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Abstract— Humanlike robot skills, e.g., cleaning a table or
handing over a plate, can often be generalized to different task
variations. Usually, these are start-/goal position, and trained
environment changes. We investigate how to modify motion
primitives to context changes, which are not included in the
training data. Specifically, we focus on maintaining humanlike
motion characteristics and generalizability, while adapting to
unseen context. Therefore, we present an optimization tech-
nique, which maximizes the expected return and minimizes
the Kullback-Leibler Divergence to the demonstrations at the
same time. Simultaneously, our algorithm learns how to linearly
combine the adapted primitive with the demonstrations, such
that only relevant parts of the primitive are adapted. We
evaluate our approach in obstacle avoidance and broken joint
scenarios in simulation, as well as on a real robot.

I. INTRODUCTION AND RELATED WORK

Humanlike motions of humanoid robots are desirable in

many different areas. In human-robot collaboration settings

it is important that the robots intentions are clear to the

human. The legibility of robot motions is a requirement for

a seamless integration of the robot as a helpful assistant [5].

In settings, where a robot arm is attached to a human as an

exoskeleton [6] it is mandatory that the robots movements

are humanlike. In this paper, we investigate how to maintain

humanlike characteristics in motion primitives, which are

learned from demonstrations of a human teacher.

Learning from demonstrations (also known as imitation

learning) is a well-established approach for programming

robots. We assume, that the reenacted robot trajectories

produced by the learned skill from demonstrations naturally

inherit humanlike characteristics.

However, directly using demonstrations of a specific task

to teach a robot might not be sufficient. Further policy

improvement can be necessary for successfully solving a

task, e.g. to compensate for the teachers actuation [11].

In comparison to common Motion Planning techniques like

STOMP [9], CHOMP [19], and RRTs [14] we do not focus

on generating completely new motion plans, but rather on ad-

justing existing ones. Furthermore, we do not generate single

trajectories for a specific task instance, but instead optimize

a distribution over trajectories. We use these trajectory distri-

butions to represent a motion primitive, which is a solution

to variations of a demonstrated task. In this work we use the

Probabilistic Movement Primitives [16] representation, but

our approach is applicable to other primitive frameworks as

well, e.g., Dynamic Movement Primitives [8].

1Intelligent Autonomous Systems, TU Darmstadt
mail-icra@dwilbers.de

{lioutikov,peters}@ias.tu-darmstadt.de
2Max Planck Institute Tuebingen

Fig. 1: Illustration of the Table-Cleaning task. The robot

should avoid the obstacle with the sponge staying on the

table. The dashed black arrow denotes a demonstrated tra-

jectory. The solid red arrow illustrates the context-adapted

primitive, which the robot will follow to avoid the flowers

on the table.

A key issue of robot skill teaching is the ability of primitives

to generalize to different situations. For example a primitive

which moves a chess figure forward should be applicable

to all tiles on a chess board [2]. Often, the generalization

ability corresponds to the adaptation to new start and/or goal

positions, while preserving the trajectories shape [20], [10],

[17]. Particularly, this means that the primitives can only be

adapted to specific pre-trained changes.

Here, we distinguish between two forms of generalizability.

The ones described so far are specifically engineered or

trained, whereas in this paper we focus on modifying skills

to completely new contexts, e.g. new obstacles or broken

joints. Various reinforcement learning approaches have been

successfully applied to handle different contexts. Work by

Pastor et.al. [17] encodes goal-parameters in the primitive

representation itself [17], whereas different approaches learn

a distribution over meta-parameters [10], [13]. In the latter,

variations of the context must be present in the demonstra-

tion, so that they can be learned. An advantage of these

approaches is, that the adaptation itself is fast to compute,

once learned. No further task-relearning is necessary as long

as the context changes are covered in the demonstrations.

At the same time, a primitive must be relearned if an adap-

tation is not possible. In this case, any policy improvement

method could be applied, depending on the requirements.

