
Reinforcement Learning of Trajectory Distributions: Applications in
Assisted Teleoperation and Motion Planning

Marco Ewerton1,2, Guilherme Maeda3,4, Dorothea Koert1, Zlatko Kolev1, Masaki Takahashi5 and Jan Peters1,6

Abstract— The majority of learning from demonstration
approaches do not address suboptimal demonstrations or cases
when drastic changes in the environment occur after the demon-
strations were made. For example, in real teleoperation tasks,
the demonstrations provided by the user are often suboptimal
due to interface and hardware limitations. In tasks involving
co-manipulation and manipulation planning, the environment
often changes due to unexpected obstacles rendering previous
demonstrations invalid. This paper presents a reinforcement
learning algorithm that exploits the use of relevance functions
to tackle such problems. This paper introduces the Pearson
correlation as a measure of the relevance of policy parameters
in regards to each of the components of the cost function to be
optimized. The method is demonstrated in a static environment
where the quality of the teleoperation is compromised by the
visual interface (operating a robot in a three-dimensional task
by using a simple 2D monitor). Afterward, we tested the method
on a dynamic environment using a real 7-DoF robot arm
where distributions are computed online via Gaussian Process
regression.

I. INTRODUCTION

Human-robot co-manipulation and teleoperation can
greatly benefit from learning from demonstration since users
can easily demonstrate trajectories to a robot. These trajec-
tories are then fitted to a model that can be later used during
the execution of repetitive tasks to provide assistance and to
compensate communication latency and intermittency. This
paper provides a reinforcement learning algorithm, Pearson-
Correlation-Based Relevance Weighted Policy Optimization
(PRO), to improve upon demonstrated trajectories when these
are suboptimal or when solutions to new situations must be
found. The main feature of PRO is that it preserves the
variance of policy parameters that are not relevant to the

1Intelligent Autonomous Systems Group, Department
of Computer Science, Technische Universität Darmstadt,
Hochschulstr. 10, 64289 Darmstadt, Germany {ewerton,
koert, peters}@ias.tu-darmstadt.de,
zlatko.kolev@stud.tu-darmstadt.de

2 Idiap Research Institute, Martigny, Switzerland
marco.ewerton@idiap.ch

3ATR Computational Neuroscience Laboratory, Department of Brain
Robot Interface (BRI), 2-2-2 Hikaridai Seika-sho, Soraku-gun Kyoto 619-
0288, Japan g.maeda@atr.jp

4Preferred Networks Inc. Tokyo, Japan gjmaeda@preferred.jp
5Keio University, Faculty of Science and Technology, Depart-

ment of System Design Engineering, Takahashi Laboratory, 3-14-
1 Hiyoshi Kohoku-ku, Yokohama-shi, Kanagawa 223-8522, Japan
takahashi@sd.keio.ac.jp

6Max Planck Institute for Intelligent Systems, Max-Planck-Ring 4, 72076
Tübingen, Germany jan.peters@tuebingen.mpg.de

Fig. 1: In this experiment, the robot has to reach the target
(pink object) while avoiding the obstacle (Pringles can). (a)
Demonstrations. (b) Our learning system is able to adapt on
the fly to changes in the environment.

objective component currently being optimized for. The use-
fulness of this property is easily understood when optimizing
with respect to components whose influence are only local,
such as the many via-points along a trajectory.

The concept of relevance function first appeared in [1]
where the metric of relevance was computed with a
computation-intensive iterative algorithm which required the
design of basis functions for the relevance. In the present
paper, we investigate the use of Pearson correlation [2].
Pearson correlation allows the optimizer to determine rel-
evance functions faster while eliminating some of the open
parameters found in [1]. In the later part of the paper, we
extend PRO with Gaussian Processes (GP) regression to
cope with dynamic environments in an online fashion. PRO
is used to optimize the GP inferences as a mapping from
environment to trajectory distribution.

