function for different grasps based on the sequence f actions
it intends to perform with the object. The value function would thus compactly represent the robot’s
future intentions for selecting a grasp. In this manner, the robot can learn to optimize the continuous
parameters of manipulation sequences.
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6 Learning Surface Properties from
Dynamic Tactile Sensing

Dynamic tactile sensing is a fundamental ability for recognizing materials and objects. However, while
humans are born with partially developed dynamic tactile sensing and quickly master this skill, today’s
robots remain in their infancy. The development of such a sense requires not only better sensors, but also
the right algorithms to deal with these sensors’ data. For example, when classifying a material based on
touch, the data is noisy, high-dimensional and contains irrelevant signals as well as essential ones. Few
classification methods from machine learning can deal with such problems.

In this chapter, we propose an efficient approach to inferring suitable lower-dimensional representa-
tions of the tactile data. In order to classify materials based on only the sense of touch, these represen-
tations are autonomously discovered using visual information of the surfaces during training. However,
accurately pairing vision and tactile samples in real robot applications is a difficult problem. The pro-
posed approach therefore works with weak pairings between the modalities. Experiments show that
the resulting approach is robust and yields significantly higher classification performance based on only
dynamic tactile sensing.

6.1 Learning Dynamic Tactile Sensing with Robust Vision-based Training

Figure 6.1: Robot learning about materi-
als by stroking and visually in-
specting di�erent surfaces

The sense of touch has a fundamental role in most human
manipulation tasks, where it serves a variety of purposes.
A particularly important type of tactile sensing is dynamic
tactile sensing. The impressive abilities of this sense are
straightforward to observe [173]. For example, when a
blind-folded person has an object placed in the palm of their
hand, and they do not move their hand nor the object, it is
very difficult to recognize the object. The size and weight
of the object can be determined, but important properties
such as the object’s material and precise shape cannot. If
one instead slides the object over the skin, one can quickly
determine the object and the material [173]. Developing
this ability for robots offers many future possibilities.

Dynamic tactile sensing relies on the motion between the
skin and the object to induce vibrations and deformations
in the skin, which it then uses to infer object and material
properties [15]. This type of sensing can be used to de-
termine various properties of a surface, including texture,
hardness, roughness, and friction [1, 14]. These proper-
ties can be used for tasks such as object identification and
determining suitable contact points for grasps.

Dynamic tactile sensing also obtains information about
the manipulation task. Vibrations are induced in the fin-
ger when it makes or breaks contact with objects, or when incipient slip occurs [7]. These signals help
coordinate the fingers, and allow humans to finely regulate the contact forces depending on the object’s
surface properties [14]. One can also detect the vibrations created when a held object is in contact with
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another object. Such signals are crucial for dexterously using tools. Humans can even use rigid objects
as probes to determine the fine texture of surfaces [174].

The sense of touch should however not be seen in complete isolation, but rather as part of a multimodal
system. When recognizing materials and objects, humans often combine touch with vision and even
audition [175, 174]. Several studies have shown that the human brain even employs multi-sensory
models of objects [175]. By using such a shared model, humans can transfer knowledge about an object
from one sensory modality to another [176]. This sharing of information is especially useful when one
sense can not be used. For example, experiments with both vision and touch have shown that humans
rely more on touch when the texture has small details that are difficult to see [174]. Dynamic tactile
sensing can thus be combined with other senses for more accurate information and additional robustness
[17].

Given the various benefits of using tactile information in manipulation tasks, there is a considerable
interest in equipping robots with such capabilities [177, 178, 179]. The need for robust manipulation
skills is especially important for service robots in unstructured environments [180]. A variety of tactile
sensors are required to create a complete tactile sensor suite, as discussed in the review paper of Dahiya
et al. [181]. As one part of tactile sensing, a dynamic tactile sensor usually only mimics the fast afferent
nerves (FA) in human fingers. Human fingers have two types of fast afferent nerves in their fingers,
i.e., FA-I and FA-II. Type I afferents have a well-localized receptive field and are densely spaced on
the skin [182]. Examples of sensors that mimic type I afferents are tactile arrays [179, 183]. Type
II afferents have a larger receptive field, and therefore cannot localize the source of the vibrations as
well. FA-II afferents are used to sense the vibrations in held objects during manipulation tasks, and
are particularly important for tool usage [181]. Due to their large receptive fields, FA-II sensors often
struggle to differentiate between various sources of vibrations. Apart from the contact with the object,
vibrations also come from other sources [184, 178], such as the robot’s own vibrations and deformations
of the skin as the finger flexes.

A crucial ability of FA-II nerves is sensing temporal characteristics, such as those involved in recogniz-
ing a surface by stroking it. In this chapter, we want to reproduce this ability to recognize materials. As a
testbed for our proposed algorithms, we have created a basic sensor that represents a primitive technical
counterpart to an FA-II type mechanoreceptor. The design is based on a microphone with a probe on its
membrane, and was inspired by the work on haptography of Kuchenbecker et al. [185].

The raw time-series data received from the dynamic tactile sensor consists of the detected vibrations.
This signal will usually serve as the input for a classifier with task-specific labels. However, classification
of tactile data is a difficult task, since a time-series needs to be represented as a high-dimensional data
point to capture the details of the signal. Classification in high-dimensional spaces is however prone
to overfitting, due to “the curse of dimensionality” [33]. The overfitting results in the classifier often
performing poorly when applied to new data. This problem can be addressed using dimensionality
reduction approaches which project the data into lower-dimensional feature spaces. The goal is to discard
information that is not relevant, such as noise or redundant information.

As previously discussed, additional sources of vibrations are often present in the signal together with
the desired tactile signal. For good performance, the classifier needs to automatically determine the
relevant parts of the signal. We therefore take a human-inspired approach and transfer knowledge from
the vision modality.

In this chapter, we present approaches for combining vision and tactile information to improve the
performance of dynamic tactile sensors. The focus of this thesis is on service robots that need to perform
assorted tasks. However, the proposed approach is applicable to a wide range of robots with hand-eye
systems. The proposed approach is based on Maximum Covariance Analysis (MCA) [186], which is a
machine learning method for dimensionality reduction using sets of paired data. The MCA method is
described in Section 6.2.2. However, MCA requires perfect pairings between tactile and visual samples,
which is often a problem for robot systems in unstructured environments [187, 188]. We therefore pro-
pose Mean Maximum Covariance Analysis (µMCA) and using Weakly-paired Maximum Covariance Analysis
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(WMCA) for robotic applications. These methods are more robust and only require weak pairings be-
tween the modalities. After learning, the tactile sensor can be used independently of the vision system,
while retaining its improved performance. Thus, the resulting system can be used even when conditions
are not suitable for visual inspection, e.g., dim lighting, occluded surfaces, perspective distortion, and
even damaged cameras.

Our initial work and evaluations of the WMCA algorithm were presented in [189]. The novel contri-
butions of this chapter include the µMCA method and a more robust implementation of WMCA based on
concepts from deterministic annealing [190]. These methods are presented in Section 6.3 and compared
through a series of benchmarking experiments in Section 6.4. The experiments show that the proposed
methods are robust and allow the robot to accurately discriminate between materials by only stroking
them.

6.2 Formalization in a Multimodal Dimensionality Reduction Setting

In this section, we formulate the problem in a machine learning framework (Section 6.2.1) and give a
brief review of multimodal dimensionality reduction methods (Section 6.2.2).

6.2.1 Problem Statement

Our goal is to have a robot accurately discriminate between different surfaces by only stroking them.
We initially allow the robot to learn about textures by both stroking and visually inspecting them. The
robot should subsequently transfer the additional visual information to improve its knowledge of tactile
sensing. As a result, the tactile sensor’s independent performance should also improve.

We now repose the problem in a general machine learning framework. The problem involves reducing
the dimensionality of a sensor’s data such that the relevant tactile information is retained. Not all
dimensionality reduction methods are suitable for our robot application. We must therefore first select
an appropriate type of method.

Dimensionality reduction algorithms are either inductive or non-inductive. Inductive methods create
a function f that can map the data X onto a lower dimensional representation ˆ

X. Inductive methods
include PCA [191], kernelPCA [192] and autoencoder networks [193]. Non-inductive methods, such as
probabilistic latent semantic analysis (pLSA) [194], and Isomap [195], also compute a lower-dimensional
representation ˆX from X , but do not provide a mapping function f .

Robots continue to collect more data as they explore their, often changing, environments. The mapping
function f of inductive methods can be used to reduce the dimensionality of the sensor’s data as it is
received. We therefore require an inductive method.

Definition 1 (Inductive Dimensionality Reduction) Let X = (x
1

, . . . ,xn) ⇢ Rd⇥n
be a set of data vec-

tors. Inductive dimensionality reduction procedures take the input X, and output a functional mapping

f : Rd ! Rq
with q < d. The lower dimensional representation of X is given by

ˆ

X = (ˆx
1

, . . . , ˆxn), i.e.,

ˆxi = f (xi).

We can further divide inductive dimensionality reduction techniques into discriminative and genera-
tive methods. Discriminative techniques, such as linear discriminant analysis (LDA) [196] and canonical
correlation analysis (CCA) [197, 198], identify lower-dimensional representations that are suitable for
one specific task, e.g. classification into a predefined set of classes. These techniques discard all informa-
tion that is irrelevant for this particular task. While the new representations ˆ

X are very good for this task,
they tend to be unsuitable for other tasks. In contrast, generative dimensionality reduction techniques
find lower-dimensional data representations that are suited for various subsequent tasks. Intuitively,
generative dimensionality reduction techniques are a form of lossy data compression methods.