In this paper, we aim to adapt a primitive to an unseen

situation in such a way, that it is still applicable to the

context which it was already generalized to. An example is

adapting a primitive to avoid an obstacle while maintaining



possible start and goal positions. In relation to our work,

Lim et al. [15] propose a framework, in which motion

primitives are learned from demonstrations with PCA and

combined to produce humanlike motions, which are assessed

qualitatively. More recently, Huang et. al. [7] introduced a

graph- and sample-based motion planner, which can combine

two different motions. In their case, multiple upper and lower

body motion primitives are coordinated and sequenced to

produce a motion graph. The humanlike characteristics arise

only from blending between demonstrated motions. Instead

of sequencing multiple primitives in order to adapt to a new

situation, we investigate how to partially change a single

primitive. Closely related to our work Ye and Alterovitz

combine motion planning with imitation learning to find

task solutions [21]. These can be outside the demonstrations

if the demonstrations are blocked. This approach focus

on automatically extracting time-dependent task constraints,

which are satisfied even after optimization. In our approach

we assume the task-constraints are already captured in the

given primitives. We punish violations of the task-constraints

inside a corresponding reward function.

Being able to re-learn skills through primitive-combination

and/or primitive-optimization, such that they can adapt to

completely new situations is essential for building and ex-

tending skill databases. The contribution of this work is

twofold. First we optimize primitives to unseen situations,

while binding the solution to stay close to the demon-

strations. Second, we also learn how to linearly combine

two primitives in order to exactly match the demonstrated

primitive given the new context whenever possible.

II. PRIMITIVE OPTIMIZATION FOR

CONTEXT-ADAPTATION

We develop a reinforcement learning strategy, based on the

Relative Entropy Policy Search [18] algorithm. The two main

differences are the simultaneous optimization of two sub-

policies and the explicit minimization of the KL-Divergence

[12] to a target distribution of one sub-policy.

A. Notation

Throughout this paper a primitive is defined as a policy

π(w). The policy represents a Gaussian distribution over

parameters w ∼ N (µw,Σw). Realizations of w can be

used to generate a trajectory τ(w), so that by placing a

distribution over w we hierarchically define a distribution

over trajectories. In our case we use S radial basis functions

to approximate trajectories τ(w) = {y1, . . . , yT } as

yt(w) =

S
∑

i

wi exp
(

−k(t− ci)
2
)

, (1)

where ci defines the basis center and k modulates the basis

width. In order to adapt a trajectory, we learn how to adjust

the weights w. Hence, any optimization of a trajectory

distribution is equal to adjusting the distribution over w.

In relation to the REPS formalism, we assume that our policy

is a joint distribution, which can be split into π(w) and λ(a).
We refer to these as sub-policies of a Gaussian joint-policy

N

([

w

a

]

|

[

µw

µa

]

,

[

Σw 0
0 Σa

])

= π(w)λ(a). (2)

By doing so, we can improve two different parameter sets,

while both jointly determine a reward function R(w, a).
Specifically, we use π(w) to represent a trajectory distri-

bution and λ(a) = N (a|µa,Σa) as a distribution over

activation parameters (see Section II-D).

The distribution πd(w) is a target distribution, to which

we want to stay close. In general, the target distribution

could be arbitrary. In our case it is the policy learned from

demonstrations. We denote the context to which we want to

adapt the primitive as κ. In the obstacle avoidance scenario

κ represents the obstacles position and shape parameters.

B. Problem Statement

Given a target policy πd(w) and an unseen context κ find

an optimized joint policy (π(w)λ(a))∗, which maximizes the

expected reward of R(w, a, κ) while minimizing the KL-

divergence D(π(w)||πd(w)). The full optimization problem

is given as

max
π,λ

J =

∫

w

∫

a

R(w, a, κ)π(w)λ(a)dadw

− γD(π(w)||πd(w))

s.t.

∫

w

π(w) log

(

π(w)

qw(w)

)

dw ≤ ǫ1,

∫

a

λ(a) log

(

λ(a)

qa(a)

)

da ≤ ǫ2,

∫

w

π(w)dw = 1,
∫

a

λ(a)da = 1.

(3)

The distributions qw and qa represent the current estimates

of the sub-policies, from which we can sample. The first

two constraints ǫ1 and ǫ2 limit the exploration of the policy

update by limiting the KL-Divergence between the current

estimate and the new policy. These constraints prevent that

the policy is destroyed by an too excessive update step [18].

The last two constraints make sure that each sub-policy is

a probability distribution and sum up to one. Solving the

optimization problem (see Appendix) with the method of

lagrangian multipliers yields the sub-policy update rules

π∗(w) =
qw(w)

η1
γ+η1 πd(w)

γ
γ+η1 exp

(

R(w)
γ+η1

)

∫

w
qw(w)

η1
γ+η1 πd(w)

γ
γ+η1 exp

(

R(w)
γ+η1

)

dw
,

λ∗(a) =
qa(a) exp

(

R(a)
η2

)

∫

a
qa(a) exp

(

R(a)
η2

)

da
.

