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Abstract
Learning control has become an appealing alternative to the derivation of control laws based
on classic control theory. However, a major shortcoming of learning control is the lack of
performance guarantees which prevents its application in many real-world scenarios. As
a step towards widespread deployment of learning control, we provide stability analysis
tools for controllers acting on dynamics represented by Gaussian processes (GPs). We
consider differentiable Markovian control policies and system dynamics given as (i) the
mean of a GP, and (ii) the full GP distribution. For both cases, we analyze finite and
infinite time horizons. Furthermore, we study the effect of disturbances on the stability
results. Empirical evaluations on simulated benchmark problems support our theoretical
results.
Keywords: Stability, Reinforcement Learning, Control, Gaussian Process

1. Introduction

Learning control based on Gaussian process (GP) forward models has become a viable
approach in the machine learning and control theory communities. Many successful applica-
tions impressively demonstrate the efficiency of this approach (Deisenroth et al., 2015; Pan
and Theodorou, 2014; Klenske et al., 2013; Maciejowski and Yang, 2013; Nguyen-Tuong and
Peters, 2011; Engel et al., 2006; Kocijan et al., 2004). In contrast to classic control theory
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methods, learning control does not presuppose a detailed understanding of the underlying
dynamics but tries to infer the required information from data. Thus, relatively little
expert knowledge about the system dynamics is required and fewer assumptions, such as a
parametric form and parameter estimates, must be made. Employing Gaussian processes as
forward models for learning control is particularly appealing as they incorporate uncertainty
about the system dynamics. GPs infer a distribution over all plausible models given the
observed data instead of one (possibly erroneous) model and, thus, avoid severe modeling
errors. Furthermore, obtaining a task solution by a learning process can significantly decrease
the involved manual effort.

Unfortunately, performance guarantees rarely exist for arbitrary system dynamics and
policies learned from data. An important and well-established type of performance guarantee
is (asymptotic) stability. A stability region in the state space ensures, that all trajectories
starting in this region converge to the target. Classic control theory offers a rich variety of
stability analysis, e.g., for linear, nonlinear, and stochastic systems (Khalil, 2014; Khasminskii
and Milstein, 2011; Skogestad and Postlethwaite, 2005; Kushner, 1967). In a preliminary
study (Vinogradska et al., 2016), we introduced a tool to analyze the stability of learned
policies for closed-loop control systems with transition dynamics given as a GP. This tool
handled two types of dynamics: dynamics given as (i) the mean of a GP, and (ii) the full GP
distribution. While the first case results in a deterministic closed-loop system, uncertainty
is present in the second case. As propagating distributions through a GP is analytically
intractable, we proposed a novel approach for approximate multi-step-ahead predictions
based on numerical quadrature. Finally, we were able to analyze asymptotic stability of the
deterministic dynamics in case (i), but in case (ii) only finite time horizons were considered.
Furthermore, the results were limited to GPs with squared exponential kernel.

In this paper, we substantially extend our previous work (Vinogradska et al., 2016) and
move to a solid foundation for a stability analysis tool. For this detailed study on stability of
closed-loop control systems, we consider dynamics given as (i) the mean of a GP, and (ii) the
full GP distribution. In both cases, we analyze finite as well as infinite time horizons. For
dynamics given as the mean of a GP, we obtain a region of starting points in the state space
such that the target state is reached up to a given tolerance at the (finite) time horizon. For
infinite time horizons, we construct a stability region in the state space. Furthermore, we
study the behavior of dynamics given by the mean of a GP when disturbances are present.
Here, we derive criteria for the disturbance such that the closed-loop control system remains
stable. For full GP dynamics, we propose an algorithm to find a region of starting points in
the state space such that the probability of the state to be in the target region at the (finite)
time horizon is at least a given minimum probability. As the GP predictive distribution at
any query point is Gaussian, the probability to transition to a point arbitrarily far from the
current point is greater than zero and, thus, the system will eventually leave any compact
set. Hence, for full GP dynamics the notions of deterministic analysis do not apply. Here, we
extend the previous results (Vinogradska et al., 2016) substantially and analyze asymptotic
behavior of closed-loop control systems with full GP dynamics. Employing methods from
Markov chain theory, we show that for many choices of the prior the system converges to a
unique, invariant limiting distribution.

This paper lays a foundation for theoretical stability analysis for control of probabilistic
models learned from data. The proposed approaches provide stability guarantees for many
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Figure 1: We present a tool to analyze stability for a given controller and Gaussian process
(GP) dynamics model. Our tool analytically derives a stability region where
convergence to the goal is guaranteed. Thus, we can provide stability guarantees
for many of the existing GP based learning control approaches.

existing learning control approaches based on GPs. The paper is organized as follows: first,
we briefly review related work and introduce the problem to be addressed. Section 2 provides
necessary background for the stability analysis. In Section 3, we analyze closed-loop control
systems with dynamics given as the mean of a GP. Subsequently, we study the case when
the dynamics are given as the full GP distribution in Section 4. Section 5 provides empirical
evaluations on benchmark control tasks. A conclusion is given in Section 6.

1.1 Related Work

To date, only very few special cases of system dynamics and policies learned from data have
been analyzed with respect to stability. For example, Perkins and Barto (2003) and Nakanishi
et al. (2002) analyze the scenario of an agent switching between given safe controllers. Kim
and Ng (2005) monitor stability while learning control for the special case of a linear controller
and linear dynamics. Recently, stability properties of autoregressive systems with dynamics
given as the mean of a GP were analyzed by Beckers and Hirche (2016), who derive an
upper bound on the number of equilibrium points for squared exponential and some special
cases of polynomial covariance functions. Furthermore, the authors compute an invariant
set and show the boundedness of all system trajectories. However, no control inputs are
considered in this work and no asymptotic stability results are given. Furthermore, the
full GP distribution is not considered in (Beckers and Hirche, 2016). To the best of our
knowledge, stability analysis for closed-loop control with probabilistic models, such as GPs,
and arbitrary policies has not been addressed so far.

In classic control theory, the first formal analysis of closed-loop dynamics dates back
to the 19th century (Routh, 1877; Hurwitz, 1895; Lyapunov, 1892). Lyapunov’s approach
allows to analyze stability for nonlinear deterministic systems ẋ = f(x). It studies the
system behavior around equilibrium points, i.e., points, where all derivatives ẋ of the state
x vanish and the system comes to a hold. An equilibrium point xe is stable, if for every
ε > 0 a δ > 0 exists such that ‖x(t) − xe‖ < ε for every solution x(t) of the differential
equation with ‖x(t0)− xe‖ < δ and t ≥ t0. The equilibrium point is asymptotically stable,
if it is stable and δ can be chosen such that ‖x(t)− xe‖ → 0 as t→∞, see (Khalil, 2014).
One approach to proving stability of xe is to find a Lyapunov function, i.e., a non-negative
function, that vanishes only at xe and decreases along system trajectories. This approach
can be applied to nonlinear dynamics. However, finding a Lyapunov function is typically
challenging as there exists no general method for this task.
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Additionally to the difficulty of finding a suitable Lyapunov function, classical Lyapunov
approaches are highly challenging as proving nonnegativity of a nonlinear function is in
general intractable. In (Parrilo, 2000), a relaxation of the positive definiteness problem for
polynomials was introduced: a polynomial is clearly nonnegative, if it can be written as
a sum of squares (SOS) of polynomials. Fortunately, checking whether a polynomial can
be written as SOS can be formulated as a semidefinite program (SDP) and can be solved
in polynomial time. Thus, for polynomial system dynamics one can search for polynomial
Lyapunov functions conveniently by solving the corresponding SDP. This SOS relaxation has
been successfully applied to a number of nonlinear stability problems as finding the region
of attraction of a system (Chesi, 2004; Majumdar et al., 2014), robust analysis (Topcu et al.,
2010b) or controller design (Moore and Tedrake, 2014). While there are some limitations to
these methods (Majumdar et al., 2014; Ahmadi and Parrilo, 2011), SOS approaches are of
high practical importance. However, SOS methods can only be applied directly to polynomial
dynamics. Nonpolynomial dynamics must be recast as polynomial systems by an (automated)
procedure (Papachristodoulou and Prajna, 2005). This recasting procedure introduces new
variables and constraints for each nonpolynomial term and can, thus, significantly increase
the size of the SDP that must be solved. Especially for nonparametric and nonpolynomial
models as, e.g., a GP with squared exponential or Matérn kernels, recasting often leads to
SDPs that are computationally infeasible (Topcu et al., 2010a).

For consideration of uncertainty in the dynamics, stochastic differential equations (SDEs)
have been introduced (Adomian, 1983). SDEs are differential equations where some terms
are stochastic processes. In the presence of uncertainty, xe is stable in probability, if for
every ε > 0 and p > 0, there exists δ > 0 such that P{‖x(t)− xe‖ > ε} < p for t > t0 and
solutions x(t) with ‖x(t0)− xe‖ < δ. Furthermore, xe is asymptotically stable in probability,
if it is stable in probability and P{‖x(t)− xe‖ > ε} → 0 for a suitable δ, see (Khasminskii
and Milstein, 2011). Stability follows from the existence of a supermartingale, a stochastic
Lyapunov function analogue. However, supermartingales exist only if the noise vanishes at
the equilibrium point. Relaxing the supermartingale criterion allows for stability statements
for a finite time horizon (Steinhardt and Tedrake, 2012; Kushner, 1966). Kushner’s (1966)
approach requires a supermartingale to be found manually, which is challenging in most cases.
Steinhardt and Tedrake (2012) address this difficulty by constructing a supermartingale via
SOS programming. This approach is suitable for systems with polynomial dynamics and
shares some of the difficulties of SOS approaches as described above.

When controlling a system, uncertainty may arise from modeling inaccuracies, the
presence of (external) disturbances and the lack of data, as some system parameters are not
known in advance but only during operation. Robustness of nonlinear systems to structured
or unstructured uncertainty has been considered in classical control theory, e.g., via the small
gain theorem (Zhou and Doyle, 1998). However, these approaches typically lead to an infinite
number of nonlinear matrix inequalities and cannot be solved analytically. Another approach
is to take uncertainty into account when designing a controller. Thus, a controller must be
suitable for a family of systems that is specified, e.g., by bounds for model parameters or
for nonparametric uncertainties as bounds for the operator norm of the unknown dynamics.
Robust control (Skogestad and Postlethwaite, 2005; Zhou and Doyle, 1998) designs a single
controller that is provably stable for all systems in the specified family – often at cost of
overall controller performance. Adaptive control (Narendra and Annaswamy, 2012; Tao,
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Figure 2: A closed-loop control structure with controller π and the system dynamics f . We
study stability for two types of dynamics: (i) the mean of the GP and (ii) the full
GP predictive distribution.

