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1 Second-order Systems

1.1 Basics

Every second order system can be brought in the state-space form

Z1| _ [fi(zr, @2,1)

P fa(@1,22,8) |
For second-order systems, we are mostly interested in the phase plane (z2,z1).
The angle of the trajectory is given by

_osa® Ly fo(w,a,t)
0(f(x)) = tan i = tan 7f1(3:1,x2,t)’

at a point Z.

1.2 Linear Systems

Every linear system X = Ax can be transformed into an equivalent, canonical
linear system by z = Q~!x, where the qualitative behavior of both is equivalent,
and the one of z is denoted by

z=Q 'AQz = Az.

The matrix A is determined by the Eigenvalues. The Eigenvalues can be com-

puted by
T T /-
A1/2:§i§ T2—4A,

where T'= Tr A, and A = det A. This yields several cases as shown in Table 1.
The local coordinate system is then given by the

X = q121 + g222,

where Q = [q1,q2]. Hence you can just draw each coordinate system by by
setting one of the z; = 0.



[ Eigenvalues | Type | Picture |

R

X
1

A >0,and A\; € R Stable node

2,

A <0,and A\; € R Unstable node

A1 X2 <0,and A\; € R Saddle point }

Ai=a=xjB, and \; € C | Unstable focus
ANi=axjf, and \; € C Stable focus %

Xz
© g
a0
2,
Xz
© g
2z
Iz
zp

X,
]
1,
z

1

A = ﬂ:jﬁl, and \; € C Center

Table 1: A table showing all main behaviors of second order systems

1.3 Second-order linear differential equation
The general second order linear differential equation can be given as
i+ 28wy +w? =0,

and it has the Eigenvalues A/, = —fw & w+/§ — 2. This implies that it can be
a stable focus (0 < £ < 1), a stable node (£ > 1), a center (£ = 0), an unstable
focus (—1 < £ < 0), or an unstable node ({£ < —1).

1.4 Analysis by Linearization

We can linearize the system around an equilibrium point xeq for which f(xeq) =
0. When defining Ax = x — X4, We can linearize the local solution and get

of

. afl 1
Ady = a4+ I
1 B 1 + 91, T2 + €1,
ALy = %A.Tl + %ACCQ + €9,
83;1 8332

where € € O(Ax?). For small Az; the linearized system yields similar behavior
as the nonlinear one except for the center.



1.5 Drawing Phase Planes

This gives a recipe for drawing phase planes:

1. Horizontal axis is denoted by x1, vertical axis by x».

2. Equilibrium Points

(a) Determine equilibrium points by f(Xeq) = 0.

(b) Linearize around equilibrium points by A;; = 0f;/0z;.

(c) Determine equilibrium point type from Eigenvalues by
T T
-4z
2
where T'=Tr A, and A = det A

(d) Determine local coordinate system or Eigenvectors from Table 1.

Aija = T2 _4A,

(e) Draw local trajectories using the example.
3. Determine Isoclines

(a)
(b)
()

)

(d) Horizontal arrows to the left where &2 =0, @1 < 0.

Vertical arrows up where 21 = 0, @5 > 0.
Vertical arrows down where 1 = 0, ©2 < 0.

Horizontal arrows to the right where o = 0, &1 > 0.

4. Use symmetry if possible.

5. Draw Trajectories which do not intersect.

1.6 Special case: §j = g(3, )

The system §j = ¢(y,y) becomes &1 = § = xa, @2 = g(¢,y) = g(x2,21) in
state-space form. It has the following properties:

e All equilibrium points intersect with the horizontal axis.
e All trajectories have vertical slope at the horizontal axis.

e If |g(y,y)| is bounded, the vertical slope can only occur on the horizontal
axis.
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Figure 1: Separation of the linear and nonlinear block.

2 Piecewiese linear Switching Systems

2.1 Response to a Step Impulse

The response to a step input can be analyzed as follows:

1. Seperate the system into a nonlinear system N (e, ¢) and a linear system

F(s) as in Figure 1.

. Transform the F(s) = Y (s)/U(s) into time-domain where f(y, 9y, %) +u =
0.

