Notes on Analytical Dynamics

Jan Peters \& Michael Mistry

October 17, 2004

1 Newtonian Mechanics

1.1 Basic Asssumptions and Newtons Laws

- Lonely pointmasses with positive mass.
- Newtons 1st: Constant velocity v in an inertial frame (i.e., no acceleration).
- Newtons 2nd: $F=d(m v) / d t$.
- Newtons 3rd: Action has reaction.
- 2 isolated particles: $m_{1} v_{1}+m_{2} v_{2}=p_{\Sigma} \Longrightarrow F_{1}+F_{2}=0$.

1.2 Practical Pendulum Equations

We have a base acceleration $\mathbf{a}_{0}=\ddot{x}_{0} \mathbf{i}+\ddot{y}_{0} \mathbf{j}$ and angular acceleration $\ddot{\theta} \mathbf{k}=\dot{\omega} \Longleftrightarrow$ $\dot{\theta} \mathbf{k}=\omega$. This implies that

$$
\mathbf{a}_{B}=\mathbf{a}_{0}+\mathbf{a}_{B \mid 0},
$$

with

$$
\mathbf{a}_{B \mid 0}=\dot{\omega} \times \mathbf{R}+\omega \times(\omega \times \mathbf{R}) .
$$

1.3 Energy

We define

$$
\Delta T=\int_{x_{0}}^{x_{f}} F(x) d x=\int_{x_{0}}^{x_{f}}-\nabla V(x) d x=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{0}^{2},
$$

where we use $T=m v^{2} / 2 \geq 0$ as the kinetic energy, and have $F(x)=-\nabla_{x} V(x)$ for the potential energy for conservative systems. From this we also realize that $V\left(x_{0}\right)+T\left(x_{0}\right)=V\left(x_{f}\right)+T\left(x_{f}\right)=$ const. Furthermore, we have $m \ddot{x}=F(x)$.

1.4 Langrangians from Energy

From Kinetic Energy, we can derive the generalized equations of motion. Assume we have $T=0.5 \sum_{i=1}^{n} m \dot{x}^{2}$ as kinetic energy for a system of particle, and the positions as functions of generalized coordinates, i.e., $x=x(q)$. In this case, we also have

$$
\begin{aligned}
\frac{\partial T}{\partial q_{k}} & =\sum_{i} m_{i} \dot{x}_{i} \frac{\partial \dot{x}_{i}}{\partial q_{k}}=\sum_{i} p_{i} \frac{\partial \dot{x}_{i}}{\partial q_{k}} \\
\frac{\partial T}{\partial \dot{q}_{k}} & =\sum_{i} m_{i} \dot{x}_{i} \frac{\partial \dot{x}_{i}}{\partial \dot{q}_{k}}=\sum_{i} p_{i} \frac{\partial x_{i}}{\partial q_{k}}
\end{aligned}
$$

where the later part is only true for holomonic constraints (i.e., constraints do only depend on the generalized positions and time or, equivalently, $x_{i}=$ $\left.x_{i}\left(q_{1}, \ldots, q_{n}, t\right)\right)$ for which we have "dot-cancellation". When differentiating the later of the two with respect to time, we obtain

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{k}}\right)=\sum_{i} \dot{p}_{i} \frac{\partial x_{i}}{\partial q_{k}}+\sum_{i} p_{i} \frac{\partial \dot{x}_{i}}{\partial q_{k}}
$$

When adding up these equations, we realize that

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{k}}\right)-\frac{\partial T}{\partial q_{k}}=\sum_{i} \dot{p}_{i} \frac{\partial x_{i}}{\partial q_{k}}=\sum_{i} F_{i} \frac{\partial x_{i}}{\partial q_{k}}=\tau_{k}
$$

where τ_{i} is generalized force. We can repeat the same excercise for any $V(q)$, where we obtain $\tau_{k}=-\partial V / d q_{k}$ as $\partial V / d \dot{q}_{k}=0$. When defining the Lagrangian

$$
L=T-V
$$

this implies that

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{k}}\right)-\frac{\partial L}{\partial q_{k}}=0
$$

which is equivalent to saying that the force derived from V is equal to the one derived from T.

