
Reinforcement Learning vs Human Programming
in Tetherball Robot Games

Simone Parisi1, Hany Abdulsamad1, Alexandros Paraschos1, Christian Daniel1, Jan Peters1,2

Abstract— Reinforcement learning of motor skills is an im-
portant challenge in order to endow robots with the ability to
learn a wide range of skills and solve complex tasks. However,
comparing reinforcement learning against human programming
is not straightforward. In this paper, we create a motor
learning framework consisting of state-of-the-art components
in motor skill learning and compare it to a manually designed
program on the task of robot tetherball. We use dynamical
motor primitives for representing the robot’s trajectories and
relative entropy policy search to train the motor framework
and improve its behavior by trial and error. These algorithmic
components allow for high-quality skill learning while the
experimental setup enables an accurate evaluation of our
framework as robot players can compete against each other.
In the complex game of robot tetherball, we show that our
learning approach outperforms and wins a match against a
high quality hand-crafted system.

I. INTRODUCTION

Efficient acquisition of complex motor skills is crucial for
robotics. In recent years, robot learning of dynamic motor
tasks has been shown the ability to acquire a variety of skills,
ranging from the game ball-in-a-cup [1], archery [2], the peg-
in-hole task [3], the tetherball hitting game [4] to walking [5]
and jumping [6]. One of the main breakthroughs that led
to these results has been the introduction of motor primi-
tives [7]. Motor primitives offer a compact representation of
basic movements such as grasping and hitting, and are com-
monly represented by dynamical systems. However, although
imitation learning allows the robot to learn simple skills [8],
intelligent algorithms are necessary to adapt primitives to
different tasks and to learn new optimized policies [4]. In
the field of real robot learning, Reinforcement Learning (RL)
and especially Policy Search (PS) methods have become
increasingly important [9]. PS is a general approach to learn
policies using sampled trajectories, also called rollouts. The
search takes place in a subset of the policy space using the
experienced reward from the rollouts as quality assessment
for the policy. While the locality of the search might be
viewed as undesirable in many simulated tasks, it is an
important feature in real robot learning. Being able to search
for solutions only around initial demonstrations does not only
speed up learning but also reduces the risk that the resulting
trajectories will be dangerous to the robot or its environment.
Further advantages of PS methods are their ability to cope
with continuous state-action spaces as well as their sample
efficiency. Where learning in continuous state-action spaces

1Autonomous Systems Labs, Technical University of Darmstadt, 64289
Darmstadt, Germany {last name}@ias.tu-darmstadt.de

2Max Planck Institute for Intelligent Systems, 72076 Tübingen, Germany

Fig. 1: In robot tetherball, a pole with a ball hanging from
the top is placed between two robotic arms. The goal of
the robots is to repeatedly hit the ball without giving the
opponent the chance to unwind it.

is a fundamental requirement of real robot learning, sample
efficiency on real systems is not only desirable to reduce
learning time but is essential as many currently available
platforms require intensive maintenance after many rollouts.

While there has been a variety of publications on the
achievements of real robot learning, no systematic compari-
son of learned skills against manually programmed solutions
has been performed so far. Conducting such a systematic
evaluation is a challenging proposition for several reasons.
First, it is non-trivial to find a suitable measure to compare
hand-crafted and learned policies. By design all learned
policies try to optimize a given reward function. However,
using this reward function as comparison measure would
introduce a bias, as there is no guarantee that the manual
program maximizes the same reward function. Secondly,
manually designing a proficient program to successfully
solve a robotic task requires deep insights into both the
platform and the problem itself. In this paper, we propose
a task setup that addresses these problems and allows us to
present a systematic and thorough evaluation of state-of-the-
art approaches in real robot learning.

The remainder of the paper is structured as follows. We
start by describing the robot and the tetherball setup in
Section II and continue with a technical analysis of the task
required to design the manual program in Section III. In
Section IV we introduce the components for learning to play
tetherball by trial and error. Subsequently, in Section V we
give insights into different issues in RL and compare the
quality of the motor skills of different robot players. Finally,
in Section VI we discuss the results of this paper and propose
possible avenues of investigation for future work.



