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1 Second-order Systems

1.1 Basics

Every second order system can be brought in the state-space form

[

ẋ1

ẋ2

]

=

[

f1(x1, x2, t)
f2(x1, x2, t)

]

.

For second-order systems, we are mostly interested in the phase plane (x2, x1).
The angle of the trajectory is given by

θ(f(x)) = tan−1 ẋ2

ẋ1
= tan−1 f2(x1, x2, t)

f1(x1, x2, t)
,

at a point ~x.

1.2 Linear Systems

Every linear system ẋ = Ax can be transformed into an equivalent, canonical
linear system by z = Q−1x, where the qualitative behavior of both is equivalent,
and the one of z is denoted by

ż = Q−1AQz = Λz.

The matrix Λ is determined by the Eigenvalues. The Eigenvalues can be com-
puted by

λ1/2 =
T

2
± T

2

√

T 2 − 4∆,

where T = TrA, and ∆ = detA. This yields several cases as shown in Table 1.
The local coordinate system is then given by the

x = q1z1 + q2z2,

where Q = [q1,q2]. Hence you can just draw each coordinate system by by
setting one of the zi = 0.
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Eigenvalues Type Picture

λi > 0, and λi ∈ R Stable node

λi < 0, and λi ∈ R Unstable node

λ1 · λ2 < 0, and λi ∈ R Saddle point

λi = α± jβ, and λi ∈ C Unstable focus

λi = α± jβ, and λi ∈ C Stable focus

λi = ±jβi, and λi ∈ C Center

Table 1: A table showing all main behaviors of second order systems

1.3 Second-order linear differential equation

The general second order linear differential equation can be given as

ÿ + 2ξωẏ + ω2 = 0,

and it has the Eigenvalues λ1/2 = −ξω ± ω
√
ξ − 2. This implies that it can be

a stable focus (0 < ξ < 1), a stable node (ξ > 1), a center (ξ = 0), an unstable
focus (−1 < ξ < 0), or an unstable node (ξ < −1).

1.4 Analysis by Linearization

We can linearize the system around an equilibrium point xeq for which f(xeq) =
0. When defining ∆x = x− xeq, we can linearize the local solution and get

∆ẋ1 =
∂f1
∂x1

∆x1 +
∂f1
∂x2

∆x2 + ε1,

∆ẋ2 =
∂f2
∂x1

∆x1 +
∂f2
∂x2

∆x2 + ε2,

where ε ∈ O(∆x2). For small ∆xi the linearized system yields similar behavior
as the nonlinear one except for the center.
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1.5 Drawing Phase Planes

This gives a recipe for drawing phase planes:

1. Horizontal axis is denoted by x1, vertical axis by x2.

2. Equilibrium Points

(a) Determine equilibrium points by f(xeq) = 0.

(b) Linearize around equilibrium points by Aij = ∂fi/∂xj .

(c) Determine equilibrium point type from Eigenvalues by

λ1/2 =
T

2
± T

2

√

T 2 − 4∆,

where T = TrA, and ∆ = detA

(d) Determine local coordinate system or Eigenvectors from Table 1.

(e) Draw local trajectories using the example.

3. Determine Isoclines

(a) Vertical arrows up where ẋ1 = 0, ẋ2 > 0.

(b) Vertical arrows down where ẋ1 = 0, ẋ2 < 0.

(c) Horizontal arrows to the right where ẋ2 = 0, ẋ1 > 0.

(d) Horizontal arrows to the left where ẋ2 = 0, ẋ1 < 0.

4. Use symmetry if possible.

5. Draw Trajectories which do not intersect.

1.6 Special case: ÿ = g(ẏ, y)

The system ÿ = g(ẏ, y) becomes ẋ1 = ẏ = x2, ẋ2 = g(ẏ, y) = g(x2, x1) in
state-space form. It has the following properties:

• All equilibrium points intersect with the horizontal axis.

• All trajectories have vertical slope at the horizontal axis.

• If |g(ẏ, y)| is bounded, the vertical slope can only occur on the horizontal
axis.
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Figure 1: Separation of the linear and nonlinear block.