1.5 Duration of Motion

From

$$
\frac{1}{2} m\left(\frac{d x}{d t}\right)^{2}+V(x)=h
$$

we can infer the duration of movement for two points, i.e.,

$$
T=\int_{t_{0}}^{t_{f}} d t=\sqrt{\frac{m}{2}} \int_{x_{0}}^{x_{f}} \frac{d x}{\sqrt{h-V(x)}}
$$

If $T=g\left(x_{0}, x_{f}, h\right)$ is invertable, we have $x=g^{-1}\left(x_{0}, t-t_{0}, h\right)$. Its usually intractable.

An additional representation is given by $V(q)=V_{0}(q)+\varepsilon V_{1}(q)$, which implies that $T(h)=T_{0}(h)+\varepsilon T_{1}(h)$ also has

$$
\begin{aligned}
& T_{0}(h) \approx 2 \sqrt{2 m} \frac{d}{d h} \int_{q_{10}}^{q_{20}} \sqrt{h-V_{0}(q)} d q \\
& T_{1}(h) \approx-\sqrt{2 m} \frac{d}{d h} \int_{q_{10}}^{q_{20}} \frac{1}{\sqrt{h-V_{0}(q)}} d q
\end{aligned}
$$

1.6 Small Oscillations

When linearizing $0.5 m \dot{x}^{2}+V(x)=h_{0}$ around an equilibrium point x_{0} with a small deviation Δx, we obtain $0.5 m \Delta \dot{x}^{2}+V\left(x_{0}+\Delta x\right)=h_{0}+\Delta h$, and subtracting the two yields

$$
\frac{1}{2} m \Delta \dot{x}^{2}+\left.\frac{1}{2} \frac{\partial^{2} V}{\partial x^{2}}\right|_{x_{0}} \Delta x^{2}=\Delta h
$$

When comparing this equation to a linear oscillator, it yields the frequency and amplitude

$$
\begin{aligned}
\omega^{2} & =\left.\frac{1}{m} \frac{\partial^{2} V}{\partial x^{2}}\right|_{x_{0}} \\
A & =\sqrt{\frac{2 \Delta h}{V^{\prime \prime}\left(x_{0}\right)}}
\end{aligned}
$$

1.7 Phase planes

We can draw phase plane motions using the potential function. We have have the following rules, illustrated in Figure 1.

- Endpoints on the x-axis have $V(x)=h$. These are the amplitudes of the oscillation.
- Endpoints on the \dot{x}-axis have $T(\dot{x}, x)=h$.
- A hill is a seperatrix on the axis, a valley an attractor.

2 Hamiltonian Dynamics

2.1 Basic Idea

The basic idea of Hamiltonian Dynamics is to replace the variables x by the generalized coordinate q and \dot{x} by the conjugate momentum p, where

$$
\begin{aligned}
& x=q \\
& p=m \dot{x} .
\end{aligned}
$$

Figure 1: This figure demonstrates how to obtain a phaseplane motion from a potential function in a conservative system.

For example, for the Hamiltonian $H(q, p, t)=p^{2} /(2 m)+V(q, t)$, where we see that

$$
\begin{aligned}
& \dot{q}=\frac{p}{m}=\frac{\partial H(q, p, t)}{\partial p} \\
& \dot{p}=F(q, t)=-\frac{\partial H(q, p, t)}{\partial q}
\end{aligned}
$$

When differentiating a time-invariant $H(q, p)$ with respect to time, we see that

$$
\begin{aligned}
\frac{d H(q, p)}{d t} & =\frac{\partial H(q, p)}{\partial q} \frac{d q}{d t}+\frac{\partial H(q, p)}{\partial p} \frac{d p}{d t} \\
& =\frac{\partial H(q, p)}{\partial q} \frac{\partial H(q, p, t)}{\partial p}-\frac{\partial H(q, p)}{\partial p} \frac{\partial H(q, p, t)}{\partial q}=0
\end{aligned}
$$

i.e., that all trajectories have constant Hamiltonians or are on the isoclines.