(4)



The terms R(a) and R(w) represent the expected reward for

specific parameters w and a given the other sub-policy

R(w) =

∫

a

R(w, a, κ)λ(a)da,

R(a) =

∫

w

R(w, a, κ)π(w)dw.

(5)

Due to the recursive dependencies respectively on the other

sub-policy we can only approximate R(a) and R(w). Both

terms measure how good the parameters w and a perform

locally. Given that we iteratively update our policies and

restrict the KL-Divergence between update steps we can

locally test our parameters against the policies from the

previous iteration.

The update of the unrestricted sub-policy λ∗(a) is equal to

the standard REPS formulation [18]. It is an exponential re-

weighting of the old sampling distribution. The restricted

sub-policy π∗(w) is a geometric average of the sampling dis-

tribution, the target distribution, and the exponential returns.

By setting γ = 0 we obtain the standard REPS formulation

and both updates have the same form. The parameters η1
and η2 are the lagrangian multipliers. The dual formulation

leads to the optima η1, η2 respectively and is given as

g(η1, η2) =

− E [R(w, a, κ)]π∗λ∗ + η1ǫ1 + η2ǫ2

+ (γ + η1) log

(
∫

w

qw(w)
[

eR(w)πd(w)
γqw(w)

−γ
]

1
γ+η1

dw

)

+ η2 log

(
∫

a

qa(a)e

(

R(a)
η2

)

da

)

.

(6)

Solving Equation 3 reduces to minimizing the dual function

minimize
η1,η2

g(η1, η2)

s.t. ηi ≥ 0, i = 1, 2,
(7)

which is much easier to optimize.

C. Approximation with Samples

In the following we explain how to approximate the

integrals and the expectation term in the dual with samples.

We estimate the expectation E [R(w, a, κ)]π∗λ∗ , which is

part of the original formulation Equation 3, with importance

sampling, using qw(a) and qa(a) as the sampling distribu-

tion. The resulting approximation with importance weights

ψ(wi, ai) and N samples is

E [R(w, a, κ)]π∗λ∗ ≈
1
N

∑

iR(wi, si, κ)ψ(wi, ai)
1
N

∑

i ψ(wi, si)
,

ψ(wi, ai) =
[

eR(wi)πd(wi)
γq1(wi)

−γ
]

1
γ+η1

e

(

R(ai)

η2

)

.

(8)

We can further replace the integrals inside both logarithms

of Equation 6 using samples based on
∫

y
p(y)f(y)dy ≈

1
N

∑N

i=1 f(yi). Given these approximations the dual is

purely sample-based and can be solved with any constraint

optimizer. For numerical stability we suggest to rewrite the

sample-based dual according to the log-sum-exp1 and exp-

1log
(
∑

i
exp(xi)

)

= k + log
∑

i
exp(xi − k) with k = maxxi

normalize2 identities. In our case we exclusively use Gaus-

sians for all policies, so that the new means and variances can

be computed with closed-form reward-weighted maximum

likelihood updates of the samples si [4] as

µnew =

∑N

i=1 φisi
∑N

i=1 φi
,

Σnew =

∑N

i=1 φi(si − µ)(si − µ)T

Z
,

with Z =

(

∑N

i=1 φi

)2

−
∑N

i=1(φi)
2

∑N

i=1 φi
.

(9)

The term Z is used to calculate an unbiased covariance-

estimate. Algorithm-Box 1 gives an overview of the iterative

procedure.

Algorithm 1: Primitive Optimization

Input: Context Situation κ, Target Policy πd(w)
Output: Optimal sub-policies π∗(w) and λ∗(a)
while not converged do

begin Policy Evaluation
Sampling:

Generate N sample pairs

wi ∼ π(w) , ai ∼ λ(a)
Evaluation:

Compute rewards R(wi, ai, κ) for each sampled

pair i

Approximate R(wi, κ) and R(ai, κ)
Optimize: Minimize dual:

(η∗1 , η
∗

2) = argmin g(η1, η2)
end

begin Policy Improvement
Sub-policy updates π∗(w) and λ∗(a):

Compute weights φ for weighted ML

φw(wi) = [exp (R(wi))πd(wi)
γqw(wi)

−γ ]
1

γ+η1

φa(ai) = exp
(

R(ai)
η2

)

For Gaussian distributions:

Compute improved µw,Σw and µa,Σa (see

Equation 9)
end

end

The trajectory distributions are represented as π(w) and

πd(w), while λ(a) denotes the distribution over the activation

parameters. These distributions could be arbitrary Gaussian

distributions for a completely different setting.

