Lecture Notes 1

Jan Peters (www.jan-peters.net)

September 5, 2006

1 Basic Differential Equations

We all know that the differential equation $\dot{x} = Ax$ has the unique solution $x(t) = x_0 \exp(-At)$. This, however, does not mean that all differential equations have solution.

Example 1 We have

$$\dot{x} = x^2. \tag{1}$$

When defining x = 1/y and differentiating $\dot{x} = -\dot{y}/y^2$. Thus, we obtain

$$-\frac{\dot{y}}{y^2} = \dot{x} = x^2 = \left(\frac{1}{y}\right)^2,$$
 (2)

which implies $\dot{y} = -1$. By integration, we see that $y(t) = \int_0^t \dot{y} dt = -t + y_0$. When inserting y(t) = 1/x(t), we obtain

$$x(t) = \frac{x_0}{1 - tx_0}.$$
 (3)

It is clear that the solution of x(t) does not exist at $t = 1/x_0$, i.e., it has no global solution.

This, we achieve by studying the whether we have a fixpoint.

1.1 Fixpoint Problem

We intend to test whether differential equations of the kind

$$\dot{x} = f(x) \tag{4}$$

have a solution. This is equivalent to the Volterra integral equation

$$x(t) = x(0) + \int_0^t f(x(\tau))d\tau = T\{x(\cdot)\},$$
(5)

where $T : \mathcal{C}^0(\mathbb{R}^+) \to \mathcal{C}^0(\mathbb{R}^+)$ is an operator. Thus, there exists a solution if $x(\cdot) = T\{x(\cdot)\}$ has a solution.

Example 2 For $T : [0,1] \rightarrow [0,1]$ being a continuus function, we have a fixed point at x_* if x and $T \{x\}$ intersect at $x = x_*$. For example, for $T \{x\} = x^3 - x + 1$ has one solution in [0,1] at $x_* = 0.61803$ and $x_* = 1.0$. See Figure 1.1.

This function has two fixed points.

Any continuous function from [0,1] onto [0,1], will have one intersection with itself. Thus, it would be a fixed point.

Theorem 3 (Brouwer Fixed Point) Any continuous function $f : C \to C$ from a convex, compact set to itself has at least one fixed point.

How can we determine such a fixed point?

1.2 Contraction Mapping Theorem

Assume that we have $x(\cdot) = T\{x(\cdot)\}$, and a solution $x^{\infty}(\cdot)$. For such a solution, we have

$$x^{\infty}(\cdot) = T\left\{x^{\infty}(\cdot)\right\} = TT\left\{x^{\infty}(\cdot)\right\} = T^{n}\left\{x^{\infty}(\cdot)\right\}.$$
(6)

Can this property be used for determining the solution $x^{\infty}(\cdot)$ using an initial guess $x^{0}(\cdot)$?

Example 4 We apply the operator

$$T^n\left\{x^0\left(\cdot\right)\right\}\tag{7}$$

with $n \to \infty$ on arbitrary $x^0(\cdot)$. For (i) $T\{x\} = 0.25 + 0.6x$ and (ii) $T\{x\} = 0.5(1 - \cos(x\pi))$, this is illustrated in Figure 1. We can observe that "if the

Figure 1: This figure illustrates the contraction theorem. Note that if $T \{x\} > x$, it will go up and for $T \{x\} < x$ down. For $T \{x\} = x$, we have a fixed point.

slope is less me", it will converge to a fixed point otherwise it will diverge. Check out fixedPoint.m.

The example illustrates the problem but we need to formalize it. First, we need the definition of a contraction.

Definition 5 T is a contraction if there exists a $\rho \in [0, 1)$ such that

$$\|T\{x(\cdot)\} - T\{y(\cdot)\}\|_{\infty} \le \rho \|x(\cdot) - y(\cdot)\|_{\infty}, \qquad (8)$$

where $||e(\cdot)||_{\infty} \equiv \max_{t} ||e(t)||_{2} = \max_{t} \sqrt[2]{x_{1}^{2} + \ldots + x_{n}^{2}}$.

This definition can be translated that if the maximal error $||x(\cdot) - y(\cdot)||_{\infty}$ over all time t gives us a bound on the maximal slope $||T\{x(\cdot)\} - T\{y(\cdot)\}||_{\infty}$, then we will call T a contraction.

Theorem 6 If T is a contraction, then the repeated iteration of T, i.e.,

$$x^{\infty}\left(\cdot\right) = \lim_{n \to \infty} T^n\left\{x^0\left(\cdot\right)\right\} \tag{9}$$

converges to a unique fixed point.

Proof. Ever Cauchy sequence $x_1, x_2, x_3, \ldots, x_n$ converges if $\lim_{n,m\to\infty} |x_n - x_m| = 0$. Thus, we have to show that

The next question is whether T can be turned into a contraction.