Service robots will face a large range of tasks, which makes it difficult to predefine a set of suitable
labels. The robots will also encounter new objects and materials as they explore their unstructured
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environments. If the robot discards information based only on its current set of labels, it may discard
information pertinent to new materials and objects. We therefore focus on generative methods.

Having decided on using generative inductive methods, we must determine how to transfer the visual
information into the tactile domain. The key to combining visual and tactile information is that both
contain spatial data, such as texture, about objects and materials [175]. The senses of vision and touch
are otherwise very distinct, and thus the additional sources of vibrations and noise in the tactile modality
will be excluded from the visual data. We can therefore use the visual information to determine which
parts of the tactile signal are relevant to the textured surface.

Audio signals can also be used to distinguish between textured surfaces [174]. Therefore, an alterna-
tive approach would be to combine the tactile sensing with hearing. However, a robot’s audio sensors
may also detect other vibrations, such as those from the robot’s motors. These vibrations would then be
present in both sensing modalities, and would therefore be incorrectly regarded as relevant for tactile
sensing. To avoid this error, we use vision as our second sensor modality.

In order to automatically extract the relevant information from the vision data, we make use of mul-
timodal dimensionality reduction. The general goal of multimodal dimensionality reduction is to com-
pute new representations of the high-dimensional data samples that lie in lower-dimensional feature
spaces. In comparison to unimodal dimensionality reduction, we expect the availability of multiple data
representations to give a better indication of the relevant parts of the signal, and which parts can be
suppressed. We formalize this concept in the following definition.

Definition 2 (Multimodal Dimensionality Reduction) Let X

1 = (x1

1

, . . . ,x

1

n1

) ⇢ Rd1⇥n1

, . . . ,X

m =
(xm

1

, . . . ,x

m
nm) ⇢ Rdm⇥nm

be m different data sets from potentially different spaces. Inductive dimen-

sionality reduction techniques are multimodal if they take inputs X

1

, . . . ,X

m
, and output functions

f
1

: Rd1 ! Rq
, . . . , fm : Rdm ! Rq

for all data domains.

Each of the m different modalities must have its own independent mapping function f based only on
the modality’s own data. This part of the definition is crucial, as it will allow the tactile sensor to be
used on its own. Thus, if the robot is in a dark room or cannot position the object to allow for visual
inspection, the robot can still use the transferred visual information for improved tactile sensing.

The canonical way to construct multimodal algorithms is to use the dependencies between paired
samples. Two samples are strongly paired if their sensors acquired them from the same source. For
example, consider a tactile sensor moving a short distance across a textured surface. The tactile reading
acquired during this motion would be strongly paired with an image of the surface area swept by the
tactile sensor. Acquiring perfectly paired samples across modalities is often problematic in practice,
especially in unstructured environments. Any inaccuracies in moving the object or the cameras for visual
inspection will result in incorrect pairings. The different sensors may also have different numbers of
samples that need to be paired. For example, while cameras can quickly acquire data from large surface
areas, tactile sensors obtain information from their relatively small contact region with the surface. We
therefore only assume weakly-paired data [189].

Definition 3 (Weakly-Paired Multimodal Data) A collection of data sets X

1

, . . . ,X

m
is weakly paired,

if each X

i
is split into g groups as

X

i = (Xi
1

, . . . ,X

i
g) 2 Rdi⇥ni

,

where each group of samples is given by

X

i
h = (x

i
h,1

, . . . ,x

i
h,ni

h
) 2 Rdi⇥ni

h
,

with ni =
Pg

l=1

ni
l . When ni

l = 1 for all i = 1, . . . , m and l = 1, . . . , g the data sets are fully paired with

strong pairings. When g = 1, all samples are weakly paired together, which means that they are all

unpaired.
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A weak pairing implies that a group of samples from one modality is paired to a group of samples
in another modality. While strong pairings require samples to be obtained from the same source, weak
pairings only require the samples to be acquired from similar sources. Hence, the robot can acquire
samples from various regions of a textured surface and group these together. Alternatively, a robot
could weakly pair one tactile sensor reading to multiple images of the nearby surface. In both of these
examples, the samples can subsequently be used to infer suitable strongly-paired data. Ultimately, the
condition of weakly-paired data is a relaxation of the standard fully-paired requirement, and is therefore
easier for robots to fulfil.

The samples used for learning the dimensionality reductions should be acquired under conditions
suitable for both visual inspection as well as tactile sensing. The conditions for visual inspection can be
ignored only after the mapping functions have been learned.

Although our focus is on combining visual and tactile information, the described problem framework
is quite common in robotics. The algorithms described in this chapter were therefore designed to work
with weak pairings between a variety of sensors. However, different mapping functions are obtained for
a sensor when it is combined with different types of sensors. The features regarded as relevant are those
that both sensors observe of the source, and any features found only in one of the modalities will usually
be suppressed.

6.2.2 Introduction to Multimodal Dimensionality Reduction

This section gives a brief review of linear multimodal dimensionality reduction methods, including MCA.
To simplify the notation, we restrict the discussion to two sensor modalities, i.e., X 2 Rd⇥n and X

0 2
Rd0⇥n0 .

Linear dimensionality reduction functions can be written as f (x) =W

T
x for a matrix W 2 Rd⇥q, and

f 0(x0) =W

0T
x

0 for a matrix W

0 2 Rd0⇥q. The lower dimensional representations are thus ˆ

X =W

T
X and

ˆ

X

0 =W

0T
X

0. The orthogonal matrices W and W

0 contain the basis vectors of the q-dimensional subspaces.
A popular generative dimensionality reduction technique is principal component analysis (PCA). PCA

finds a lower-dimensional representation that retains as much of the original signal’s variance as possible.
Given that other sources of vibrations may also have large variances, PCA is not a suitable approach for
our purposes. The multimodal counterpart to PCA is maximum covariance analysis (MCA) [186].

MCA assumes that the data is fully paired, i.e., for every sample in X there is exactly one strongly
paired sample in X

0. The data sets X and X

0 are centered by subtracting their means from all of their
samples. MCA then optimizes the objective function max

W,W

0 tr
⇥
W

T
XX

0T
W

0⇤, where tr[.] is the standard
matrix trace operator, to determine suitable projection matrices W and W

0. The objective function can
be rewritten with tr

⇥
W

T
XX

0T
W

0⇤ =
Pq

p=1

⇥
W

T
X

⇤T
p

⇥
W

0T
X

0⇤
p, where the operator [.]p extracts the pth

column of the matrix, and q  n. Thus MCA maximizes the covariances between the low dimensional
representations ˆ

X and ˆ

X

0
. The standard MCA method requires strong one-to-one pairings between the

modalities, and therefore n= n0. An implementation of MCA is given in Algorithm 3 .
MCA comes from the same family of standard statistical methods as PCA, LDA, and CCA. It also forms

the basis for partial least squares (PLS) regression [199]. The PCA, LDA, CCA, and PLS techniques have
all been kernelized into nonlinear versions [200, 201, 192]. The methods presented in this section can
also be kernelized (Section 6.3.3). Kernel canonical correlation analysis (kernelCCA) [202] is amongst the
most common methods for multimodal dimensionality reduction, but it is not generative. Furthermore,
kernelCCA requires the tuning of a regularization parameter for each modality. Alternative approaches
include multimodal pLSA [203] and Hilbert-Schmidt dependence maximization [204], but these require
more careful experimental setups and are computationally more demanding. In contrast, the classical
methods, and our proposed methods, can be implemented with standard matrix operations.

Even though MCA is a strong method for multimodal dimensionality reduction, robots in unstructured
scenarios often cannot provide the required fully-paired data. In the following section, we show how to
overcome this limitation, and make use of weakly-paired data.
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Algorithm 3 Maximum Covariance Analysis (MCA)
INPUT:

Data covariance matrix XX

0T 2 Rd⇥d0

Desired output dimensionality q
COMPUTE MAPPINGS:

Compute Singular Value Decomposition of ¯

X

¯

X

0T

USV

T = svd(¯X¯

X

0T ) where U 2 Rd⇥d , V 2 Rd0⇥d0

Find q largest elements in S 2 Rd⇥d0

Set W to corresponding q columns of U

Set W

0 to corresponding q columns of V

OUTPUT:
Projection matrices W and W

0

6.3 Maximum Covariance Analysis Algorithms for Multiple Robot Sensor Modalities

In this section, we explain µMCA and WMCA for robot applications. These methods incorporate vision
information to create an improved representation of the tactile data. Sensor fusion is another process
that combines data from multiple sensors to improve performance and the accuracy of measurements
[16, 17]. The data from sensors can be combined directly using data fusion, or classified separately and
then combined with classifier fusion [18]. These approaches rely on always having access to both sensor
modalities, while the methods proposed in this section only require both modalities during the learning
phase. After learning with the proposed methods, the sensors can be used independently. Hence, tactile
sensing performance is improved even when the conditions are unsuitable for visual inspection, or when
the camera is currently allocated to performing another task. A fundamental problem of combining
tactile and vision data is self-occlusion; i.e., the hand used for tactile sensing blocks visual inspection.
The proposed methods are well-suited for such situations.

Self-supervised learning is another framework that only requires both sensor modalities during the
learning phase. In self-supervised learning, the robot uses one modality to generate the labels for the
classification problem of another sensor modality [205, 206]. A large amount of information from the
supervising modality is lost during these procedures, as the data is reduced to a single value. The
methods proposed in this section use the entire signal of both sensors to improve the classification
performance. In this manner, the proposed methods can share information between different materials
at the level of individual features.