2 Piecewiese linear Switching Systems

2.1 Response to a Step Impulse

The response to a step input can be analyzed as follows:

1. Seperate the system into a nonlinear system N(e, ė) and a linear system
F (s) as in Figure 1.

2. Transform the F (s) = Y (s)/U(s) into time-domain where f(y, ẏ, ÿ)+ u =
0.

3. The step input r(t) = A · 1(t), yields e = r − y = A− y,which implies

y = A− e, ẏ = −ė, ÿ = −ë,

and therefore
f(A− e,−ė,−ë) +N(e) = 0.

4. Separate all linear regions of N(e) by decision borders, and rename the
x1 = e, and x2 = ė.

5. Analyze the different piece-wise linear regions. Use separation of variable
for

dx2

dx1
= h(x1, x2),

if possible. Three practical cases:(i) Lines h(x1, x2) = const, (ii) Parabola
h(x1, x2) = B/x2.

2.2 Response to a Ramp Impulse

The response to a step input can be analyzed as follows:

1. Seperate the system into a nonlinear system N(e, ė) and a linear system
F (s) as in Figure 1.

2. Transform the F (s) = Y (s)/U(s) into time-domain where f(y, ẏ, ÿ)+ u =
0.
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3. The step input r(t) = At, yields e = At− y,which implies

y = At− e, ẏ = A− ė, ÿ = −ë,

and therefore
f(At− e,A− ė,−ë) +N(e) = 0.

4. Separate all linear regions of N(e) by decision borders, and rename the
x1 = e, and x2 = ė.

5. Analyze the different piece-wise linear regions. Use separation of variable
for

dx2

dx1
= h(x1, x2),

if possible. Three practical cases:(i) Lines h(x1, x2) = const, (ii) Parabola
h(x1, x2) = B/x2.

3 Conservative Systems

3.1 Basics

Aconservative system is given by

[

ẋ1

ẋ2

]

=

[

x2

−f(x1)

]

,

which implies

dx2

dx1
= −f(x1)

x2
⇒ x2

2

2
+

∫ x1

x10

f(x1)dx1 = T + V = E,

where T is kinetic energy, V is potential energy, and E the total energy de-
termined by the initial conditions. Trajectories can be determined by x2 =
±
√

2 (E − V (x1)).

3.2 Interesting Notes

Interestingly, we have:

• The equilibrium points are at the extrema of the potential energy

f(x1) =
∂V

∂x1
= 0.

• Maxima of V (x1) are stable equilibrium points.

• Minima of V (x1) are instable equilibrium (saddle) points.
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4 Describing Function Method

4.1 Basics

DFM is employed to determine self-oscillation.

1. Assume a time-invariant N(e), e = ê sinωt.

2. Determine y(t) by Fourier series expansion while neglecting bias (α0 or
k = 0), and higher order harmonics (k > 2). The Fourier coeffiecients are

α1 =

∫ t0+T

t0

y(t) cos(ωt)dt,

β1 =

∫ t0+T

t0

y(t) sin(ωt)dt.

3. This yields

y(t) = α1 cosωt+ β1 sinωt = (β1 + α1j) sinωt = N1 sinωt,

where N1 =
√

α2
1 + β2

1e
jφ with φ = tan(α1/β1).

4. Determine the equivalent gain or describing function

η(ê, ω) =
1

ê

√

α2
1 + β2

1e
jφ =

1

ê
(β1 + α1j).

This yields the output oscillations

y(t) = η(ê, ω)ê sinωt.

4.2 Properties

We have proved the following properties in the lecture:

• A sinusoidal describing function for a memoryless nonlinearity is always
real,i.e., α1 = 0.

• If nonlinear characteristic N(e) is memoryless, and time-invariant, then
the chracteristic function is independant of the frequency η(ê, ω) = η(ê).

4.3 Analysis of Limit Cycles with DFM

The input is assumed to be a pure sinusoid, and higher order harmonic effects
are neglected. We call the linear system G(s). This allows the following recipe:

1. Replace N(e) by η(ê, ω). Determine G(jω) = G(s)|jω .

6



Figure 2: The Family of Nyquest Plots methods is described in (a), and the
Nyquest plane of G(jω) is shown in (b).