θ(t)

l(t)

2r

h(t)

ϕ(t)

(a) Tetherball Model

x

yPole r

l

√
r2 + l2

ϕ

Ball

(b) Planar View

θ

r dϕ

dh
dl

(c) Differential View
-1 0 1

-1
0
1

Learned Player

Analytical Player

Pole

(d) Distribution of Hitting Points

Fig. 2: Schematics of the mechanical tetherball model. a) State representation in spherical space with four degrees of
freedom. b) Simplification of the {x, y} coordinates by ignoring the pole radius r. c) The infinitesimal change of the states
for formulating the nonholonomic constraints. d) The distribution of the hitting points for both players. The analytical player
hits the ball in the fixed plane defined by the pole and origin of the robot. The learned player does not have any constraint
and can freely choose the interception point.

II. ROBOT TETHERBALL

To address the problem of finding a fair evaluation mea-
sure, we propose to use a task that is based on the game
of tetherball. The advantage of using a game based task is
that there is a pre-defined success measure, i.e., the game
score. As we will see, this success measure cannot be
used directly for either the learned player or the manually
designed program, but is well-suited to evaluate their relative
performance. A robot tetherball task has been presented
previously by Daniel et. al [10]. However we propose the
full two-player setup, where Daniel et. al only presented a
strongly simplified single player version of the task. Apart
from being more challenging, the two player setup offers
important new possibilities of evaluating a learned player
directly against the manually designed program.

In our setup, shown in Fig. 1, we use two BioRob robots
with six degrees of freedom each [11]. The BioRobs are
cable driven lightweight robots, that achieve highly dynamic
behavior due to the integration of springs between the motors
and the cables which drive the joints. This highly dynamic
behavior, however, makes it hard to provide a inverse dy-
namics model for the robot.

In the two player tetherball task, the robots are set up
facing each other and a pole is centered between them. A
ball is attached to the top of the pole using a rope. The goal
of the robots is to hit the ball such that the rope winds around
the pole as often as possible in one direction without giving
the opponent the chance to unwind it. To achieve this task,
one robot tries to hit the ball clockwise, while the opponent
tries to hit it counter-clockwise.

Formally, we denote the state of the environment by
x = {q, q̇, b, ḃ, h}, where q, q̇ ∈ R6 are the joint positions
and velocities, b, ḃ ∈ R3 are the ball position and velocity in
Cartesian coordinates, h is the height of the pivot point along
the pole. The control actions u ∈ R6 are torques generated

by a low-level controller u = fPD(x,xdes). The low-level
controller chooses actions u such that the robot follows a
desired trajectory τ des = {xdes,i}i=1:H , where H is the
length of the desired trajectory. While the joint velocities
q̇ can be controlled directly, the ball positions b and the
pivot point h are only controlled indirectly. Given this setup,
we formulate both an analytical player and a learned player
capable to play robot tetherball against each other.

III. THE ANALYTICAL PLAYER

In this section, we dissect the tetherball task and discuss
how the problem can be described mathematically in order
to derive an analytical player. This hand-crafted player uses
a mechanical model of tetherball to predict the ball trajectory
and the resulting interception point. Subsequently, a stroke
movement represented by a spline function is generated and
followed by the low-level controller fPD(x,xdes).

A. Mathematical Trajectory Prediction

Mathematically describing tetherball requires a complex
mechanical model [12]. Even after disregarding effects like
friction, air drag and changes in string tension, the underlying
equations are still highly nonlinear. As shown in Fig. 2a, we
can describe the state of the model with four degrees of free-
dom when represented in spherical space. Here, {θ, ϕ, l} are
the spherical coordinates while h is the vertical translation of
the pivot point along the pole. These four coordinates fully
determine the Cartesian position of the ball according to the
equations

x ' l sin θ cosϕ, y ' l sin θ sinϕ, z = l cos θ + h. (1)

As shown in Fig. 2b, for {x, y} coordinates we ignore
the pole radius r when compared to the length of the
string l. In addition to these algebraic equations, the system
is constrained by two nonholonomic, i.e., not integrable,
velocity conditions for {l̇, ḣ}, as shown in Fig. 2c. These



constraints reflect the behavior of the string while it (un-
)winds around the pole and are given by

l̇ =
−rϕ̇
sin θ

, ḣ =
rϕ̇

tan θ
. (2)