Self-supervised methods are sensitive to errors in the pairings between modalities [187, 188]. The
µMCA and WMCA methods overcome this problem by automatically inferring strong pairings from the
weakly-paired groups. The lower dimensional representations found by self-supervised methods are
usually only suited for the task they were trained on [205].

In the remainder of this section, we present the proposed µMCA (Section 6.3.1) and a robust imple-
mentation of WMCA (Section 6.3.2) for robotic applications, as well as extensions to nonlinear problems
(Section 6.3.3) and multiple sensor modalities (Section 6.3.4). We present straightforward algorithms
for both µMCA and WMCA to guide the reader through using these methods. These algorithms can be
implemented with standard matrix toolboxes.

6.3.1 Mean Maximum Covariance Analysis (µMCA)

When using different types of sensors, it is common to obtain different numbers of samples from them.
For example, vision sensors can easily obtain information about large parts of a surface, while tactile
sensors are limited to the regions they make contact with. Thus, there will usually be many visual

86



Algorithm 4 Mean Maximum Covariance Analysis (µMCA)
INPUT:

Weakly-paired data from sensors one X and two X

0
X has nh samples xh,1...nh

in group h= 1 . . . g
X

0 has n0h samples x

0
h,1...n0h

in group h= 1 . . . g

Desired output dimensionality q min({g, d, d 0})
INITIALIZATION:

¯

X = (¯x
1

, . . . , ¯xg) ⇢ Rd⇥g with means ¯x

1...g = 0

¯

X

0 = (¯x0
1

, . . . , ¯x

0
g) ⇢ Rd0⇥g with means ¯x

0
1...g = 0

COMPUTE MAPPINGS:
for h= 1 to g

for i = 1 to nh
Update ¯xh) ¯xh + (xh,i � ¯xh)(i + 1)�1

for i = 1 to n0h
Update ¯x

0
h) ¯x

0
h + (x

0
h,i � ¯x

0
h)(i + 1)�1

Obtain W and W

0 from MCA(¯X¯

X

0T
,q)

OUTPUT:
Projection matrices W and W

0

samples weakly-paired to a few tactile samples. Rather than selecting a single visual sample for each
tactile sample, µMCA combines the information from all of these samples.

The µMCA method assumes that each of the g groups, as specified in Definition 3, represents a series
of observations of the same surface. The variations within each group can then be modeled as a standard
Gaussian model, i.e., xi, j ⇠ N(¯xi, (�i)2) and x

0
i, j ⇠ N(¯x0i, (�0i)2). The mean values ¯xi 2 Rd and ¯x

0
i 2 Rd0

are thus suitable representations of the ith surface group, and can be strongly paired together.
Service robots should generally be autonomous and automatically gather the information they re-

quire. We therefore assume that additional prior information is not available. Given a set of collected
samples, the robot should fit a model of the surface that best represents this data. We therefore propose
a maximum likelihood estimation to determine the values of ¯xi and ¯x

0
i that best represent the collected

samples.
Given the centered and weakly-paired data X and X

0, the µMCA method solves

max

W,W

0 tr
⇥
W

T
¯

X

¯

X

0T
W

0⇤
, (6.1)

where ¯

X = (¯x
1

, . . . , ¯xg) ⇢ Rd⇥g with group means ¯xh = (nh)�1

Pnh
j=1

xh, j, and ¯

X

0 = (¯x0
1

, . . . , ¯x

0
g) ⇢ Rd0⇥g

with group means ¯x

0
h = (n

0
h)
�1

Pn0h
j=1

x

0
i, j. This problem can be solved using the µMCA algorithm shown

in Algorithm 4 . When q is small, the singular value decomposition can be efficiently computed using
techniques based on random projections [207]. Intuitively, µMCA uses the groups of samples to estimate
archetypes that are more representative of the surface than any one sample. Since the rank of the ˜

X

˜

X

0T
matrix is limited by the number of groups g, the output dimensionality is limited to q  g. The µMCA
algorithm has a computational complexity of O (g3).

The sequential updates of the group means in Algorithm 4 allows new data to be easily incorporated.
Hence, the memory requirements of µMCA depend on the number of groups and not the number of
samples. The µMCA approach is therefore suitable for large amounts of data.
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Algorithm 5 Weakly-Paired Maximum Covariance Analysis (WMCA) with annealing
INPUT:

Weakly-paired data from sensors one X and two X

0
Desired output dimensionality q min({n, n0, d, d 0})

INITIALIZATION:
⌘= 1

ˆ⇧= diag(ˆ⇧1

, . . . ,

ˆ⇧
g) and ⇧! ˆ⇧ wherein

[ˆ⇧h]i, j =min(nh, n0h)�18i = 1, . . . , nh, j = 1, . . . , n0h
ANNEALING WMCA:

while ⌘ � 0

Run Alternating Maximization
Reduce ⌘

ALTERNATING MAXIMIZATION:
while trace value of W

t
X⇧X

0t
W

0 increases
Step 1) Maximize with respect to W and W

0:
Obtain W and W

0 from MCA(X⇧X

0T
,q)

Step 2) Maximize with respect to ⇧:
Set all elements of ⇧ to zero
for h= 1 to g

Compute the cost matrix C= [X0th W

0
W

t
Xh]t

Solve linear assignment problem for C

Set elements of ⇧ to 1 for assigned pairings
Anneal) Relax pairings:
⇧! ⌘ˆ⇧+ (1�⌘)⇧

OUTPUT:
Projection matrices W and W

0

6.3.2 Weakly-Paired Maximum Covariance Analysis (WMCA)

While µMCA combined samples into more informative representations, WMCA’s approach is to infer
strong pairings between individual samples in a weakly-paired group. Inferring strong pairings is done
by including a n ⇥ n0 pairing matrix ⇧. The elements of the pairing matrix are either one or zero
⇧ 2 {0,1}n⇥n0 . A one in the ith row and the jth column implies a pairing between the ith sample of
the first modality and the jth sample of the second modality. Each sample is only paired to at most one
sample in the other modality, i.e.,

Pn
i=1

⇧i, j  1 for all j = 1, . . . , n0 and
Pn0

j=1

⇧i, j  1 for all i = 1, . . . , n.
Assuming that the samples are ordered according to their weakly-paired groups, the pairing matrix will
have a block diagonal structure ⇧ = diag(⇧1

, . . . ,⇧g). This structure ensures that samples are only
paired within their own group.

Given the described pairing matrix, WMCA optimizes

max

W,W

0
,⇧ tr

⇥
W

T
X⇧X

0T
W

0⇤
, (6.2)

to determine projection matrices W and W

0, where the trace operator tr[.] sums the diagonal elements
of the matrix. The optimization of (6.2) requires both continuous optimization for W and W

0, and
combinatoric optimization for ⇧. There is therefore no single closed form solution to this optimization.
Furthermore, it is a high-dimensional non-convex problem, such that finding the global optimum with
a numeric procedure is usually impossible. We can, however, efficiently find a locally optimal solution
by alternating maximization, as shown in Algorithm 5. Step one can be efficiently solved using the same
singular value decomposition methods used for µMCA. To efficiently solve the linear assignment problem
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Algorithm 6 Example method for applying learned mappings to process new tactile data
Input:

Tactile sensor data Y

Labels L of training data OR the number of clusters c
Learning:

Determine W with WMCA or µMCA
Processing:

Project Y using ˆ

Y =W

t
Y

If labels L are given, supervised learning:
Sort ˆ

Y with labels into ˆ

Yt rain, and rest into ˆ

Ytest
Train Nearest Neighbor classifier with L and ˆ

Yt rain
Apply classifier to ˆ

Ytest
Else, unsupervised learning:

apply k-means clustering with c clusters
Output:

Labels for ˆ

Ytest OR cluster assignments for ˆ

Y

in step two, we suggest using the Hungarian algorithm [208] or LAPJV [209]. In this manner, we can
apply WMCA to data with thousands of dimensions. The computational complexity of WMCA is given by
O (min({nn02, n2n0})).

In both steps of the algorithm, we maximize the same objective function, which will thus increase
monotonically with the number of iterations. Given that the objective function has an upper bound,
the algorithm is guaranteed to converge to a local maximum. Unfortunately, the objective function will
often have multiple local maxima. Hence, WMCA may converge to a local maximum with a relatively
low covariance. In order to avoid many local maxima of poor quality, we propose incorporating concepts
from deterministic annealing [190].

The annealing process for WMCA is shown in Algorithm 5. The annealing introduces the mean pairing
matrix ˆ⇧, which pairs together the groups’ means. The pairing matrix⇧ is a mix between the assignments
found in step two and this mean pairing matrix ˆ⇧. The mixing is controlled by parameter ⌘, which is
initially set to one and monotonically decreases to zero.

Intuitively, a larger value for the parameter ⌘makes the data points within each group more correlated.
When ⌘ = 1, all of the data points are effectively equal to their respective group’s mean. Applying the
alternating maximization results in the globally optimal W and W

0 when ⌘ = 1. The manner in which ⌘
decreases is known as the cooling schedule. The additional local maxima gradually emerge as ⌘ decreases.
Since the results of each maximization are used to initialize the next one, the alternating maximization
continuous to track the best local maximum as ⌘ decreases. When ⌘ = 0, the true objective function
is recovered. The annealing does not guarantee that the global maximum is recovered. However, the
annealing process is a systematic and efficient approach to avoiding many poor local maxima.

The idea of treating unknown correspondences as latent variables and optimizing over them has been
used in previous applications, including the classical k-means [210] algorithm and the optimization in
[204]. However, in both of these cases the assignments are between sample and clusters, not between
samples in different data modalities.

Given the projection matrices W and W

0 from either µMCA or WMCA, we apply them to new tactile
data, as suggested in Algorithm 6.