2. A limit cycle exists if

G(jω) = − 1

η(ê, ω)
,

or equivalently

ηRGR + ηIGI = −1,

ηRGI + ηIGR = 0.

3. This can be solved either by any of the following methods.

Family of Nyquest Plots: Plot imaginary component Im[G(jω)η(ê, ω)]
versus real component Re[G(jω)η(ê, ω)] for different ê, and find the
ê−1 for which G(jω)η(ê−1, ω) = −1. The ω for which this is true is
the frequency of the cycle. See Figure 2 (a).

Nyquest plane of G(jω): Plot G(jω) as functions of ω, and −1/η(ê) as
functions of ê. The ω, and ê where they meet are frequency and
amplitude of the cycle, respectively. See Figure 2 (b).

Analytical method: For memory-free nonlinearities, we can solve the
equation ηR(ê)GI(jω) = 0 for ω = ωc. We substitute this and solve
ηR(ê)GR(jωc) = −1 for ê = êc.

4. Determine closed loop stability as shown in Figure 3, or using

max
ê

(

− 1

η(ê)

)

> G(jωC).

5 Lyopanov Equilibrium Point Analysis

5.1 Definitions

Equilibrium Point: The point x0 is an EQ iff f(x0, t) = 0.
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Figure 3: This figure shows the stability analysis for a system with a memory-
free nonlinearity.

Isolated EQP: x0 is an isolated EQ iff x0 EQ∧¬∃x ∈ Bε(x0) : f(x, t) = 0.

Lyopanov function: Scalar function V (x, t), derivbative is V̇ (x, t) = ∂V/∂t+
(∂V/∂x)T f(x, t).

LDPF: ∀x ∈ Bε(x0) : V (x, t) ≥W (x) > 0, and V (0, t) = W (0) = 0.

PDF: ∀x ∈ Rn : V (x, t) ≥W (x) > 0, and V (0, t) = W (0) = 0.

Radially unbounded: lim‖x‖→∞W (x) → ∞.

Decrescent: ∀x ∈ R
n, t ≥ 0 : V (x, t) ≤ Ŵ (x).

5.2 Stability

Stability: An EQ is stable if

∀ε > 0 : ∃δ(t0, ε) > 0 : ‖x(t0)‖ < δ(t0, ε) =⇒ ‖x(t)‖ < ε.∀t ≥ t0.

This is implied by: V lpdf, and V̇ (x, t) ≤ 0.

Uniform Stability: An EQ is uniformly stable if

∀ε > 0 : ∃δ(ε) > 0 : ‖x(t0)‖ < δ(ε) =⇒ ‖x(t)‖ < ε.∀t ≥ t0.

This is implied by: V decrescrent, lpdf, and V̇ (x, t) ≤ 0.

Asymptotic stability: An EQ is asymptotically stable iff ∃δ > 0 : ‖x(t0)‖ <
δ =⇒ limt→∞ ‖x(t)‖ = 0. This is implied by: V decrescrent, lpdf, and
−V̇ (x, t) lpdf.

Global Asymptotic Stability: V decrescrent, pdf, radially unbounded, and
−V̇ (x, t) ≤ −Ŵ (x).
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Exponential Stability: A EQ is exponentially stable iff ∃r, b, a > 0 : ‖x(t)‖ ≤
k ‖x(t0)‖ e−bt.∀t ≥ t0. This is given by: ∀x ∈ Bε(x0) : a ‖x‖p ≤ V (x, t) ≤
b ‖x‖p, V̇ (x, t) ≤ −c ‖x‖p.

Global Exponential Stability: ∀x ∈ Rn : a ‖x‖p ≤ V (x, t) ≤ b ‖x‖p
, V̇ (x, t) ≤

−c ‖x‖p
.

5.3 Further Lyopanov Methods

Instability theorem: Choose a V so that +V̇ is lpdf, and V (0, t) = 0. Show
that V (x, t) > 0 for any point x which is arbitrarily close to the origin.