For the purpose of estimating the ball trajectory we need
the full equations of motion, which we derive using the
principle of Lagrange-D’Alembert [13] for systems with
nonholonomic velocity constraints

d

dt

∂L

∂ρ̇i
− ∂L

∂ρi
=

n∑
j=1

λja
j
i , (3)

where ρi are the degrees of freedom and L = T − U is the
Lagrangian consisting of the kinetic energy T = mv2/2 and
potential energy U = −mgz. The right side of the equation
incorporates the velocity constraints ai, as shown in Eq. (2),
and their respective Lagrangian multipliers λi

aTq̇ =
[
0 r

[
1

tan θ −
1

sin θ

]
1 1

] [
θ̇, ϕ̇, l̇, ḣ

]T
. (4)

By expanding the Lagrange-D’Alembert equation we obtain

d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0,

d

dt

∂L

∂ϕ̇
− ∂L

∂ϕ
= λ1

r

sin θ
− λ2

−r
tan θ

,

d

dt

∂L

∂l̇
− ∂L

∂l
= λ1,

d

dt

∂L

∂ḣ
− ∂L

∂h
= λ2. (5)

The resulting differential equations and constraints are solved
for the accelerations {θ̈, φ̈, l̈, ḧ} and the two Lagrangian
multipliers {λ1, λ2}. Numerically integrating the initial state
{θ, θ̇, φ, φ̇, l, h} according to these equations allows us to
predict the motion of the ball.

The analytical player uses this model to estimate and
continuously update the ball trajectory until interception.
This trajectory is transformed into the Cartesian frame of
the player and used to choose a hitting point that lies in
the plane defined by the pole and origin of the robot (see
Fig. 2d). Once such a point is found on a trajectory with
a rotation direction corresponding to the hitting direction of
the player, the time and position information are passed on
to the lower controller to plan and execute the appropriate
joint movement.

B. Generating Hitting Trajectories

Given the desired interception point xdes, the low-level
controller starts by solving a constrained inverse kinematics
problem

qdes = f−1
kin (xdes) s.t. qmin < qdes < qmax. (6)

Thereupon, it generates a minimum jerk trajectory for a
smooth transition to the hitting posture while satisfying the
end time and speed constraints. A minimum jerk trajectory
is represented by a fifth order polynomial qt =

∑5
i=0 cit

i

whose parameters ci reflect the start and end conditions of a
trajectory. In the end, the joint trajectory is transformed into

a series of motor torques ui by an underlying PD-controller
with gravity compensation.

IV. LEARNING TO PLAY TETHERBALL

After introducing the analytical player, based on a me-
chanical model of tetherball, we show how to formulate
the problem of tetherball as a contextual episodic Markov
Decision Process (MDP) [9] such that we can employ
reinforcement learning (RL) algorithms to learn how to play
it. We formulate the problem with contexts s ∈ S, actions
θ ∈ Θ and returns Rθ,s ∈ R. The goal of the robot is
to learn a context-dependent policy π(θ|s) which selects
actions according to the context and can, thus, generalize
to different scenarios. We choose this distribution to be a
Gaussian with linear mean π(θ|s) = N (a+As,Σ). We use
Dynamic Motor Primitives (DMPs) proposed by Ijspeert et
al. [7] to represent trajectories. DMPs allow us to parametrize
trajectories such that one vector of actions θ defines a desired
trajectory to be followed by the robot. In this setting, the
context s defines the initial Cartesian position and velocity
of the ball as well as the pivot point of the rope at the start
of the episode, i.e., s = {b0, ḃ0, h0}. We define each player
turn as an episode. A turn starts when a player hits or misses
the ball.