6.3.3 Kernelization for Nonlinear Problems

Nonlinear dimensionality reduction techniques are often more powerful than linear ones, as they can
create more diverse dimensionality reduction functions. µMCA and WMCA can be made into nonlinear
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techniques by kernelization, and thus applied to problems in robotics that cannot be solved using linear
representations. As the necessary steps are very similar to those for deriving kernelPCA [192] from PCA,
we only outline them here. We refer the reader to [98] for a more detailed description of kernelization.

For kernelization, we require positive definite and symmetric similarity measures between samples,
called kernel functions, that we denote by k : Rd ⇥ Rd ! R and k0 : Rd0 ⇥ Rd0 ! R. Any such kernel
function corresponds to an inner product in a latent Hilbert space, and induces a latent feature map from
the original data domain to this space [98]. The kernelized methods thus consist of mapping the input
data into the latent Hilbert spaces and performing the corresponding linear method on the resulting data
sets.

For example, the kernelized form of (6.2) becomes

max

A,A

0
,⇧ tr

⇥
A

¯

K⇧¯

K

0
A

0T⇤
, (6.3)

where ¯

K and ¯

K

0 are the centered kernel matrices. ¯

K is computed by forming the kernel matrix K 2 Rn⇥n

as [K]i j = k(xi,x j) and then centering it using the formula ¯
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K

0 is computed from kernel k0 in the analogous
way. Centering the kernels ensures that the implicitly defined feature vectors have zero mean in the
latent feature space. One can solve (6.3) with an alternating optimization similar to the one described
in Section 6.3.2. In contrast to W,W

0, the matrices A 2 Rn⇥q and A

0 2 Rn0⇥q are not orthogonal matrices,
but are orthogonal in the latent feature space, i.e., A

T
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Equation (6.4) can be efficiently solved for q eigenvectors using the power method [211]. Ultimately, the
kernelized methods provide reduction functions f : Rd ! Rq and f 0 : Rd0 ! Rq by setting f (x) = A

T
K(x)

with K(x) = (k(x,x

1

), . . . , k(x,xn))T and f 0(x0) = A

0T
K

0(x0) with K

0(x0) = (k0(x0,x0
1

), . . . , k0(x0,xn0))T .
Kernelization usually requires more computation time, but can also reduce them in certain situations.

When solving for A and A

0, the matrix K⇧K is of size n ⇥ n0 instead of d ⇥ d 0. Thus, if the number
of samples is less than the input dimensionalities, the computation is faster in the kernelized form. To
perform the optimization, one uses linear kernels k(x, ˜x) = x

T
˜x and k0(x0, ˜x

0) = x

0T
˜x

0 and obtains the
linear solutions as W = A

T
X and W

0 = A

0T
X

0.

6.3.4 Incorporating Additional Sensor Modalities

To keep the notation simple, we have been describing µMCA and WMCA for only two sensor modalities.
An extension to more than two data sources is straightforward by reformulating the objective function
as the sum of all pairwise covariances between the modalities. The linear µMCA objective function thus
becomes

max

W

1

,...,W

m
tr

⇥ mX

i, j=1

W

i
¯
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iT
¯

X

j
W

jT
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which can be solved as an eigenvalue problem. For WMCA, (6.2) becomes

max

W
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,...,W
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,...,⇧m�1,m

tr
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j
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⇤
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with the convention that ⇧i,i = 0 and ⇧i, j = ⇧ j,iT . The WMCA problem can again be solved by an alter-
nating maximization approach. The step of finding the projection directions is solvable as an eigenvalue
problem. Finding the sample pairings requires solving 0.5m(m � 1) linear assignment problems. The
quadratic scaling in the number of modalities m does not pose a practical problem. Unless the sensor
suite is highly redundant, usually only a few sensor modalities will produce related samples. Using
multiple modalities to supervise one sensor also suffers from diminishing returns.
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Figure 6.2: A) The robot’s tactile sensor. B) Diagram of how type II fast a�erent nerves obtain tactile
information (based on [15]). Both the sensor’s pin and the human skin are compliant and
move along the surfaces. When making and breaking contact with the surface, vibrations are
created at the human’s epidermal ridges and the tip of the sensor’s pin. These vibrations are
transferred through the skin and the pin respectively. When the vibrations reach the pacinian
corpuscle, this mechanoreceptor transfers the signal to the human nervous system. Similarly,
when the pin’s vibrations reach the microphone’s membrane, the microphone transfers the
signal to the robot.

6.4 Robot Experiments with Dynamic Touch and Vision

Three experiments were performed to show that the µMCA and WMCA methods are useful for learning
dynamic tactile sensing. The first experiment tests the robot’s performance on the supervised classifi-
cation and the unsupervised clustering of tactile data. The second experiment evaluates the system’s
ability to generalize between materials, and involves classifying materials that it had not encountered
during the learning phase. The final experiment investigates the robustness to incorrectly paired data.
In all of these experiments, we assume that both tactile and visual information is available for learning
the dimensionality reduction, but only the tactile sensor is available during the testing stage.

6.4.1 Tactile Sensor and Surface Materials

In order to explore various textured surfaces, we equipped a Mitsubishi PA-10 robotic arm with a single
basic tactile sensor. The experimental setup is shown in Fig. 6.1. The aim of the experiments is to
test the data processing procedure. We therefore used a straightforward oscillator-based design for the
sensor. The dynamic tactile sensor consists of a compliant pin that makes contact with the surface, and
a capacitor microphone that can detect the pin’s vibrations at 44.1 kHz. Mechanisms in the human
finger tip resemble this structure, as shown in Fig. 6.2 . In particular, the sensor acts similar to an
FA-II afferent, and the pin can be seen as either a part of the finger or as an object held by the robot.
Given the compliance of the plastic pin, the location of the contact point with the surface could not be
precisely determined. This sensor design is similar to other dynamic tactile sensors, such as the “whisker”
sensor [212, 213]. The resulting apparatus is a suitable platform for testing the proposed WMCA and
µMCA algorithms and showing that they can be applied to dynamic tactile sensors. Given that humans
can discriminate between textures by probing them with a stylus [174], a single dynamic tactile sensor
should be sufficient to perform the task.

The experiments were run on a set of 26 surfaces of 17 different materials. A common trait of these
surfaces is that they have rich multi-scale textures. For example, a mosaic has the coarse texture set by
the placement of the tiles, as well as the fine texture created by the surface of the tiles and cement (see
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Figure 6.3: Examples of the multimodal data. The top images show the vision data while the bottom
images show the corresponding time series of the tactile sensor signals. The x -axes of the
tactile sensor plots represent time, while the y -axes represent the signal’s magnitude. The
samples for the plots were recorded over a four second time span.

Fig. 6.3 ). The data set includes materials that are similar and thus difficult to discriminate, as well as
materials that are distinct and thus hard to generalize between.

The robot acquired samples by sliding the tactile sensor in a straight line across the surfaces. In
this manner, each textured surface was probed in five different regions. The robot used similar task-
space movements for each region. If very different movements had been used, the data would require
additional preprocessing to compensate for the different velocity profiles. Experiments have shown that
humans also need to take into account the relative velocity between the finger and surface to accurately
discriminate between textured surfaces [214]. After the robot had explored a surface with the tactile
sensor, the object was repositioned 20 cm in front of the robot’s camera for visual inspection. Four
pictures were taken of each surface with different in-plane-rotations. The resulting grayscale images
have resolutions of 512⇥ 768, as shown in Fig. 6.3. The pictures were taken in a well lit room.

6.4.2 Tactile and Visual Features

The information from both the tactile sensor and the camera were preprocessed to obtain suitable feature
spaces. The robot probed five different surface regions from each of the 26 surfaces, resulting in 130
time series of tactile data. Textures are characterized by repeated local features. We therefore propose
using a bag-of-features model [215, 216], which represents each region by a normalized histogram of
local features. Local features are found by dividing each time series into 450 segments of 50ms, with
12.5ms overlaps between segments. In order to make the local features invariant to changes in phase
and amplitude, each time segment was centered and its cepstrum was computed. The power cepstrum
of a signal z is given by C(z) = |F(log(|F(z)|2))|2, where the function F is the Fourier transform, and
describes the harmonic structure of the signal. It is often used to discriminate between different sources
of acoustic signals [217]. Intuitively, the cepstrum represents the differences in the sound made by a
brass and a string instrument playing the same note. In order to generate the desired histograms, we
need to partition the cepstrum space. Hence, we partition the cepstrums into 1000 groups using k-means
clustering. By using 1000 clusters, we ensure that the resulting feature vectors are sparse. Each of the
n= 130 probed regions in X is thus represented as a normalized histogram of d = 1000 partitions, which
indicate the relative occurrences of local cepstrum features.
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Figure 6.4: The 58 vision filters used to represent the textured images. Each 3⇥3 box represents a uniform
binary pattern. The grey middle pixel defines the threshold value of the patch. A black pixel
indicates that it is darker than the threshold, while a white pixel indicates that it is lighter or
identical.

The vision data was obtained by segmenting each of the 104 images into 32 equally-spaced strips. Each
strip is three pixels wide. Similar to the regions probed by the tactile sensor, each strip is represented
using a bag-of-features model. Along each strip, we compute local binary patterns over 3⇥3 pixel regions
using uniform patterns, as suggested by Ojala et al. [218]. These 58 local features, shown in Fig. 6.4 ,
are invariant to shifts in grayscale and rotations. Each of the n0 = 3328 strips in X

0 is thus represented
by a normalized histogram of d 0 = 58 partitions, which indicate the relative frequency of the local binary
patterns.