La-Salle Krakovski: x = 0 is asymptotically stable if (i) V (x) lpdf, (ii) Ωe =
{x|V (x) ≤ c} is bounded, (ii) V̇ (x) ≤ 0, and (iv) the set S = {x ∈
Ωe|V̇ (x) = 0} contains no trajectories of the system (e.g., V (0, x2) = 0,
and x1 = 0 =⇒ ẋ2 6= 0).

Linear Time-Invariant Systems: For a time-invariant system ẋ = Ax, the
origin is globally asymptotically stable iff equivalently (i) ∀i.Reλi(A) < 0,
or (ii) given a positive definite symmetric matrix Q, we can solve

PA + ATP = −Q

for a unique, positive definite P. (Note: Solving for P given Q is sufficient
and necessary, solving for Q given P is only sufficient and not necessary).

Linear Time-Variant Systems: For the time-variant system ẋ(t) = A(t)x(t),
defining H(t) = A(t) + AT (t). Then (sufficient but not necessary):

1. State is bounded by:

‖x(0)‖ 1

2

∫ t

t0

λmin(H(τ))dτ ≤ ‖x(t)‖ ≤ ‖x(0)‖ 1

2

∫ t

t0

λmax(H(τ))dτ.

2. Stability: limt→∞

∫ t

t0
λmin(H(τ))dτ < M(t0) < ∞, unifrom stability

for M(t0) = M .

3. Uniform asymptotic stability: limt→∞

∫ t

t0
λmin(H(τ))dτ = −∞.

4. Instable: limt→∞

∫ t

t0
λmin(H(τ))dτ = +∞.

Lyopanovs Indirect Method: The system is given as ẋ(t) = A(t)x(t) +
f1(x, t), where A(t) = ∂f/x|x=0, f1(x, t) = A(t)− f(x, t), and

lim
‖x‖→0

sup
t>0

f1(x, t)

‖x‖ = 0.

This can be solved by performing a stability analysis for the linear system
ẋ(t) = A(t)x(t). Asymptotic (Exponential/In-) stability of the linearized
system implies local asymptotic (exponential/In-) stability of the nonlin-
ear system. We can make use of this for finding stable feedback controllers.
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Determine Region of Attraction: Determine (i) a compact set Ωe contain-
ing xe such that it is invariant under ẋ = f(x) (for example Ωe =
{x|V (x) ≤ c ∨ V̇ (x) < 0}), and (ii) ∀x 6= 0 : V̇ (x) < 0 and V̇ (0) = 0.
Follows from LaSalle-Krasovski.

5.4 Helpful Lyopanov Proofs

Possible Lyopanov functions: (i) use the total energy of the physical sys-
tem, (ii) use V (x) =

∑

i x
2
i /2 =⇒ V̇ (x) =

∑

i xiẋi,

Mechanical Systems: Given a mechanical system mẍ + f(ẋ) + g(x) = 0,
with continous f , g, so that ∀x.xf(x) ≥ 0, ∀x.xg(x) ≥ 0, we can use
V (x) = x2

2/2 +
∫ x1

0
g(σ)dσ =⇒ V̇ (x) = −x2f(x2) ≤ 0. Stability follows

through LaSalle-Krasovski.

Exponential stability: Use V (x) = xT Qx, then we have λmin(Q) ‖x‖2 ≤
V (x, t) ≤ λmax(Q) ‖x‖2, you only have to determine V̇ (x, t) ≤ −c ‖x‖p.

Instability: Sometimes, V (x) = x2
1 − x2

2 is practical iff −V̇ (x) = −x1ẋ1 +
x2ẋ2 > 0.

5.5 Notes

• Stability is defined in terms if equilibrium points and NOT systems.

• Lyopanov stability notions are local.

• An EQ can only be stable or unstable.

• For an autonomous system, a stable EQ is also uniformly stable.

• Lyopanov functions are not unique.

• Interpretation: going downhill in direction ẋ in a landscape V (x) within
90◦ of the steepest descent −∂V (x)/∂x, i.e., at −V̇ (x) = −(∂V (x)/∂x)T ẋ ≥
0.