¹Any assignment of positive numbers to vectors is a norm if (i) ||0|| = 0, (ii) $\forall x \neq 0$. ||x|| > 0, (iii) $||x + y|| \le ||x|| + ||y||$. Norms can also be written as ||x|| = (x, x).

Definition 7 A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is Lipschitz if there exists an ι such that

$$\|f(x) - f(y)\|_{2} \le \iota \, \|x - y\|_{2} \,. \tag{10}$$

We realize that we always have for small δt , the difference $f(x(\tau)) - f(y(\tau))$ remains constant, and therefore

$$\left\|T\left\{x\left(\cdot\right)\right\} - T\left\{y\left(\cdot\right)\right\}\right\|_{\infty} = \max_{\delta t} \left\|\int_{0}^{\delta t} f\left(x\left(\tau\right)\right) - f\left(y\left(\tau\right)\right) d\tau\right\|_{2}, \quad (11)$$

$$\approx \left\| \int_{0}^{\delta t} f\left(x\left(\tau\right)\right) - f\left(y\left(\tau\right)\right) d\tau \right\|_{2}, \qquad (12)$$

$$= \delta t \| f(x(t)) - f(y(t)) \|_{2}.$$
(13)

This results into the theorem below for $\delta t < 1$.

Theorem 8 If f is Lippschitz and if the integration interval is small enough, T is a contraction.

We illustrate this in a few examples.

Example 9 Some examples to illustrate the application of this theorem.

1. We have $\dot{x} = ax$, thus we have

$$T\{x^{0}\} = x_{0} + \int_{0}^{t} f(x^{0}(\tau)) d\tau = x_{0} + \int_{0}^{t} ax \ d\tau \qquad (14)$$

$$= x_0 + [ax_0\tau]_0^t = x_0(1+at) = x^1,$$
(15)

$$T\{T\{x^{0}\}\} = T\{x^{1}\} = x_{0} + \int_{0}^{t} a(x_{0}(1+at)) d\tau$$
(16)

$$= x_0 \left(1 + at + \frac{1}{2}a^2t^2 \right), \tag{17}$$

$$T^{n}\left\{x^{0}\right\} = x_{0}\left(\sum_{n=0}^{n} \frac{a^{n}}{n!}t^{n}\right) = x_{0}\exp\left(at\right).$$
(18)

This solution might look oddly familiar. We see that

$$\|f(x) - f(y)\|_{2} = a \|x - y\|_{2} \le \iota \|x - y\|_{2},$$
(19)

and thus for $a \leq \iota$, there will be a solution.

2. For $\dot{x} = tx$, we have

$$T\{x^{0}\} = x_{0} + \int_{0}^{t} f(x^{0}(\tau)) d\tau = x_{0} + \int_{0}^{t} \tau x d\tau \qquad (20)$$

$$= x_0 \left(1 + \frac{t^2}{2} \right) = x^1, \tag{21}$$

$$T\left\{T\left\{x^{0}\right\}\right\} = T\left\{x^{1}\right\} = x_{0}\left(1 + \frac{t^{2}}{2} + \frac{t^{4}}{8}\right),$$
(22)

$$T^{n}\left\{x^{0}\right\} = x_{0}\left(\sum_{n=0}^{n} \frac{1}{n!} \left(\frac{t^{2}}{2}\right)^{n}\right) = x_{0} \exp\left(\frac{1}{2}t^{2}\right).$$
 (23)

This solution might look oddly familiar. We see that

$$\|f(x) - f(y)\|_{2} = t \, \|x - y\|_{2} \le \iota \, \|x - y\|_{2},$$
(24)

and thus for $t \leq \iota$, there will be a solution.

3. For $\dot{x} = x^2$, we look at

$$x^{2} - y^{2} = (x - y)(x + y), \qquad (25)$$

and, thus, f will be Lippschitz for $||x + y||_2 \le \iota$, as

$$\|f(x) - f(y)\|_{2} = \|x - y\|_{2} \|x + y\|_{2} \le \iota \|x - y\|_{2}, \qquad (26)$$

will be valid then. Let us assume $x, y \in [-\iota/2, \iota/2]$, and we had an initial point $x_0 = \iota/4$. Then, the minimal speed will be $\dot{x}_0 = x_0^2 = (\iota/2)^2$ and it will have travelled at least until $x_{\max} = x_0 + f(x_0) \,\delta t = \iota/4 + (\iota/2)^2 \,\delta t$ after δt . The state x will reach $\iota/2$ at

$$\frac{\iota}{2} = \frac{\iota}{4} + \frac{\iota^2}{4} \delta t \iff \delta t < \frac{1}{\iota}.$$
(27)

Thus, it does not guarantee the existence of a solution until δt . Similar arguments can be made for different initial values $x_0 > 0$.