The vision and tactile histograms can thus each be represented as 58 and 1000 dimensional vectors
respectively. For both the image and tactile data, the feature dimensions were normalized to have zero
mean and unit variance. This normalization step reduces the artifacts caused by having some histogram
partitions being more populated than others.

6.4.3 Testing Performance, Ability to Generalize, and Robustness

Three experiments were run to compare the proposed µMCA and WMCA algorithms. The experiments’
tasks were also performed with the standard PCA approach as well as the naive approach of not using any
dimensionality reduction. The PCA method gives a baseline for using dimensionality reduction without
the multi-modal data. The WMCA method used a ten step cooling schedule to reduce ⌘ from one to
zero. The dimensionality reduction methods’ only hyperparameter is the number of output dimensions
q. The experiments were repeated for each output dimensionality in the range 1 to 55.

Each experiment consists of a learning phase and a testing phase. The learning phase corresponds to
a robot exploring different object surfaces in a setting that allows for both visual and tactile inspection.
The robot subsequently learns a mapping matrix W using one of the dimensionality reduction methods.
The set of data used during the learning phase is known as the learning set.

The testing phase corresponds to a robot sorting different materials using only data from the tactile
sensor. Visual inspection is not possible during the testing phase. The classification and clustering of the
surfaces is performed, as described in Fig. 6, with the mappings W from the learning phase. The set of
data used during the testing phase is known as the testing set. The classification tasks were evaluated
using a leave-one-out scheme, i.e., we removed a data vector xi from the testing set, trained a classifier
on the remaining data, classified the removed vector xi, and then reinserted the data vector into the
testing set. We repeated this procedure for each data vector in the testing set. The leave-one-out scheme
makes efficient use of all of the available data for the evaluation. The labels used for classification are
defined as the material from which the data was obtained.
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Figure 6.5: An illustration of the three experimental setups. The top row shows how the data was struc-
tured for the learning phase. Each small square represents the data from one surface region,
and adjoining squares are grouped together. The shading of the squares indicates the ma-
terials that the sample was obtained from. The arrows indicate groups of samples that are
weakly paired together between tactile and vision modalities. The bottom row indicates the
materials that the learned system was tested on. Each square represents a type of material
tested in the classification and clustering tasks. Testing data is limited to tactile data and,
therefore, does not contain any groups or weak pairings. This figure does not show the true
number of samples and materials used in the experiments.

The materials and groupings used to generate the learning and testing sets were altered for each of
the three experiments in order to test different aspects of the dimensionality reduction algorithms. An
overview of how the data was allocated to the learning and testing sets is shown in Fig. 6.5 .

The first experiment investigates the performance at classifying and clustering surfaces. The learning
set is generated by randomly selecting half of the tactile and visual data for each of the 17 materials.
All of the data taken from the same textured surface is weakly paired together such that g = 17. The
testing set consists of the other half of the tactile data. Thus, the learning and training sets both include
examples from all 17 materials, as shown in the left column in Fig. 6.5. For the clustering experiment, the
number of clusters is set to the number of materials c = 17, and would otherwise need to be estimated
from the data [219]. Additionally, the time required to learn the dimensionality reduction was recorded
for each method.

The second experiment tests the ability to generalize to new materials. The learning set consists of
the tactile and visual data from 10 randomly selected materials. All of the data taken from the same
textured surface is weakly paired together such that g = 10. The testing consists of the tactile data
from the seven materials excluded from the learning set. Hence, the learning and training sets consist of
different materials. This experiment demonstrates how information can be transferred between related
tasks using dimensionality reduction [220].

The third experiment tests the robustness to incorrectly paired data, which is a common problem for
self-supervised approaches [187, 188]. Similar to the first experiment, the learning set is generated by
randomly selecting half of the tactile and visual data for each of the 17 materials. However, rather than
forming groups of the same material, the data is randomly allocated to the g = 17 groups. Hence,
each weakly-paired group contains a mix of different materials, as illustrated in the right column of Fig.
6.5. The testing set is the same as in the first experiment, and consists of the other half of the tactile
data. Thus, the learning and training sets both include examples from all 17 materials. This situation is
contrived and represents a worst case scenario that is unlikely to occur in practice.

Each experiment was run 500 times for each output dimensionality. For each run, A different seed
value was used to initialize the randomization.
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A. SUPERVISED CLASSIFICATION B. UNSUPERVISED CLUSTERING

Figure 6.6: The performance of the tested methods for di�erent numbers of output dimensions. Plot A
shows the results from a classification problem. This plot uses a log scale for the y-axis. Plot B
shows the results from a clustering experiment. In both plots, a lower value indicates a better
performance. Error bars are also plotted, indicating +/- two standard errors of the mean.

6.4.4 Results

The first experiment’s classification and clustering results are shown in Fig. 6.6A and Fig. 6.6B respec-
tively. The conditional entropy indicates how much information about the true material label is given by
the cluster it has been assigned to. It is therefore a suitable measure of clustering performance [221].
The µMCA method achieved the best performance in both the supervised classification task, with an
accuracy of 95.15%, and the unsupervised clustering task, with a conditional entropy of 0.262. The
WMCA method achieved a similar classification accuracy, but a conditional entropy of only 0.335 for
the clustering task. The unimodal PCA approach performed considerably worse than the multimodal
approach with a best classification accuracy of 90.85% and a conditional entropy of 0.520. The naive
approach gives a benchmark accuracy of 72.14% and a conditional entropy of 0.900. Both WMCA and
µMCA display plateau structures of similar performance for a wide range of output dimensions.

The mean times required to compute matrix W are 1617ms for WMCA, 22ms for µMCA, 19ms for
PCA, and 0ms for the naive approach, when run on a 3.0 GHz Intel Duo Core processor in python. The
time required by µMCA can be decomposed into 7ms for computing the group means, and 15ms for
computing the mapping matrix W from these means.

The results of the second experiment are shown in Fig. 6.7. These error rates are lower than in the first
experiment, as this classification task only uses seven classes rather than 17. The WMCA, µMCA, and
PCA approaches achieved similar classification accuracies of approximately 96.5%. The naive approach
obtained an accuracy of 92.0%. The standard deviations in this experiment are approximately one and
a half times as great as in the first experiment.

The results of the robustness experiment are shown in Fig. 6.8. The µMCA method’s classification
accuracy is similar to that of PCA. The WMCA method, with annealing, achieves performance levels
similar to those of the first experiment.

6.4.5 Discussion

The results show that the use of the multi-modal data in the dimensionality reduction significantly im-
proves the performance of the system. When the number of output dimensions increases, each method
is selecting additional directions in the input space to keep. If the signals in these directions contain
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Figure 6.7: The graph shows the classification error incurred when classifying seven textures that were
excluded from the learning set. The error bars indicate +/- two standard errors of the mean.
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Figure 6.8: This graph shows the e�ects on classification performance when WMCA and µMCA are
trained on incorrectly-paired data. Each weakly-paired group consists of a mix of materi-
als, rather than a single material. The error bars indicate +/- two standard errors of the mean.

96



information relevant for tactile sensing, the performance improves. When the performance of a method
decreases, it is including signals that are irrelevant to the tactile sensing, even though they have a high
variance. Such signals could be caused by additional factors in the tactile modality, such as the vibrations
of the robot [184, 178].

The PCA approach performs the best around q = 16 output dimensions. Deviations from this value
lead to worse performance. In contrast, the WMCA method uses the vision information to determine
which dimensions are relevant. By actively trying to exclude irrelevant signals, WMCA creates a plateau
of good performance around the optimal q value. Hence, the WMCA method is less sensitive to changes
in q and easier to tune.

By performing MCA on the group means ¯x and ¯x

0, the µMCA method automatically omits the dimen-
sions describing variations within the groups. The resulting low-dimensional representations therefore
contains less noise, which leads to better performance. These representations are especially well-suited
for representing cluster centers, as shown by the clustering task’s results. The µMCA method’s plateau
structure is the result of its limited output dimensionality q  g. Similar to WMCA, the µMCA method
uses the vision data to include the relevant dimensions first. Hence, the final dimensions added tend to
be the worst and decrease performance levels.

Both WMCA and µMCA perform well in the classification and clustering tasks of the first experiment.
However, a one-tailed z-test at a 99% significance level confirms that µMCA’s performance is significantly
better. The WMCA method also requires considerably more computation time than µMCA and PCA.
However, most applications will not require the learning to be performed in real time.

The second experiment shows that the abilities of µMCA and WMCA to generalize to new materials
is similar to that of PCA. The good performance in this experiment suggests that the dimensionality
reductions keep most of the pertinent information. The additional vision samples that WMCA did not
find a pairing for may therefore be removed to save memory. The standard deviations are larger in this
experiment because the performance is affected by the similarity between the learning and testing data
sets. If the learning set includes materials similar to those in the testing set, the methods perform better.

Although the groups in the third experiment contained large amounts of incorrect data, the WMCA
automatically found good pairings between samples. This result suggests that WMCA can be used with
more complicated vision data and still find good pairings. Unlike WMCA, the µMCA method could not
find suitable low-dimensional representations due to the incorrect data.

Since µMCA is less robust to incorrect data, it requires a more structured environment for the learning
phase. The environment should allow for surfaces to be easily inspected through both vision and touch.
The inspected surfaces should be easy to identify in the images and should ideally be large and flat.
Since the µMCA method only requires weakly-paired samples, the objects may be freely manipulated by
the robot between the tactile and vision inspections. Given these conditions, the environment should
effectively resemble an infant’s playpen.