5.6 Applications of Lyaponov Theory

Feedback stabilization: For a system ẋ = f(x,u, t), y = g(x), we intend
to find u = −p(y, t) so that limt→∞ e(t) = 0 where e(t) = y(t) − yd.
We can then simply stabilize the system ẋ = f(x,−p(g(x), t), t). Ex-

ample: For mechanical systems ẋ = f(x, t) + M(x)u, we can choose
u = −M−1(x)[f(x, t) − h(x)], which turns the system into ẋ = h(x)
where h is chosen stable.

Trajectory following: When following a trajectory ẋd = h(xd) with a system
ẋ = f(x,u, t), and a controller u = p1(xd − x) + p2(xd). We can then
choose ξ = [xd,x − xd] = [xd, e] which yields ξ̇ = [h(xd), f(x,u, t)] =
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Figure 4: This figure shows the illustration for a sector.

[h(xd), f(e + xd, p1(e)+ p2(xd), t)]. We then choose the controller so that
the origin is asymptotically stable.

Adaptive control: We have a system ẋ = Ax + Br, and a (desired) model
ẋm = Amxm + Bmrm. By defining e = xm − x, we obtain ė = Ame +
(Am − A)x + (Bm − B)r. Using the Lyopanov function V (e) = eTPe +
∑n

i=1

∑n
j=1 µijα

2
ij +

∑n
i=1

∑m
j=1 νijβ

2
ij with µij , νij > 0, [αij ] = (Am−A),

[βij ] = (Bm − B), and using the update rules

α̇ij = − 1

µij
xje

Tpi, β̇ij = − 1

νij
xje

Tpi

in V̇ (where P = [p1, . . . ,p2]), we obtain V̇ = −eTe. The error of the
trajectory goes to zero but not the model parameters.

6 Frequency Domain Methods

The Lure Problem: The system is given by

ẋ(t) = Ax(t) + bu(t), y(t) = cT x(t) + du(t), u(t) = −ϕ(y(t)).

The linearity is equivalent to G(s) = cT (sI − A)−1b + d.

Assumptions: We assume that either A is Hurwitz (∀i.Reλi(A) < 0 or ex-
actly one Eigenvalue is zero λ1(A) = 0, ∀i ≥ 2.Reλi(A) < 0). (A,b)
controllable, (A, c) observable. The nonlinearity is either odd (ϕ(0) = 0,
∀y 6= 0.yϕ(y) > 0), or in a sector (see below).

ϕ in a sector: ϕ belongs to a sector [k1, k2], (ϕ ∈ S(k1, k2)), if

k1y
2 ≤ yϕ(y, t) ≤ k2y

2.

Stability in a sector is called the absolute stability problem. See Figure 4
for an illustration.

Aizerman’s conjecture: If d = 0, ϕ ∈ S(k1, k2), ∀k ∈ [k1, k2].(A − bkcT ) is
Hurwitz, then the origin is globally asymptotically stable.
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Kalman’s conjecture: If ∀k ∈ [k1, k2].(A − bkcT ) is Hurwitz, and if

k1 ≤ ∂ϕ(y, t)

∂y
≤ k2,

then the origin is globally asymptotically stable (stricter than Aizerman’s
conjecture).

Kalman-Yakubovitch lemma: If A is Hurwitz, (A,b) controllable, v ∈ Rn,
γ ≥ 0, ε > 0, Q pd, then there is pd P, and q ∈ R

n, so that

ATP + PA = −qqT − εQ, Pb − v =
√
γq,

if and only if ε small, and h(s) = γ + 2vT (sI − A)−1b satisfies ∀ω ∈
R.Reh(jω) > 0.

Circle criterion: If ϕ ∈ S(α, β), the origin of the system will be absolutely
stable/globally asymptotically stable if one of the following four sufficient
graphical conditions applies (these are illustrated in Table 2).

1. If 0 < α < β, the nyquist plot has to encircle the system m times
in counterclockwise direction, where m is the number of poles with
positive real part.