2.2 Understanding Hamiltonians

A quantity is considered "conserved" if it is constant over time while the motion proceed, i.e., it is independent of the generalized velocities \dot{q}_{k}. For example, the
energy $E=V+T$ is conserved. We can express this in general as the difference of the part of the Langrangian which depends explicitly on \dot{q}_{k} and the whole langrangian, i.e.,

$$
H \equiv \sum_{k} \dot{q}_{k} \frac{\partial L}{\partial \dot{q}_{k}}-L .
$$

By differentiating, we obtain

$$
\frac{d H}{d t}=-\frac{\partial L}{\partial t},
$$

which implies that H is only conserved if time does not appear explicitly in the Lagrangian. Additionally, we have

$$
\frac{d H}{d q}=-\frac{\partial L}{\partial q}
$$

2.3 Area Preservation

When linearizing the resulting equations from the Hamiltonian, we obtain

$$
\begin{aligned}
& q(t)=q\left(t_{0}+\delta t\right)=q\left(t_{0}\right)+\left.\frac{d q}{d t}\right|_{t_{0}} \delta t+O\left(\delta t^{2}\right)=\underbrace{q\left(t_{0}\right)+\frac{\partial H}{\partial p} \delta t+O\left(\delta t^{2}\right)}_{f(q, p, t)} \\
& p(t)=p\left(t_{0}+\delta t\right)=p\left(t_{0}\right)+\left.\frac{d p}{d t}\right|_{t_{0}} \delta t+O\left(\delta t^{2}\right)=\underbrace{p\left(t_{0}\right)-\frac{\partial H}{\partial q} \delta t+O\left(\delta t^{2}\right)}_{g(q, p, t)}
\end{aligned}
$$

Now, we can also linearize $d p$ and $d q$, and obtain

$$
\begin{aligned}
& d p(t)=\frac{d f}{d q} d q+\frac{d f}{d p} d p=\left(1+\frac{\partial^{2} H}{\partial q \partial p}\right) d q+\left(\frac{\partial^{2} H}{\partial p^{2}}\right) d p \\
& d q(t)=\frac{d g}{d q} d q+\frac{d g}{d p} d p=\left(-\frac{\partial^{2} H}{\partial q^{2}}\right) d q+\left(1-\frac{\partial^{2} H}{\partial p \partial q}\right) d p
\end{aligned}
$$

When denoted as

$$
\left[\begin{array}{l}
d p(t) \\
d q(t)
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
1+\frac{\partial^{2} H}{\partial q \partial p} & \frac{\partial^{2} H}{\partial p^{2}} \\
-\frac{\partial^{2} H}{\partial q^{2}} & 1-\frac{\partial^{2} H}{\partial p \partial q}
\end{array}\right]}_{A}\left[\begin{array}{l}
d p\left(t_{0}\right) \\
d q\left(t_{0}\right)
\end{array}\right]
$$

we realize that $\operatorname{det} A=1+O\left(\delta t^{2}\right) \approx 1$, i.e., that the area of any point in state space is constant and we have area preserving mapping. This area conservation is equivalent to Energy conservation, see Figure .

Figure 2: This figure illustrates the conservation of the area in (q, p) space which is equivalent to the conservation of energy.

2.4 Hamiltonians and Lagrangians

The connection between $\{x, \dot{x}\}$ and $\{q, p\}$ is not always a simple scaling operation but are in fact defined by some operations. We define the $\dot{q}=u$, and $p_{k} \equiv \partial L / \partial \dot{q}_{k}$. From

$$
H \equiv \sum_{k} \dot{q}_{k} \frac{\partial L}{\partial \dot{q}_{k}}-L=\sum_{k} u_{k} p_{k}-L
$$

This yields for a one particle system the equation

$$
L(q, u, t)=p u-H(q, p, t)
$$

We realize that $u=(L+H) / p$. This transformation is illustrated in Figure 3. Furthermore, we realize

$$
\dot{q}=u=\frac{\partial H}{\partial p}
$$

The Lagrangian is defined as an function $L(q, u, t)$ in terms of position and the slope of the path with respect to q. The Hamiltonian is defined as a function $H(q, p, t)$ in terms of the position and the momentum. This is illustrated in Figure 4. If you are given a Hamiltonian such as $H(p)=p^{2} /(2 m)$, you can always compute the Lagrangian which would be $L(u)=p u-H(p)=m u^{2} / 2=$ $m \dot{q}^{2} / 2$ as $u=\partial H / \partial p=p / m \Longleftrightarrow p=m u$ in this example.