2003) instead adjusts control parameters online in order to achieve prespecified performance,
which can be computationally demanding. Both schemes require stability analysis of the
dynamics system, e.g., via Lyapunov functions as described above.

1.2 Problem Statement

The goal of this paper is to provide an automated tool to analyze stability of a closed-loop
structure when the dynamics model is given as a GP, see Figure 1. As inputs, our tool expects
a control policy and a GP dynamics model. It checks the stability of the corresponding
closed-loop structure and returns a stability region. Trajectories starting in this region are
guaranteed to converge to the target (in probability). Subsequently, we discuss the different
components of the tool in more detail.

We consider controllers which depend only on the current state and are differentiable
with respect to the state. The dynamics model is given as a GP with stationary covariance
function. This covariance function is assumed to have bounded derivatives with respect
to all input dimensions and bounded prior mean. We consider a discrete-time system
x(t+1) = f(x(t),u(t)) with x(t)∈ RD, u(t)∈ RF , t = 1, 2, . . . and a controller π : RD → RF ,
whose objective is to move the system to a desired state xd, see Figure 2. In this paper,
we study two possible cases for the dynamics f : (i) the mean of a GP and (ii) the full GP
predictive distribution. Note, that in the second case, distributions have to be propagated
through the GP resulting in non-Gaussian state distributions.

2. Preliminaries

In this section, we introduce basic concepts for the proposed stability analysis. First, we
briefly review Gaussian process regression, as GPs are employed to describe the considered
dynamics. Second, we recap numerical quadrature, as it is the basis for the uncertainty
propagation method proposed in Section 4.

2.1 Gaussian Process Regression

Given noisy observations D = {(zi, yi = f(zi) + εi) | 1 ≤ i ≤ N}, where εi ∼ N (0, σ2
n), the

prior on the values of f is N (0,K(Z,Z) + σ2
nI). The covariance matrix K(Z,Z) is defined

by the choice of covariance function k as [K(Z,Z)]ij = k(zi, zj). One commonly employed
covariance function is the squared exponential

k(z,w) = σ2
f exp

(
−1

2(z −w)ᵀΛ−1(z −w)
)
,
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with signal variance σ2
f and squared lengthscales Λ = diag(l21, . . . , l2D+F ) for all input

dimensions. Given a query point z∗, the conditional probability of f(z∗) is

f(z∗) | D ∼ N
(
k(z∗, Z)β, k(z∗, z∗)− k(z∗, Z)(K(Z,Z) + σ2

nI)−1k(Z, z∗)
)

(1)

with β = (K(Z,Z) +σ2
nI)−1y. The hyperparameters, e.g. σ2

n, σ
2
f ,Λ for the squared exponen-

tial kernel, are estimated by maximizing the log marginal likelihood of the data (Rasmussen
and Williams, 2005).

In this paper, f models system dynamics. It takes state-action pairs z= (x,u)ᵀ and
outputs successor states f(x,u). As these outputs are multivariate, we train condition-
ally independent GPs for each output dimension. We write σ2

n,m, σ2
f,m,Λm for the GP

hyperparameters in output dimension m and km for the corresponding covariance function.

2.2 Numerical Quadrature

Numerical quadrature approximates the value of an integral∫ b

a
f(x)dx ≈

p∑
i=1

wif(ξi)

given a finite number p of function evaluations. A widely used class of quadrature rules are
interpolatory quadrature rules, which integrate all polynomials up to a certain degree exactly.
In this paper, we employ Gaussian quadrature rules, where the evaluation points ξ1, . . . , ξp
are chosen to be the roots of certain polynomials from orthogonal polynomial families. They
achieve the highest accuracy possible for univariate interpolatory formulæ (Süli and Mayers,
2003). For multivariate integrals, the quadrature problem is significantly harder. While
many formulæ for the univariate case can straightforwardly be generalized to multivariate
integrals, they often suffer from the curse of dimensionality. However, quadrature methods
that scale better and are feasible for up to 20 dimensions have been developed. See (Skrainka
and Judd, 2011) for an overview.

3. Stability of GP Mean Dynamics

A wide variety of dynamics can be modeled well by the mean of a GP (Micchelli et al., 2006)
due to the universal approximation property of many kernels. Thus, stability of systems
with GP mean forward dynamics is an interesting problem. Please note that stability of
closed-loop control systems with dynamics given as the mean of a GP is a classical problem
from nonlinear control with a particular choice of dynamics function. Classical approaches
to solve this problem have been discussed in Section 1.1 and range from direct Lyapunov
approaches to the more recent SOS approach to construct polynomial Lyapunov functions.
However, for GP mean dynamics, finding a Lyapunov function directly seems even more
challenging than for a classical ODE derived from expert knowledge about the physical
system. On the other hand, constructing a polynomial Lyapunov function as the solution of
an SOS problem is typically computationally infeasible for these dynamics systems, as the
nonparametric nature of GP mean functions results in a large number of nonpolynomial
terms that significantly increase the complexity of the underlying semidefinite program (see
Section 1.1). Thus, we propose an alternative approach to address this problem.
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In this section, we provide tools to check the stability of a closed-loop control structure
with a given differentiable Markovian control policy π and GP mean dynamics. For this
class of forward dynamics, the next state x(t+1) is given as the mean of the GP predictive
distribution at the inputs x(t),u = π(x(t)). Firstly, we consider infinite time horizons.
In this case, we attempt to find a region of starting points in the state space, such that
trajectories starting in this region are guaranteed to converge to the desired point xd as
t → ∞. To obtain this result, we analyze the sensitivity of the GP predictive mean to
variations in the input space and derive upper bounds for the distance of the predictions at
two different points. This analysis can be used to find a region around the target point xd,
where the next state is closer to xd than the point before. It follows straightforwardly, that
the full metric ball of maximal radius, which lies completely inside this region, is a stability
region. All trajectories that start inside of this metric ball converge to the target point as
t→∞. Furthermore, we will show that in this metric ball, the distance of the current state
to the target decreases exponentially. We will exploit this statement to derive some finite
time horizon and robustness results. For finite time horizons, we aim to find a region in the
state space, such that the state does not deviate more than a given tolerance from the target
when the time horizon is reached. The robustness analysis deals with asymptotic stability
of the GP mean dynamics when disturbances are present. We derive conditions for these
disturbances, such that convergence to the target state xd is still guaranteed.

In the following, we will briefly review the notion of stability employed for the analysis
and derive the main result of this section: an algorithm to find a stability region. After
proving correctness of this algorithm, we will derive statements on finite time stability of
the GP mean dynamics and on infinite time stability of the disturbed system.

3.1 Stability Notion

If the system dynamics f is given by the mean of a GP, the resulting closed-loop structure is
deterministic. To assess the quality of a controller π, which aims to stabilize the system at
the reference point xd, we propose an algorithm to find a stability region of the closed-loop
system.

Definition 1 The reference point xd is stable, if for every ε > 0 there exists δ > 0, such
that ‖x(t) − xd‖ < ε for t = 1, 2, . . . and ‖x(0) − xd‖ < δ. If xd is stable and there exists a
δ0 > 0 such that ‖x(t) − xd‖ → 0 for t→∞, ‖x(0) − xd‖ < δ0, xd is asymptotically stable.
A subset Xc of the state space is a stability region, if ‖x(t) − xd‖ → 0 as t → ∞ for all
x(0) ∈ Xc.

Please note that π is implicit in this definition, as the states x(t) for t = 1, 2, . . . depend on
π via x(t+1) = f(x(t),π(x(t))). This definition matches Lyapunov’s stability notion (Khalil,
2014). We will present an algorithm that checks asymptotic stability of xd by constructing
a stability region Xc.

When the time horizon considered is finite, we are interested in finding all starting states,
such that the distance to the target is at most a given ε > 0.

Definition 2 A subset Xc of the state space is an (ε, T )-stability region, if ‖x(t) −xd‖ < ε
holds for all x0 ∈ Xc and t ≥ T .

7



Vinogradska, Bischoff, Nguyen-Tuong and Peters

: elements of S−
: elements of S+

reference point xd

stability region Xc
span 〈S+〉xd

Figure 3: Basic idea of Algorithm 1 to construct a stability region: for a finite set of states
S, employ upper bound from Lemma 3 to check whether the successor state is
closer to xd, obtaining sets S+ and S−. Return metric ball of maximal radius
that fits into the span 〈S+〉xd as stability region Xc. For x(0)∈ Xc, the controlled
system never leaves Xc and converges to xd as t→∞.

In the following, we propose an algorithm to verify asymptotic stability of xd as in Definition 1
and prove its correctness. Subsequently, we show how to find finite time statements as in
Definition 2.

3.2 Algorithm Sketch

In this section, we derive an algorithm, that can find a stability region of a closed-loop
control structure with GP mean dynamics. To find a stability region, we analyze how the
distance between the current state and the target evolves. The basic idea of the algorithm
involves positively invariant sets, i.e., sets that once entered, the system will never leave
again (Blanchini, 1999). More precisely, we aim to find all x, such that

‖x(t+1) − xd‖ < γ ‖x(t) − xd‖ (2)

for x(t) = x and a fixed 0 < γ < 1. Assume there is a region containing xd where Eq. (2)
holds. For all states in this region, the distance to the target point decreases in one time step.
If it is possible to fit a full metric ball centered at the target point xd in this region, then all
trajectories starting in the ball will never leave it. In addition, the distance of the current
state to the reference point xd will decrease in every step by at least factor γ. Thus, it
follows immediately from the existence of such a ball that the target point is asymptotically
stable. However, finding a region in closed form where Eq. (2) holds, is usually intractable.
Instead, we follow an algorithmic approach to construct a stability region.