The main contribution of this paper is a robot control al-
gorithm to improve suboptimal demonstrations. In detail, we
introduce the use of Pearson correlation to compute relevance
functions and show how the method can be combined with
GP regression to enable online corrections. Experiments in
the context of assisted teleoperation and other human-robot
interaction tasks are used to validate two different cases
where demonstrations are suboptimal. 1

1Although the method is not limited to a particular policy representation,
in this paper we refer to the term “policy” as a “trajectory” and “policy
search” means “optimizing a distribution of trajectories with respect to
certain objectives”. The optimization objectives are related to via points,
obstacles, length and jerkiness of the movement.

Fig. 2: A haptic device, the Haption Virtuose 6D, is operated
by a user to move a beam in a virtual environment. The haptic
device uses a trajectory distribution learned with Pearson-
Correlation-Based Relevance Weighted Policy Optimization
(PRO) to assist the user in moving the beam from a start
position and orientation to an end position and orientation
through a window in the wall.

An extended version of this paper with additional experi-
ments and evaluation is under preparation for a journal.

II. RELATED WORK

A method for assisting users in shared-autonomy tasks,
e.g. co-manipulation, with probabilistic models learned from
demonstrations has been proposed in [3]. In that paper,
Gaussian Mixture Models [4] are used to create multiple
probabilistic virtual guides which constrain the movements
of the user to a region close to the demonstrations. Also using
probabilistic models, in [5] users are assisted in teleoperation
tasks with shared control. In that work, task-parameterized
Gaussian Mixture Models (TP-GMMs) [6] have been used
to encode the probability distribution of demonstrated tra-
jectories. Gaussian Mixture Regression (GMR) [6] has been
used to generate a behavior according to the learned model.
The learning agent assists the user with the teleoperation of
a device to scan a surface.

Our work relates to [3] and [5], with the important differ-
ence that our approach addresses cases where demonstrations
are suboptimal or when the learned model cannot generalize
well enough to a new scenario. This is possible due to the
use of reinforcement learning as a mechanism to manipulate
the original distribution. An approach for improving upon
suboptimal initial demonstrations is presented in [7]. Never-
theless, that approach is based on iterative refinement by the
human user rather than reinforcement learning.

In the context of motion planning, PRO presents simi-
larities to STOMP [8], a black-box stochastic optimizer for
motion planning, in the sense that PRO is gradient-free and
also relies on a stochastic trajectory optimization technique.
However, while in STOMP trajectories are generated by
perturbing an initial trajectory with a certain noise, in our
work, a distribution of trajectories based on demonstrations
(and potentially also on prior knowledge) is optimized.

Learning from demonstrations has also been applied in
supervisory control. In this paradigm, after training, the

remote system can execute a task autonomously, needing
only high-level task goals to be provided by the user.
In [9], task-parameterized hidden semi-Markov models (TP-
HSMMs) are used to build probabilistic models of manipula-
tion motions and Model Predictive Control (MPC) is used to
execute these motions. In that work, TP-HSMMs have been
shown to generalize better to changes in the environment than
Probabilistic Movement Primitives (ProMPs) [10], which are
used in our work. We believe that our work can contribute
to enhancing the generalization capabilities of frameworks
using probabilistic models such as TP-HSMM and ProMP
by using reinforcement learning to let the remote system
look for solutions to new tasks by trial and error.

To support online obstacle avoidance, PRO performs rein-
forcement learning while making use of Gaussian Processes
to output trajectory distributions trained via supervised learn-
ing. This process resembles the way Guided Policy Search
(GPS) [11] uses trajectory optimization in combination with
the constraint that the actions output by a Convolutional
Neural Network (CNN) must track the optimized trajectories.
In our approach, PRO assumes the role of the trajectory
optimizer while the GPs assumes the role of the CNN. In
contrast to GPS, while the CNN outputs actions for any
given state, in our approach, GP regression outputs ProMPs
(distributions of trajectories) for any given environment.