. The step input r(t) = A - 1(¢), yields e = r — y = A — y,which implies
y:A_evy:_évy:_éa

and therefore
f(A—e,—¢é,—é)+ N(e) =0.

. Separate all linear regions of N(e) by decision borders, and rename the
r1 = e, and x9 = €.

. Analyze the different piece-wise linear regions. Use separation of variable

for p
X
d—xi = h(z1,72),

if possible. Three practical cases:(i) Lines h(z1, 22) = const, (ii) Parabola
h(xl,xg) = B/QL‘Q.

2.2 Response to a Ramp Impulse

The response to a step input can be analyzed as follows:

1. Seperate the system into a nonlinear system N (e, é) and a linear system

F(s) as in Figure 1.

2. Transform the F(s) = Y (s)/U(s) into time-domain where f(y,y,§) +u =

0.



3. The step input r(t) = At, yields e = At — y,which implies
y=At—e,y=A—¢, j = —é,

and therefore
f(At —e,A—¢é,—é)+ N(e) =0.

4. Separate all linear regions of N(e) by decision borders, and rename the
r1 =e, and x5 = é.

5. Analyze the different piece-wise linear regions. Use separation of variable

for p
X
d—xi = h(z1,72),

if possible. Three practical cases:(i) Lines h(z1, 22) = const, (ii) Parabola
h@h,xg):RB/xz

3 Conservative Systems

3.1 Basics

Aconservative system is given by
which implies

) = )
dry _ f(z1)

$2 x1
—- P L 2 [y =14V = E,
Z10

dml X9

where T is kinetic energy, V is potential energy, and E the total energy de-
termined by the initial conditions. Trajectories can be determined by xo =
+/2(E =V (z1)).

3.2 Interesting Notes
Interestingly, we have:

e The equilibrium points are at the extrema of the potential energy

oV
Fra

flz1) =

e Maxima of V(z;1) are stable equilibrium points.

e Minima of V(z) are instable equilibrium (saddle) points.



4 Describing Function Method
4.1 Basics
DFM is employed to determine self-oscillation.

1. Assume a time-invariant N(e), e = ésin wt.

2. Determine y(t) by Fourier series expansion while neglecting bias (ag or
k = 0), and higher order harmonics (k > 2). The Fourier coeffiecients are

to+T
o = / y(t) cos(wt)dt,

to

to+T
512/ " y(t) sin(wt)dt.

to
3. This yields
y(t) = ag coswt + By sinwt = (1 + a1 j) sinwt = Ny sinwt,

where Ny = /a2 + $2e/? with ¢ = tan(ay/51).

4. Determine the equivalent gain or describing function

1 .
0(e,w) = 5\/0? + B7e =
&

This yields the output oscillations

| =

(61 + a1j).

y(t) = n(é,w)ésinwt.

4.2 Properties

We have proved the following properties in the lecture:

e A sinusoidal describing function for a memoryless nonlinearity is always
reali.e., a; = 0.

e If nonlinear characteristic N(e) is memoryless, and time-invariant, then
the chracteristic function is independant of the frequency n(é,w) = n(é).

4.3 Analysis of Limit Cycles with DFM

The input is assumed to be a pure sinusoid, and higher order harmonic effects
are neglected. We call the linear system G(s). This allows the following recipe:

1. Replace N(e) by n(é,w). Determine G(jw) = G(s)|w-



Figure 2: The Family of Nyquest Plots methods is described in (a), and the
Nyquest plane of G(jw) is shown in (b).

2. A limit cycle exists if

or equivalently

nrGRr+n1Gr = —1,
nrGr +n1Gr = 0.

3. This can be solved either by any of the following methods.

Family of Nyquest Plots: Plot imaginary component Im[G(jw)n(é,w)]
versus real component Re[G(jw)n(é,w)] for different é, and find the
é_1 for which G(jw)n(é_1,w) = —1. The w for which this is true is
the frequency of the cycle. See Figure 2 (a).

Nyquest plane of G(jw): Plot G(jw) as functions of w, and —1/n(é) as
functions of é. The w, and é where they meet are frequency and
amplitude of the cycle, respectively. See Figure 2 (b).