The proposed algorithm (Alg. 1) finds a region where Eq. (2) holds if one exists. It
employs an upper bound for ‖x(t+1)−xd‖, that depends only on x(t). With this upper bound
we can check whether Eq. (2) holds for a (finite) set of points. However, to find a continuous
state space region where Eq. (2) holds, this upper bound must allow for generalization from
discrete points. More precisely, we need an upper bound of ‖x(t+1) − xd‖ that depends
on x(t) smoothly, thus, having bounded gradients, and can be handled conveniently. We
employ an upper bound derived from sensitivity analysis of the GP mean to variations in
the input space. This bound depends on x(t) in a way that can be exploited to compute
a finite set of points S, e.g., a grid that is sufficient to consider as follows: For any grid
point, we check if Eq. (2) holds, obtaining the set S+ with the grid points that fulfill Eq. (2)
and the rest in S−. Let 〈S+〉xd be the polygon spanned by the connected component of
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Algorithm 1 Stability region Xc for GP mean dynamics
Input: dynamics GP f , control policy π, xd, γ
Output: stability region Xc

1: Construct grid S with Lemma 4, S+ ← ∅, Xc ← ∅
2: for x(0) ∈ S do
3: Compute upper bound C(x(0),xd,π) ≥ ‖x(1) − xd‖ with Lemma 3
4: if C < γ ‖x(0) − xd‖ then S+ ← S+ ∪ {x} fi
5: od
6: if 〈S+〉xd exists then
7: Fit metric ball B(xd) ⊆ 〈S+〉xd
8: Xc ← B(xd) fi
9: return Xc

S+, which contains xd. We can choose S such that Eq. (2) holds for all points in 〈S+〉xd ,
see Figure 3. Algorithm 1 gives an overview, Sec. 3.3 provides technical details and proves
correctness of the approach.

3.3 Correctness of the Algorithm

In this section, we elaborate on the computation steps of Algorithm 1 and prove that the
returned state space region Xc is a stability region of the closed-loop system in the sense of
Definition 1. Fundamental to Algorithm 1 is the upper bound for ‖x(t+1) − xd‖, which can
be obtained as follows. We denote x̂ := (x,π(x))ᵀ and recall that f(x̂) is the GP predictive
mean at x̂, see Eq. (1).

Lemma 3 Let x̂, x̂d ∈ RD+F and B ∈ RD×D be a positive definite matrix. The distance of
GP predictive means f(x̂) and f(x̂d) in the metrics induced by B is bounded by

‖f(x̂)− f(x̂d)‖2B ≤ (x̂− x̂d)ᵀM(x,xd,π)(x̂− x̂d) =: C(x,xd,π)

with a symmetric matrix M . This matrix can be constructed explicitly and depends on x,xd
and the policy π.

Proof This statement is obviously true for x = xd, so let x 6= xd. Evaluating

‖f(x̂)−f(x̂d)‖2B=
D∑

m,m′=1

N∑
i,k=1

bmm′(km(x̂, x̂i)−km(x̂d, x̂i))(km′(x̂, x̂k)−km′(x̂d, x̂k))βmiβm′k (3)

we realize the need for an upper bound of km(x̂, x̂i)− km(x̂d, x̂i). Recall that the covariance
functions km are differentiable with bounded derivatives with respect to x and also, that
the control policy π is differentiable with respect to the state x. Thus, we can integrate the
gradient field of km along a curve τ from x̂d to x̂. As this path integral does not depend on
the particular curve τ , we may choose τ = τD+F . . . τ 1 as the curve along the edges of the
hypercube defined by x̂d and x̂, i.e., τ jp(t) = x̂p if p ≤ j − 1, τ jp(r) = x̂dp + r(x̂p − x̂dp) with
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r ∈ [0; 1] if p = j, and τ jp(t) = x̂dp otherwise. This definition yields

km(x̂, x̂i)− km(x̂d, x̂i)=
D+F∑
j=1

x̂j∫
x̂dj

∂km(χ, x̂i)
∂χj

∣∣∣∣∣∣∣∣
χ=τ j

dχj (4)

and we compute the partial derivatives ∂km(x̂, x̂d)/∂x̂j in all state-action space dimensions
1 ≤ j ≤ D + F .

We rewrite the sum in Eq. (3) by substituting Eq. (4) and the partial derivatives of
the covariance functions. To find an upper bound for this sum, we estimate the occurring
integrals by the product of integration interval length and an upper or lower mean value
according to the sign of the respective summand. The necessary upper and lower mean
values can be obtained via Riemannian upper and lower sums or the upper and lower bounds
for the partial derivatives of k with respect to x. Sorting the summands by products of
integration interval lengths (x̂j − x̂dj )(x̂p − x̂dj ), this sum can be rewritten as a quadratic
form. The entries of M can be chosen to form a symmetric matrix by making Mpj = Mjp

half of the coefficient of (x̂j − x̂dj )(x̂p − x̂dp).

For any point in the state action space, we can find an upper bound for the distance of its
prediction and the target point. Note that this distance estimated by Lemma 3 depends
heavily on the eigenvalues of M(x,xd,π). This fact is exploited to compute a grid S, which
constitutes the first step of Algorithm 1. As M is constructed as a symmetric matrix,
the eigenvalue problem is well conditioned, i.e., when M is perturbed, the change in the
eigenvalues of M is at most as large as the perturbation.

Lemma 4 Let x, z ∈ RD and M(x,xd, π), B be as defined in Lemma 3. If ‖f(x̂) −
f(x̂d)‖B < c‖x−xd‖ for c < 1, there exist ∆j such that ‖f(ẑ)− f(x̂d)‖B < c‖z−xd‖, for
all z with |ẑj − x̂j | < ∆j, 1 ≤ j ≤ D + F .

Proof Solving for the eigenvalues of M(x,xd,π), the set Qx := {v ∈ RD+F | (v − x̂d)ᵀ

M(x,xd,π)(v − x̂d) < a} can be determined. It is symmetric to the axes defined by the
eigenvectors of M(x,xd,π) and meets them at ±a−1√λ. For z=x+∆ we want to ensure
z∈Qz, if x ∈ Qx. Thus, we estimate how much the eigenvalues of M(z,xd,π) differ from
those of M(x,xd,π). As M(x,xd,π) is symmetric, the eigenvalue problem has condition
κ(λ,M(x,xd,π)) = 1 for any eigenvalue λ. Thus, |∂λ/∂x̂j| ≤ ‖∂M(x,xd,π)/∂x̂j‖ . Computing
‖∂M(x,xd,π)/∂x̂j‖ or upper bounds for this expression allows solving for all ∆j .

We are now able to compute a grid S, such that it is sufficient to check Eq. (2) for all grid
points to retrieve a (continuous) stability region. While the grid width may become small,
there is a lower bound for it. As the GP falls back to the prior far away from training data,
the entries of M are bounded for bounded mean priors and, being continuous, Lipschitz.
Thus, a lower bound exists.

Theorem 5 The region Xc returned by Algorithm 1 is a stability region. All trajectories
starting in Xc move closer to the desired point xd in each step. Convergence to xd is
guaranteed for all points in Xc as t→∞.

10
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Proof We exploit Lemma 4 to compute a grid S as the first step in Algorithm 1. Employing
Lemma 3, the algorithm checks for all points in S whether Eq. (2) holds, obtaining the sets
S+ and S−, respectively. Lemma 4 ensures that Eq. (2) also holds for all points inside the
polygon 〈S+〉xd . For every point in 〈S+〉xd , the next state is closer to the target point xd.
Fitting a full metric ball B(xd) in 〈S+〉xd , we recover an invariant set Xc. More precisely,
the trajectories starting in Xc move closer to xd with every time step.

Theorem 5 provides an asymptotic stability result for closed-loop control systems with
dynamics given as the mean of a GP and can, thus, can be applied to a broad class of
dynamics systems. However, the procedure is based on a grid in the state space and as
a consequence suffers from the curse of dimensionality. This limitation is not surprising,
as it is well known that estimating stability regions of high degree is NP-hard (Ahmadi
et al., 2013). However, several approaches can help to scale the proposed method to higher
dimensions. Instead of computing a global grid width ∆ as in Lemma 4, the proof can
straightforwardly be adapted to compute local grid widths. Such local grid widths depend
on the magnitude of the derivatives of the GP mean with respect to the inputs and, thus,
can be substantially larger than the global one, e.g., when moving away from training data
or where the dynamics is very slow. With this technique, the number of grid points can be
greatly reduced. Furthermore, as we are constructing an inner approximation to the full
stability region, the order of the grid points processed by Algorithm 1 can be modified to
avoid redundant computations. When starting at the equilibrium point and expanding the
considered grid points spherically according to the chosen distance metrics, computation
can be stopped as soon as the first grid point is tested to lie outside the stability region.
This first negative test point limits the stability region and all grid points with the same or
greater distance to xd need not be considered anymore.

3.4 Finite Time Horizons and Robustness

In this section, we will employ the proposed Algorithm 1 to derive results for finite time
horizons and stability in the presence of disturbances.

3.4.1 Finite Time GP Mean Stability

Above, we proposed an algorithm to check asymptotic stability of the target xd and to find
a stability region, if one exists. In this section, we are interested in finding all starting states
which deviate from the target by at most a given tolerance ε > 0 after T < ∞ timesteps.
State space regions that fulfill this criterion were introduced in Definition 2 as (ε, T )-stability
regions.

The main result of this section follows from the infinite time horizon results of Sec. 3.3.
Recall that Algorithm 1 computes a state space region Xc and γ < 1, such that

‖x(t+1) − xd‖ < γ‖x(t) − xd‖

for all x(t) ∈ Xc. We can exploit this result to find a state space region Xc
ε,T , such that

‖x(T ) − xd‖ < ε for all x(0) ∈ Xc
ε,T .

Lemma 6 Let ε > 0, T <∞ and Xc ⊆ X, γ < 1 such that ‖x(t+1)−xd‖ < γ‖x(t)−xd‖ for
all t = 1, 2, . . . and x(0) ∈ Xc. Then ‖x(T )−xd‖ < ε for all x(0) ∈ Xc with ‖x(0)−xd‖ < ε/γT .

11
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Proof Choosing x(0) ∈ Xc and iteratively employing ‖x(t+1) − xd‖ < γ‖x(t) − xd‖ we get

‖x(T ) − xd‖ < γT ‖x(0) − xd‖
!
< ε.

