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1 Basic Di¤erential Equations

We all know that the di¤erential equation _x = Ax has the unique solution
x(t) = x0 exp(�At). This, however, does not mean that all di¤erential equations
have solution.

Example 1 We have
_x = x2: (1)

When de�ning x = 1=y and di¤erentiating _x = � _y=y2. Thus, we obtain

� _y

y2
= _x = x2 =

�
1

y

�2
; (2)

which implies _y = �1. By integration, we see that y(t) =
R t
0
_ydt = �t + y0.

When inserting y(t) = 1=x(t), we obtain

x(t) =
x0

1� tx0
: (3)

It is clear that the solution of x(t) does not exist at t = 1=x0, i.e., it has no
global solution.

This, we achieve by studying the whether we have a �xpoint.

1.1 Fixpoint Problem

We intend to test whether di¤erential equations of the kind

_x = f(x) (4)

have a solution. This is equivalent to the Volterra integral equation

x(t) = x(0) +

Z t

0

f(x(�))d� = T fx(�)g ; (5)

where T : C0 (R+) ! C0 (R+) is an operator. Thus, there exists a solution if
x (�) = T fx (�)g has a solution.
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Example 2 For T : [0; 1] ! [0; 1] being a continous function, we have a �xed
point at x� if x and T fxg intersect at x = x�. For example, for T fxg =
x3 � x+ 1 has one solution in [0; 1] at x� = 0:618 03 and x� = 1:0. See Figure
1.1.
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This function has two �xed points.

Any continuous function from [0; 1] onto [0; 1], will have one intersection
with itsself. Thus, it would be a �xed point.

Theorem 3 (Brouwer Fixed Point) Any continuous function f : C ! C
from a convex, compact set to itself has at least one �xed point.

How can we determine such a �xed point?

1.2 Contraction Mapping Theorem

Assume that we have x (�) = T fx (�)g, and a solution x1 (�). For such a solution,
we have

x1 (�) = T fx1 (�)g = TT fx1 (�)g = Tn fx1 (�)g : (6)

Can this property be used for determining the solution x1 (�) using an initial
guess x0 (�)?

Example 4 We apply the operator

Tn
�
x0 (�)

	
(7)

with n ! 1 on arbitrary x0 (�). For (i) T fxg = 0:25 + 0:6x and (ii) T fxg =
0:5 (1� cos (x�)), this is illustrated in Figure 1. We can observe that �if the
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Figure 1: This �gure illustrates the contraction theorem. Note that if T fxg > x,
it will go up and for T fxg < x down. For T fxg = x, we have a �xed point.

slope is less me�, it will converge to a �xed point otherwise it will diverge.
Check out fixedPoint.m.

The example illustrates the problem but we need to formalize it. First, we
need the de�nition of a contraction.

De�nition 5 T is a contraction if there exists a � 2 [0; 1) such that

kT fx (�)g � T fy (�)gk1 � � kx (�)� y (�)k1 ; (8)

where ke (�)k1 � maxt ke (t)k2 = maxt 2
p
x21 + : : :+ x

2
n.
1

This de�nition can be translated that if the maximal error kx (�)� y (�)k1
over all time t gives us a bound on the maximal slope kT fx (�)g � T fy (�)gk1,
then we will call T a contraction.

Theorem 6 If T is a contraction, then the repeated iteration of T , i.e.,

x1 (�) = lim
n!1

Tn
�
x0 (�)

	
(9)

converges to a unique �xed point.

Proof. Ever Cauchy sequence x1; x2; x3; : : : ; xn converges if limn;m!1 jxn � xmj =
0. Thus, we have to show that
The next question is whether T can be turned into a contraction.

1Any assignment of positive numbers to vectors is a norm if (i) k0k = 0, (ii) 8x 6= 0: kxk > 0,
(iii) kx+ yk � kxk+ kyk. Norms can also be written as kxk = (x; x).
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De�nition 7 A function f : Rn ! Rm is Lipschitz if there exists an � such
that

kf(x)� f(y)k2 � � kx� yk2 : (10)

We realize that we always have for small �t, the di¤erence f (x (�))�f (y (�))
remains constant, and therefore

kT fx (�)g � T fy (�)gk1 = max
�t


Z �t

0

f (x (�))� f (y (�)) d�

2

; (11)

�

Z �t

0

f (x (�))� f (y (�)) d�

2

; (12)

= �t kf (x (t))� f (y (t))k2 : (13)

This results into the theorem below for �t < 1.

Theorem 8 If f is Lippschitz and if the integration interval is small enough,
T is a contraction.

We illustrate this in a few examples.

Example 9 Some examples to illustrate the application of this theorem.

1. We have _x = ax, thus we have

T
�
x0
	
= x0 +

Z t

0

f
�
x0 (�)

�
d� = x0 +

Z t

0

ax d� (14)

= x0 + [ax0� ]
t
0 = x0 (1 + at) = x

1; (15)

T
�
T
�
x0
		
= T

�
x1
	
= x0 +

Z t

0

a (x0 (1 + at)) d� (16)

= x0

�
1 + at+

1

2
a2t2

�
; (17)

Tn
�
x0
	
= x0

 
nX
n=0

an

n!
tn

!
= x0 exp (at) : (18)

This solution might look oddly familiar. We see that

kf(x)� f(y)k2 = a kx� yk2 � � kx� yk2 ; (19)

and thus for a � �, there will be a solution.
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2. For _x = tx, we have

T
�
x0
	
= x0 +

Z t

0

f
�
x0 (�)

�
d� = x0 +

Z t

0

�x d� (20)

= x0

�
1 +

t2

2

�
= x1; (21)

T
�
T
�
x0
		
= T

�
x1
	
= x0

�
1 +

t2

2
+
t4

8

�
; (22)

Tn
�
x0
	
= x0

 
nX
n=0

1

n!

�
t2

2

�n!
= x0 exp

�
1

2
t2
�
: (23)

This solution might look oddly familiar. We see that

kf(x)� f(y)k2 = t kx� yk2 � � kx� yk2 ; (24)

and thus for t � �, there will be a solution.

3. For _x = x2, we look at

x2 � y2 = (x� y) (x+ y) ; (25)

and, thus, f will be Lippschitz for kx+ yk2 � �, as

kf(x)� f(y)k2 = kx� yk2 kx+ yk2 � � kx� yk2 ; (26)

will be valid then. Let us assume x; y 2 [��=2; �=2], and we had an initial
point x0 = �=4:Then, the minimal speed will be _x0 = x20 = (�=2)

2 and it
will have travelled at least until xmax = x0 + f (x0) �t = �=4 + (�=2)

2
�t

after �t. The state x will reach �=2 at

�

2
=
�

4
+
�2

4
�t() �t <

1

�
: (27)

Thus, it does not guarantee the existence of a solution until �t. Similar
arguments can be made for di¤erent initial values x0 > 0.
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