D. Combination of Primitives

Combining simple primitives to generate more complex

behaviors, which can solve new tasks is a highly desire-

able feature, especially when using Movement Primitive

Libraries. In the following, we describe how we combine

2
∑N

i=1 ai exp(zi)
∑

N
i=1 exp(zi)

=
∑N

i=1 ai exp(zi+k)
∑

N
i=1 exp(zi+k)

with k = −max(zi)
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Fig. 2: The demonstrated policy πd(w) is represented as

the blue shaded area with mean and two times standard

deviation. In green, the optimized policy π∗(w) avoids the

obstacle, while maintaining the shape of the distribution.

In red, the combination of both policies π+(w) avoids the

obstacle, but also exactly matches πd(w) in the beginning

and end. The corresponding activation function, shown in

the second plot, is parametrized with a difference of sigmoid

functions and learned accordingly as the sub-policy λ(a).

primitives in such way, that we maintain humanlike charac-

teristic. This can be viewed from two different perspectives.

We can either maintain the shape of a trajectory distribution

or exactly match the trajectory distribution from demonstra-

tions whenever possible. To achieve the latter we suggest to

linearly combine different policies. An illustration of both ap-

proaches is given in Figure 2. We make use of some Gaussian

properties to combine skills. First, the sum of two Gaussian

random variables x ∼ N (x|µx,Σx) and y ∼ N (y|µy,Σy) is

a Gaussian distribution z ∼ N (z|µx+µy,Σx+Σy). Second,

the affine transformation y = c+Bx of a Gaussian x is again

a Gaussian distribution y ∼ N (y|c + Bµ,BΣBT ). For the

combined policy π+(w) we get

π+(w) = N (w|µπ+ ,Σπ+)

with µπ+ = Aµπd
+ (1−A)µπ∗ ,

Σπ+ = AΣπd
A′ + (1−A)Σπ∗(1−A)′.

(10)

The combination itself is performed in the weight space

of the trajectories. In comparison to the blending approach

from [16] we are still able to generate smooth trajectory

samples after the combination since we maintain a com-

plete distribution in the weight space. The elements of

the diagonal matrix a = diag(A) represent the activation

factors for each basis weight of the policy. We obtain a

combined trajectory distribution π+(w). Typically, we place

a probability distribution over the activations directly, so

that dim(a) = dim(w) or parametrize the activations. For

example, if we temporarily want to switch the active robot

skill, a useful parametrization would be the difference of two

sigmoid functions (e.g. in Figure 2). By doing so we can
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Fig. 3: Linear combination of two primitives, which move

up and right respectively, to achieve new behavior.

a) - b): Simultaneous constant activation a over time results

in a diagonal movement. Depending on the magnitude of

the activation a, the resulting primitives reach further into

the upper right.

c) - e): Examples for the effect of different activation

functions, which are changing over time. Depending on

the characteristics of the activation function the combined

primitive can represent completely different behavior.

significantly reduce the number of dimensions. On the other

side we must take prior knowledge into account which may

also limit the performance. Our approach directly optimizes

the activations represented by the sub-policy λ(a).

III. ANALYSIS: DIFFERENT ASPECTS OF OUR APPROACH

In the following section we individually discuss and

demonstrate various aspects of our algorithm.

A. Primitive Combination

With our linear combination approach, we can achieve

a different behavior, based on how we choose the activa-

tions. In this example we neglect optimizing the trajectory

distribution and focus on the combination itself. Assume

we are given two primitives which we want to combine to

achieve new behavior. In Figure 3 we show such two planar

primitives, which can move up and right respectively. None

of them can reach the upper right corner by itself, whereas it

is possible with the combination. Simply taking the average

as in the a = 0.5 case is not enough to fully exploit the

combination. The blending approach from [16] fails in this

case because it follows the regions with smallest variance.

Blending can be useful for fulfilling task-constraints, but

not for exploring completely new behavior. The examples

in Figure 3(c) to Figure 3(e) show further combinations,

yielding completely different results.