Analytical method: For memory-free nonlinearities, we can solve the
equation nr(é)Gr(jw) = 0 for w = w.. We substitute this and solve
Nr(é)Gr(jw.) = —1 for é = é..

4. Determine closed loop stability as shown in Figure 3, or using

max <—%> > G(jwe).
5 Lyopanov Equilibrium Point Analysis

5.1 Definitions
Equilibrium Point: The point x¢ is an EQ iff f(xo,t) = 0.



Figure 3: This figure shows the stability analysis for a system with a memory-
free nonlinearity.

Isolated EQP: xq is an isolated EQ iff xg EQA—-3x € Be(xo) : f(x,t) =0.

Lyopanov function: Scalar function V (x,t), derivbative is V (x,t) = dV/dt +
(0V/0x)T f(x,1).

LDPF: Vx € B.(xo) : V(x,t) > W(x) > 0, and V(0,t) = W(0) = 0.
PDF: vx € R": V(x,t) > W(x) > 0, and V(0,t) = W(0) = 0.
Radially unbounded: limx|_o W(x) — oo.

Decrescent: Vx € R",t > 0: V(x,t) < W(x).

5.2 Stability
Stability: An EQ is stable if
Ve > 0:30(to,€) > 0: ||x(to)]] < I(to,€) = [|x(t)]| < €.Vt > to.
This is implied by: V' Ipdf, and V(x7 t) <0.
Uniform Stability: An EQ is uniformly stable if
Ve > 0:30(e) > 0: ||x(to)]| < d(e) = ||x(¥)|| < €.Vt > to.
This is implied by: V' decrescrent, Ipdf, and V(x, t) <O0.

Asymptotic stability: An EQ is asymptotically stable iff 36 > 0 : ||x(¢o)|| <
§ = limy_ [|x(¢)|| = 0. This is implied by: V' decrescrent, Ipdf, and
—V(x,t) Ipdt.

Global Asymptotic Stability: V' decrescrent, pdf, radially unbounded, and
—V(x,t) < =W(x).



Exponential Stability: A EQ is exponentially stable iff 3r,b,a > 0 : ||x(2)||
k|[x(to)|| eVt > to. This is given by: Vx € Be(xq) : a|[x|” < V(x,t
bx|”, V(x,t) < —cllx|]".

<
<

Global Exponential Stability: Vx € R" : o ||x||” < V(x,t) < b|x|]”, V(x,t) <
—cllx|".

5.3 Further Lyopanov Methods

Instability theorem: Choose a V so that +V is Ipdf, and V(0,t) = 0. Show
that V' (x,t) > 0 for any point x which is arbitrarily close to the origin.

La-Salle Krakovski: x = 0 is asymptotically stable if (i) V(x) Ipdf, (ii) 2 =
{x|V(x) < ¢} is bounded, (ii) V(x) < 0, and (iv) the set S = {x €
Q.|V(x) = 0} contains no trajectories of the system (e.g., V(0,z5) = 0,
andx1:O:>a':27é0).

Linear Time-Invariant Systems: For a time-invariant system x = Ax, the
origin is globally asymptotically stable iff equivalently (i) ¥i. Re A;(A) < 0,
or (ii) given a positive definite symmetric matrix @, we can solve

PA+ATP=-Q

for a unique, positive definite P. (Note: Solving for P given Q is sufficient
and necessary, solving for Q given P is only sufficient and not necessary).

Linear Time-Variant Systems: For the time-variant system x(t) = A(¢)x(¢),
defining H(t) = A(t) + AT (t). Then (sufficient but not necessary):

1. State is bounded by:

t

X5 | Awin (B < [x(O1 < [xO)] 5 | Ao ()

2. Stability: lim¢— oo j;to Amin (H(7))dT < M (ty) < oo, unifrom stability
for M (to) = M.

3. Uniform asymptotic stability: lims_ o fttg Amin (H(7))dT = —00.
4. Instable: lim;_, f:o Amin (H(7))dT = +00.

Lyopanovs Indirect Method: The system is given as x(t) = A(t)x(t) +
fi(x,t), where A(t) = 0f/x|x=0, f1(x,t) = A(t)— f(x,t), and

im sup

Ixl—0¢>0 |||

This can be solved by performing a stability analysis for the linear system
x(t) = A(t)x(t). Asymptotic (Exponential/In-) stability of the linearized
system implies local asymptotic (exponential/In-) stability of the nonlin-
ear system. We can make use of this for finding stable feedback controllers.