III. PEARSON-CORRELATION-BASED RELEVANCE
WEIGHTED POLICY OPTIMIZATION

Pearson-Correlation-Based Relevance Weighted Policy
Optimization (PRO) is a stochastic policy search algorithm
based on Reward Weighted Regression [12] where, at each
iteration, policy parameters are sampled from a probability
distribution. The probability distribution is then optimized to
maximize the expected reward. Differently from RWR, PRO
estimates the relevance of each policy parameter with respect
to each objective. This information is then used to adapt
the sampling pattern such that undesirable changes in the
distribution of policy parameters are avoided. For example,
Fig. 3 illustrates the difference between RWR and PRO in
a 2D parameter space where the optimal solution is not
affected by the value of one of the parameters. In the case of
RWR, the optimal parameters collapse to a single point while
PRO preserves the distribution of the irrelevant dimensions.
In the motion planning context, this larger final distribution
reflects as final richer distributions covering larger areas of
the workspace.

A. Measuring Relevance via Pearson Correlation

The relevance of the policy parameter wn to the objective
o, denoted by fo (n), can be represented by the absolute
value |ρn,o| of the Pearson correlation2 coefficient

ρn,o =
Cov (wn, o)

σwnσo
, (1)

2The Pearson correlation coefficient ρX,Y of any two random variables
X and Y is a measure of the linear correlation between X and Y and
−1 ≤ ρX,Y ≤ 1.

Fig. 3: Pearson-Correlation-Based Relevance Weighted Pol-
icy Optimization (PRO) versus Reward Weighted Regression
(RWR). Here, w1 and w2 are the policy parameters. The red
line represents the region in the space of policy parameters
where the reward is the maximum. The reward for any point
in this space is R = exp (−βd), where β is a hyperparameter
chosen by the user and d is the distance between the point
and the red line. Both RWR and PRO were applied to
optimize a Gaussian distribution of w = [w1, w2]

T with
1000 iterations and 200 samples per iteration. The variances
of RWR collapse while PRO is able to keep the variance of
w1 because this parameter is not relevant to this optimization
problem. In this case, the difference between the learning
curves of these algorithms is nevertheless negligible.

where Cov (wn, o) is the covariance between wn and the
value of the objective o, σwn

is the standard deviation of
wn and σo is the standard deviation of the values of the
objective o. A policy, e.g. a trajectory, is represented by
the vector w = [w1, · · · , wN]

>, where N is the number of
policy parameters. For each w sampled from a distribution,
e.g. a Gaussian with small and uniform variance such that
the assumption of linear correlation holds, the computation
of the value of each objective o is made. Subsequently, ρn,o
is computed.

The relevance fo (n) of wn to the objective o expresses
how strongly changes in wn are linearly correlated to
changes in the values of the objective o. In our implemen-
tation we found useful to normalize the relevance function
fo (n) = fo (n) /max

n
fo (n).

The distribution of policy parameters is assumed to be
Gaussian, i.e. w ∼ N (µw,Σw). As such, PRO samples wn

from the distribution N
(
µw,Σ

fo
w

)
,

Σfo
w =


σ2
w1
fo (1) 0

. . .

0 σ2
wN
fo (N)

 , (2)

where the initial parameters are estimated from the demon-
strations.

B. Policy Optimization using Relevance Functions

Once a number S of policy parameter vectors w have been
sampled from N

(
µw,Σ

fo
w

)
, RWR is used to optimize the

mean µw and the covariance matrix Σfo
w to maximize the

reward as

{µk+1
w ,Ck+1} = argmax

{µw,Σfo
w }

S∑
i=1

Ro,iN
(
wi;µw,Σ

fo
w

)
. (3)

Its solution is given by

µk+1
w =

S∑
i=1

Ro,iwi

S∑
i=1

Ro,i

, (4)

Ck+1 =

S∑
i=1

Ro,i

(
wi − µk

w

) (
wi − µk

w

)>
S∑

i=1

Ro,i

. (5)

The variable k in the expressions above represents the
iterations of the algorithm. The variable Ro,i represents the
reward with respect to objective o obtained by the sampled
trajectory i. The reward is non-negative and usually has
the form Ro,i = exp (−βo (i)), where o (i) is the value
obtained by the sampled trajectory i for objective o and β is
a hyperparameter chosen by the user.