Solving for ε, we obtain ‖x(0) −xd‖ < ε/γT and, thus, Xc
ε,T := Bε/γT (xd) is an (ε, T )-stability

region.

Lemma 6 enables finite time horizon statements. For a given tolerance ε we can compute a
region Xc

ε,T such that ‖x(t) − xd‖ < ε for all t ≥ T if x(0) ∈ Xc
ε,T . Such stability statements

are relevant for many applications as controllers are often designed for finite system runtimes.

3.4.2 Robustness of GP Mean Dynamics

In this section, we will analyze the behavior of closed-loop control systems with dynamics
given as the mean of a GP when disturbances are present. More precisely, we assume that
the next state is given as

x(t+1) = f
(
x(t),u(t)

)
+ r(t) (5)

with the disturbance r(t) < ∞ at time t, that does not depend on the system state. We
aim to find conditions for r(t) < ∞ such that x(t) still converges to xd as t → ∞. Let
R(t) := ‖r(t)‖ be the magnitude of the disturbance at time t. Based on Equation (2) we
derive an upper bound for R(t). Recall that Algorithm 1 returns a stability region Xc, which
is a full metric ball and let ρ be the radius of this ball. Convergence to the target state is
guaranteed, as long as the system does not leave Xc and R(t) → 0 as t→∞.

Theorem 7 Let Xc be a full metric ball of radius ρ that is a stability region of the undisturbed
closed-loop control system with GP mean dynamics. For x(0) ∈ Xc, the system in Eq. (5)
converges to the target state xd, if

R(t) ≤ ρ− γ‖x(t) − xd‖ (6)

for all t and there exists some T0 such that

R(t) < (c− γ)‖x(t) − xd‖ (7)

with a constant c < 1 holds for all t ≥ T0.

Proof Firstly, we will show that x(t+1) ∈ Xc, if x(t) ∈ Xc and Eq. (6) holds. Employing
Equation (5), we get

‖x(t+1) − xd‖ = ‖f(x(t),u(t)) + r(t) − xd‖ ≤ ‖f(x(t),u(t))− xd‖+R(t) (8)

and assuming x(t) ∈ Xc, it follows

‖x(t+1) − xd‖ ≤ γ‖x(t) − xd‖+R(t). (9)

It follows ‖x(t+1)−xd‖ ≤ ρ, if R(t) ≤ ρ−γ‖x(t)−xd‖ and, thus, x(t+1) ∈ Xc. By induction,
x(t) ∈ Xc for all t > 0, if x(0) ∈ Xc and Equation (6) holds for all t.

If the disturbance r(t) vanishes after a finite number of time steps, it is sufficient to
ensure Equation (6) to show convergence to the target state. After this finite number of

12
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disturbed steps, the system state will still lie in Xc and for all time steps to come, the
dynamics will resemble the non-disturbed dynamics. Convergence is then guaranteed by
Theorem 5.

Next, we will show that x(t) converges to xd, if the disturbance r(t) decreases sufficiently
fast, as stated in Equation (7). For x(t) ∈ Xc, Equation (9) holds. To ensure convergence to
xd, we aim to decrease the distance to the target state with every time step. Thus,

‖x(t+1) − xd‖ ≤ γ‖x(t) − xd‖+R(t) !
< c ‖x(t) − xd‖ (10)

for a constant c < 1. Solving for R(t), we obtain Eq. (7).

This theorem provides a criterion for the disturbance such that the closed-loop control
system will still converge to the target state. However, in practice, Equations (6) and (7)
may be difficult to verify, as they involve ‖x(t)−xd‖ for all t. We derive a closed-form upper
bound for the magnitude R(t) of the disturbance r(t).

Lemma 8 The Inequality (6) holds for all t, if

R(t) ≤ ρ−
(
γt‖x(0) − xd‖+

t−1∑
k=1

γkR(k)
)
. (11)

The inequality (7) holds for t ≥ T0, if

R(t) ≤ (ct+1 − γct)‖xT0 − xd‖. (12)

Proof Both inequalities can be obtained by iteratively applying Eqs. (6) and (7).

‖x(t+1) − xd‖ ≤ γ‖x(t) − xd‖+R(t)

≤ γ
(
γ‖x(t−1) − xd‖+R(t−1)

)
+R(t)

≤ γt‖x(0) − xd‖+
t−1∑
k=1

γkR(k) +R(t) !
< ρ

and analogously

‖x(t+1) − xd‖ ≤ γ‖x(t) − xd‖+R(t)

< γ(c‖x(t−1) − xd‖) +R(t)

< γct‖x(T0) − xd‖+R(t) !
< ct+1‖x(T0) − xd‖.

Employing Lemma 8, we can analyze stability for disturbed system trajectories, if the
magnitude of the disturbance (or an upper bound for the magnitude) is known for every
time step.

13
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4. Stochastic Stability of GP Dynamics

In this section, we study closed-loop systems with dynamics given as a full GP distribution.
For any query point x(t) a GP predicts the next state x(t+1) to be normally distributed. If,
however, x(t) is not a point, but a distribution, the integral

p
(
x(t+1)

)
=
∫

RD
p
(
x(t+1) | x(t)

)
p
(
x(t)

)
dx(t) (13)

determines the next state distribution. Note that p(x(t+1) | x(t)) is Gaussian with respect
to x(t+1). The next state distribution p(x(t+1)), however, is not Gaussian, even if p(x(t)) is.
Generally, p(x(t+1)) is analytically intractable and only approximations, e.g., via moment
matching (Quiñonero-Candela et al., 2003) or linearization (Ko and Fox, 2008), can be
computed. These methods suffer from severe inaccuracies in many cases, e.g., they cannot
handle distributions with multiple modes. Also, no pointwise approximation error bounds
are available. Thus, these methods are unsuitable for stability analysis. In this paper, we
propose numerical quadrature (Sec. 4.2.1) to approximate p(x(t+1)), instead. This technique
yields significantly better results, e.g., it can handle distributions with multiple modes. In
addition, error analysis is readily available (Wasowicz, 2006; Masjed-Jamei, 2014) and can
be employed to derive stability guarantees for a finite time horizon.

We will also analyze the closed-loop system behaviour for infinite time horizons. The
proposed numerical quadrature approximation converges to a stationary limiting distribution.
Unfortunately, the error bounds based on quadrature error analysis do not apply when
infinitely many timesteps are taken. However, we will show that closed-loop control systems
with GP dynamics expose the same infinite time horizon behavior – they converge to a
stationary distribution.

In the following, we will discuss finite time stochastic stability, introduce an algorithm
to find a stability region based on numerical quadrature, and prove its correctness. Subse-
quently, we will elaborate on the construction of good quadrature rules for multi-step-ahead
predictions. Finally, we will analyze the system behavior for infinite time horizons.

4.1 Stability Notion

Consider a deterministic system, that is locally, but not globally, asymptotically stable.
Adding noise to the system may render the target point unstable. Especially when noise is
unbounded (e.g., Gaussian), all trajectories will eventually leave any ball around the target
point with probability one. For this reason, in the study of SDEs, other stability notions
than Lyapunov’s, are common. In particular, bounding the probability to drift away from
the target over a finite time T is desirable, as in the following definition (Kushner, 1966).
Definition 9 Let Q1, Q2 be subsets of the state space X, with Q2 open and Q1 ⊂ Q2 ⊂ X.
The system is finite time stable with respect to Q1, Q2, 1 − λ, T , if x(0) ∈ Q1 implies
P{x(t) ∈ Q2} ≥ 1− λ for all t ≤ T .
However, we are interested in finding a set Qs of initial conditions, such that the goal Q is
reached within time T with a desired probability (cf. Steinhardt and Tedrake 2012).
Definition 10 The set Qs is a stability region with respect to the target region Q, time
horizon T and success probability 1− λ, if P{x(T ) ∈ Q} ≥ 1− λ holds for all x(0) ∈ Qs with
λ > 0 and the target region Q ⊂ X.
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Algorithm 2 Stability region for GP dynamics
Input: dynamics GP f , control policy π, time horizon T , target region Q, approximation

error tolerance etol, desired success probability 1− λ
Output: stability region Xc

1: Construct grid S with Lemma 12
2: S+ ← ∅
3: Compute quadrature w, ξ based on Eq. (18) and Lemma 11, such that ‖εT ‖C(X) < etol
4: φ← (f(ξ1,π(ξ1)), . . . ,f(ξN ,π(ξN )))ᵀ
5: m← (

∫
Q φ1(x)dx, . . . ,

∫
Q φN (x)dx)ᵀ

6: for x ∈ S do
7: p(x(1))← f(x,π(x))
8: x(T ) ← α(T )φ
9: Pmin{x(T ) ∈ Q} ← α(T )m− vol(Q)‖εT ‖C(X)

10: if Pmin{x(T )∈Q}>1− λ then S+←S+ t {x} fi
11: od
12: return Xc ← 〈S+〉

This definition focuses on reaching a target Q after time T , whereas Definition 9 bounds
the exit probability from a region Q2 within time 0 ≤ t ≤ T . The methods proposed in this
paper can be employed to analyze stability in the sense of both definitions. In the following,
we will present an algorithm to find a stability region according to Definition 10.

4.2 Algorithm Sketch

We will now discuss how to find a stability region as in Definition 10 for a closed-loop
system with GP dynamics. To analyze system behavior, the capability to compute next
state distributions is crucial. As discussed previously, Eq. (13) is analytically intractable and
approximation methods must be employed. We propose numerical quadrature to approxi-
mately propagate distributions. We will show that numerical quadrature approximates state
distributions as Gaussian mixture models. Fortunately, computation of multi-step-ahead
predictions becomes convenient and fast even for long time horizons. However, relying on
approximations of the state distribution is not sufficient for stability guarantees. The error
introduced by approximation and error propagation must be bounded to recover reliable
statements on the probability for x(T ) to be in a set Q. This error bound εt(x) at time t can
be obtained following one of the available quadrature error analyses, e.g., by Masjed-Jamei
(2014).