Determine Region of Attraction: Determine (i) a compact set {2, contain-
ing x. such that it is invariant under x = f(x) (for example Q. =
{x|V(x) < eV V(x) <0}), and (i) ¥x # 0 : V(x) < 0 and V(0) = 0.
Follows from LaSalle-Krasovski.

5.4 Helpful Lyopanov Proofs

Possible Lyopanov functions: (i) use the total energy of the physical sys-
tem, (ii) use V(x) = >, 2?/2 = V(x) = >, widy,

Mechanical Systems: Given a mechanical system m# + f(&) + g(z) = 0,
with continous f, g, so that Vz.zf(z) > 0, Vx.zg(z) > 0, we can use
V(z) = 23/2 + fozl g(o)do = V() = —zof(x2) < 0. Stability follows
through LaSalle-Krasovski.

Exponential stability: Use V(x) = x7Qx, then we have Anin(Q) |x]* <
V(x,t) < Amax(Q) ||x]|?, you only have to determine V (x,t) < —c|x||”.

Instability: Sometimes, V(x) = 23 — 22 is practical iff —V(x) = —z1d; +
ToTg > 0.
5.5 Notes
e Stability is defined in terms if equilibrium points and NOT systems.
e Lyopanov stability notions are local.
e An EQ can only be stable or unstable.
e For an autonomous system, a stable EQ is also uniformly stable.
e Lyopanov functions are not unique.

e Interpretation: going downhill in direction % in a landscape V'(x) within
90° of the steepest descent —OV (x)/0x, i.e., at —V (x) = —(0V (x)/0x)T%x >
0.

5.6 Applications of Lyaponov Theory

Feedback stabilization: For a system x = f(x,u,t), y = g(x), we intend
to find u = —p(y,t) so that lim;_,, e(t) = 0 where e(t) = y(t) — ya.
We can then simply stabilize the system x = f(x,—p(g(x),t),t). FEuz-
ample: For mechanical systems x = f(x,t) + M(x)u, we can choose
u = —MY(x)[f(x,t) — h(x)], which turns the system into x = h(x)
where h is chosen stable.

Trajectory following: When following a trajectory x4 = h(x4) with a system
% = f(x,u,t), and a controller u = p1(xq — X) + p2(xq). We can then
choose { = [xq4,X — X4] = [xq, €] which yields { = [h(xq), f(x,u,t)] =

10



Plt,e)

Figure 4: This figure shows the illustration for a sector.

[h(xaq), f(e + x4,p1(€) + p2(xa), t)]. We then choose the controller so that
the origin is asymptotically stable.

Adaptive control: We have a system X = Ax + Br, and a (desired) model
Xm = AnXm + Byr,,. By defining e = x,,, — X, we obtain &€ = A,,e +
(A,, — A)x + (B,, — B)r. Using the Lyopanov function V(e) = el Pe +
D1 2o MO iy 2oy vig By with pig, vig > 0, o] = (Ap—A),
[Bi;] = (B,,, — B), and using the update rules

1 . 1
. T T
Qi = ———T;€ Py, 61']' = ——I;€ pP;
Hij Vij

in V (where P = [p1,...,pa]), we obtain V = —eTe. The error of the

trajectory goes to zero but not the model parameters.

6 Frequency Domain Methods
The Lure Problem: The system is given by
%x(t) = Ax(t) 4+ bu(t), y(t) = cTx(t) + du(t), u(t) = —p(y(t)).
The linearity is equivalent to G(s) = c¢?(sI — A)~'b +d.