Alternatively, the tetherball task could be formulated as
infinite horizon problem where a policy π(u|x) directly
selects control actions at every time step. However, formu-
lating real robot learning problems based on time indexed
states and actions is difficult for several important reasons.
Firstly, a high control and sensory sampling frequency can
lead to effects that render the problem Markovian only in
a higher order. This means that effects of control actions
will not be registered immediately by the sensors, and a
history over several time steps has to be kept to make the
learning problem feasible. Reducing the frequency too much
can lead to jerky behaviors or controllers that do not resolve
the desired behavior finely enough to solve the problem at
hand. Even worse, it is possible that there is no ‘sweet spot’
between the two extremes at all. Non-Markovian behavior
in the proposed platform is additionally introduced due to
the fact that the state of the springs and the extension of the
cables cannot be directly observed. Furthermore, solving the
optimization problem with a time-dependent policy requires
exploration noise for all states. Requiring such noise on all
states should be avoided for two reasons. First, it generates
non-smooth trajectories which may be not only undesirable
but usually harmful to the robot. Second, many step-based
RL methods require the ability to sample from the state space
during the trajectory, i.e., to be able to set the robot and
the environment to an arbitrary state, which obviously is
physically impossible.

However, while trajectory based learning methods can be
easy to use, increase performance and reduce the learning
time in many scenarios, they are not suitable for arbitrary
problems. If, for example, feedback during the trajectory is
crucial, step-based RL methods can be more appropriate.



A. Compact Skill Representation

As stated above, DMPs offer a compact representation of
basic movements. Formally, DMPs are defined as a second
order dynamic system that acts like a spring-damper system
which is driven by a non-linear forcing function f(zt,θ)

q̈t = τ2
(
α

(
β (g − q)− q̇

τ

)
+ f(zt,θ)

)
,

żt = −ταzzt, (7)

where q, q̇, q̈ are the joint positions, velocities and acceler-
ations respectively. The unique goal attractor position and
velocity are defined by g, ġ. Variable zt denotes the phase
and τ is a temporal scaling factor. Finally, α, β, αz are fixed
parameters. Commonly, a separate DMP is used for each
joint of the robot and the phase zt is shared between all
joints in order to synchronize them. The forcing function is
linear in its weights θ but non-linear in the phase zt, i.e.,
f(zt,θ) = ψ(zt)

Tθ. Usually, for stroke-based movements,
normalized Gaussian basis functions are used. A crucial
aspect that affects the accuracy of the resulting trajectory is
the number of bases used, as they influence learning speed
and expressiveness of the final policy. We evaluate the effects
of this choice in the experimental section.

The resulting desired trajectory represented by DMPs is
then followed by the same PD-controller with gravity com-
pensation that is used by the analytical player. However, even
if the parameters of the PD-controller are not precisely tuned
to allow perfect tracking of the input trajectory, the RL agent
can learn to produce input trajectories that compensate for
the tracking error of the PD-controller, while the analytical
player depends on accurate tracking of the desired trajectory
τ des.

B. Imitation Learning of DMPs

When using DMPs to generate desired trajectories, we can
easily bootstrap the learning process by demonstrating an
initial trajectory, i.e., by imitation learning. In many cases,
bootstrapping by imitation learning is essential to make the
learning process feasible, as it not only provides a good
initial policy but also helps avoiding sampling trajectories
that are dangerous to the robot and its environment.

More formally, given a desired joint trajectory τ des =
[qi, q̇i, q̈i]i=1:T , a unique goal attractor g, ġ, fixed parame-
ters α, β, αz and a temporal scaling factor τ , we can compute
the forcing function f(zt,θ) for each time step and obtain
the parameters θ by linear regression

f(zt,θ) =
q̈t
τ2
− α

(
β(g − qt) +

ġ − q̇t
τ

)
θ =

(
ΨTΨ + λI

)−1

ΨTf(zt,θ) (8)

where Ψ = [ψ(z1), . . . ,ψ(zT )].
In the tetherball games, the movement we want to imitate

using DMPs consists of several phases, i.e., the robot starts
from its initial resting position, hits the ball and finally goes
back to the resting position. While it is already challenging
to learn such a movement for fixed initial conditions, we

require the robot to generalize to different contexts, i.e., ball
positions and velocities to win a match. Thus, the robot
needs to adapt shape and execution speed of the DMPs
according to new contexts without re-learning the whole
task. This generalization is represented by the linear factor
in the Gaussian policy. To initialize the policy π(θ|s), we
use a set of M initial demonstrations paired with different
contexts. Given a dataset D = {yi, si}i=1:M , we obtain
M parameterizations θi using imitation learning and sub-
sequently initialize a,A,Σ with linear regression

Θ = [θ1, · · · ,θN ]
T
,

Φ =
[
[s1, · · · , sN ]

T
,1
]
,[

A
a

]
= (ΦTΦ)−1ΦΘ,

Σ = Cov(Θ). (9)

When using DMPs we can choose whether to only provide
a single demonstration to determine the mean of the initial
policy or to provide multiple demonstrations to also deter-
mine the covariance of the initial policy. We evaluate the
effects of this decision in the experimental section.