2. If 0 = α < β, the nyquist plot lies above −1/β.

3. If α < 0 < β, the nyquist plot lies in the interior of the disk D(α, β).

4. If α < β < 0, then use ĝ = −g, α̂ = −β, β̂ = −α, and apply (1).

Alternatively, one could interprete it analytically as φ ∈ S(0, k), 1 + kd > 0,
Re{1 + kg(jω)} > 0 =⇒absolute stability.

Popov criterion: The system is slightly modified to

ẋ = Ax + bu, y = cT x + dξ, ξ̇ = u, u = −ϕ(y),

i.e., with a transfer function G(s) = cT (sI−A)−1b+d/s, which has to be
Hurwitz, or one Eigenvalue that is zero. The system is globally asymptot-
ically stable if there exists a number r such that Re{1+jωrg(jω)}+1/k >
0, or equivalently

Re{g∗(jω)} > −1

k
+ r Im g∗(jω),

with g∗(jω) = Re g(jω) + jω Im g(jω). The graphical interpretation is
given in Figure 5.
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Disk D(α, β) Hurwitz? Sketch

Case (1) 0 < α < β -

Case (2) 0 = α < β Required

Case (3) α < 0 < β Required

Case (4) α < β < 0 -

Table 2: This table shows the four cases of the circle criterion.

Figure 5: This figure shows the Popov criterion.

7 Extensions of the Notion of Stability

7.1 Boundedness

Uniformly bounded: ∀a ∈ (0, c).∃b(a).∀t ≥ t0. ‖x(t0)‖ ≤ a =⇒ ‖x(t)‖ < b.

Globally uniformly bounded: ∀a ∈ R.∃b(a).∀t ≥ t0. ‖x(t0)‖ ≤ a =⇒ ‖x(t)‖ <
b.

Uniformly ultimately bounded: ∀a ∈ R.∃b(a).∀t ≥ t0 + T (a, b). ‖x(t0)‖ ≤
a =⇒ ‖x(t)‖ < b.

To be continued...
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7.2 Perturbations

Additive perturbation: We assume that the system can be split into a nom-
inal model f and an additive perturbation g, so that

ẋ = f(x, t) + g(x, t) = f(x, t) + (f(x, t) − f̄(x, t)).

Any same/lower order perturbation can be represented like this.

Vanishing perturbations: The origin is an equilibrium point of the pertur-
bation, i.e., g(x, t) = 0.

Robustness of exponential stability: Assume x = 0 an exponentially sta-
ble equilibrium point of f , if f is exponentially stable on D, i.e.,

∀x ∈ D.c1 ‖x‖2 ≤ V (x, t) ≤ c2 ‖x‖2 , c3 ‖x‖2 ≤ −
(

∂V

∂t
+
∂V

∂x

T

f(x, t)

)

,

and ∀x ∈ D. ‖∂V/∂x‖ < c4 ‖x‖2
. If furthermore, the perturbation fulfills

∀x ∈ D. ‖g(x, t)‖ < γ ‖x‖ with γ < c3/c4, the system is exponentially
stable. If D = Rn, even globally.

Linear Systems Nonlinearly Perturbed: Assume ẋ = Ax+g(x, t), Re{λi(A)} <
0, and ‖g(x, t)‖ < γ ‖x‖. If P is a solution of the Lyopanov equation
PA + ATP = −Q, and γ < λmin(Q)/(2λmax(P)), the system will be
globally exponetially stable. This ratio γ is maximal for Q = I.

Robustness of Asymptotic Stability: Assume x = 0 an asymptotically sta-
ble equilibrium point of f , i.e.,

W1(x) ≤ V (x, t) ≤W2(x), c3W
2
3/4(x) ≤ −

(

∂V

∂t
+
∂V

∂x

T

f(x, t)

)

,

and ‖∂V/∂x‖ < c4W3/4(x); all Wi(x) are pdf. If furthermore, the per-
turbation fulfills ‖g(x, t)‖ < γW3/4(x) with γ < c3/c4, the system is
asymptotically stable.