Assumptions: We assume that either A is Hurwitz (Vi.Re A\;(A) < 0 or ex-
actly one Eigenvalue is zero A\;(A) = 0, Vi > 2.Re \;(A) < 0). (A,Db)
controllable, (A, c) observable. The nonlinearity is either odd (¢(0) = 0,
Yy # 0.yp(y) > 0), or in a sector (see below).

¢ in a sector: ¢ belongs to a sector [k1, k2], (¢ € S(k1, k2)), if

kiy® < yo(y,t) < kay?.

Stability in a sector is called the absolute stability problem. See Figure 4
for an illustration.

Aizerman’s conjecture: If d = 0, p € S(k1,k2), Vk € [k1, ka].(A — bkeT) is
Hurwitz, then the origin is globally asymptotically stable.

11



Kalman’s conjecture: If Vk € [kq, ka].(A — bkc?) is Hurwitz, and if

dp(y,1)

kl S S k27

then the origin is globally asymptotically stable (stricter than Aizerman’s
conjecture).

Kalman-Yakubovitch lemma: If A is Hurwitz, (A, b) controllable, v € R™,
v2>0,e>0,Q pd, then there is pd P, and q € R", so that

ATP +PA = —qql —cQ,Pb—v = NGLH

if and only if € small, and h(s) = v + 2v?(sI — A)~!b satisfies Vw €
R.Reh(jw) > 0.

Circle criterion: If ¢ € S(«, 3), the origin of the system will be absolutely
stable/globally asymptotically stable if one of the following four sufficient
graphical conditions applies (these are illustrated in Table 2).

1. If 0 < a < (3, the nyquist plot has to encircle the system m times
in counterclockwise direction, where m is the number of poles with
positive real part.

2. If 0 = « < f, the nyquist plot lies above —1/0.
3. If & < 0 < f3, the nyquist plot lies in the interior of the disk D(«, 3).
4. If o < <0, then use § = —g, & = —3, 3 = —a, and apply (1).

Alternatively, one could interprete it analytically as ¢ € S(0,k), 1 + kd > 0,
Re{l + kg(jw)} > 0 =>absolute stability.
Popov criterion: The system is slightly modified to
Xx=Ax+bu,y=clx+dt, £ =u, u=—p(y),

i.e., with a transfer function G(s) = ¢?(sI— A)~'b+d/s, which has to be
Hurwitz, or one Eigenvalue that is zero. The system is globally asymptot-
ically stable if there exists a number r such that Re{1+ jwrg(jw)}+1/k >
0, or equivalently

oy 1 .
Re{g"(jw)} > —z trimg (jw),

with ¢*(jw) = Reg(jw) + jwImg(jw). The graphical interpretation is
given in Figure 5.

12



[ | Disk D(e, 8) | Hurwitz? | Sketch |

Case (1) 0<a<p -

NN

Case (2) 0=a<f | Required

Case (3) a<0<f | Required

| - ReCaq)
Case (4) a<fB<0 - Z "

Table 2: This table shows the four cases of the circle criterion.

T a"c‘,’o)

i.

c

Figure 5: This figure shows the Popov criterion.

7 Extensions of the Notion of Stability

7.1 Boundedness
Uniformly bounded: Va € (0,¢).3b(a).Vt > to. ||z(to)]] < a = ||z(t)]| < b.

Globally uniformly bounded: Va € R.3b(a).Vt > to. ||z(to)|| < a = ||z(t)]] <
b.

Uniformly ultimately bounded: Va € R.3b(a).Vt > to + T'(a,b). ||z(to)|| <
a= |lz(t)] <b.

To be continued...
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7.2 Perturbations

Additive perturbation: We assume that the system can be split into a nom-
inal model f and an additive perturbation g, so that

X = f(x,t) +9(x1) = f(x,1) + (f(x,1) = f(x,1)).
Any same/lower order perturbation can be represented like this.

Vanishing perturbations: The origin is an equilibrium point of the pertur-
bation, i.e., g(x,t) = 0.