C. Contextual Episodic RL

While imitation learning is a powerful approach to initial-
ize the policy, it is often not sufficient to solve the learning
problem. Thus, the robot relies on RL methods to further
refine the policy. The goal for the robot, then, is to learn a
policy π(θ|s) that selects trajectories which hit the ball and
wind it around the pole for arbitrary initial ball positions and
velocities. More formally, the robot aims to find the policy
π that maximizes the reward function

Rπ =

∫
s

µ(s)

∫
θ

π(θ|s)Rθ,s dθ ds,

π∗(θ|s) = argmax
π

Rπ, (10)

where µ(s) is the distribution over contexts and Rθ,s is the
expected reward over all possible trajectories executed with
actions θ in context s, i.e., Rθ,s =

∫
τ
p(τ |θ, s)R(τ , s) dτ .

The reward function R(τ , s) is used to determine the quality
of trajectory τ executed during an episode with context s.
For the robot tetherball game, we formulate the reward in
terms of four components pi, i.e., R(τ , s) = p1 + p2 +
p3 + p4. The first term p1 = k1(1 − exp(d2)) reflects the
minimum distance d between the paddle and the ball during
the episode. Component p2 = k2J penalizes the total jerk of
all joints during the whole trajectory. The third term p3 is a
penalty occurring when the robot misses the ball or hits it in
the wrong direction. Finally, p4 is an additional penalty given
when the trajectory would cause a collision with the base the
robot is standing on. The scale factors ki are to transform
costs into rewards and to scale the objectives magnitude.

To solve the problem expressed in Eq. (10), we use
contextual relative entropy policy search (REPS) [14]. The
update step for the policy π(θ|s) is defined as the solution
of the constrained optimization problem that determines the



500 1,000 1,500 2,000 2,500

−40

−20

0

Rollouts

R
π

3 Basis functions
4 Basis functions
5 Basis functions

Fig. 3: Results for different number of Gaussian basis func-
tions per DoF used for the DMP. Four bases achieve the best
results. Using only three leads to less smooth trajectories,
while using five bases increases the complexity of the learning
problem without improving the quality of the final policy.

500 1,000 1,500 2,000 2,500
−100

−80

−60

−40

−20

0

Rollouts

R
π

1 Initial demo
10 Initial demos
20 Initial demos

Fig. 4: Comparison over different number of demonstrations
to initialize the policy π. Using only a single demonstration,
the initial policy performance is considerably worse, as it
is too explorative. Providing more demonstrations bootstraps
the learning process and leads to better final policies.

distribution p(s,θ) = µ(s)π(θ, s) that maximizes the aver-
age return Rπ . At the same time, REPS bounds the relative
entropy (also called Kullback-Leibler divergence) between
the new distribution p and the current one q to stay close to
the observed data to balance exploration and exploitation,
i.e.,

∫
s
p(s,θ) log (p(s,θ)/q(s,θ)) ds ≤ ε. However, the

context distribution p(s) =
∫
θ
p(s,θ) dθ cannot be chosen

freely, as it is specified by µ(s), i.e., we need to satisfy the
constraint ∀s : p(s) = µ(s). For continuous context vectors,
we implement this constraint by matching feature averages
instead of single probability values, i.e.,

∫
p(s)ϕ(s) ds =

ϕ̂, where ϕ(s) is a feature vector describing the context
and ϕ̂ is the mean observed feature vector. The resulting
constrained optimization problem is given by

max
p

∫∫
s,θ

p(s,θ)Rθ,s dsdθ,

s.t.
∫∫

s,θ

p(s,θ) log
p(s,θ)

q(s,θ)
ds ≤ ε,∫∫

s,θ

p(s,θ)ϕ(s) dsdθ = ϕ̂,∫∫
s,θ

p(s,θ) dsdθ = 1. (11)

Using the method of Lagrangian multipliers we derive the
closed form for the new distribution update step

p(s,θ) ∝ exp

(
Rs,θ − V (s)

η

)
, (12)

where the value function V (s) = γTϕ(s) is a context-
dependent baseline, while η and γ are the Lagrangian
parameters, found by optimizing the dual function.