Figure 3: This Figure illustrates the transformation of a Lagrangian into a Hamiltonian.

3 Systems of Particles

3.1 Momentum

The motion of a system or particles can be described in terms of the motion \mathbf{X}_{c} of the center of mass (i.e., the translation) and the rotation around the center of mass. If we define $\mathbf{y}_{i}=\mathbf{x}_{i}-\mathbf{X}_{c}$, and $M=\sum_{i} m_{i}$, we can obtain

$$
\mathbf{L}_{0}=M \mathbf{X}_{c} \times \dot{\mathbf{X}}_{c}+\sum_{i} m_{i} \mathbf{y}_{i} \times \dot{\mathbf{y}}_{i}=\sum_{i} m_{i} \mathbf{x}_{i} \times \dot{\mathbf{x}}_{i}
$$

where $\sum_{i} m_{i} \mathbf{x}_{i}=M \mathbf{X}_{c}$.

3.2 Torques

The torques around the the center of mass is given by

$$
\tau_{c}=\sum_{i=1}^{n} \mathbf{y}_{i} \times \mathbf{F}_{i}=\frac{d}{d t}\left(\sum_{i} m_{i} \mathbf{y}_{i} \times \dot{\mathbf{y}}_{i}\right)=\dot{\mathbf{L}}_{c}
$$

Figure 4: This figure illustrates the transformation of a Hamiltonian into a Lagrangian.
and by

$$
\tau_{z_{0}}=\mathbf{r} \times M \ddot{\mathbf{X}}_{c}+\dot{L}_{c}
$$

where $M \ddot{\mathbf{X}}_{c}=\sum_{i=1}^{n} \mathbf{F}_{i}$, and $\mathbf{r}=\mathbf{z}_{0}-\mathbf{X}_{c}$. This also yields

$$
\tau_{z_{0}}=M \mathbf{r} \times \ddot{\mathbf{z}}_{0}+\dot{\mathbf{L}}_{z_{0}}
$$

where $\mathbf{L}_{z_{0}}$ represents the angular moment around $\mathbf{z}_{0} . M \mathbf{r} \times \ddot{\mathbf{z}}_{0}$ is zero if $\ddot{\mathbf{z}}_{0}=\mathbf{0}$, or if $\mathbf{r}=\mathbf{0}$, or if $\mathbf{r} \| \ddot{\mathbf{z}}_{0}$.

3.3 Kinetic Energy

The kinetic energy is given by

$$
T=\frac{1}{2} \sum_{i} m_{i} \dot{\mathbf{x}}_{i} \cdot \dot{\mathbf{x}}_{i}=\frac{1}{2} M \dot{\mathbf{X}}_{c} \cdot \dot{\mathbf{X}}_{c}+\frac{1}{2} \sum_{i} m_{i} \dot{\mathbf{y}}_{i} \cdot \dot{\mathbf{y}}_{i} .
$$

Note that $0.5 \sum_{i} m_{i} \dot{\mathbf{y}}_{i} \cdot \dot{\mathbf{y}}_{i}=0.5 \sum_{i} m_{i} r_{i}^{2} \omega^{2}=0.5 I \omega^{2}$, and therefore

$$
T=\frac{1}{2} M\left\|\dot{\mathbf{X}}_{c}\right\|^{2}+\frac{1}{2} I \omega^{2} .
$$

The rotational part is given by $T_{\text {rot }}=0.5 \omega \mathbf{L}_{0}=0.5 \omega \times \sum_{i} m_{i} \mathbf{r}_{i} \times \mathbf{v}_{i}$.