Robustness of exponential stability: Assume x = 0 an exponentially sta-
ble equilibrium point of f, if f is exponentially stable on D, i.e.,

ov.  ov’
vx € D.cy HX”2 < V(X,t) < e HX”2 ) €3 HXH2 < - <§ + & f(X,t)) )

and Vx € D. ||0V/0x|| < ¢4 ||x||*. If furthermore, the perturbation fulfills
Vx € D.|g(x,t)|| < x|l with v < ¢3/c4, the system is exponentially
stable. If D = R"™, even globally.

Linear Systems Nonlinearly Perturbed: Assumex = Ax+g(x,t), Re{\;(A)} <
0, and |lg(x,t)|| < v|x]|. If P is a solution of the Lyopanov equation
PA + ATP = —Q, and 7 < Amin(Q)/(2Amax(P)), the system will be
globally exponetially stable. This ratio 7 is maximal for Q = L.

Robustness of Asymptotic Stability: Assume x = 0 an asymptotically sta-
ble equilibrium point of f, i.e.,

Wi(x) < V(x,t) < Wg(x),03W§/4(x) < - <— + x (x, t)) ,

and [|0V/0x|| < caWs5,4(x); all Wi(x) are pdf. If furthermore, the per-
turbation fulfills [|g(x,t)|| < YWs/a(x) with v < c3/c4, the system is
asymptotically stable.

Nonvanishing Perturbations: Assume x = 0 an exponentially stable equi-
librium point of f, if f is exponentially stable on D = {x € R"| ||x|| < r},
ie.,

\mEDcHﬂF<V@J%%MXWmMﬂ2<—<—_+_; @J07

and Vx € D. ||0V/0x| < ¢4 |x]||°. If furthermore, the perturbation fulfills

Vx € D.|lg(x,t)|| <6 < 0_3\/7_1%7
Cq C2

14



for some 0 < § < 1. Then for all ||x(0)|| < rv/c1/c2,
Vig <t < T |[x(@)]| < kexp [=y(t —to)] [IX(O)[| A [lx()[| < b,

for finite T', where k = y/ca/c1, v = (1—0)cs/(2¢2), b = (c3/ca)r/c1/ca(d/6).

8 Nonlinear Control Design

8.1 Introduction to Feedback Control Design

Objectives of Control Design: Equilibrium point stabilization, Trajectory
tracking, Disturbation rejection (input/output boundedness), robustness
(cope with model errors).

State feedback stabilization: Show that the desired equilibrium point in
)-( = f(X7 uﬂt)7 u= 7(X7 z7 t)? 2 :f(X7Z7t)7
is asymptotically stable. Use z in order to implement I-controllers.

Output feedback stabilization: Show that the desired equilibrium point in

5( = f(X)u)t)7 y = h(x7 u7t)7 u= ’Y(y7z7t)7 i :f(Y7Z7t)7

is asymptotically stable. Use z in order to implement I-controllers. For
moving the equilibrium point, all variables X = x —xp, Gt =u—ug, ¥ =
h(xo + %X, ug + 0,t)—h(xg, up, t), have to be moved.

Linear Systems: For linear time-invariant systems (X = Ax +Bu, y = Cx +
Du, u = —Kx), both problems become easier. State feedback lineariza-
tion requires only Re \;(A — BK) < 0. Output stabilization requires an
Observer dx/dt = (A — BK)kX + L(x — Cx — Du), so that we analyze

HE A

where e = x — X represents the error.

Stabilization by Linearization: We can stabilize an equilibrium point of the
nonlinear system by linearization. We can determine the region of stability
using a quadratic Lyopanov function.

8.2 Closed-loop Control

To be continued...
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8.3 Integral Control / Gain Scheduling
System description: The system is described by

x = f(x,u,w), 6 = h(x,w) —r,
where w is unknown.

Stabilizing Control Law: A stabilizing control law u = v(x, o, h(x,w) — r)
has to fulfill (i) ug = y(x0,00,0), and (ii) that x = f(x,y(x, 0, h(x, W) —
r),w), & = h(x,w) — r, has to have an asymptotically stable equilibrium
point at (xg,up).

Via Linearization: Use the linear control law u = —K1x — Kyo — K3e with
error € = h(x,w) —r). If K5 is nonsingular, there is a unique solution for
gp SO that Up = —K1X0 — K20'0.