As the relationship between the context-policy parameters
pair {s,θ} and the corresponding expected reward Rθ,s is
not known, sample rollouts are used to approximated the
integrals in Eq. (11). To execute the i-th rollout, we first
observe the context s[i] ∼ µ(s). Subsequently, we sample
the DMPs parameters θ[i] ∼ π(θ|s[i]). Finally, we execute

the DMPs with parametrization θ[i] in context s[i] to obtain
reward R[i]

θ,s. Repeating this process for N rollouts, we obtain
the average return Rπ and the weights p[i] for a maximum
likelihood update of the distribution p(s,θ)

p[i] ∝ exp

(
R

[i]
θ,s − V (s[i])

η

)
,

Rπ = 〈Rθ,s〉. (13)

The quality of the learned policy and the convergence
speed depend on the number of episodes N and by the basis
functions ϕ used. Using many rollouts helps reducing the
variance of an update step, but may also increase the number
of episodes to converge. In the same way, using many
features to approximate V (s) can slow down the solution
of the constrained optimization problem. We evaluate the
effects of these decisions in the experimental section.

V. EVALUATION

After detailing both the analytical player as well as the RL-
based player, we evaluate both and show the results in this
section. We start by investigating the effects of the different
parameters on the learned player and, subsequently, present
the results of comparing the analytical player to the learned
player. The evaluations done in simulation are averaged over
ten trials, while the evaluations done on the real robot are
averaged over three trials. As REPS does not rely on using
samples from only the last policy, we base the policy update
on samples from the last 20 policies to stabilize the policy
update. This stabilization is important to keep the shape of
the explorative variance of the policy in high dimensional
action spaces. The KL bound for all experiments in Eq. (11)
is set to ε = 0.9. The parameters, αz, α, β and τ of the
DMPs are set to αz = 0.8, α = 5, β = 1, τ = 1. These
parameters are chosen to reflect a qualitative trajectory shape
that broadly fits the stroke profiles in our task.

For the real robot experiments, a Kinect sensor mounted on
the ceiling delivers color and depth images at a rate of 30Hz.



0 500 1,000 1,500 2,000 2,500
−60

−40

−20

0

Rollouts

R
π

10 Episodes per iteration
25 Episodes per iteration
50 Episodes per iteration

Fig. 5: Evaluation of different number of episodes per itera-
tion. With ten samples the algorithm already performs well.
Providing 25 samples slightly improves asymptotic quality
but requires more overall samples. With 50 samples the policy
does not converge in the limit of 2,500 total evaluations.

500 1,000 1,500 2,000 2,500

−40

−20

0

Rollouts

R
π

Linear features
Squared features
Kernel features

Fig. 6: Comparison over different types of basis functions to
approximate the value function. While kernel based features
are computationally more intensive and generally require
more samples to work well, they also increase performance
of the final policy.

As the pivot point of the string cannot be detected by the
vision system, an unscented Kalman filter [15] approximates
the translation of the pivot point h along the pole.

A. Evaluation of DMP Basis Functions

An important parameter of DMPs is the number of basis
function ψ(zt) used to parametrize the forcing function
f(zt,θ). A higher number of basis functions allows for
more complicated trajectory shapes but also increases the
dimensionality of the action space Θ and, thus, makes the
learning problem harder. Fig. 3 shows the comparison of
learning with different numbers of Gaussian basis functions
ψ(zt). The plot shows that using three or four basis functions
leads to comparable results, while using five basis functions
per joint is increasing the complexity offsetting the potential
benefit of learning more expressive trajectories. While the
expected reward achieved with three and four basis func-
tions is similar, the trajectories generated using four basis
functions are overall smoother. Therefore we use four basis
function for all following experiments.