3.4 General Representation

The general representation of a system of particle is given by

$$
\mathbf{M} \ddot{\mathbf{x}}(t)=\mathbf{F}(\mathbf{x}, \dot{\mathbf{x}}, t)+\mathbf{F}_{c}
$$

where \mathbf{F} represents the external forces which create work, and \mathbf{F}_{c} represents the constraint forces. This gives us $3 n$ equations but we have equally many new unknowns as we do not know the constraint forces.

Let us assume that we are given some (even non-holomonic) m constraints

$$
\varphi_{i}(\mathbf{x}, \dot{\mathbf{x}}, t)=0
$$

then we can differentiate these and obtain

$$
\mathbf{A}(\mathbf{x}, \dot{\mathbf{x}}, t) \ddot{\mathbf{x}}=\mathbf{b}(\mathbf{x}, \dot{\mathbf{x}}, t)
$$

where \mathbf{A} is a $3 n$ by m matrix.

3.5 General Solution

In general, we the unconstrained acceleration $\mathbf{M a}=\mathbf{F}$, and the constraint forces $\mathbf{F}_{c}=\mathbf{M}^{+1 / 2}\left(\mathbf{A M}^{-1 / 2}\right)^{+}(\mathbf{b}-\mathbf{A a})$. combined, this yields the fundamental equation of motion

$$
\ddot{\mathbf{x}}(t)=\mathbf{M}^{-1} \mathbf{F}+\mathbf{M}^{+1 / 2}\left(\mathbf{A} \mathbf{M}^{-1 / 2}\right)^{+}\left(\mathbf{b}-\mathbf{A} \mathbf{M}^{-1} \mathbf{F}\right) .
$$

We can find $\mathbf{M}^{-1 / 2}$ by fulfilling the following three conditions (i) $\mathbf{M}^{-1 / 2} \mathbf{M}^{1 / 2}=$
\mathbf{I}, (ii) $\mathbf{M}^{-1 / 2} \mathbf{M}^{-1 / 2}=\mathbf{M}^{-1}$, and (iii) $\mathbf{M}^{-1 / 2} \mathbf{M} \mathbf{M}^{-1 / 2}=\mathbf{I}$. For $\mathbf{M}=\operatorname{diag}\left(m_{1}, \ldots, m_{n}\right)$, we also have $\mathbf{M}^{-1 / 2}=\operatorname{diag}\left(1 / \sqrt{m_{1}}, \ldots, 1 / \sqrt{m}_{1}\right)$.

For a system with $\mathbf{M}=m \mathbf{I}$, we can simplify the fundamental equation to

$$
\ddot{\mathbf{x}}(t)=\frac{1}{m} \mathbf{F}+\frac{1}{m} \mathbf{A}^{-1}\left(\mathbf{b}-\frac{1}{m} \mathbf{A F}\right) .
$$

Note that $\mathbf{e}=(\mathbf{b}-\mathbf{A a})$ is like an error in a control equation.

3.6 Interpretation of the General Solution

We have two interpretations for this result.
Least-Squares Solution. The general solution can be interpreted as the solution to the minimization problem

$$
\min _{\ddot{\ddot{x}}}(\ddot{\mathbf{x}}-\mathbf{a})^{T} \mathbf{M}(\ddot{\mathbf{x}}-\mathbf{a})
$$

under the constraint $\mathbf{A} \ddot{\mathbf{x}}=\mathbf{b}$.

Nature as a controller. We realize that nature is basically a controller

$$
\boldsymbol{\Delta} \ddot{\mathbf{x}}=\ddot{\mathbf{x}}-\mathbf{a}=\mathbf{M}^{-1 / 2}\left(\mathbf{A} \mathbf{M}^{-1 / 2}\right)^{+}(\mathbf{b}-\mathbf{A} \mathbf{a})=\mathbf{K}_{1} \mathbf{e}
$$

with $\mathbf{K}_{1}=\mathbf{M}^{-1 / 2}\left(\mathbf{A} \mathbf{M}^{-1 / 2}\right)^{+}$. The motor command is

$$
\mathbf{F}_{c}=\mathbf{M}^{+1 / 2}\left(\mathbf{A} \mathbf{M}^{-1 / 2}\right)^{+}(\mathbf{b}-\mathbf{A} \mathbf{a})=\mathbf{K}_{2} \mathbf{e}
$$

with $\mathbf{K}_{2}=\mathbf{M}^{+1 / 2}\left(\mathbf{A} \mathbf{M}^{-1 / 2}\right)^{+}$.