Gain scheduling: For tracking a trajectory r(t), we treat each point of the
trajectory as an equilibrium point, i.e., we have gains depending on r so
that u = —Kj(r)x — Kao(r)o — K3(r)e is stable if r was constant.

8.4 Sliding Mode Control
Objective: Assume a system
&1 = g,
L2 = h(z1,®2) + g(21, 22)u,

where g, h are unknown and g(z1,z2) > g(z10, 20) > 0. We intend bring
the system to the manifold s = a;x; + x2 = 0 with arbitrary a;.

Control Law: Assume that you know

arxe + h(xz1, 22)
g(xlﬂ :Eg)

‘ < p(x1, 22),

and the Lyopanov function V (s) = 0.5s2, and V (s) = s§ < g(x1, x2)|s|p(x1, 22)+
s-g(x1,x2)u. Then

u = —p(ry,x2)signs,
is a stable control law if B(x1,22) > p(x1,x2) + Py for some Gy > 0.
Nota bene: (i) Manifold is reached in finite time, and x93 = @1 = —axy

converges exponetially fast. (ii) Once reached, the manifold cannot be
left. (iii) Robust to parameter variation.

Chattering: Delays in system or controller can cause chattering.
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Chattering reduction by Separation: Separate the continuous and switch-
ing components. Use nominal &, § in the control law

a1x2 + ﬁ(xlax2)

— — B(x1,x2)sign s,
3(or.2) (z1,72) sig

U= —

where ((z1,z2) > p(x1,z2) + Fo for some Gy > 0, if

H 5(331, 33‘2)
g(xlva)

‘ < p(z1, 22)

with §(z1, 22) = a1(1—g(z1, 22)/§(x1, x2)) 2+ (h(21, T2)—h(21, T2)g(T1, T2)/§(21, X2)).

Chattering reduction of high gain saturation function: Use the control
law with saturation

u = —f(x1, z2) sat (2) ,

and a Lyopanov function V' = 0.522, we can show ultimate boundedness
so that all trajectories reach the (invariant) set

€
QEZ{leS 7S§6}5
a1

in finite time. If € decreases, the ultimate bound T" and chattering increases
— trade-off stability vs performance.

Generalization: We can generalize using the system 3™ = h(x) + g(x)u with
X =[y,9,...,y" V). Assume bounds ||h(x)| < £(x), [|g(x)|| < pu(x). We
use this for tracking a trajectory x4(t), i.e., we have the manifold

s(x) = eé"il) + ale‘?g”*z) +...+tap_1e, =0

using e = y — y4. For s(x) = (d/dt + \)"'e,, we can determine whether
the a;’s are suitable by checking 2" '4+a12" 2+4...+a,_1 = 0 is Hurwitz.

8.5 Lyopanov Redesign

System: The system with perturbation § is given by @ = f(z,u,t)+g(z, t)[u+
§(xz,u,t)]. Assume, you have a controller u = 1 (x,t), which stabilizes the
nominal system (i.e., 6(x, u,t) = 0).

Lyopanov function: Determine a Lyopanov function so that

T
on (1) < Vx,1) < 0z (1), S +9 7, 1)+l D, 1] < —as (Ix])

Perturbation Assumption: Assume that for u = ¥(z,t) + v, we have the
bound
16(2, ¥ (2, t) + v, )| < pl,t) + 20 0],
with 0 < s < 1. Nota bene: Only bounds on perturbation, p(z,t) can
be large but has to be known.
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Design of v: Using V < —as (||z]) +w v +w”é with w = (9V/dx)g(x,t), we
realize that wTv + wTé§ < 0.

1. Norm 2: This is achieved by

w

v = —n(x,t) m

with n(z,t) > p(xz,t)/(1 — ). This gives us the control law

plz,t) w
1= [lwl|’

u=1(x,t)

which is stable.
2. Norm oco: This is achieved by
v = —n(z,t)signw

with n(z,t) > p(z,t)/(1 — ).
3. Norm 1: This is achieved by

w
v= —n(x,t)|—

jwl|
with n(z,t) = p(z,t)/(1 — ).

8.6 Backstepping

To be continued...

18