The additional robustness of WMCA allows it to learn in more complicated environments. The ex-
periments suggest that WMCA can handle situations such as having multiple objects in an image, and
visually inspecting surfaces from multiple angles. The images must still contain some good data, but the
robot is also allowed to collect some incorrect data while exploring. The WMCA may therefore be able to
learn in everyday environments, as long as the conditions allow for both tactile and visual inspection of
surfaces. The ability to learn by inspecting everyday objects is however beyond the scope of this thesis,
and will need to be thoroughly tested.

In the future, the effects of varying the tactile sensor’s velocity should also be experimentally inves-
tigated. Altering this velocity, or observing the surface at an angle, has a similar effect to scaling the
textured surface. The performance of the proposed approach can be improved by incorporating prepro-
cessing of the data to make it invariant to such changes. In this manner, the robot could learn in even
more complicated situations.
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Once the dimensionality reduction has been learned with either µMCA or WMCA, the tactile sensor
can be used in a wide range of situations. The tactile sensing will still benefit from the multimodal
learning phase, even if the conditions do not allow for visual inspection.

6.5 Conclusion

Dynamic tactile sensing represents an important form of feedback when performing manipulation tasks.
These sensors will therefore be vital for the many tasks that service robots may encounter. However, the
data from tactile sensors is usually high dimensional and can contain vibrations from spurious sources.
Hence, the data is difficult to use for discriminating between different surfaces.

In this chapter, we presented the µMCA and WMCA methods for using tactile sensors to accurately
and robustly classify textured surfaces. These methods use a second sensor modality, i.e. vision, during
the learning phase to determine suitable lower-dimensional representations of the tactile data. The
proposed approach relies on both sensors observing the relevant information from the environment, i.e.
the texture of a surface. Any additional information is only observed by one of the modalities. For
example, the surface’s color is only seen by the camera and the robot’s vibrations are only detected
by the tactile sensor. Hence, the relevant part of the data is correlated between the modalities. A
common problem when using multimodal data is the need to perfectly pair the data samples across
modalities. The proposed methods were therefore designed to work with groups of weakly-paired data.
After learning a mapping to a lower dimensionality, the vision modality is no longer required. Therefore,
unlike sensor fusion approaches [16, 17, 18], the tactile sensor can be used in conditions where visual
inspection in not possible, while still benefiting from the multimodal learning.

The experiments show that the µMCA approach performs well in both classification and clustering
tasks. The mapping to lower-dimensions can also be quickly learned from a set of samples. The experi-
ments also showed that the WMCA approach is robust and can even handle heavily mixed groups. The
proposed methods can learn suitable dimensionality-reduction mappings from only weakly-paired data
obtained in semi-structured environments.

6.6 Potentially Helpful Insights

A key motivation for this project was to investigate the complimentary nature of visual and tactile texture
data. While certain aspects of the environment are captured by both of these sensing modalities, others
are only captured by one of them. It is this interplay between the two sensors that allows the robot
to extract the relevant texture information from the tactile data. Although audio data contains texture
information, it would not be a suitable replacement for the vision data, as it also captures many of the
additional vibrations detected by the tactile sensor. A core difference between the vision and tactile data
is that the texture is captured spatially by the camera, but it is a temporal signal for the tactile sensing.
This difference helps to keep the data from the modalities distinct, and it explains why audio data could
replace the tactile data but not the vision data.

Despite the relatively basic sensor, the robot was able to detect distinct signals for certain tactile
events. For example, the edges between the mosaic pieces are clearly observable in the tactile signal.
The vibrations were largely due to the sensor’s tip slipping from the raised surfaces into the grooves.
Despite the rather small movement of the tip, the sensor managed to capture these tactile events. The
robot could then extract the relevant parts of the signal using a machine learning approach.

A similar approach could be used to detect other contact events as well. For example, the making or
breaking of contact between a held tool and another object could be detected. These contacts could occur
at different locations on an objects. It would therefore be important to research how the vibration signals
generalize between different contact locations on more complex objects. The temporal information of the
detected vibrations could again be combined with the spatial vision information to distinguish between
contact events and other vibration sources.
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7 Conclusion
In this thesis, we presented steps towards creating autonomous robots with versatile manipulation skills.
We investigated different machine learning approaches, and showed how they could be applied to learn
grasping and manipulation skills. In this chapter, we summarize the main contributions of the thesis.
Section 7.2 describes the general structure of manipulation skills and identifies various elements of the
skills that a robot could learn. Section 7.3 presents ideas to consider when selecting or developing
learning methods for robot manipulation skills. Both of these sections emphasize the importance of
structuring the learning problem. The learning method is often a direct result of how the problem
is structured. The chapter ends with a discussion on open problems for learning robot grasping and
manipulation skills.

7.1 Summary

In Chapter 2, we focused on learning grasps through trial and error. Rather than using a supervised learn-
ing approach, grasping was framed as a continuum-armed bandits problem [32]. The robot learned to
predict the performance of different grasps, based on its previous grasp attempts, using Gaussian pro-
cess regression [222]. This Bayesian approach also provides the robot with a measure of how certain
the predicted performance is. Using this model, the robot selected grasps according to an upper confi-
dence bound policy. This policy explores new grasps in an optimistic manner. The proposed method was
evaluated on a real robot, which successfully learned to grasp different objects.

Methods for generalizing manipulation skills between different objects were discussed in Chapter 3.
Contacts play an important part in many manipulation tasks. However, it is difficult to define general
features for representing the contacts between two objects. We therefore proposed a kernel approach for
computing the similarities between different contact distributions. The contact distributions are modeled
using multi-variate Gaussians. The kernel value is greater if the two contact distributions overlap more.
The kernel was used to classify stable placements of assorted blocks and, in Chapter 4, to cluster samples
from human demonstrations.

The second method for generalizing between objects was to use warped parameters to compute ge-
ometric features of objects. A warped parameter is defined as a function on a point cloud of a known
object. The value of the parameter changes when transformations, such as scaling, are applied to the
point cloud. The parameter is computed for a new object by warping the point cloud to match the new
object’s shape. We used a simple warping method and showed that the resulting parameters could be
used to generalize pouring actions between different objects.

In Chapter 4, we presented a probabilistic model for dividing tasks into phases. The state-based
transitions auto-regressive hidden Markov model captures the effects of the robot’s actions in each phase,
as well as the conditions for transitioning between different phases. The conditions for a phase transition
represent the subgoals of the overall task. We therefore also showed how the model could be used
together with a policy search algorithm in order to learn motor primitives for transitioning between
different phases. The robot learned to perform two-handed grasps of an object using the proposed
approach.

Chapter 5 focused on learning how to sequence manipulation skills. We presented a non-parametric
model-based method for learning value functions in continuous state spaces. We used a kernel density
estimate to model the system in a flexible manner. We then showed that the value function for this type
of system has the form of a Nadaraya-Watson kernel regression [69, 70]. The resulting non-parametric
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dynamic programming (NPDP) algorithm was used to learn high-level controllers for both a bimanual
grasping task and a pushing task.

The sixth chapter addressed the topic of dynamic tactile sensing. This sensor modality provides a lot
of information to the robot about the surfaces of the objects that it is manipulating. This information
is however high dimensional, noisy, and often includes irrelevant vibrations. We therefore proposed a
dimensionality-reduction method for preprocessing the data before using it to classify different materials.
The proposed technique is based on maximum covariance analysis, and uses weakly-paired vision data
to determine relevant dimensions of the tactile data. After learning, the robot can apply the projection
to tactile data even if vision data is not available.

In this thesis, we have presented machine learning methods for addressing a range of challenges
posed by manipulation tasks. We also showed how these methods could be used to learn a variety of
manipulation tasks on several different robot platforms.

7.2 Learning Elements of Manipulation Skills

In this section, we discuss the overall structure of manipulation skills and how different elements of
the skills can be learned. The section is divided into three parts corresponding to core components of
manipulation skills, i.e., the context, the effect, and the skill execution. The context corresponds to
the initial state and the conditions needed to execute a skill. The effect describes the changes in state
resulting from the skill execution. The execution is the controller that the robot uses in order to achieve
the effect given the context. For each component, we identify key challenges that an autonomous robot
can address using learning.

7.2.1 The Context

The first core component of a manipulation skill is the context. The context defines which parts of the
environment need to be taken into consideration for performing the manipulation skill. This step is
particularly important for manipulation skills, as objects may be added, removed, or replaced between
different instances of the task. The goal is to establish a specific state space, which will then be used for
executing the actual skill. Without establishing the state space, the manipulation skill may be ill-defined.
For example, the skill may depend on the position of a non-existent object.

A robot could learn to perform tasks directly from its sensor data [223, 224, 225], or by detecting
scene-wide correspondences across task instances [6]. However, it is often easier to generalize and
reason about manipulation skills at the level of objects. One of the key challenges for autonomously
establishing the context is, therefore, to determine which objects are in the scene [226, 227]. A robot
can learn models of novel objects by observing them from different views and interacting with them
[228, 229, 230, 231, 232]. These interactions are usually aimed specifically at exploring the object,
although some parameters can also be inferred while performing the task.

Apart from segmenting an object from the rest of the scene, the robot also has to recognize the object.
As the goal is to manipulate the object, it is generally more useful for a robot to recognize the affor-
dances of the object, e.g. graspable and fillable, rather than more traditional object classes, e.g., cup,
glass, and bowl [81, 82]. The affordances have the important benefit of being grounded in the robot’s
actions. Hence, the robot can autonomously learn the affordances of objects by interacting with the
objects and observing the effects [233]. Determining the affordances may require the robot to recognize
the affordance-bearing parts of an object and to establish affordance relevant coordinate frames and
parameters [234, 76, 235].