With numerical quadrature and quadrature error analysis, we can compute a lower bound
for the success probability, i.e., the probability for x(T ) to be in the target set Q. A priori,
this enables checking success probabilities for a finite set of points. Fortunately, as in the
case of GP mean dynamics, the statement can be generalized to continuous regions. Our
algorithm constructs a grid in the state space and computes success probabilities for all grid
points. We prove that a stability region can be inferred from these grid point results.
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In the following, we elaborate on numerical quadrature as approximate inference method
and, studying quadrature error propagation, prove the correctness of the proposed approach.
The presented tool is outlined in Algorithm 2.

4.2.1 Numerical Quadrature Uncertainty Propagation

In most applications, especially when the states have physical interpretations, the state
space is bounded. For this reason, we assume X = [a1, b1]× · · · × [aD, bD] and solve

F [p(x(t))] :=
∫
X
p(x(t+1) | x(t))p(x(t))dx(t). (14)

We propose numerical quadrature to approximate this integral. We choose a composed
Gaussian product quadrature rule, which will be detailed in Section 4.4. For the rest of this
section, it is sufficient to note that our quadrature rule provides a set of evaluation points X
and positive weights wn for all nodes ξn ∈ X. Integral (14) is then approximated by

F [p(x(t))]≈
∑
ξn∈X

wnp(x(t+1)| x(t)= ξn)p(x(t) = ξn), (15)

resulting in a weighted sum of Gaussian distributions. The approximate state distribution
at time t+ 1 can be given by

p(x(t+1)) ≈ φᵀα(t+1) (16)

with α
(t+1)
n := wnp(x(t) = ξn), φn(x) := p(x(t+1) = x | x(t) = ξn). Note that the Gaussian

basis functions φn(x) do not change over time, so the state distribution at time t is represented
by the weight vector α(t). To propagate any distribution multiple steps through the GP, the
basis functions φn must be calculated only once and the task reduces to sequential updates
of the weight vector α. As p(x(t)) ≈ φᵀα(t), the weight vector α(t+1) is given by

α(t+1) = diag(w)Φα(t) = (diag(w)Φ)tα(1) (17)

with the matrix Φ, Φi j = φj(ξi) with 1 ≤ i, j ≤ n, which contains the basis function values
at all grid points. In practice, it is helpful to normalize the matrix diag(w)Φ such that each
column sums to 1. In this case, unit vectors will be mapped to unit vectors. This ensures
that our approximate state distribution is in fact a probability density, i.e., integrates to 1.

Our algorithm aims to find a stability region Qs, i.e., a region where the success
probability is at least 1 − λ for a given time horizon T , target region Q, and λ > 0.
Computing m=

∫
Qφ(x)dx, the probability for x(T ) to be in Q is approximately mᵀα(T ).

4.3 Correctness of the Algorithm

We will now show that the region returned by Algorithm 2 is a stability region as in
Definition 10. In Section 4.2.1, we proposed numerical quadrature to approximate GP
predictions when the input is a distribution. However, to obtain stability guarantees it is not
sufficient to consider approximate solutions. For a lower bound on the success probability,
additional knowledge about the approximation error and how it is propagated through the
dynamics GP is essential.
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When approximate inference steps are cascaded for multi-step-ahead predictions, errors
are introduced and propagated through the dynamics. Typically, error propagation fortifies
initial errors with every time step. The difference of approximation and true distribution
after a finite time is bounded. Fortunately, numerical quadrature allows to control this error
bound by refining the used quadrature rule.

The derivation of an upper bound for the approximation error after a finite number of
time steps relies heavily on quadrature error analysis, i.e., upper bounds for the errors that
are made in one time step when numerical quadrature is employed. Several error analyses for
numerical quadrature are available (Masjed-Jamei, 2014; Davis et al., 2014; Wasowicz, 2006;
Evans, 1994) with the classic analyses relying on higher order derivatives of the function to
be integrated. We will employ the error analysis by Masjed-Jamei (2014) that requires first
order derivatives only. More precisely (Masjed-Jamei 2014, Theorem 2.1), for a differentiable
function f with ν1(x) ≤ f ′(x) ≤ ν2(x) with continuous functions ν1, ν2 the quadrature error
is upper and lower bounded

m ≤
N∑
i=1

wif(ξi)−
b∫
a

f(x)dx ≤M (18)

with the bounds

m =
N∑
i=0

ξi+1∫
ξi

(
ν1(t)vi(t) + |vi(t)|

2 + ν2(t)vi(t)− |vi(t)|2

)
dt

M =
N∑
i=0

ξi+1∫
ξi

(
ν1(t)vi(t)− |vi(t)|2 + ν2(t)vi(t) + |vi(t)|

2

)
dt

for ξ0 = a, ξN+1 = b and vi = t−
(
a+

∑i
j=1wi

)
, i = 0, . . . , n. In the following, we employ

this result to derive an error bound for the pointwise approximation error of the proposed
multi-step-ahead predictions based on numerical quadrature.

Lemma 11 Let x(0) ∈ X and εT be the pointwise approximation error εT (x) = p(x(T ) =
x)− φ(x)ᵀα(T ) at time T . There exists an upper bound for ‖εT ‖C(X) that can be controlled
by the choice of quadrature rule.

Proof The statement obviously holds for T = 0 and for T = 1, as p(x(1)) is Gaussian
and computed exactly. If T ≥2, an error is introduced as p(x(t)) cannot be computed
analytically for t ≥ 2. Employing numerical quadrature to compute p(x(2)), we obtain
p(x(2)) = φᵀα(2) + ε2 with our approximation φᵀα(2) and the unknown initial quadrature
error ε2(x). However, the error analysis by Masjed-Jamei (2014, Theorem 2.1) gives us a
bound for ‖ε2‖C(X) := maxx∈X |ε2(x)|. When propagating further, an unknown, bounded
error term and an approximation term must be handled. For the approximation term,
we get F [φᵀα(t)] = φᵀα(t+1) + εᵀα(t) with quadrature error bounds ε = (εi(x))i for the
integrals (14), when setting p(x(t)) = φi. The error term εt(x) is propagated to F [εt] with
maxx∈X |F [εt]| ≤ C‖εt‖C(X) and C=maxx∈X

∫
p(x(t+1) |x(t))dx(t). Finally, the error at time

T is bounded by ‖εT ‖C(X) ≤ ‖ε‖ᵀα(T−1) +
∑T−2
t=2 Ct‖ε‖ᵀα(t) +Ct−1‖ε2‖, where ε and ε2 can
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be made arbitrarily small by refining the quadrature rule.

Lemma 11 theoretically enables stability guarantees for finite time horizons T . However,
as with any approximation of the distribution (14), this error bound grows exponentially
with T , while quadrature error decreases polynomially with function evaluations. This
drawback limits real-word application of Lemma 11 to small T , but we found that typically,
approximation behaves far better than the worst-case bound.

For any starting point, we can now compute the approximate state distribution at time
T and a lower bound on the success probability, i.e., the probability for x(T ) to be in the
target region Q. It remains to show that it is sufficient to compute the success probability
for a discrete set of starting states and generalize to the underlying continuous state space
region.

Lemma 12 Let x, z ∈ RD be starting states and T ∈ N. If P{x(T ) ∈ Q} ≥ 1 − λ, there
exist ∆j such that P{z(T ) ∈ Q} ≥ 1− λ for all z with |zj − xj | < ∆j, 1 ≤ j ≤ D.

Proof Firstly, we note that the absolute error bound does not depend on the starting
state. The state distribution p(x(1)) is the GP prediction at the query point x(0). Thus, for
T = 1 the claim follows from Lemma 4. When t ≥ 2, only an approximation of the state
distribution is known. The mixture model weights at time t = 2 depend only on the values
of p(x(1)) at the set of evaluation points X. Thus, the lemma follows for T = 2. If t > 2, the
difference of the approximate distributions for the starting points x and z is

φᵀ(α(t)
x −α(t)

z ) = φᵀ(diag(w)Φ)t−2(α(2)
x −α(2)

z ).

Thus, the difference in approximate probability mass is linear in (α(2)
x − α(2)

z ). This fact
concludes the proof.

Finally, we are able to prove the main result of this section, the correctness of Algorithm 2.

Theorem 13 The region Xc returned by Algorithm 2 is a stability region in the sense of
Definition 10. For all starting points x(0) ∈ Xc, the probability mass in the target region Q
at time T is at least 1− λ.

Proof For the first step in Algorithm 2 we exploit Lemma 12 to construct a grid S. For S,
stability follows for the region around the grid points S+ with success probability greater than
1−λ. Secondly, employing Lemma 11 we determine a quadrature rule that ensures the point-
wise error at time T to be at most etol. Finally, we compute approximate success probabilities
for all grid points, as in Sec. 4.2.1. Subtracting the maximum error mass etol vol(Q) in tar-
get region Q, we obtain all grid points S+, which have a success probability of at least 1−λ.

4.4 Construction of Numerical Quadratures for Uncertainty Propagation

In the sections above, we introduced numerical quadrature to approximate GP predictions at
uncertain inputs and showed that this approximate inference method can be used to derive
finite time horizon stability guarantees. The presented theoretical results are valid for any
choice of quadrature rule that allows for quadrature error analysis. However, in practice, the
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Figure 4: Construction of suitable quadrature rules. Plot (a) shows the nodes of a Gaussian
product quadrature rule on the unit square. Here, the quadrature rule for the
unit square was constructed as an outer product of the Gaussian quadrature rule
with 5 nodes. The state space partition for the mountain car system obtained
with Algorithm 3 is shown in (b). For each rectangle in this partition, a Gaussian
product quadrature such as (a) is employed.

choice of a suitable quadrature rule is crucial to the applicability of the proposed algorithm.
Thus, in the following, we will elaborate on how to find “good” quadrature rules for a given
GP dynamics and control policy.