B. Staying close to Demonstrations

To emphasize the effects of minimizing the KL-

Divergence to a target distribution we give a simplified
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(c) γ = 0
Ni = 1000
I = 100

(d) γ = 0.001
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(f) γ = 0.001
Ni = 1000
I = 20

Fig. 4: Comparison between REPS (γ = 0 case) and our

algorithm. Each image contains 50 red ellipses which denote

Gaussian distributions after optimization. Ni denotes the

number of samples per iteration. I is the number of iterations.

The black ellipse denotes the target distribution.

a) - c): REPS either collapses to a random option or

maintains a wide distribution over all options.

d) - f): Our algorithm stays close to the target distribution.

With a small sample set Ni = 10 the solutions are biased

towards one option. With enough samples a single option is

found near the target distribution.

example with a highly multimodal reward function, where

all optima are equally good. In Figure 4 the bright yellow

areas represent a high reward, whereas blue areas are much

worse. We now assume that the distribution learned from

demonstrations in the upper left area is blocked and can not

be reproduced. The substitute solutions should now be as

close as possible to the demonstrated distribution. In order

to show the effects of our approach sub-policy λ(a) does

not influence the reward. As we can see, limiting the KL-

Divergence yields solutions which are closer to the black

target distribution in the upper left. If we compare the

solutions on the right side (Figure 4(c) and Figure 4(f)) we

see that with enough iterations we can also match the targets

variance and hence find a single option.

C. Tuning γ

To emphasize the effects of our approach we demonstrate

how the solutions change with different values for the γ-

parameter (Equation 3). Basically, γ influences how close

to the target distribution we want to be. Setting γ to zero

cancels the effect of the KL-Divergence in the optimization.

A characteristic of our approach is that we are comparing

reward and KL-divergence against each other, which must

not necessarily be of the same magnitude. Depending on the

reward function tuning γ in an adjusted parameter range is

(a) γ = 0 (b) γ = 0.1 (c) γ = 1

(d) γ = 5 (e) γ = 10 (f) γ = 100
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Fig. 5: a) - f): Solutions of the sub-policy π(w) in parameter

space for six γ variations. All red ellipses contain 90% of

the probability mass. The black ellipses denote the target

distribution πd(w). The red ellipses are the found solutions

π∗(w) after 20 iterations. All experiments are initialized with

a much larger variance than the solutions. g): KL-Divergence

D (π(w)||πd(w)) during the iterative optimization for differ-

ent γ.

necessary. In Figure 5 we give a simplified example based

on a two-dimensional reward function. The toy function is

quadratic with an additional circular discontinuity. In order

to show the effects of limiting the KL-Divergence sub-

policy λ(a) has no effect on the reward. The higher the γ-

value the more the solutions get pulled towards the target

distribution. In the γ = 0 case the result reduces to REPS

and reaches the global optimum of the reward-function. We

see the effect in Figure 5(g): The higher γ the lower the

KL-Divergence. Notably, the reward is lower the higher γ

is. When optimizing we need to cope with this trade-off. As

shown in Section III-B if many local optima are available

the reward can still be equally good.

In relation to trajectory distributions Figure 6 shows a

simplified example based on a one-dimensional trajectory

distribution π(w) to directly show the effects on the solution.

IV. EVALUATION IN SIMULATION AND ON A REAL

ROBOT

We demonstrate different aspects of our algorithm and

apply it to various problems. Therefore we evaluate settings

in task space, as well as in joint space. In addition to

simulations, we also illustrate the execution on a 7-DOF real

robot arm.
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Fig. 6: Comparison of the effects of γ on the optimal sub-

policies π∗(w). The blue distribution is the target policy

πd(w). Sub-Policy λ(a) is independent of the reward func-

tion and neglected here. The gray rectangle is a restricted

area with undesirable parameters.

A. Hole-Reaching Task

We apply our algorithm on a planar 5-DOF robot. Each

link is one meter long and has no joint limits. The robots

end-effector must reach the bottom of a hole, which is two

meters away, one meter deep, and 30-60cm wide. In total, we

optimize 60 parameters. With ten basis functions for each de-

gree of freedom we have a 50-dimensional parameter vector

for sub-policy π(w). Additionally, we learn the activations

a without parameterizing them, but assume all dimensions

have the same activation. The reward depends on a collision

cost, acceleration punishment, and a reward for reaching the

goal position. We initialize our optimization with the policy

learned from the demonstrations. In the demonstrations the

robot always starts from a roughly upright position and

reaches the bottom of the hole.