Each detected object adds dimensions to the state representation corresponding to its degrees of free-
dom. These DoFs include the articulated joints between objects, and affordance-specific state variables,
e.g. the amount of fluid in a container. Usually, only a few of the objects in the scene will be relevant for
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performing a specific task. The robot will therefore need to select a subset of the scene’s state space for
defining the skill’s context.

Given the selected state space, the second goal of establishing the context is to determine whether or
not the skill is executable from this state. Although the robot may have detected the elements it requires
to establish the state space, the objects may not be in a configuration that affords the manipulation, e.g.,
an object may be outside of the robot’s workspace. Learning the situations in which a skill is applicable
is an important ability for an autonomous robot, and can help the robot to determine subgoals of the
overall task [124, 23]. For example, if the skill is not valid, then the robot would need to select another
manipulation skill to reach a state where it is valid [236].

7.2.2 The E�ect

The second core component of a manipulation skill is the effect. The effect determines how the state of
the manipulated objects changes due to the manipulation skill. Manipulation skills are usually executed
in order to achieve a certain intended effect, although they may not be guaranteed to achieve this effect.

A key challenge for autonomous robots is to predict the effects of actions in order reason about them
more efficiently. The robot could learn the effects of individual actions, or it could capture the effects by
learning a forward model that generalizes between actions [78, 237, 238, 239]. Predicting the effects
of actions is usually considered a supervised learning problem. Hence, the robot can use regression and
classification methods for predicting the effects of continuous and discrete states respectively. These
predictions are usually based on the initial state and the action parameters. Rather than predicting a
single point estimate of the effect, it is more useful to learn a distribution over the effects [240, 237].
This probability distribution models the uncertainty of the outcome and can be useful for reasoning
about different actions. For example, the robot may choose an action because it is more likely to have
the desired effect.

Even for continuous states, the robot may observe distinct types of effects [241]. For example, pushing
actions can cause the object to ROLL, SLIDe, TOPPLE, or remain STATIONARY. These labels represent a more
abstract representation of the effects, which can often generalize better between different scenarios. For
example, pushing a sphere causes it to ROLL, but the amount of rotation and translation depends on its
size and how it was pushed. The robot can learn these labels in an unsupervised manner by clustering
the continuous effects [242, 243]. If the labels are already given, then the robot can learn how they are
grounded in the continuous state using a supervised learning approach.

Once the robot has learned the effects of its skills, it can use this information to make single- or multi-
step predictions. These predictions can be used to plan action sequences for performing different tasks.
Rather than learning the effects of skills, the robot can also learn skills for achieving specific effects. A
desired effect can be modelled using a reward function [244, 19]. The reward provides a compact rep-
resentation of the intended effects, with desirable effects increasing the reward and undesirable effects
decreasing it. The robot can then use reinforcement learning to learn a skill that maximizes the reward
[245]. The reward function is usually specified by a human as part of the task description, but it can also
be learned from expert demonstrations using inverse reinforcement learning [246, 247, 248, 249]. The
robot can learn to predict the rewards of different actions directly or by first predicting the effects of the
action. These predictions can then be used to optimize the skills using a model-based approach.

7.2.3 The Execution

The third core component of a manipulation skill is the skill execution. This component is the behaviour
(a.k.a., controller or policy) that the robot uses to alter the state of the objects being manipulated. It
creates the link between the context and the effects. Given that the context has been established, the
controller can assume that a fixed set of state signals are available for control, and the objects afford the
desired manipulation skill. The execution may be intended to achieve a desired effect.
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Before the robot can learn manipulation skills, it requires a suitable skill representation. These rep-
resentations usually include several subcomponents, such as a desired trajectory generator, a feed-
back control loop, and a set of termination conditions. Although one can use a non-parameteric ap-
proach, skill representations usually include parameters that define how the skills should be executed
[34, 250, 114, 251]. Thus, the problem of learning motor skills can be reformulated as learning the
values of these parameters. The robot will need to use these parameterized representations in order
to adapt its actions to specific objects and situations. For some tasks, the robot may be able to learn
lower-dimensional parameter spaces in order to learn the skills more efficiently [252, 253].

The robot can use different skill learning approaches depending on the available sources of informa-
tion. A human teacher is an invaluable source of information for learning manipulation skills. Humans
can provide expert demonstrations of the manipulation skills that they want the robot to perform. The
robot can learn these skills through imitation learning in a supervised manner [34, 250, 114]. Given
multiple demonstrations, the robot can learn how to generalize the skill to different situations, and to
determine a suitable task frame. As part of a scaffolding framework, the human can also provide feed-
back on the robot’s performance, and structure tasks such that they become gradually more challenging
[254, 134, 244]. In this manner, the human can provide additional guidance for the robot during the
skill learning process.

If the robot is learning to perform a specific task, then the robot could also learn the skills through
trial-and-error. In particular, the robot could use a reinforcement learning approach to maximize its task
performance [245, 138, 255, 19]. This approach involves the robot attempting the task multiple times
in order to evaluate variations of the skill. The robot then uses the information from these experiences
to improve the skill. This learning process can be initialized with a skill learned from demonstrations, or
a skill from a similar task. The robot can then autonomously master the skill through trial-and-error.

Given no additional information, nor a specific task, the robot can learn by simply trying out different
actions and clustering the trajectories according to their effects. These action sequences can then be used
as training data for learning a skill for achieving a specific effect. Rather than simply relying on motor
babbling, a structured exploration could allow the robot to learn new skills more quickly. This exploration
could have the robot actively search for new affordances, DoFs, or phases within its environment, and
then master the corresponding skills [133, 150, 140].

Many tasks will require the robot to execute a sequence of skills. If the task has not already been
decomposed into subtasks or skills, then the robot will first need to learn a suitable decomposition.
For example, the robot can learn skills by segmenting human demonstrations into individual skills [8,
9, 256]. Once the robot has learned the low-level skills, it can learn a high-level policy for selecting
the skills [8, 119, 118]. This policy needs to sequence the skills such that the effects of one skill fulfil
the context conditions of the next skill. The context and effects are therefore similar to the inputs and
outputs of the skill. These components provide structure and scope to the problem of learning the skill
execution.

7.3 Key Ideas to Consider When Developing and Selecting Learning Methods

When developing or selecting learning methods for manipulation skills, one should first clearly estab-
lish the learning problem that the method should address. Structuring the learning problem generally
involves determining what information is provided to the algorithm and what the outcome should be.
Although this may seem trivial, manipulation tasks are incredibly complicated and incorporate many
different elements. It is therefore easy to accidentally leave out important aspects of the problem, which
would ultimately lead to a different approach being used. In this section, we will discuss three key ideas
to keep in mind when developing methods for learning manipulation skills. These ideas are linked to
three key questions: 1) What are the available sources of information? 2) Is this task an instance of
a more general task? and 3) what information should the robot learn explicitly? These questions are
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meant to help one keep the big picture in mind when establishing the problem and selecting a suitable
learning approach.

7.3.1 Sources of Information

The main purpose of a learning method is to allow the robot to structure relevant information in a useful
manner. It is therefore important to first consider which sources of information are available to the robot,
and how they may be incorporated. The type of learning method will generally be a direct consequence
of the selected information. Learning methods also often make certain assumptions about the data that
they are using, and can therefore also be used to incorporate different prior information.

As an example, we can consider the task of learning to grasp. The output of a grasp is usually some con-
figuration of the object and the hand. We know that there are distinct types of outcomes, e.g. dropping
and lifting, which the robot can learn through clustering the outcomes. Given these distinct outcomes
and a set of features for describing the grasps, the robot could learn a classifier for predicting the out-
comes. If the goal is to predict continuous values for the outcome, then a regression approach would be
more suitable. If not all of the features may be relevant or they have a hierarchical structure that can
be exploited, than the robot could use a feature selection or deep learning approach respectively. The
robot may also have information regarding neighbouring grasp locations, which could be incorporated
using a structured prediction approach for more robust predictions. A robot may have a method for gen-
erating untested grasps, e.g. a simulator or grasp heuristic, which could be used with a semi-supervised
approach. If the robot can choose which grasps to execute, then it could apply an active learning or
reinforcement learning approach.

The above list is far from exhaustive, and it does not even consider different types of sensory informa-
tion nor sequences of actions. However, it does demonstrate how the available sources of information
and prior task information may lead to different types of learning approaches. One should therefore con-
sider which relevant information is available, and the implicit prior assumptions of different methods,
when establishing the problem and selecting a learning approach.

7.3.2 Learning General Tasks

Although it is important to provide robots with relevant information and priors, one should also not
provide too much prior information. The problem is that prior knowledge is often specific to certain
types of tasks. As a result, using this knowledge limits the applicability of the methods that they are
based on it. Instead, an autonomous robot should ideally be provided with more general methods, and
learn the task specific information from additional experiences. In this manner, the robot needs fewer
learning methods and is more likely to be capable of handling unforeseen tasks.

The most straightforward approach to keeping a method general is simply to consider a couple of other
tasks that the method should be applicable to. One could either have a fixed set of tasks, or attempt to
expand the set as much as possible. The latter approach is particularly useful as it helps identify the
differences in tasks and the limits of the method. Often, a minor change to the method will already
increase its applicability and may even help to isolate the core problem that needs to be addressed.

This approach to developing general methods is especially important for research into general-purpose
service robots. For these kinds of robots, the tasks evaluated in an experimental setting are only a small
fraction of the various tasks that the robot will actually need to handle. Hence, it is relatively easy to
over-design for the specific tasks being evaluated. One should instead consider other potential tasks
during the development process.