B. Selection of Initial Demonstration

We also investigate the number of demonstration recorded
to initialize the policy π(θ, s). Fig. 4 shows that providing
only a single demonstration leads to poor results. The reason
is that with only one demonstration the initial covariance Σ
needs to be set manually and uniformly in all dimensions (in
our trials, Σ = 100I). This decision is not straightforward
and can produce policies that are too explorative, signifi-
cantly increasing the convergence time. Indeed, it can be
noticed that after 2,500 episodes, the policy is still improving,
but its quality is far below those policies whose initial ex-
ploration bounds were determined through additional demon-
strations. When using multiple demonstrations, we choose a
set of trajectory-context pairs that span the largest context
space possible. We also allow low quality demonstrations
in which the robot misses the ball. As expected, the more
demonstrations are provided, the better the quality of the

initial policy is. However, in order to restrict the number of
demonstrations to a reasonable value, we decide not to use
more than 20 demonstrations.

C. Evaluation of Value Function Features

Contextual REPS depends on a feature representation
ϕ(s) of the state s to predict the expected quality V (s) of
that state. While simpler features like linear or squared fea-
tures can be more robust and sample efficient, kernel based
features promise better performance for complex problems.
Fig. 6 shows that for the problem of robot tetherball kernel
based features indeed outperform the simpler alternatives.
While linear and squared features can be used to achieve ac-
ceptable performance, the greater flexibility of kernel based
features offers an edge in due to the non-linearity of the task.

D. Selection of Number of Rollouts

An important trade-off for any policy search algorithm
is the number of evaluations used per policy update. While
more samples yield more stable updates, they also slow down
the learning process. Fig. 5 shows that when using only
10 episodes the reward quickly increase but the asymptotic
performance is slightly below what can be achieved when
using 25 rollouts per iteration. Using 50 episodes slows down
the learning process considerably and does not lead to a
converged policy after the limit of 2,500 total episodes. The
plot for using ten samples per iteration is more noisy as it
is averaged over fewer rollouts per data point.

E. Analytical vs. Learned Player

According to the results reported, we set the learned
player to use 20 initial demonstrations, four Gaussian basis
functions for the DMP, kernel based features with three
centers for approximating value function, and 25 episodes
per iteration for the policy update. To get an initial estimate
of their relative quality, we compare the learned player to
the analytical one in a single player experiment using the hit
rate as measure of evaluation. The comparison is performed



20 40 60 80 100

0.4

0.6

0.8

1

Iterations

H
it

ra
te

Learned player
Analytical player

Fig. 7: Comparison of the real robots in the single player
setup, averaged over three trials and ten rollouts per iteration.
The learned player reaches performance levels similar to the
analytical one after about 50 iterations and outperforms it at
the end of learning.

on the real system over three trials, every ten iterations and
over ten episodes, summing up to 300 rollouts.

As shown in Fig. 7, the learned player outperforms the
hand-crafted system. The advantage of the learned system
is due to its ability to learn to compensate the highly non-
linear forward dynamics of the robot, as caused by springs in
the joints. On the other hand, lacking a full inverse dynam-
ics model, the analytical player fully depends on accurate
tracking of the planned trajectory. Therefore, improving the
analytical player would require a time-consuming process to
explicitly approximate the dynamics of the robots.

F. Two Player Full Tetherball

As final evaluation, we let the real robots play full matches
against each other and compare them according to the score.
A match is started by the referee throwing the ball randomly
to one of the robots and ends when none of the robots is able
to hit the ball anymore. The score of a match is determined
by how often the ball winds around the pole for each player,
i.e., by the number of misses of the opponent. The two robots
played a total of 25 games. The analytical player won six of
the 25 games, while the learned player won the remaining
19 games. Throughout the 25 games, the analytical player
scored eight times, while the learned player scored 38 times.

VI. CONCLUSION

While learning policies to solve complex tasks is an
appealing concept, no thorough comparison of a learned skill
versus a hand-crafted solution has been presented so far. In
this paper we showed the steps necessary to build both a
high quality analytical player as well as a learned player
that uses state-of-the-art modules in reinforcement learning
for the game of robot tetherball. Although the learning
modules do require the tuning of open parameters, doing so
is far less time intensive than building a mathematical model
for a given task. Moreover, the learning approach achieved
better results, as the learned player outperforms the hand-
crafted opponent. We also evaluate the open parameters of

TABLE I: Match results for the real robots. The learned
player defeats the analytical one and achieves better overall
hit rate, averaged over 25 matches.