Gaussian product quadrature extends univariate Gaussian quadrature to a multivariate
rule using a product grid of evaluation points. This construction has some desirable properties,
such as positive quadrature weights and readily available quadrature nodes. However, being
an outer product of one-dimensional rules, it suffers from the curse of dimensionality. In this
paper, we apply numerical quadrature to integrals as in Equation (14). Typically, the system
trajectories are not uniformly spread over the state space. Instead, they are concentrated
in a significantly smaller region. We exploit this observation to improve the efficiency of
product grid quadrature and cope with the curse of dimensionality. For this purpose, we
partition the state space X = X1 t · · · tXL and apply a Gaussian product quadrature to
each obtained subregion Xl. The next state distribution, cf. Equation (14), can be written
as

F [p(x(t))] :=
∫
X
p(x(t+1) | x(t))p(x(t))dx(t) =

L∑
l=1

∫
Xl

p(x(t+1) | x(t))p(x(t))dx(t)

and, applying a numerical quadrature rule with nodes Xl for each integral, we get

F [p(x(t))] ≈
L∑
l=1

∑
ξn∈Xl

wnlp(x(t+1) | x(t) = ξn)p(x(t) = ξn).

Setting X = X1 t · · · t XL, we recover Equation (15). Thus, composed quadrature rules can
be handled just as a single Gaussian product rule. We exploit this to construct quadrature
rules which are efficient for the computation of next state distributions for our particular GP
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Algorithm 3 Construction of composed quadrature rules
Input: dynamics GP f :

(
x(t),u(t)

)
7→ x(t+1), control policy π : x 7→ πθ(x) with parame-

ters θ, state space X, maximum partition size Lmax
Output: composed quadrature rule with nodes X and weight vector w

1: Initialize partition X = X1 t · · · tXs and quadrature X = X1 t · · · t Xs with s < Lmax
2: while s < Lmax do
3: Sample starting state x(0), policy parameters θ∗
4: Compute mean rollout τ 0 = x(0), . . . , τH with dynamics GP f and policy πθ∗
5: for l = 1, . . . , s do
6: if vol(Xl)/|Xl|minτ i∈Xl

Var(τ i) < 1 then subdivide Xl, add nodes to X fi
7: od
8: od
9: return quadrature nodes X and weights w

dynamics model and controller. In other words, we aim to find a partition X = X1t· · ·tXL

of the state space, such that integral (14) is approximated well by the resulting quadrature
rule. For this purpose, we maintain a partition of the state space, sample mean trajectories
τ = τ 0, . . . , τH and subdivide regions Xl that were visited and fulfill a certain criterion.
More precisely, we subdivide Xl if Xl does not contain enough quadrature nodes to integrate
predictive distributions from the dynamics GP well. To estimate whether Xl should be
divided, we introduce

ρl(τ ) := vol(Xl)
|Xl|minτ i∈Xl Var(τ i)

, (19)

where Var(τ i) denotes the variance of the GP predictive distribution at the point τ i, and
subdivide Xl if ρl(τ ) is greater than 1. This criterion relates the higher order derivatives of
GP predictions which fall inside Xl with the quadrature node density in Xl. Constructing a
composed quadrature rule with this approach will concentrate most quadrature nodes in state
space regions that are visited frequently when following system trajectories. Algorithm 3
summarizes our approach and Figure 4 illustrates the constructed quadrature rules.

4.5 GP Dynamics with Infinite Time Horizons

In Section 4.2, we proposed numerical quadrature to approximate next state distributions for
closed-loop control systems, where the dynamics is given as a full Gaussian process. For this
approximate inference, pointwise error bounds are available. Based on this error analysis, we
were able to derive stability guarantees for finite time horizons. In this section, we analyze
the case when the time horizon is infinite. Unfortunately, error bounds as in Section 4.3
cannot be given in this case. As we will see, the numerical quadrature approximation
converges to a stationary limit distribution, i.e., this distribution does not depend on the
starting state, as t goes to infinity. As the quadrature error cannot be bounded in this
case, there is no guarantee that the system dynamics will converge to the same distribution.
However, we will show that closed-loop control systems with GP dynamics also converge
to a stationary distribution as t→∞ for many choices of the prior. We will first analyze
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the behavior of the proposed numerical quadrature approximation and subsequently study
asymptotic behavior of closed-loop control systems with GP dynamics.

4.5.1 Asymptotic Behavior of NQ Approximated GP Dynamics

In this section we study the properties of numerical quadrature as approximate inference
when the time horizon is infinite. Recall that with numerical quadrature the state distribution
is approximated by

p(x(t)) ≈ φᵀα(t) (16 revisited)
with Gaussian basis functions φ = (φ1, . . . , φN )ᵀ, that do not change over time, and the
weight vector α(t) at time t. As stated in Equation (17), the weight vector α(t) is updated
by

α(t+1) = diag(w)Φα(t) (17 revisited)
with the positive matrix diag(w)Φ as in Section 4.2.1. More precisely, diag(w)Φ is a left
stochastic matrix. Thus, any column vector β with norm ‖β‖1 = 1 is mapped to a unit
vector, i.e. ‖diag(w)Φβ‖1 = 1. In this case, Equation (17) represents a power iteration
which leads to the following theorem.
Theorem 14 Let (X,w) be a quadrature rule with positive weights w on the state space X
and f : (x(t),u(t)) 7→ x(t+1) be a dynamics GP. The approximate state distribution p(x(t)) ≈
φᵀα(t) obtained by cascading approximate one step ahead predictions with the quadrature
(X,w) converges to a unique stationary distribution, independent of the starting distribution,
as t→∞.
Proof Consider Equation (17). The matrix diag(w)Φ has norm one, as each of its columns
sums to one. Thus, as the starting weights α(0) form a stochastic vector, Equation (17)
takes the form of a power iteration, see (Golub and Van Loan, 2013, Section 7.3). By the
Perron-Frobenius theorem the largest magnitude eigenvalue λ1 of diag(w)Φ is positive and
simple. More precisely, the eigenvalue of diag(w)Φ with the highest absolute value is λ1 = 1.
The corresponding dominant eigenvector v1 is positive. No other eigenvectors of diag(w)Φ
are non-negative. Thus, the power iteration in Equation (17) converges to the dominant
eigenvector, if α(0) has a nonzero projection on the eigenspace of λ1 = 1. As α(0) is a
non-negative unit vector and v1 is positive, the projection to the dominant eigenspace is
v1ᵀα(0) > 0. Thus, the numerical quadrature approximation of p(x(t)) converges to φᵀv1.

This theorem shows that the numerical quadrature approximation to the system state
converges to a stationary distribution. The limiting distribution corresponds to the dominant
eigenvector of the iteration matrix diag(w)Φ and does not depend on the starting state.
However, no bound for the approximation error can be obtained for the limit t→∞. Thus,
in contrast to finite time horizon analysis, no statement about the true system state follows
from this result. In the following, we will study asymptotic behavior of closed-loop control
systems with GP dynamics to see whether the (exact) system state converges to a limiting
distribution as well.

4.5.2 Asymptotic Behavior of GP Dynamics

We have seen that employing the numerical quadrature approximation for next state distri-
butions, closed-loop control systems with GP dynamics converge to a limiting distribution.
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In this section, we will show that these closed-loop control systems expose the same behavior
even if no approximations are employed. More precisely, a closed-loop control system with
dynamics given as a GP will finally converge to a limiting distribution that is independent
of the starting state for many common choices of the prior. To obtain this result, we apply
Markov Chain theory as in (Meyn and Tweedie, 2009).

Consider a Markov chain Σ = {Σ1,Σ2, . . .} with the random variables Σt taking values
in RD and a Markov kernel P : RD × B(RD)→ R, i.e., P (·, A) is a non-negative measurable
function on RD, P (x, ·) is a probability measure on B(RD) and

Pµ[Σ0∈ A0, · · · ,Σn∈ An] =
∫

y0∈A0

· · ·
∫

yn−1∈An−1

µ(dy0)P (y0, dy1) · · ·P (yn−1, An) (20)

for any initial distribution µ and n ∈ N. We will employ some definitions and results
from (Meyn and Tweedie, 2009) to prove our claim.

Definition 15 The following definitions will help describing Markov chains and the sets
they (re-)enter.

1. For A ∈ B(RD) and Σ0 ∈ A, the first return time τA is given as

τA := min{n ≥ 1: Σn ∈ A}.

We also define the return time probability L(x, A) := Px(τA <∞).

2. We call Σ ϕ-irreducible, if there exists a measure ϕ on B(RD), such that ϕ(A) > 0
implies L(x, A) > 0 for all x ∈ X and A ∈ B(RD). ψ is a maximal irreducibility
measure, if Σ is ψ-irreducible and ϕ ≺ ψ, i.e., ψ(A) = 0 ⇒ ϕ(A) = 0, for all
irreducibility measures ϕ of Σ.

3. We say that the set C ∈ B(RD) is small, if there exists a probability measure ν, such
that Pn(x, A) ≥ δν(A) with some integer n, δ > 0 for all x ∈ C and all A ∈ B(RD).

For finite or countable state spaces, a Markov kernel defines the probability to move from
one state to another. The state space partitions into communication classes, such that all
states in one class can be reached with positive probability from any other state in the same
class. If there is only one communication class, the Markov chain is called irreducible – its
analysis cannot be further reduced to the consideration of multiple chains with smaller state
spaces. The communication structure has an immense effect on the long term behavior of a
Markov chain. However, when considering general state spaces (e.g., continuous as in our
case), the probability to reach one single state will be zero. The concept of communication
is thus generalized to Borel sets via irreducibility measures. Every irreducible Markov chain
has maximum irreducibility measures, see Theorem 16. While these are not unique, all
maximum irreducibility measures of a Markov chain are equivalent, i.e., they have the same
null sets. Small sets play an important role in the analysis of Markov chains on general
state spaces, as they behave analogously to single states in discrete state spaces. Sets which
consist of one single point, are small. However, it can be shown that for irreducible Markov
chains, any set that will be entered with positive probability contains a non-trivial small set
(Meyn and Tweedie, 2009, Theorem 5.2.2).
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Theorem 16 Let Σ be ϕ-irreducible. Then there exists a maximal irreducibility measure ψ,
which is equivalent to

ψ′(A) :=
∫
X
ϕ(dy)Ka 1

2
(y, A)

with the transition kernel Ka 1
2
(y, A) =

∑∞
n=1 P

n(x, A)2−(n+1).

Proof The proof is given in (Meyn and Tweedie, 2009, Proposition 4.2.2).

We aim to analyze the asymptotic behavior of Markov chains that are defined by our
closed-loop control structure with GP dynamics. One type of asymptotic behavior that
is well-known from Markov chains on discrete state spaces is periodicity. The notion of
periodicity can be extended to Markov chains on general state spaces as follows.