Nonvanishing Perturbations: Assume x = 0 an exponentially stable equi-
librium point of f , if f is exponentially stable on D = {x ∈ Rn| ‖x‖ < r},
i.e.,

∀x ∈ D.c1 ‖x‖2 ≤ V (x, t) ≤ c2 ‖x‖2
, c3 ‖x‖2 ≤ −

(

∂V

∂t
+
∂V

∂x

T

f(x, t)

)

,

and ∀x ∈ D. ‖∂V/∂x‖ < c4 ‖x‖2
. If furthermore, the perturbation fulfills

∀x ∈ D. ‖g(x, t)‖ ≤ δ <
c3
c4

√

c1
c2
θr,
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for some 0 < θ < 1. Then for all ‖x(0)‖ < r
√

c1/c2,

∀t0 ≤ t ≤ T. ‖x(t)‖ ≤ k exp [−γ(t− t0)] ‖x(0)‖ ∧ ‖x(t)‖ ≤ b,

for finite T , where k =
√

c2/c1, γ = (1−θ)c3/(2c2), b = (c3/c4)
√

c1/c2(δ/θ).

8 Nonlinear Control Design

8.1 Introduction to Feedback Control Design

Objectives of Control Design: Equilibrium point stabilization, Trajectory
tracking, Disturbation rejection (input/output boundedness), robustness
(cope with model errors).

State feedback stabilization: Show that the desired equilibrium point in

ẋ = f(x,u, t), u = γ(x, z, t), ż =f(x, z, t),

is asymptotically stable. Use z in order to implement I-controllers.

Output feedback stabilization: Show that the desired equilibrium point in

ẋ = f(x,u, t), y = h(x,u, t), u = γ(y, z, t), ż =f(y, z, t),

is asymptotically stable. Use z in order to implement I-controllers. For
moving the equilibrium point, all variables x̂ = x− x0, û = u − u0, ŷ =
h(x0 + x̂,u0 + û, t)−h(x0,u0, t), have to be moved.

Linear Systems: For linear time-invariant systems (ẋ = Ax +Bu, y = Cx+
Du, u = −Kx), both problems become easier. State feedback lineariza-
tion requires only Reλi(A − BK) < 0. Output stabilization requires an
Observer dx̂/dt = (A − BK)x̂ + L(x − Cx̂ − Du), so that we analyze

[

ẋ

ė

]

=

[

A − BK BK

0 A − LC

] [

x

e

]

.

where e = x − x̂ represents the error.

Stabilization by Linearization: We can stabilize an equilibrium point of the
nonlinear system by linearization. We can determine the region of stability
using a quadratic Lyopanov function.

8.2 Closed-loop Control

To be continued...
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8.3 Integral Control / Gain Scheduling

System description: The system is described by

ẋ = f(x,u,w), σ̇ = h(x,w) − r,

where w is unknown.

Stabilizing Control Law: A stabilizing control law u = γ(x, σ, h(x,w) − r)
has to fulfill (i) u0 = γ(x0, σ0, 0), and (ii) that ẋ = f(x, γ(x, σ, h(x,w) −
r),w), σ̇ = h(x,w) − r, has to have an asymptotically stable equilibrium
point at (x0,u0).

Via Linearization: Use the linear control law u = −K1x − K2σ − K3e with
error e = h(x,w)− r). If K2 is nonsingular, there is a unique solution for
σ0 so that u0 = −K1x0 − K2σ0.

Gain scheduling: For tracking a trajectory r(t), we treat each point of the
trajectory as an equilibrium point, i.e., we have gains depending on r so
that u = −K1(r)x − K2(r)σ − K3(r)e is stable if r was constant.

8.4 Sliding Mode Control

Objective: Assume a system

ẋ1 = x2,

ẋ2 = h(x1, x2) + g(x1, x2)u,

where g, h are unknown and g(x1, x2) ≥ g(x10, x20) > 0. We intend bring
the system to the manifold s = a1x1 + x2 = 0 with arbitrary a1.