Obtaining a suitable covariance matrix is especially chal-

lenging in this task. Due to the high dimensional parameter

space and limited number of available samples per iteration,

the weighted-ML updates during the optimization are most

likely biased. Because this task is operating in joint space it

is crucial that we obtain a proper estimate of the covariances

between joints. The first joints highly influence the range of

suitable states of the following joints and vice versa. Due

to this high correlation a precise estimate of the covariance

matrix is necessary for finding successful solutions. Inspired

by the CECER approach [1], which in practice is hard to

tune, we modify the covariance matrix estimate Σw after

the weighted-ML update. We use a convex combination of

the current estimate Σi with the covariance matrix Σi−1

from the last iteration to limit the covariance shrinkage

Σnew
w = δΣi−1

w + (1 − δ)Σi
w. No further adjustments were

needed for Σa. We apply this setting in two different context

scenarios.

1) Obstacle Avoidance: In the first scenario an obstacle

is added to the scene. The robot is supposed to reach the

60 cm wide hole without colliding with the obstacle. As

it can be seen in Figure 7 we can successfully learn such
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Fig. 7: Obstacle Avoidance in the Hole-Reaching task. The

robot must reach the bottom of the hole without touching the

obstacle or ground. b) and c): Mean trajectories of π+(w).

a behavior. The optimization is performed in joint space.

Thus, we use forward kinematics to calculate collisions with

the obstacle, which is given in task space. The obstacle is a

one-by-one meter square block. We compare the γ = 0 case

with the best working γ ≥ 0 case (γ = 10−7). Furthermore,

the activation function was only allowed to be either one

or zero and was clipped at the first and last value to stay

close to the demonstrations. By doing so, we ensure that we

specifically learn where to switch between the adapted skill

and the one from demonstrations. We don’t need to encode

a start or goal position inside the reward function, as its

maintained through the combination with demonstrations.

Both cases were executed with identical parameters except

γ. We repeated the experiment five times with each 40

iterations and 250 samples per iteration. Following the

ideas of [9], the covariance matrix Σw was initialized with

a scaled version of the one learned from demonstrations.

Therefore only the variances belonging to the middle of

the trajectory were scaled up. Additionally, for this task

δ = 0.9 was found practical. After we adapted the skill, we

tested our results by sampling from the learned trajectory

distributions. Sampling 500 trajectories from the original

distribution resulted in only 0.008% collision free ones.

In the γ = 0 case 0.45% were collision free, whereas our

approach succeeded in average 68% of the time, which is

close to one standard deviation.
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(c) π∗(w) , γ = 0

Fig. 8: Broken joint scenario in the Hole-Reaching task.

b): Optimized mean trajectory π+(w) with learned activa-

tions, so that the solution is close to the demonstrations in the

beginning. c): Standard REPS solution π∗(w) with a different

start position since no activations are learned.

The corresponding solutions in joint space are given in

Figure 9.



time [s]

jo
in

t
1

th
[r

ad
]

time [s]

jo
in

t
2

th
[r

ad
]

time [s]

jo
in

t
3

th
[r

ad
]

time [s]

jo
in

t
4

th
[r

ad
]

time [s]

jo
in

t
5

th
[r

ad
]

demonstrations πd(w)

REPS: π(w), γ = 0, no activation

adapted π+(w)

Fig. 9: The five joint dimensions in the broken joint case

of the Hole-Reaching task. The working joints are forced to

change in order to compensate for the broken 5th joint. The

corresponding solutions in task space are given in Figure 8.

2) Broken Joint Scenario: In the second scenario we

assume that the last link of the robot is broken and cannot

move anymore. Therefore the skill must be adapted, such that

the robot can still reach the hole. We enforce parameters of

the broken joint dimension to be zero. The reward function is

equal to the setting above, but without an additional obstacle.

The target distribution is the same distribution, which was

learned from demonstrations with all joints working. Figure

8(b) shows our results after 30 iterations with each 2500

samples. In comparison to the REPS case π∗(w) with γ =
0 and without activation, our solution maintains the start

position (see Figure 9) while still being able to move the

arm into the hole. Figure 10 shows the KL-Divergences in

both cases.