Player Hit rate Matches won Total score

Analytical 71% 6/25 8

Learned 85% 19/25 38

the RL components used in this paper and give insights into
how these parameters can be chosen for arbitrary episodic
problems. Our results show that the number of rollouts per
iteration and number of initial demonstrations are crucial
for sample efficiency in high-dimensional context space. As
tasks requiring human participation can pose a limit on sam-
ple complexity, we want to investigate the use of importance
sampling techniques and model-based approaches. Finally,
we also plan to incorporate online feedback by extending
our framework to step-based RL approaches.

ACKNOWLEDGEMENT

The authors want to thank for the support of the German
Research Foundation project # PE 2315/2-1 (ScARL) and of
the European Union project # FP7-ICT-2011-9 (CoDyCo).

REFERENCES

[1] J. Kober and J. Peters, “Policy search for motor primitives in robotics,”
in Advances in Neural Information Processing Systems (NIPS), 2009.

[2] P. Kormushev, S. Calinon, and D. G. Caldwell, “Reinforcement learn-
ing in robotics: Applications and real-world challenges,” Robotics,
vol. 2, no. 3, 2013.

[3] V. Gullapalli, J. A. Franklin, and H. Benbrahim, “Acquiring robot skills
via reinforcement learning,” Control Systems, vol. 14, no. 1, 1994.

[4] C. Daniel, G. Neumann, and J. Peters, “Learning concurrent motor
skills in versatile solution spaces,” in Proceedings of the International
Conference on Intelligent Robots and Systems (IROS), 2012.

[5] T. Matsubara, J. Morimoto, J. Nakanishi, M. Sato, and K. Doya,
“Learning sensory feedback to cpg with policy gradient for biped loco-
motion,” in Proceedings of the International Conference on Robotics
and Automation (ICRA), 2005.

[6] E. Theodorou, J. Buchli, and S. Schaal, “Learning policy improve-
ments with path integrals,” in Proceedings of the International Con-
ference on Artificial Intelligence and Statistics (AISTATS), 2010.

[7] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor
landscapes for learning motor primitives,” in Advances in Neural
Information Processing Systems (NIPS), 2002.

[8] S. Schaal, A. Ijspeert, and A. Billard, “Computational approaches to
motor learning by imitation,” Philosophical Transactions of the Royal
Society. Series B: Biological Sciences, vol. 358, no. 1431, 2003.

[9] M. P. Deisenroth, G. Neumann, and J. Peters, “A survey on policy
search for robotics.” Foundations and Trends in Robotics, vol. 2, no.
1-2, 2013.

[10] C. Daniel, G. Neumann, and J. Peters, “Hierarchical relative entropy
policy search,” in Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS), 2012.

[11] T. Lens and O. von Stryk, “Design and dynamics model of a
lightweight series elastic tendon-driven robot arm,” in Proceedings
of the International Conference on Robotics and Automation (ICRA),
2013.

[12] H. Abdulsamad, T. Buchholz, T. Croon, and M. El Khoury, “Playing
tetherball with compliant robots,” TU Darmstadt, Tech. Rep., 2014.

[13] A. M. Bloch, Nonholonomic mechanics and control. Springer, 2003,
vol. 24.

[14] J. Peters, K. Muelling, and Y. Altun, “Relative entropy policy search,”
in Proceedings of the Conference on Artificial Intelligence (AAAI),
2010.

[15] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear
approaches. John Wiley & Sons, 2006.


	Introduction
	Robot Tetherball
	The Analytical Player
	Mathematical Trajectory Prediction
	Generating Hitting Trajectories

	Learning to Play Tetherball
	Compact Skill Representation
	Imitation Learning of DMPs
	Contextual Episodic RL

	Evaluation
	Evaluation of DMP Basis Functions
	Selection of Initial Demonstration
	Evaluation of Value Function Features
	Selection of Number of Rollouts
	Analytical vs. Learned Player
	Two Player Full Tetherball

	Conclusion
	References