Finally, the new covariance matrix Σw is determined. It
is a diagonal matrix with the variances in the diagonal given
by

σ2
wn,k+1 = (1− fo (n))σ2

wn,k + fo (n)C
k+1
nn , (6)

where σ2
wn,k

is the variance of wn in iteration k and Ck+1
nn is

the element at row n and column n of the covariance matrix
Ck+1.

Equation (6) keeps the variance of irrelevant policy param-
eters unchanged and updates the variance of relevant policy
parameters. If fo (n) = 0, for example, σ2

wn,k+1 = σ2
wn,k

,
i.e. the variance of wn at iteration k + 1 is the same as at
iteration k. On the other hand, if fo (n) = 1, σ2

wn,k+1 =

Ck+1
nn , i.e. the variance of wn at iteration k+1 is the result

of the RWR optimization at iteration k, yielding Ck+1
nn . For

other relevance values, which must lie by definition between
0 and 1, the new variance is a weighted average of its
previous value and the optimized one.

Note that differently from the algorithm presented in
[1] where multiple iterations were required to estimate the
relevance, here a one-shot approach for computing relevance
functions is presented. Fig. 4 presents a comparison between
these algorithms.

C. Online Adaptation with Gaussian Process

In this work we use parametrized trajectory distributions
in the form of Probabilistic Movement Primitives (ProMPs)
as the trajectory generation mechanism (see [10] for de-
tails). To adapt the distributions of trajectories online as
the environment changes, the learning system must be able
to compute solutions quickly. However, since PRO requires
several iterations to find the optimal solution, it is not well
suited for such problems. Thus, we propose Gaussian Process

Fig. 4: Comparison between Relevance Weighted Policy
Optimization (RWPO) [1] and PRO, which is proposed in
this paper. In this problem, a trajectory must be found that
starts at the green ×, goes through the window in the center
and ends at the red ×. RWPO took 84.47s to learn the rele-
vance functions while PRO took only 0.02s. Both algorithms
were implemented in Python. The machine used for both
computations was the same. The hyperparameters for RWPO
are the same used in [1]. PRO used 200 trajectory samples
to compute the relevance function. The vast difference in
execution time is due to the iterative nature of the relevance
computation in RWPO while PRO has a one-shot approach to
determine the relevance. (a) 5 demonstrations provided by a
user. (b) Both algorithms find solutions that satisfy the given
criteria. The larger deviation from the direct path observed in
the solution by RWPO does not represent an error because
there is no cost for larger deviations from the direct path.
The cost function used by both algorithms is the same and
depends only on the distances to the start, window center and
end. (c, d) Relevance for the 10 weights that parameterize the
x trajectory computed by RWPO and by PRO, respectively.
Differently from RWPO, PRO does not use basis functions
for the relevance, which contributes to the more irregular
shape of its relevance function.

(GP) regression to map variables describing the environment
to mean vector µw and covariance matrix Σw of a ProMP.

The entire training consists of the following steps: 1)
Initialization via demonstrations 2) Given a random state
of the environment, infer a ProMP using GP regression; 3)
Use PRO to optimize upon the inferred ProMP; 4) Update
dataset of environment states and corresponding ProMPs
with the solution provided by PRO. Steps 2 to 4 are repeated
several times until the learning system can solve a given task
for a range of possible configurations of the environment.
Essentially, this is a self-supervised learning process where
trajectories sampled from the current GP are then optimized
by PRO and fed back as training data.

The vector of variables describing the current state of the
environment is denoted by e. The elements of this vector can

be for example obstacle positions, via points, target positions,
etc.

