Lecture Notes 1

Jan Peters (www.jan-peters.net)

September 5, 2006

1 Basic Differential Equations

We all know that the differential equation $\dot{x}=A x$ has the unique solution $x(t)=x_{0} \exp (-A t)$. This, however, does not mean that all differential equations have solution.

Example 1 We have

$$
\begin{equation*}
\dot{x}=x^{2} \tag{1}
\end{equation*}
$$

When defining $x=1 / y$ and differentiating $\dot{x}=-\dot{y} / y^{2}$. Thus, we obtain

$$
\begin{equation*}
-\frac{\dot{y}}{y^{2}}=\dot{x}=x^{2}=\left(\frac{1}{y}\right)^{2} \tag{2}
\end{equation*}
$$

which implies $\dot{y}=-1$. By integration, we see that $y(t)=\int_{0}^{t} \dot{y} d t=-t+y_{0}$. When inserting $y(t)=1 / x(t)$, we obtain

$$
\begin{equation*}
x(t)=\frac{x_{0}}{1-t x_{0}} . \tag{3}
\end{equation*}
$$

It is clear that the solution of $x(t)$ does not exist at $t=1 / x_{0}$, i.e., it has no global solution.

This, we achieve by studying the whether we have a fixpoint.

1.1 Fixpoint Problem

We intend to test whether differential equations of the kind

$$
\begin{equation*}
\dot{x}=f(x) \tag{4}
\end{equation*}
$$

have a solution. This is equivalent to the Volterra integral equation

$$
\begin{equation*}
x(t)=x(0)+\int_{0}^{t} f(x(\tau)) d \tau=T\{x(\cdot)\} \tag{5}
\end{equation*}
$$

where $T: \mathcal{C}^{0}\left(\mathbb{R}^{+}\right) \rightarrow \mathcal{C}^{0}\left(\mathbb{R}^{+}\right)$is an operator. Thus, there exists a solution if $x(\cdot)=T\{x(\cdot)\}$ has a solution.

Example 2 For $T:[0,1] \rightarrow[0,1]$ being a continous function, we have a fixed point at x_{*} if x and $T\{x\}$ intersect at $x=x_{*}$. For example, for $T\{x\}=$ $x^{3}-x+1$ has one solution in $[0,1]$ at $x_{*}=0.61803$ and $x_{*}=1.0$. See Figure 1.1.

This function has two fixed points.
Any continuous function from $[0,1]$ onto $[0,1]$, will have one intersection with itsself. Thus, it would be a fixed point.

Theorem 3 (Brouwer Fixed Point) Any continuous function $f: \mathcal{C} \rightarrow \mathcal{C}$ from a convex, compact set to itself has at least one fixed point.

How can we determine such a fixed point?

1.2 Contraction Mapping Theorem

Assume that we have $x(\cdot)=T\{x(\cdot)\}$, and a solution $x^{\infty}(\cdot)$. For such a solution, we have

$$
\begin{equation*}
x^{\infty}(\cdot)=T\left\{x^{\infty}(\cdot)\right\}=T T\left\{x^{\infty}(\cdot)\right\}=T^{n}\left\{x^{\infty}(\cdot)\right\} \tag{6}
\end{equation*}
$$

Can this property be used for determining the solution $x^{\infty}(\cdot)$ using an initial guess $x^{0}(\cdot)$?

Example 4 We apply the operator

$$
\begin{equation*}
T^{n}\left\{x^{0}(\cdot)\right\} \tag{7}
\end{equation*}
$$

with $n \rightarrow \infty$ on arbitrary $x^{0}(\cdot)$. For (i) $T\{x\}=0.25+0.6 x$ and (ii) $T\{x\}=$ $0.5(1-\cos (x \pi))$, this is illustrated in Figure 1. We can observe that "if the

Figure 1: This figure illustrates the contraction theorem. Note that if $T\{x\}>x$, it will go up and for $T\{x\}<x$ down. For $T\{x\}=x$, we have a fixed point.
slope is less me", it will converge to a fixed point otherwise it will diverge. Check out fixedPoint.m.

The example illustrates the problem but we need to formalize it. First, we need the definition of a contraction.

Definition $5 T$ is a contraction if there exists a $\rho \in[0,1)$ such that

$$
\begin{equation*}
\|T\{x(\cdot)\}-T\{y(\cdot)\}\|_{\infty} \leq \rho\|x(\cdot)-y(\cdot)\|_{\infty} \tag{8}
\end{equation*}
$$

where $\|e(\cdot)\|_{\infty} \equiv \max _{t}\|e(t)\|_{2}=\max _{t} \sqrt[2]{x_{1}^{2}+\ldots+x_{n}^{2}}$.
This definition can be translated that if the maximal error $\|x(\cdot)-y(\cdot)\|_{\infty}$ over all time t gives us a bound on the maximal slope $\|T\{x(\cdot)\}-T\{y(\cdot)\}\|_{\infty}^{\infty}$, then we will call T a contraction.

Theorem 6 If T is a contraction, then the repeated iteration of T, i.e.,

$$
\begin{equation*}
x^{\infty}(\cdot)=\lim _{n \rightarrow \infty} T^{n}\left\{x^{0}(\cdot)\right\} \tag{9}
\end{equation*}
$$

converges to a unique fixed point.
Proof. Ever Cauchy sequence $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ converges if $\lim _{n, m \rightarrow \infty}\left|x_{n}-x_{m}\right|=$ 0 . Thus, we have to show that

The next question is whether T can be turned into a contraction.

