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1 Basic Differential Equations

We all know that the differential equation & = Az has the unique solution
x(t) = xo exp(—At). This, however, does not mean that all differential equations
have solution.

Example 1 We have

i = a2 (1)
When defining x = 1/y and differentiating © = —1/y?. Thus, we obtain
. 2
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which implies y = —1. By integration, we see that y(t) = j;f ydt = —t + yo.
When inserting y(t) = 1/x(t), we obtain
o

z(t) = 3)

T 1—txg

It is clear that the solution of x(t) does not exist at t = 1/xq, i.e., it has no
global solution.

This, we achieve by studying the whether we have a fixpoint.

1.1 Fixpoint Problem
We intend to test whether differential equations of the kind

i = f(x) (4)
have a solution. This is equivalent to the Volterra integral equation
t
z(t) = =(0) +/0 fla(r))dr = T{z(-)}, (5)

where T : C° (RT) — C°(R¥) is an operator. Thus, there exists a solution if
x(-) =T {x(-)} has a solution.



Example 2 For T : [0,1] — [0,1] being a continous function, we have a fived
point at x. if x and T {x} intersect at © = x.. For example, for T {z} =
23 —x + 1 has one solution in [0,1] at x. = 0.61803 and z, = 1.0. See Figure
1.1.
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This function has two fixed points.

Any continuous function from [0,1] onto [0, 1], will have one intersection
with itsself. Thus, it would be a fixed point.

Theorem 3 (Brouwer Fixed Point) Any continuous function f : C — C
from a convex, compact set to itself has at least one fized point.

How can we determine such a fixed point?

1.2 Contraction Mapping Theorem
Assume that we have  (-) = T {z ()}, and a solution 2> (-). For such a solution,
we have

e () =T{z™ ()} =TT{z> ()} =T"{«> ()} (6)

Can this property be used for determining the solution x> (-) using an initial
guess 2 (+)?

Example 4 We apply the operator
T {2 (")} (7)

with n — oo on arbitrary z° (). For (i) T {z} = 0.25 + 0.6z and (ii) T {x} =
0.5 (1 — cos (zm)), this is illustrated in Figure 1. We can observe that “if the
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Figure 1: This figure illustrates the contraction theorem. Note that if T {z} > z,
it will go up and for T' {z} < z down. For T'{z} = z, we have a fixed point.

slope is less me”, it will converge to a fixed point otherwise it will diverge.

Check out fizedPoint.m.

The example illustrates the problem but we need to formalize it. First, we

need the definition of a contraction.

Definition 5 T is a contraction if there exists a p € [0,1) such that

1T {z ()} = T{y ()}

where [le (-)]

This definition can be translated that if the maximal error ||z (-) — y (+)

<ple() =y ()l

= max; ||e (t)||, = max; ¢/x

(®)
T4+ tazt

oo

over all time ¢ gives us a bound on the maximal slope |T{z ()} = T{y ()} .

then we will call T a contraction.

Theorem 6 If T is a contraction, then the repeated iteration of T, i.e.,

2% ()= lim 7" {2° (")}

n—oo

converges to a unique fixed point.

Proof. Ever Cauchy sequence x1, z2, T3, . .

0. Thus, we have to show that m

9)

., &y, converges if limy, ;oo [Tn, — Tm| =

The next question is whether T can be turned into a contraction.

I Any assignment of positive numbers to vectors is a norm if (i) ||0|| = 0, (ii) Yz # 0. ||z|| > 0,
(iii) ||z + y|| < ||z]| + ||yll. Norms can also be written as ||z|| = (z, z).



Definition 7 A function f : R — R™ is Lipschitz if there exists an ¢ such
that

1 (@) = F@lly < elle—=yll,- (10)

We realize that we always have for small §t, the difference f (x (7))— f (y (7))
remains constant, and therefore

ot
17z ()} =T {y () Hlo = max ; fla(m)=Ffly()dr| , (11
2
ot
~|/ fa(m) = fy()dr| (12)
2
= Ot f (z(®) = Fy @)l (13)

This results into the theorem below for dt < 1.

Theorem 8 If f is Lippschitz and if the integration interval is small enough,
T is a contraction.

We illustrate this in a few examples.
Example 9 Some examples to illustrate the application of this theorem.

1. We have & = ax, thus we have

T{xo}:xo—i—/o f(xO(T))dT:xO—i—/o ar dt (14)

=20 + [axoT]h = z0 (1 + at) = 2!, (15)

T{T{xo}}:T{xl}:xo-i—/o a(zo (1+at)) dr (16)

=z (1 +at + ;a2t2> , (17)

™ {wo} =g (Z j:t”) = zgexp (at). (18)
n=0

This solution might look oddly familiar. We see that

() = fW)lly = allz —yll, <elle—yl,, (19)

and thus for a <, there will be a solution.



2. For & = tx, we have
t t
T{xo}zxo—i—/ f(2%(r)) dexo—i—/ T dT (20)
0 0
t? 1
=z |1+ 5 =, (21)

TAT{a0}) = T {2} — o <1+t;+tg>, (22)

T {2} = ¢ (7;) ;! <i>n> = xp exp (;t2> : (23)

This solution might look oddly familiar. We see that

(@) = FWlly = tllz =yl <ellz —yll,, (24)

and thus for t <, there will be a solution.

2

3. For & = x*, we look at

-y =(x—y)(z+y), (25)

and, thus, f will be Lippschitz for ||z + y|l, < ¢, as

1 (@) = FW)lly = llz = ylly 12+ ylly < elle =yl (26)

will be valid then. Let us assume x,y € [—t/2,1/2], and we had an initial
point zo = /4. Then, the minimal speed will be &g = x2 = (1/2)° and it
will have travelled at least until Tmax = o + f (z0) 6t = /4 + (1/2)% 0t
after 6t. The state x will reach v/2 at

L L4? 1

—=—+4 -0t <=0t < —. 27

2 4 + 4 < L (27)
Thus, it does not guarantee the existence of a solution until 6t. Similar
arguments can be made for different initial values xog > 0.