Definition 17 Let Σ be irreducible with maximal irreducibility measure ψ. The period
of Σ is the largest integer d > 0, such that there exist non-empty, pairwise disjoint sets
X1, · · · , Xd ⊆ RD with

P (x, Xi+1) = 1 for all x ∈ Xi, 1 ≤ i ≤ d− 1 and P (x, X1) = 1 for x ∈ Xd

and

ψ

(
d⋃
i=1

Xi

)
= 1.

If d = 1 we call Σ aperiodic, if d > 1 the Markov chain Σ is periodic.

Next, we apply the definitions above to establish some properties of closed-loop control
systems with GP dynamics. Fortunately, the topology of RD and the Gaussian state
predictions obtained from a GP largely facilitate the analysis.

Lemma 18 The Markov chain Σ on RD defined by a GP forward dynamics is irreducible
with respect to the Lebesgue measure λ and aperiodic. Also, all compact sets are small.

Proof The transition probabilities are Gaussian, i.e.,

P (x, ·) = N (m(x), S(x))

and the Markov kernel has a Gaussian density q : RD × RD → R. Thus, q(x,y) > 0 for all
x,y ∈ RD and for any A ⊆ RD with λ(A) > 0 it holds

P (x, A) =
∫
A
q(x,y)λ(dy) > 0,

so Σ is irreducible with respect to the Lebesgue measure λ.
Assume Σ has period d > 1, i.e., P (x, Xi) = 1 for x ∈ Xi−1, then 1 = P (x, Xi) =∫

Xi
q(x,y)λ(dy) and, as q > 0, it follows that the complement Xi of Xi is a λ-null set,

i.e., λ(Xi) = 0. However, as Xi, Xj are disjoint for j 6= i it holds Xj ⊆ Xi. It follows
λ(Xj) = 0 for j 6= i. Analogously as for Xi, λ(Xj) = 0. As λ is a non-trivial measure, this
is a contradiction. Thus, d = 1 and Σ is aperiodic.

Finally, as P has a continuous, positive density, there is a lower bound δ > 0 for this
density on any compact set. Thus, all compact sets are small.
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Above, we showed that the Markov chains considered are aperiodic. The Markov chain can
still re-enter sets infinitely often with positive probability. A stronger form of this property
is Harris recurrence. As we will see later, Harris recurrence along with some other properties
implies the existence and uniqueness of an invariant state distribution.

Definition 19 Let A ∈ B(RD) and consider the event

{Σ ∈ A infinitely often} :=
∞⋂
N=1

∞⋃
k=N
{Σk ∈ A}.

The set A is called Harris recurrent, if

Q(x, A) := Px{Σ ∈ A infinitely often} = 1.

The Markov chain Σ is Harris recurrent, if it is ψ-irreducible and A ∈ B(X) is Harris
recurrent if ψ(A) > 0.

We say that the measure µ is an invariant measure for the Markov kernel P , if

µ(A) =
∫
X
µ(dx)P (x, A),

or shortly µP = µ.
The Markov chain Σ is positive Harris recurrent, if it is Harris recurrent and admits an

invariant probability measure.

Finally, we can state some conditions for the existence and uniqueness of an invariant state
distribution as well as convergence of the system state to this distribution (in total variation).

Theorem 20 If the chain Σ is ϕ-irreducible, aperiodic and positive Harris recurrent, then
it admits a unique invariant probability measure µ∗and for all probability measures ν it holds

‖νPn − µ∗‖TV := sup
A∈B(RD)

|µ∗(A)− ν(A)| → 0

as n→∞.

Proof The proof can be found in (Meyn and Tweedie, 2009, Theorem 13.0.1).

To employ this theorem to our case of closed-loop control systems with GP dynamics,
it remains to establish Harris recurrence. However, it can be challenging to verify the
definition directly. Fortunately, drift criteria can be employed. In the following, we will
write Pf :=

∫
P (x, dy)f(y) for any function f : RD → R for notational convenience.

Theorem 21 Let P be a ϕ-irreducible and aperiodic Markov kernel. If there exists a
function V : RD → [0,∞) with

PV ≤ V + c1A (21)

for a small set A, a constant c <∞, and the sets {x | V (x) ≤ r} are small for all r ∈ R,
then P is Harris recurrent. P is positive Harris recurrent, if Eq. (21) can be modified to

PV ≤ V − ε+ c1A (22)

for some ε > 0.
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Proof The proof can be found in (Meyn and Tweedie, 2009, Theorems 9.1.8, 11.0.1).

Such a function V is called drift function. It is the stochastic analogue to a Lyapunov
function. Inequality (21) states that whenever the system state is outside of the small set
A, V is expected to decrease in the following step. Thus, the system tends towards the
minimum of V , which is a recurrent behavior. The speed of convergence can be incorporated
in a drift criterion as well.

Definition 22 The Markov Kernel P has geometric drift towards a set A, if there exists a
function V : RD → [1,∞], finite for some x, and β < 1, c <∞, such that

PV ≤ βV + c1A. (23)

We say that a ϕ-irreducible Markov Kernel P with invariant probability measure µ∗ is
V -geometrically ergodic on a set A for a function V : RD → [1,∞], if

sup
|f |≤V

|
∫
fd(Pn(x, ·)− µ∗)| ≤ cV (x)ρn (24)

for all x ∈ A, a constant c <∞ and ρ < 1 and V (x) <∞ for all x ∈ A.

We will employ geometric drift functions to prove the convergence of Markov chains generated
by closed-loop control systems with GP forward dynamics at an exponential convergence
speed, irrespective of the starting state. Studying the drift function V (x) = 1 + ‖x‖2, the
following criterion for geometric ergodicity can be derived.

Theorem 23 A Markov kernel P with Gaussian transition probabilites has V-geometric
drift towards a compact set if and only if

lim sup
‖x‖→∞

‖m(x)‖2 + tr(S(x))
‖x‖2

< 1 (25)

with the mean map m(x) and variance map S(x). It follows that P has a unique invariant
probability measure µ∗ and is V-geometrically ergodic.

Proof The proof is given in (Hansen, 2003, Lemma 3.2, Corollary 3.3).

Finally, we can prove the main result of this section, the convergence of many closed-loop
control systems with GP dynamics towards a unique, invariant limiting distribution that is
independent of the starting state.

Theorem 24 Any discrete-time closed-loop control system with state space RD, where the
forward dynamics is given as GP with zero-mean prior and stationary covariance function,
is geometrically ergodic, i.e., the system has a unique invariant probability measure and the
Markov chains generated by the system converge to its stationary distribution with exponential
speed, see Equation (24).

Proof We have to verify Eq. (25). As the GP predictions fall back to the zero mean prior
far away from the training data, ‖m(x)‖2 + tr(S(x)) converges to

∑D
k=1 σ

2
k,f as ‖x‖ → ∞.

Thus,

lim sup
‖x‖→∞

‖m(x)‖2 + tr(S(x))
‖x‖2

= 0 < 1,
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which concludes the proof.

This theorem gives us a strong result about the asymptotic behavior of closed-loop control
systems with dynamics given as a GP with stationary covariance function and zero mean
prior. This result applies to many learning control approaches in the literature.

5. Empirical Evaluation

In this section, we evaluate the previously obtained theoretical results on two benchmark
tasks: mountain car and inverted pendulum. Moreover, the performance of the proposed
uncertainty propagation is compared to the state-of-the-art moment matching approach and
Monte Carlo sampling. We begin with a brief introduction of the test-beds.

Mountain Car. A car with limited engine power has to reach a desired point in the
mountainscape (Sutton and Barto, 1998). The state space has two dimensions: position and
velocity of the car. We analyze stability of a PD-controller π((x, ẋ)ᵀ) = Kpx+Kdẋ. The
gains are chosen as Kp = 25 and Kd = 1 and the control signal is limited to umax = 4. The
GP dynamics model was trained on 250 data points from trajectories with random starting
points and control gains.

Inverted Pendulum. In the inverted pendulum task, the goal is to bring the pendulum
to an upright position with limited torque (see Doya, 2000) and balance it there. The
system state has two dimensions: pendulum angle and velocity. We evaluate stability of a
PD-controller with Kp = 6, Kd = 3 and control limit umax = 1.2. The dynamics GP was
trained on 200 points from rollouts with random starting points and control gains.

Cart-Pole. In the cart-pole domain (Deisenroth et al., 2015), a cart with an attached
free-swinging pendulum is running on a track of limited length. The goal is to swing the
pendulum up and balance it, with the cart in the middle of the track. The state space has
four dimensions: position of the cart x, velocity of the cart ẋ, angle of the pendulum ϑ
and the angular velocity ϑ̇. A horizontal force with umax = 10 can be applied to the cart.
To demonstrate the proposed approach we analyze stability of the cart-pole system for a
PD-controller with randomly chosen gains. The dynamics GP was trained on 250 points
from rollouts with sampled starting state and control gains.

5.1 Stability of GP Predictive Mean Dynamics

To evaluate the presented theory on stability of the closed-loop control system with GP
mean dynamics, a stability region is determined as described in Section 3. We compare
this region to the true stability region, empirically obtained as follows. A grid on the state
space is defined and rollouts from every grid point are computed. After a sufficiently long
time (1000s), we check whether the state has converged to the target point. Thus, we
empirically determine a region of starting points, where the system converges to the desired
state. Figure 5 shows the obtained regions for the mountain car and pendulum systems. In
both cases the theoretically obtained stability region, which is marked by an ellipsoid, is a
subset of the empirically determined region. This effect is due to our analysis yielding a
full metric ball centered around the target point, although the full stability region is not
necessarily convex. Also, trajectories which first move away from the target point, but finally
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Figure 5: Stability regions for GP mean dynamics on the two benchmark tasks. This figure
shows empirically obtained stability regions in gray, points that did not converge
in red. The ellipsoid indicates the stability region returned by Algorithm 1.
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Figure 6: Finite time stability of GP mean dynamics. The black ellipsoid marks the (infinite
time) stability region obtained with Algorithm 1. The blue ellipsoids mark the
(ε, T )-stability regions with ε = 0.05 and T = 10, 20, 30, 40, 50 timesteps (inner to
outer ellipsoid). For any starting point inside of one blue ellipsoid, the distance to
the target is less than ε after T timesteps.

converge to it, are not considered in the presented theory. Instead, all trajectories starting
in the theoretically obtained stability region move towards the target point contractively.