Obviously, one should not aim for every method to cover every possible task. Certain tasks have spe-
cific nuances that need to be addressed, and prior knowledge can make skill learning problems more
tractable. The exclusion of task-specific prior information has to be compensated for by additional data
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from the task. If the robot would require a vast amount of data to learn the prior information au-
tonomously, or learning the skill becomes intractable, then the prior information is valuable and should
be incorporated. One should aim at developing methods that are applicable to different tasks, and have
the robot learn the task-specific information, while still making the learning process tractable.

7.3.3 Explicit vs Implicit Learning

One of the most difficult design choices for developing manipulation learning methods is determining
how explicit certain information should be. Modelling information explicitly can often help the robot to
learn more quickly and to generalize between different situations. However, it also results in additional
complexity and may introduce invalid assumptions regarding the task.

As an example, we can consider the effects of executing a manipulation skill. A robot could capture
the effects by learning a forward model, or it could directly learn a high-level policy for selecting skills.
In the latter case, the effects of the skills are implicit. The forward model would allow the robot to
simulate the effects of different actions in various situations. It is however usually more difficult to learn
the model than the policy, and errors in the model could adversely affect the final learned policy. A
similar trade off can be found when considering the role of contacts in grasping. A robot could attempt
to explicitly predict the contact locations of a grasp, or it could model the pose of the hand relative to
the object with a parameterized motion for closing the fingers. In the latter case, the contact points are
implicit. By predicting the contact points, the robot can ignore irrelevant changes in the object’s shape,
and can be generalized between different objects and preshapes of the hand. The robot would however
also need to learn to predict the contacts, and errors in this prediction could result in bad grasps. For
both the effects and the contacts example, there is a spectrum of alternative approaches that achieve
different compromises.

By modeling information more explicitly, the robot can extract the relevant details of a task. The robot
can learn the skill faster and generalize it to a wider range of situations by focusing on the relevant
information. Problems occur when the model does not match reality or it accentuates irrelevant details
instead of relevant ones. In these cases, the robot is effectively making an incorrect assumption about
the task. If the assumption was introduced as part of the algorithm’s design, then the invalid assumption
should be removed. The robot may also make the assumptions due to a lack of data. These errors can be
mitigated by modeling the uncertainty and taking it into account during decision making. If learning the
explicit model is simply too difficult for the robot to learn, then a more implicit approach may be more
suitable. The best choice obviously depends on the actual task and how much the robot may benefit from
using a more general approach. The robot can benefit a lot in terms of learning speed and generalization
by using explicit approaches, but one must also be aware of introducing incorrect assumptions about the
task.

7.4 Open Problems

The methods presented in this thesis have contributed to the state-of-the-art in robot grasping and ma-
nipulation. However, there are still many open problems that need to be addressed before we can realize
robots with versatile manipulation skills. In this section, we will discuss some of the next challenges to
be overcome.

Learning Task-Specific Grasps

Certain grasps are more suitable for a given task than others. For example, even though a milk carton
can be grasped from the top, a side grasp is more useful for pouring. The robot can also learn task-
specific grasps using a reinforcement learning approach. The simplest approach would be to use the
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task to define a reward function for optimizing grasps. The optimization could be performed using a
similar method to the one described in Chapter 2. Alternatively, the robot could divide the problem
into determining task-independent grasps and selecting grasps for specific tasks. Going back to the milk
carton example, the robot could learn the reward function for pouring with grasps at different locations
relative to the opening of the container and its center of mass. If the object is used for multiple tasks,
the reward functions could simply be added together.

Learning from Real Grasps and Simulated Grasps

Learning to grasp could also benefit from incorporating semi-supervised learning approaches. These
methods allow the robot to incorporate unlabeled data into a supervised learning problem in order to
model the structure of the data. For grasping, the robot can easily obtain unlabeled grasps by using a
grasp simulator, and labeled grasps by executing grasps on the real object. The unlabeled data helps
the robot to find clusters of similar grasps. For example, when grasping a can, the unlabelled data may
indicate that there is one region of potential grasps at either end of the can, and another region around
the side of the can. A successful side grasp, would then indicate that other side grasps are also more
likely to succeed. Using semi-supervised learning would therefore allow the robot to merge simulated
and real grasps in a straightforward manner.

Dexterous Manipulation

Manipulating objects using the fingers is difficult, as it requires coordinating multiple fingers and main-
taining contact constraints. Certain in-hand manipulation also require the robot to perform a controlled
slip in order to reposition the object in the hand. Learning dexterous manipulation skills would increase
the robot’s workspace. It would also allow the robot to reposition objects within its hand. As the object
will be occluded by the hand, the robot will need to rely more on tactile data in order to localize the
object in the hand. These manipulations may require the robot to learn a feedback controller based on
tactile sensations [145].

Learning to Utilize the Environment

The robot can use fixed parts of the environment, e.g. a wall or table, to reposition objects in its hand
[257]. For example, a robot could reposition a held object by pushing a part of it against a wall. The robot
would need to rely less on dexterous in-hand manipulation if it can learn these abilities. Manipulating
a held object in this manner is similar to manipulating the robot’s own hand using the environment.
Several compliant underactuated hands have recently been proposed [73, 258]. The high compliance of
these hands allows them to adapt to a wide range of object shapes, and it allows for safe interactions
with the environment. The robot can use the compliance and the environment to bend and preshape
the fingers. For example, the robot could use a nearby surface in order to bend the fingers back more
when attempting to grasp a large object. Alternatively, the robot could use a surface to close three
of the fingers and thus isolate one for pressing a button. Methods could therefore be developed for
manipulating compliant underactuated fingers and held objects.

Learning from Phase Transitions

In Chapter 4, we discussed how a robot can learn to predict phase transitions when manipulating an
object. These transitions often depend on object properties, such as the mass of the object or a friction
coefficient. By learning from multiple objects with different properties, the robot could learn to estimate
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these properties from the phase transitions. For example, when picking up an object, the phase transi-
tions from loading to lifting when the object breaks contact with the supporting surface. A heavier object
will break contact later as the robot ramps up the force. Hence the object’s mass could be estimated
from the timing of the phase transition. Alternatively, if the robot is using impedance control, the next
motor primitive could simply be defined relative to the desired hand position when the phase transition
occurred. In this manner, the motor primitive implicitly compensates for the additional offset caused
by the object’s mass. This approach could even be used when using different stiffnesses. Before the
robot can learn from phase transitions, it must first learn to detect when they occur. This problem is
particularly challenging as the dynamic tactile sensations may vary between objects and materials.

Learning in Complex Environments

One of the main challenges for robots working in everyday environments is dividing the state space into
manageable parts. These environments contain a lot of different objects, and many of these objects will
be interacting with each other. Imagine a robot that defined the state space of a learning task based on
the state of every object in the room. The robot would try to learn how to butter bread depending on
how the glasses are arranged in the cupboard. This approach would require the robot to learn in an
incredibly high-dimensional space, and learning even simple manipulations would become intractable.
This problem is exacerbated in cluttered environments, where many objects are in contact with each
other. Most of the objects will however not be directly interacting with the object that the robot is trying
to manipulate and therefore they do not directly influence the task. The robot therefore needs to learn
which objects are important, and which ones can be safely ignored. One possible approach would be to
learn priors based on geometric relations between objects. For example the distances between objects
and their relative sizes determine, to some extent, how much they can affect each other.

Reasoning about Potential Objects

The robot should be able to reason about objects that may potentially be relevant to a task. For example,
a robot may be given the task of screwing together two wooden boards with some screws. However,
the robot cannot perform this task using only the objects provided, as it does not have a screwdriver.
The robot should first determine that the task can be performed using a screwdriver, and it should then
search for a suitable tool. If there is no screwdriver available, the robot may need to use a break knife
or a coin of a suitable size instead. The main challenge is to reason about potential objects that could be
used for performing a task, and then expanding the set of task objects accordingly. Rather than simply
adding objects that are nearby, the robot should expand the set of objects in a goal-directed manner.

Combining One-Handed and Two-Handed Skills

Multi-armed robots will need to consider how they allocate their arms to different tasks. Some tasks,
such as grasping a bottle and grasping a glass, can be performed at the same time. Other tasks, such
as opening a bottle, will require the use of two hands. The robot will therefore need to be capable
of executing skills in parallel as well as sequentially. The robot will also need to plan skill sequences
that switch between one-handed and multi-handed skills. This problem requires the robot to schedule
actions, as some executions will need to finish earlier then others. Some skills can only be started when
both hands are available. This issues also poses a challenge for segmenting demonstrations. Standard
methods assume that the agent is performing a single action at any point in time. These approaches are
not well-suited for learning from demonstrations that include multi-tasking.
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Life Long Learning

For a robot to acquire versatile manipulation skills, it will need to learn continuously over long periods
of time. It will also need a learning architecture that combines different learning methods. The learning
methods will need to work together. For example, the robot may use reinforcement learning to learn a
pouring action for container objects, and supervised learning to recognize the containers. These types
of interactions can cause problems for the robot, as one method can effectively change the problem for
the other. In the pouring example, the supervised learned may suddenly learn that both bottles and cups
are containers, and not just cups. The reinforcement learner may have already learned a skill that works
for cups, but not for bottles, and it would need to relearn. The problem is particularly noticeable for
feature learning. Task-specific features would allow the robot to capture the relevant task information
in a compact manner, and they would allow the robot to generalize better to new scenarios. However,
creating a new set of features would also require the methods using the features to adapt and relearn.
The robot therefore needs to use learning methods that are compatible with each other. It also needs to
integrate the methods together such that they achieve synergy and can adapt to each other.
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