The user is asked to initialize our learning system by
providing multiple demonstrations for each environment
configuration em in the set {e1, · · · , eM} containing M
different configurations. Based on these demonstrations, the
variables µwn,m

and σ2
wn,m

are computed through Maximum
Likelihood Estimation (MLE), where n ∈ N,m ∈ N, 1 ≤
n ≤ N, 1 ≤ m ≤ M . The variables µwn,m and σ2

wn,m

are the mean and the variance, respectively, of weight wn

based on the demonstrations for environment configuration
em. The set of demonstrations can be augmented for ad-
ditional environment configurations by trajectories based on
prior knowledge, as previously mentioned. In this case, the
trajectories based on prior knowledge are treated just as the
demonstrations directly provided by the user.

Given µwn,m
and σ2

wn,m
,∀m, 1 ≤ m ≤ M , the variables

µwn
and σ2

wn
are computed. These variables represent the

average mean µwn
= 1

M

∑M
m=1 µwn,m and the average

variance σ2
wn

= 1
M

∑M
m=1 σ

2
wn,m

for each weight wn.
A new environment enew is sampled at random from

a set containing both the environments e1, · · · , eM for
which there were demonstrations as well as environments
for which there were no demonstrations. Gaussian Process
(GP) regression is used to infer the trajectory parameters
wn,new for the new configuration enew, given the demon-
strations. There is one Gaussian Process (GP) for each
parameter wn. The GPs use the squared exponential kernel
k (ei, ej) = exp

(
−α (ei − ej)> (ei − ej)

)
, α ∈ R, α > 0.

The variables ei and ej represent any two arbitrary environ-
ment configurations. The posterior is p (wn,new|wn,1:M) =

N
(
µwn,new , σ

2
wn,new

)
, where

µwn,new = µwn+

Knew,1:M (K1:M,1:M +Σwn
)
−1 (

µwn,1:M
− µwn

)
, (7)

σ2
wn,new

=Knew,new + σ2
wn
−

Knew,1:M (K1:M,1:M +Σwn
)
−1
K1:M,new, (8)

µwn
= [µwn

, · · · , µwn
]
> is a column vector with µwn

repeated M times, µwn,1:M
=
[
µwn,1

, · · · , µwn,M

]>
, the

covariance matrix of each GP is

K =

Knew,new Knew,1:M

K1:M,new K1:M,1:M

 (9)

and

Σwn =


σ2
wn,1

0
. . .

0 σ2
wn,M

 . (10)

The covariance matrix K comprises four blocks. Knew,new is
here just the scalar k (enew, enew). Knew,1:M is a row vector
with elements k (enew, ej) , j ∈ N, 1 ≤ j ≤M .K1:M,new is a
column vector with elements k (ei, enew) , i ∈ N, 1 ≤ i ≤M .
Finally, K1:M,1:M is a matrix with elements k (i, j).

After computation of the posterior distribution given by
µwn,new (Eq. 7) and σ2

wn,new
(Eq. 8), PRO optimizes upon this

distribution as described in Section III. The dataset of known
environments and corresponding trajectory distributions is
updated with enew, µwn,new and σ2

wn,new
, ∀n, 1 ≤ n ≤ N .

Subsequently, this entire process is repeated for another
enew. After several iterations, as it will be shown in the
experimental section, the learning system is able to generate
successful distributions of trajectories for a pre-defined range
of environment configurations.

IV. EXPERIMENTS

Three experiments demonstrate the efficacy of our pro-
posed framework. The first experiment demonstrates that
PRO, which determines relevance functions based on Pearson
correlation, can be applied to optimize upon initial failed
attempts to solve a teleoperation task. Differently from
Relevance Weighted Policy Optimization (RWPO) [1], PRO
does not need predefined task-specific basis functions to
determine the relevance functions. The last two experiments
demonstrate how PRO in combination with Gaussian Process
(GP) regression can tackle online motion planning problems.
Please see the accompanying video.