B. Table-Cleaning Task

We also tested our approach on a 7-DOF real robot

arm. The robot is supposed to pick up a sponge and wipe

multiple times over a table. We demonstrate the task three

times via kinesthetic teaching with an empty table. We

extract the contact points with the table from the learned

trajectory distribution to specify the task constraints. During

optimization these points should still be in contact with the

table. The goal is to execute the skill successfully even if

items are still present on the table as illustrated in Figure

1. We optimize in joint space, but currently only check for

collisions of the end-effector in task space. With 50 basis

functions per degree of freedom and additional 50-activation

parameters we optimize a 400 dimensional parameter vector

in total. The activation parameters are clipped to either zero

or one. As shown in Figure 11 the activations are learned

and the obstacles are avoided accordingly. The solution was

found after 30 iterations with each 500 samples. Unlike

the necessary adjustments of the covariance matrix Σw in

the Hole-Reaching Task, it was not required for the Table-

Cleaning even if the number of parameters is much higher.

In the obstacle avoidance case of the Hole-Reaching task
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Fig. 10: KL-Divergence D(π∗(w)||πd(w)) during optimiza-

tion in the broken joint case of the Hole-Reaching task.

The KL-Divergence of the bounded policy case γ = 50 is

lower than the one of the unbounded policy.

a wide range of the trajectory distribution needs to be

changed to successfully avoid the obstacle. In this instance

of the Table-Cleaning task only a limited region of the

trajectory distribution needs to be changed in order to avoid

the obstacle. During the optimization this is learned by

the sub-policy λ(a), such that the optimization can locally
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Fig. 11: Obstacle Avoidance in the Table-Cleaning task.

a): The adapted policy π+(w) locally avoids the obstacles

and exactly matches the demonstrated policy πd(w) when

possible.

b): Policy π∗(w) is only activated in regions where obstacle

avoidance is necessary.



concentrate on adapting the important regions. Hence, for

the solution π+(w) most of the parts of difficult to estimate

covariance matrix Σw are not considered. Therefore, valid

solutions can still be found even if Σw is biased.

V. CONCLUSION

In this paper, we presented an approach for adapting robot

skills to new situations. Our approach uses of three differ-

ent aspects. First, we simultaneously optimize the expected

reward over two sub-policies, instead of one single policy.

Second, we explicitly bind the KL-Divergence of one of them

to maintain humanlike motion characteristics. And third, we

learn a linear combination between the primitive learned

from demonstrations and the context-adapted primitive to

exactly match the demonstrated policy whenever possible. As

our results show, we are able to produce trajectories, which

are adapted to the new situation and still stay close to the

demonstrated trajectories. In the future, we aim to extend our

approach to work as well with mixture models, relating to

the HiREPS approach [3].
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APPENDIX

In the following we give a detailed derivation of our ap-

proach: The problem statement in Equation 3 transforms into

the lagrangian L with lagrangian multipliers η1, η2, α1, α2 as

L = J − η1

[
∫

w

π(w) log

(

π(w)

qw(w)

)

dw − ǫ1

]

− η2

[
∫

a

λ(a) log

(

λ(a)

qa(a)

)

da− ǫ2

]

− α1

[
∫

w

π(w)dw − 1

]

− α2

[
∫

a

λ(a)da− 1

]

.

(11)

Deriving dL
dπ(w) , dL

dλ(a) and setting both to zero, results in

dL

dπ(w)
= R(w, κ)− γ log

(

π(w)

πd(w)

)

− γ

− η1 log

(

π(w)

qw(w)

)

− η1 − α1
!
= 0,

dL

dλ(a)
= R(a, κ)− η2 log

(

λ(a)

qa(a)

)

− η2 − α2
!
= 0.

(12)

Solving for the optimal policies π∗(w) and λ∗(a), we get

π∗(w) =
[

eR(w)d(w)γqw(w)
η1

]
1

γ+η1
e

1
γ+η1

(−γ−η1−α1),

λ∗(a) = qa(a)e
R(a)
η2 e

1
η2

(−η2−α2).

(13)

Using the constraint that,
∫

w
π∗(w)dw = 1 and

∫

a
λ∗(a)da = 1, we can solve Equation 13 for the terms

e
1

γ+η1
(−γ−η1−α1) and e

1
η2

(−η2−α2). Replacing these terms

in Equation 13 yields the policy update rule (Equation 4).

The dual is derived by plugging both optimal sub-policies

(Equation 13) into the Lagrangian (Equation 11). Simplifying

the dual yields Equation 6.