Next, we compute finite time (ε, T )-stability regions as in Lemma 6. Figure 6 shows
the obtained regions for ε = 0.05 and different choices of T . By construction, these are
full metric balls around the reference point and lie completely inside of the stability region
obtained with Algorithm 1.

Finally, we consider robustness of the GP mean dynamics. We introduce disturbances and
apply the convergence criteria from Theorem 7 and Lemma 8. We sample the starting time
and duration as well as the magnitude of the disturbance. The direction of the disturbance is
then sampled independently for every time step where a disturbance is present. The results
are shown in Figure 7. Note that robustness results such as Theorem 7 and Lemma 8 must
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Figure 7: Robustness of GP mean dynamics. Disturbances were sampled for a finite time
period. The undisturbed trajectory is colored blue, the distrubed trajectories are
colored green. Our robustness criterion from Theorem 7 and Lemma 8 guarantees
the convergence of the disturbed trajectory in the left picture. For both other
pictures, our criterion cannot guarantee convergence of the disturbed trajectory
to the target. As such criteria must be based on worst case estimates of the
disturbance, some disturbed trajectories still converge to the target (as in the
right picture).
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Figure 8: This figure illustrates multi-step-ahead prediction when the input is a distribution.
Starting with a normally distributed state centered around the inflection point of
the right slope in the mountain car domain, we compute a rollout incorporating
uncertainty. The plots show the state distribution after T=30 time steps obtained
with our numerical quadrature approach (a), moment matching (c) and the
reference Monte Carlo sampling result (b).

consider the worst case scenario. Thus, there are trajectories where the robustness criteria
are not able to guarantee convergence, although they converge to the target state.
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Figure 9: Success probabilities for dynamics given as GP full distribution and a time horizon
of 100s. The color scale encodes the success probability from zero (red) to one
(gray). The mountain car ((a) and (b)) and inverted pendulum ((c) and (d))
results were obtained with the proposed numerical quadrature (NQ) and Monte
Carlo (MC).

5.2 Numerical Quadrature Uncertainty Propagation

The key to stability analysis for closed-loop systems with dynamics given as full GP
distribution is the prediction at uncertain inputs. We compare the performance of the
presented approximate inference to the state-of-the-art moment matching (MM) method
and Monte Carlo (MC). Consider the following scenario: in the mountain car domain, we
position the car on the right slope with some positive velocity. Furthermore, we introduce
small Gaussian uncertainty about the starting state. We employ a constant control signal,
that is too small to bring the car up directly. We compute rollouts, propagating state
distributions through the GP with (i) the presented numerical quadrature (NQ), (ii) MM
as in (Deisenroth, 2010), and (iii) MC. The resulting distributions for a time horizon of
3s are shown in Figure 8. The MM approximation differs significantly from MC and NQ
results, concentrating most of the probability mass, where the MC approximation has very
low probability density. The NQ result closely matches the distribution obtained with MC.
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5.3 Stability of Gaussian Process Dynamics

Employing numerical quadrature, we determine success probabilities for the two test-beds
and a time horizon of 100s. To obtain the stability region for a particular choice of λ,
all pixels whose color corresponds to a value higher then or equal to λ must be selected.
As Figure 9 shows, the obtained stability regions match the empirical MC results. The
error bound from Lemma 11 can demand for extremely fine quadrature rules to obtain a
stability region estimate that matches the true stability region closely. Please note that
quadrature rules with less nodes also allow for a guaranteed stability region, however this
region can be significantly smaller than the true stability region. For long time horizons,
the requirements to obtain a very accurate inner approximation of the stability region
can become computationally infeasible. However, we found that the real-world results are
substantially better than this worst-case bound. We also experienced computation time
(≈ 120s) for NQ to be a fraction of the time required for long time MC predictions. Of
course, this will not hold for systems with many state dimensions and our particular setup
of product quadrature rules, as these rules suffer from the curse of dimensionality. However,
there are various approaches to overcome this drawback of NQ (Heiss and Winschel, 2008;
Novak and Ritter, 1996; Xiao and Gimbutas, 2010; Ryu and Boyd, 2015) and our analysis
holds for arbitrary quadrature rules.

To show how the proposed approach can be scaled to higher dimensions, we compute
success probabilities for the four-dimensional cart-pole system. We employ Algorithm 3 to
construct a suitable quadrature rule. However, the quadrature rule CN:3-1 (Stroud, 1971;
code from Burkardt, 2014) is applied to each subregion instead of the Gaussian product
rule as for the previous examples. This quadrature rule has 8 nodes as opposed to 16 nodes
for the Gaussian product rule of the same exactness. Please note also that all necessary
computations for the proposed approach can be executed in parallel. Thus, we conduct
these computations on a GPU, which leads to a significant speedup and overall computation
time comparable to the 2D examples (≈ 140s). The result is shown in Figure 10. As for the
other benchmark problems, the obtained stability region closely matches the true stability
region of the system.

To evaluate the results on convergence of GP dynamics to a stationary distribution,
we considered the dynamics shown in the left plot of Figure 11. The GP mean dynamics
has two attractors and their regions of attraction partition the interval [−1; 1]. However,
when considering the uncertainty, the system has an invariant probability measure (shown
in Figure 11 on the right) to which it converges irrespective of the starting point.

6. Conclusion

Gaussian Processes provide a flexible, non-parametric, Bayesian approach to modeling
unknown system dynamics from observations. Thus, GP dynamics are a viable approach for
learning model-based control. There has been remarkable research in this field that advanced
these methods to become an appealing alternative to classic control. For widespread real-
world application of learning control based on GP forward dynamics models, performance
guarantees are crucial, especially in safety-critical applications. However, stability analysis of
closed-loop control with GP forward dynamics learned from data has barely been analyzed
so far. In this paper, we laid a foundation for stability analysis of closed-loop control with
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Figure 10: Success probabilities for the cart-pole system. The dynamics are given as GP
full distribution and the time horizon is 100s. The color scale encodes the
success probability from zero (red) to one (gray). The plots show the results
for ẋ = 0, θ̇ = 0 obtained with numerical quadrature (a) and Monte Carlo
sampling (b).

GP dynamics. Subsequently, we conclude the paper with a short summary of the main
contributions and a brief outlook on possible future work in this direction.

6.1 Summary of Contributions

In this paper, we analyzed stability of closed-loop control systems with Gaussian process
forward model dynamics. We considered two possible types of system dynamics: (i) the
mean and (ii) the full GP predictive distribution.

In the first case, we studied asymptotic stability as well as finite time horizons and
robustness to disturbances. We presented an algorithm to construct a region in the state
space such that trajectories starting inside this region are guaranteed to converge to the
target point and stay there for all times. For finite time horizons, we showed how to find a
state space region such that the target state will be reached at time horizon up to a certain
tolerance. Studying robustness, we derived a criterion for disturbances such that the system
remains asymptotically stable. The theoretical results have been evaluated on benchmark
problems and compared to empirically obtained results.

In the second case, we introduced a novel approach based on numerical quadrature to
approximately propagate uncertainties through a GP. In contrast to other state-of-the-art
methods, our approach can model complex distributions with multiple modes. Evaluation
results closely match the true distribution approximated by extensive sampling. We used
the introduced approximate inference method to derive finite-time stability guarantees based
on quadrature error analysis. Empirical Monte Carlo results confirm our theoretical results
on the two benchmark problems. Furthermore, we considered the system behavior when
the time horizon is infinite. We showed that, applying numerical quadrature to propagate
distributions through the GP, the system state converges to a limiting distribution that does
not depend on the starting state. Motivated by this result, we studied the system behavior
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Figure 11: Asymptotic behavior of closed-loop systems with GP dynamics. Plot (a) shows
the mean dynamics function with the mean m(x) of the GP prediction at the
query point x on the y axis. When considering the mean dynamics, there are two
fixpoints x1 = −0.1 and x2 = 0.1. For any starting point −1 < x < 0, the mean
trajectory converges to x1 and analogously for all 0 < x < 1 the trajectories
converge to x2. Now we consider the full GP dynamics and take the uncertainty
into account. Plot (b) shows a histogram of the probability density after 10000
time steps when starting at x = −0.1, obtained with Monte Carlo. This result
matches the histogram obtained when starting at x = 0.1 or at any other point.
Thus, the system converges to a unique, invariant limiting distribution.

for infinite time horizons without applying any approximate inference steps. We succeeded to
show that closed-loop control systems with dynamics given as full GP distribution converge
to a unique and invariant limiting distribution that does not depend on the starting state
for many choices of the covariance function. Overall, the proposed methods provide stability
guarantees for many existing learning control approaches based on GPs.

6.2 Discussion and Next Steps

While the proposed methods apply to many interesting examples of learning control in the
literature, the analysis could be extended in several directions. Firstly, for closed-loop control
with GP dynamics, we considered GPs with stationary covariance functions and zero mean
prior. To include other choices of the prior, e.g., nonstationary covariance functions and
unbounded mean priors, novel criteria to ensure Harris recurrence must be found. Another
interesting question is how the stability of GP dynamics is affected by disturbances in the
input space. While some results could straightforwardly be followed for dynamics given
as the mean of a GP, the task seems a lot more challenging when uncertainty is included.
Many of the subtle, intricate arguments applied to show convergence of the system to a
limiting distribution must be carefully reconsidered when disturbances are present.
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Secondly, the obtained results are stability results for closed-loop control systems with
dynamics given as a GP. The GP training data have a huge impact on the quality of the
GP dynamics model when compared to the physical system the data was collected from. In
this direction, criteria to evaluate the quality of a learned model would further support the
application of learning control for real-world problems.

Another interesting research direction is encouraged by the presented result on asymptotic
stability of closed-loop control systems with GP dynamics. This paper proves the existence of
a limiting distribution the system will converge to. This distribution is unique and invariant.
However, little more is known about the limiting distribution. Further research in this
direction could help for a better understanding of the behavior of learned dynamics and also
be directly employed in learning control – possibly by optimizing the limiting distribution
itself instead of local approximations as, e.g., system trajectories.
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