A. Assisting Humans in a Teleoperation Task

In this experiment, the user manipulates the Haption
Virtuose 6D to move a beam in a virtual environment (See
Fig. 2). This experiment can be seen as a teleoperation task,
where the haptic device is the master and the beam is the
slave. The goal of the user is to move the beam from a start
position and orientation to an end position and orientation
through the window without hitting the wall. This task is
hard for humans in part due to the difficulty in visually
estimating the 3D position and the orientation of the beam.
Already performing a similar task with a small cube without
the need to control orientation has been difficult for most
users as demonstrated by user studies in [1].

First, the user tries 10 times to perform the task without
force feedback. A distribution of trajectories based on the
trials of the user is created using a ProMP. Subsequently,
PRO is used to optimize this ProMP such that sample
trajectories from the optimized ProMP pass through four via
points with the right beam orientations to avoid collisions
with the wall.

In this experiment, the original optimization problem
has been separated into two optimization problems: one
taking into consideration only the Cartesian coordinates
of the via points and another taking into consideration
only the orientation of the beam at each via point. This
separation helped PRO to find successful trajectories in
this problem. The reward function for both problems is
Robj = exp (−β (obj + βlengthlen + βjerkjerk)), with β =
200, βlength = 0.1 and βjerk = 105. The value for β was
empirically determined by trying a few values between 1
and 300. The values for βlength and βjerk were determined
by trying different powers of 10. The variable obj represents
the distances to each of the four via points. The two via

Sampled Trajectories after PRO

(a) (b)

(c) (d) (e)

q1 q2 q3

Fig. 5: (a) Cartesian coordinates of demonstrated trajectories.
(b) Cartesian coordinates of trajectories sampled from the
ProMP optimized with PRO. (c - d) Orientations of the
mean trajectory of the ProMP optimized with PRO. The
orientations are here represented by the three first variables
(q1, q2, q3) of a unit quaternion. The yellow dots represent
via points.

points closest to the window are computed given the current
position of the window. The variables len and jerk represent
the length and the average jerk of the trajectory, respectively,
and are computed by using finite differences. The terms
βlength and βjerk are used to regulate the importance of the
length and average jerk to the reward. PRO optimized the
ProMP in 150 iterations with 200 trajectory samples per
iteration.

Fig. 5(a) shows the initial trials of a user to solve the
task for a given scenario without the assistance of the haptic
device. Fig. 5(b-e) represents the optimized ProMP, which
is used by the haptic device to guide the user with force
feedback inverse proportional to the standard deviation.

B. Adaptation in Dynamic Environments — Point Particle

The problem addressed in this section is depicted in Fig. 6.
First, a human was presented with 30 random environments.
The environments differed in c = (xc, yc), the position of
the center of the hole in the wall, and in g = (xg, yg),
the position of the end goal (red × in Fig. 6). By using a
computer mouse, the human provided three demonstrations
for each environment.

The random environments e = [xc, yc, xg, yg]
> were

uniformly distributed in the range 2 ≤ xc ≤ 8, 1 ≤ yc ≤ 9,
xc + 1.5 ≤ xg ≤ 10, 0 ≤ yg ≤ 10. The start position
s = (xs, ys) was always the same.

PRO used reward functions of the form Robj =
exp (−βobj), where β = 20 was empirically determined by
observing the policies learned by PRO for a few values of
β: 1, 10, 20, 30, 40 and 50. In this problem, three objectives
need to be minimized: the distance to the start position
obj1 = ||τ (0) − s||, the minimum distance to the center

Fig. 6: The magenta point particle has to move from the start position (green ×) to the target position (red ×) without
hitting the walls (blue rectangles). The position of the hole in the wall and the target position change with time. As these
positions change, our learning system computes the corresponding trajectory distributions on the fly to solve this task. The
red line corresponds to the mean of the computed trajectory distribution. The light gray trajectories are samples from the
computed distribution. The black star-shaped marker moves forward along the mean of the current distribution. The magenta
point particle tracks the black star-shaped marker with a PD controller. This figure depicts four frames of a test case.

of the hole in the wall obj2 = mint ||τ (t) − c|| and the
distance to the end goal obj3 = ||τ (T)−g||. The term τ (t)
represents the position along trajectory τ at time step t, τ (0)
is the first position and τ (T) is the last position.