[^0]Definition 7 A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is Lipschitz if there exists an ι such that

$$
\begin{equation*}
\|f(x)-f(y)\|_{2} \leq \iota\|x-y\|_{2} \tag{10}
\end{equation*}
$$

We realize that we always have for small δt, the difference $f(x(\tau))-f(y(\tau))$ remains constant, and therefore

$$
\begin{align*}
\|T\{x(\cdot)\}-T\{y(\cdot)\}\|_{\infty} & =\max _{\delta t}\left\|\int_{0}^{\delta t} f(x(\tau))-f(y(\tau)) d \tau\right\|_{2} \tag{11}\\
& \approx\left\|\int_{0}^{\delta t} f(x(\tau))-f(y(\tau)) d \tau\right\|_{2} \tag{12}\\
& =\delta t\|f(x(t))-f(y(t))\|_{2} \tag{13}
\end{align*}
$$

This results into the theorem below for $\delta t<1$.
Theorem 8 If f is Lippschitz and if the integration interval is small enough, T is a contraction.

We illustrate this in a few examples.
Example 9 Some examples to illustrate the application of this theorem.

1. We have $\dot{x}=a x$, thus we have

$$
\begin{align*}
T\left\{x^{0}\right\} & =x_{0}+\int_{0}^{t} f\left(x^{0}(\tau)\right) d \tau=x_{0}+\int_{0}^{t} a x d \tau \tag{14}\\
& =x_{0}+\left[a x_{0} \tau\right]_{0}^{t}=x_{0}(1+a t)=x^{1} \tag{15}\\
T\left\{T\left\{x^{0}\right\}\right\} & =T\left\{x^{1}\right\}=x_{0}+\int_{0}^{t} a\left(x_{0}(1+a t)\right) d \tau \tag{16}\\
& =x_{0}\left(1+a t+\frac{1}{2} a^{2} t^{2}\right) \tag{17}\\
T^{n}\left\{x^{0}\right\} & =x_{0}\left(\sum_{n=0}^{n} \frac{a^{n}}{n!} t^{n}\right)=x_{0} \exp (a t) \tag{18}
\end{align*}
$$

This solution might look oddly familiar. We see that

$$
\begin{equation*}
\|f(x)-f(y)\|_{2}=a\|x-y\|_{2} \leq \iota\|x-y\|_{2} \tag{19}
\end{equation*}
$$

and thus for $a \leq \iota$, there will be a solution.
2. For $\dot{x}=t x$, we have

$$
\begin{align*}
T\left\{x^{0}\right\} & =x_{0}+\int_{0}^{t} f\left(x^{0}(\tau)\right) d \tau=x_{0}+\int_{0}^{t} \tau x d \tau \tag{20}\\
& =x_{0}\left(1+\frac{t^{2}}{2}\right)=x^{1} \tag{21}\\
T\left\{T\left\{x^{0}\right\}\right\} & =T\left\{x^{1}\right\}=x_{0}\left(1+\frac{t^{2}}{2}+\frac{t^{4}}{8}\right), \tag{22}\\
T^{n}\left\{x^{0}\right\} & =x_{0}\left(\sum_{n=0}^{n} \frac{1}{n!}\left(\frac{t^{2}}{2}\right)^{n}\right)=x_{0} \exp \left(\frac{1}{2} t^{2}\right) \tag{23}
\end{align*}
$$

This solution might look oddly familiar. We see that

$$
\begin{equation*}
\|f(x)-f(y)\|_{2}=t\|x-y\|_{2} \leq \iota\|x-y\|_{2} \tag{24}
\end{equation*}
$$

and thus for $t \leq \iota$, there will be a solution.
3. For $\dot{x}=x^{2}$, we look at

$$
\begin{equation*}
x^{2}-y^{2}=(x-y)(x+y) \tag{25}
\end{equation*}
$$

and, thus, f will be Lippschitz for $\|x+y\|_{2} \leq \iota$, as

$$
\begin{equation*}
\|f(x)-f(y)\|_{2}=\|x-y\|_{2}\|x+y\|_{2} \leq \iota\|x-y\|_{2} \tag{26}
\end{equation*}
$$

will be valid then. Let us assume $x, y \in[-\iota / 2, \iota / 2]$, and we had an initial point $x_{0}=\iota / 4$. Then, the minimal speed will be $\dot{x}_{0}=x_{0}^{2}=(\iota / 2)^{2}$ and it will have travelled at least until $x_{\max }=x_{0}+f\left(x_{0}\right) \delta t=\iota / 4+(\iota / 2)^{2} \delta t$ after δt. The state x will reach $\iota / 2$ at

$$
\begin{equation*}
\frac{\iota}{2}=\frac{\iota}{4}+\frac{\iota^{2}}{4} \delta t \Longleftrightarrow \delta t<\frac{1}{\iota} . \tag{27}
\end{equation*}
$$

Thus, it does not guarantee the existence of a solution until δt. Similar arguments can be made for different initial values $x_{0}>0$.

[^0]: ${ }^{1}$ Any assignment of positive numbers to vectors is a norm if (i) $\|0\|=0$, (ii) $\forall x \neq 0 .\|x\|>0$, (iii) $\|x+y\| \leq\|x\|+\|y\|$. Norms can also be written as $\|x\|=(x, x)$.