Control Law: Assume that you know

∥

∥

∥

∥

a1x2 + h(x1, x2)

g(x1, x2)

∥

∥

∥

∥

≤ ρ(x1, x2),

and the Lyopanov function V (s) = 0.5s2, and V̇ (s) = sṡ ≤ g(x1, x2)|s|ρ(x1, x2)+
s · g(x1, x2)u. Then

u = −β(x1, x2) sign s,

is a stable control law if β(x1, x2) > ρ(x1, x2) + β0 for some β0 > 0.
Nota bene: (i) Manifold is reached in finite time, and x2 = ẋ1 = −ax1

converges exponetially fast. (ii) Once reached, the manifold cannot be
left. (iii) Robust to parameter variation.

Chattering: Delays in system or controller can cause chattering.
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Chattering reduction by Separation: Separate the continuous and switch-
ing components. Use nominal ĥ, ĝ in the control law

u = −
∥

∥

∥

∥

∥

a1x2 + ĥ(x1, x2)

ĝ(x1, x2)

∥

∥

∥

∥

∥

− β(x1, x2) sign s,

where β(x1, x2) > ρ(x1, x2) + β0 for some β0 > 0, if
∥

∥

∥

∥

δ(x1, x2)

g(x1, x2)

∥

∥

∥

∥

≤ ρ(x1, x2)

with δ(x1, x2) = a1(1−g(x1, x2)/ĝ(x1, x2))x2+(h(x1, x2)−ĥ(x1, x2)g(x1, x2)/ĝ(x1, x2)).

Chattering reduction of high gain saturation function: Use the control
law with saturation

u = −β(x1, x2) sat
(s

ε

)

,

and a Lyopanov function V = 0.5x2
1, we can show ultimate boundedness

so that all trajectories reach the (invariant) set

Ωε =

{

x1 ≤ ε

a1
, s ≤ ε

}

,

in finite time. If ε decreases, the ultimate bound T and chattering increases
→ trade-off stability vs performance.

Generalization: We can generalize using the system y(n) = h(x)+ g(x)u with
x = [y, ẏ, . . . , y(n−1)]. Assume bounds ‖h(x)‖ < ε(x), ‖g(x)‖ < µ(x). We
use this for tracking a trajectory xd(t), i.e., we have the manifold

s(x) = e(n−1)
y + a1e

(n−2)
y + . . .+ an−1ey = 0

using e = y − yd. For s(x) = (d/dt+ λ)n−1ey, we can determine whether
the ai’s are suitable by checking zn−1+a1z

n−2+. . .+an−1 = 0 is Hurwitz.

8.5 Lyopanov Redesign

System: The system with perturbation δ is given by ẋ = f(x, u, t)+g(x, t)[u+
δ(x, u, t)]. Assume, you have a controller u = ψ(x, t), which stabilizes the
nominal system (i.e., δ(x, u, t) = 0).

Lyopanov function: Determine a Lyopanov function so that

α1 (‖x‖) ≤ V (x, t) ≤ α2 (‖x‖) , ∂V
∂t

+
∂V

∂x

T

[f(x, t)+g(x, t)ψ(x, t)] ≤ −α3 (‖x‖) .

Perturbation Assumption: Assume that for u = ψ(x, t) + v, we have the
bound

‖δ(x, ψ(x, t) + v, t)‖ ≤ ρ(x, t) + κ0 ‖v‖ ,

with 0 < κ0 < 1. Nota bene: Only bounds on perturbation, ρ(x, t) can
be large but has to be known.
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Design of v: Using V̇ ≤ −α3 (‖x‖) +wT v+wT δ with w = (∂V/∂x)g(x, t), we
realize that wT v + wT δ ≤ 0.

1. Norm 2: This is achieved by

v = −η(x, t) w

‖w‖

with η(x, t) ≥ ρ(x, t)/(1 − κ0). This gives us the control law

u = ψ(x, t) − ρ(x, t)

1 − κ0

w

‖w‖ ,

which is stable.

2. Norm ∞: This is achieved by

v = −η(x, t) signw

with η(x, t) ≥ ρ(x, t)/(1 − κ0).

3. Norm 1: This is achieved by

v = −η(x, t) w

‖w‖

with η(x, t) = ρ(x, t)/(1 − κ0).

8.6 Backstepping

To be continued...
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