After the initialization with the demonstrations, the self-
improvement loop was repeated 1000 times, each time with
a new random environment. Each PRO optimization took at
most 200 iterations (less if convergence was achieved sooner)
and used 100 trajectory samples per iteration. The kernel of
the GPs used in this problem had parameter α = 10−3. This
value was empirically determined by trying a few different
powers of 10 and observing the GP inferences. During test,
our learning system can compute ProMPs on the fly, solving
the task in a dynamic environment (See Fig. 6).

C. Adaptation in Dynamic Environments — Robot Arm

The problem addressed in this section is depicted in Figs. 1
and 7. The obstacle (Pringles can) and the target (pink object)
are tracked by using a motion capture system (OptiTrack).
First, a human provides demonstrations by moving the 7-DoF
robot arm in gravity compensation mode. Demonstrations
were provided for 20 different environment configurations.
There were three demonstrations for each environment. The
configurations were determined by arbitrarily choosing po-
sitions on the table for the obstacle and the target. The start
position for the robot arm was always the same.

Each environment in this problem was represented by the
vector e = [xp, yp, xg, yg]

>, where (xp, yp) was the position
of the Pringles can and (xg, yg) was the end goal position.

We have noticed that initializing our learning system only
with the human demonstrations for 20 different situations
was not enough to learn a mapping capable of dealing with
any obstacle and target positions on the table. For this reason,
we have decided to extend the set of demonstrations with
ProMPs based on prior knowledge. These ProMPs had mean
trajectory going directly from the start position to the target
position irrespective of the obstacle position and the variance
of each ProMP weight was the average variance for that
weight based on the demonstrations. The GPs were thus

initialized with ProMPs for 2024 different environments (in-
cluding environments for which human demonstrations were
given). The additional 2004 environments were generated by
taking obstacle and target positions of a grid inside a range
of possible positions delimited by the corners of the table.

PRO used reward functions of the form Robj =
exp (−βobj), where β = 200 was empirically determined by
observing the policies learned by PRO for a few values of β:
1, 10, 20, 30, 40, 50, 100, 200 and 300. In this problem, three
objectives need to be minimized: obj1 = ||τ (0) − s|| + d,
obj2 = max(−mint ||τ (t) − p||,−0.2) + d and obj3 =
||τ (T)− g||+ d.

The term d = 1
T

∑T
t=0 ||τ (t)− τdirect (t) || is the average

distance to the direct path τdirect from the start to the end goal.
This term was added to each of the objectives to avoid large
deviations from the direct path to the end goal. Apart of this
term, obj1 and obj3 are very similar to objectives described
in Section IV-B. The variable p = (xp, yp) in obj2 is the
position of the Pringles can. Minimizing obj2 has the effect
of avoiding the Pringles can without going too far away from
it because distances to the Pringles can larger than 20 cm do
not result in additional reward.

The self-improvement loop had 2024 iterations (one for
each environment in the initialization data set). Each PRO
optimization took at most 50 iterations (less if convergence
was achieved sooner) and used 100 trajectory samples per
iteration. The kernel of the GPs used in this problem had
parameter α = 1. This value was empirically determined by
trying a few different powers of 10 and observing the GP
inferences. During test, the robot can successfully execute
the reaching task even when the human moves the obstacle
or the target while the robot is moving (See Figs. 1 and 7).