3.7 Langrange's View of Life

1. Determine the unconstrained motion from $\mathbf{M} \ddot{\mathbf{x}}_{u}=\mathbf{F}$, where \mathbf{M} is a n by n matrix and $\ddot{\mathbf{x}}, \mathbf{F}$ are n vectors.
2. Determine the constraints in the form $\mathbf{A} \ddot{\mathbf{x}}=\mathbf{b}$ where \mathbf{A} is a n by m Matrix with $\operatorname{rank} \mathbf{A}=r$.
3. Several accelerations $\ddot{\mathbf{x}}_{0}, \ldots, \ddot{\mathbf{x}}_{n-r}$ are possible accelerations as they fulfill $\mathbf{A} \ddot{\mathbf{x}}_{i}=\mathbf{b}$ where exactly $n-r$ of the $n-r+1$ are linear independent.
4. When subtracting the $\ddot{\mathbf{x}}_{0}$ we obtain $n-r$ virtual displacements

$$
\delta \mathbf{x}_{i}=\ddot{\mathbf{x}}_{i}-\ddot{\mathbf{x}}_{0}
$$

for which $\mathbf{A} \delta \mathbf{x}_{i}=\mathbf{0}$. These displacements do not create work, i.e., we have $\mathbf{F}_{c}^{T} \delta \mathbf{x}_{i}=0$ (D'Alemberts principle). These can also we obtained by rewriting $\mathbf{A} \delta \mathbf{x}_{i}=\mathbf{0}$ as creating vectors like

$$
\mathbf{v}=\left[\begin{array}{c}
v_{1}\left(v_{r+1}, \ldots, v_{n}\right) \\
\vdots \\
v_{r}\left(v_{r+1}, \ldots, v_{n}\right) \\
v_{r+1} \\
\vdots \\
v_{n}
\end{array}\right]
$$

and then obtaining $1 \leq i \leq n-r$ vectors as

$$
\delta \mathbf{x}_{i}=\left[\begin{array}{c}
v_{1}\left(0, \ldots, 0, v_{r+i}, 0, \ldots, 0\right) \\
\vdots \\
v_{r}\left(0, \ldots, 0, v_{r+i}, 0, \ldots, 0\right) \\
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

5. This gives us

$$
\begin{aligned}
\mathbf{M} \ddot{\mathbf{x}} & =\mathbf{F}+\mathbf{F}_{c}, \\
\mathbf{A} \ddot{\mathbf{x}} & =\mathbf{b} \\
\mathbf{F}_{c}^{T} \delta \mathbf{x}_{i} & =0,
\end{aligned}
$$

which allows us to determine the n unknowns in $\ddot{\mathbf{x}}$, and the n in \mathbf{F}_{c}.

3.8 Gauss view of Life (Le Chateliers Principle)

1. Determine the unconstrained motion from $\mathbf{M} \ddot{\mathbf{x}}_{u}=\mathbf{F}$, where \mathbf{M} is a n by n matrix and $\ddot{\mathbf{x}}, \mathbf{F}$ are n vectors.
2. Nature considers all possible accelerations $\mathbf{A} \ddot{\tilde{\mathbf{x}}}=\mathbf{b}$ which comply with the constraints.
3. Nature picks the one possible acceleration which minimizes the Gaussian

$$
G(\ddot{\tilde{\mathbf{x}}})=\left(\ddot{\tilde{\mathbf{x}}}-\ddot{\mathbf{x}}_{u}\right)^{T} \mathbf{M}(\ddot{\tilde{\mathbf{x}}}-\mathbf{a})
$$

i.e., Nature is solving a global minimization problem at each instant of time or Nature takes the minimum deviation from the unconstrained motion.