V. CONCLUSION AND FUTURE WORK

This paper presented the Pearson-Correlation-Based
Relevance Weighted Policy Optimization (PRO) algorithm.
In this algorithm, the concept of Pearson correlation is
used to determine the relevance of each policy parameter
to each optimization objective. The proposed algorithm is
computationally much more efficient than the one presented

Fig. 7: Our learning system infers a distribution of trajec-
tories (ProMP) given the current state of the environment.
An inverse-dynamics-based feedback controller tracks the
mean of the inferred distribution. (a) The robot goes around
the obstacle (a Pringles can) from the right side to reach
the target (a pink object). (b) Given that the user changes
the position of the target while the robot is moving, the
robot switches on the fly to another ProMP, going around
the obstacle from the left side.

in [1]. Moreover, a framework which uses PRO and GP
regression has been presented, which can compute trajectory
distributions on the fly to solve tasks in dynamic envi-
ronments. PRO can be used to optimize upon suboptimal
demonstrated trajectories. An application of PRO to assisted
teleoperation has been demonstrated. Our full framework can
solve online planning problems in an experiment involving
a point particle and in a real robot experiment with a 7-DoF
robot arm.

The next step in this research is to apply our framework to
assisted teleoperation in dynamic environments. We will also
investigate other reward functions for the assisted teleoper-
ation task to avoid the necessity of intermediate via points
and the separation in two optimization problems.

VI. ACKNOWLEDGMENTS

The research leading to these results has received fund-
ing from the German Federal Ministry of Education and
Research (BMBF) in the project 16SV7984 (KoBo34),
from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 640554
(SKILLS4ROBOTS), from a project commissioned by the
Japanese New Energy and Industrial Technology Develop-
ment Organization (NEDO) and from the Swiss National Sci-
ence Foundation through the HEAP project (Human-Guided
Learning and Benchmarking of Robotic Heap Sorting, ERA-
net CHIST-ERA).

REFERENCES

[1] M. Ewerton, D. Rother, J. Weimar, G. Kollegger, J. Wiemeyer,
J. Peters, and G. Maeda, “Assisting movement training and execution
with visual and haptic feedback,” Frontiers in neurorobotics, vol. 12,
p. 24, 2018.

[2] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation
coefficient,” in Noise reduction in speech processing. Springer, 2009,
pp. 1–4.

[3] G. Raiola, X. Lamy, and F. Stulp, “Co-manipulation with multiple
probabilistic virtual guides,” in Intelligent Robots and Systems (IROS),
2015 IEEE/RSJ International Conference on. IEEE, 2015, pp. 7–13.

[4] S. Calinon, F. Guenter, and A. Billard, “On learning, representing,
and generalizing a task in a humanoid robot,” Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 37, no. 2,
pp. 286–298, 2007.

[5] I. Havoutis and S. Calinon, “Learning assistive teleoperation behaviors
from demonstration,” in Safety, Security, and Rescue Robotics (SSRR),
2016 IEEE International Symposium on. IEEE, 2016, pp. 258–263.

[6] S. Calinon, “A tutorial on task-parameterized movement learning and
retrieval,” Intelligent Service Robotics, vol. 9, no. 1, pp. 1–29, 2016.

[7] F. Abi-Farraj, T. Osa, N. P. J. Peters, G. Neumann, and P. R. Giordano,
“A learning-based shared control architecture for interactive task
execution,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2017, pp. 329–335.

[8] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“Stomp: Stochastic trajectory optimization for motion planning,” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on. IEEE, 2011, pp. 4569–4574.

[9] I. Havoutis and S. Calinon, “Supervisory teleoperation with online
learning and optimal control,” in Proc. IEEE Intl Conf. on Robotics
and Automation (ICRA). IEEE, 2017.

[10] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Using proba-
bilistic movement primitives in robotics,” Autonomous Robots, vol. 42,
no. 3, pp. 529–551, 2018.

[11] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 1334–1373, 2016.

[12] J. Peters and S. Schaal, “Reinforcement learning by reward-weighted
regression for operational space control,” in Proceedings of the 24th
international conference on Machine learning. ACM, 2007, pp. 745–
750.

