
ar
X

iv
:1

81
0.

12
95

0v
1

 [
cs

.R
O

]
 3

0
O

ct
 2

01
8

Learning to serve: an experimental study for a new learning from

demonstrations framework

Okan Koç1, Jan Peters1,2

Abstract— Learning from demonstrations is an easy and
intuitive way to show examples of successful behavior to
a robot. However, the fact that humans optimize or take
advantage of their body and not of the robot, usually called
the embodiment problem in robotics, often prevents industrial
robots from executing the task in a straightforward way. The
shown movements often do not or cannot utilize the degrees
of freedom of the robot efficiently, and moreover suffer from
excessive execution errors. In this paper, we explore a variety
of solutions that address these shortcomings. In particular,
we learn sparse movement primitive parameters from several
demonstrations of a successful table tennis serve. The number
of parameters learned using our procedure is independent
of the degrees of freedom of the robot. Moreover, they can
be ranked according to their importance in the regression
task. Learning few parameters that are ranked is a desirable
feature to combat the curse of dimensionality in Reinforcement
Learning. Preliminary real robot experiments on the Barrett
WAM for a table tennis serve using the learned movement
primitives show that the representation can capture successfully
the style of the movement with few parameters.

I. INTRODUCTION

Humans are good at using their bodies to great effect,

taking advantage of their muscular structure and soft but flex-

ible actuation. Much of dexterous manipulation, or dynamic

movement generation reflects this awareness of the human

body. When teaching the robots to achieve similar tasks

autonomously, however, we inevitably impose and transfer

our biases to the robot. This problem of embodiment can

cripple the execution and possibly prevent the robots from

taking advantage of their kinematics structure and actuation

mechanisms.

In dynamic games like table tennis, we can easily observe

humans taking utmost advantage of their bodies and pushing

it to its maximum, i.e., optimizing their output bearing in

mind their kinematic and dynamic limits. Table tennis serves,

for instance, incorporate flicks (very fast accelerations of

the wrist) that are designed to give an unsuspected spin

and motion profile to the ball. Teaching such movements

to the robots, in a learning from demonstration framework,

suffers in particular from two drawbacks. Firstly, during the

shown movement, as discussed above, the human is unable to

move the shoulder joints of the robot adequately, which can

potentially be used by the robot to great effect. Secondly, the

fast movements of the wrists may not be tracked accurately

1Max Planck Institute for Intelligent Systems, Max-Planck-Ring 4,
72076 Tübingen, Germany okan.koc@tuebingen.mpg.de

2Technische Universitaet Darmstadt, FG Intelligente
Autonome Systeme Hochschulstr. 10, 64289 Darmstadt, Germany
peters@ias.tu-darmstadt.de

by the robot, which is the case for the cable-driven seven

degree of freedom (DoF) Barrett WAM arm, see Figure 1.

In this paper, we explore different learning from demon-

strations (LfD) approaches to compensate for the execution

and transfer deficiencies resulting from the demonstrated

serves. The initial policy or the movement template, extracted

as a set of movement primitives, can be thought of as a

good initialization for a reinforcement learning (RL) agent.

By capturing the essence of the shown demonstrations in

as few parameters as possible, we simplify and increase the

effectiveness of the skill transfer to the robot. Sparsity is

achieved in our framework by using a new iterative opti-

mization approach, where a multi-task Elastic Net regression

is alternated with a nonlinear optimization. The Elastic Net

projects the solutions to a sparse set of features, and during

the nonlinear optimization these features (the basis functions)

are adapted to the data in a secondary optimization. Moreover

these features are shared across multiple demonstrations,

increasing the effectiveness of the feature learning strategy.

The fewer number of learned parameters using our itera-

tive optimization procedure, compared to more traditional

approaches, is independent of the robot DoF. This is a

desirable property for Reinforcement Learning to adapt the

learned parameters online. Moreover, by using the Elastic

Net path, we can rank the parameters in terms of importance,

or effectiveness in explaining the demonstration data. We

perform preliminary experiments on the Barrett WAM on a

table tennis serve to validate the effectiveness of our new

movement primitives.

Robot table tennis has captivated the attention of the

robot control and learning community as a challenging and

dynamic task, and research in this task has been ongoing ever

since the nineties. After the pioneering work of Anderson’s

analytical player [1], there have been various approaches

focusing on certain parts of the game, such as simplifications

in trajectory generation using a virtual hitting plane [19], [16]

or learning striking trajectories from demonstrations [12].

Learning approaches to generate better strikes include [15],

[5]. Recently, [13] has introduced a new trajectory generation

framework in table tennis, where they solve a free final-time

optimal control problem to generate minimum acceleration

striking trajectories. This kinematic optimization approach

was extended and evaluated in the real robot table tennis

setup in [14].

Learning from demonstrations (LfD) is a promising frame-

work for learning various robotic tasks efficiently without

using hard-coded approaches specific for each task. It has

also been used to initialize policy-search RL approaches

http://arxiv.org/abs/1810.12950v1

in robot learning [11], to great effect. There are, by now,

many different frameworks for LfD, including dynamical

systems approaches such as the Dynamical Movement Prim-

itives (DMP) [6], learning control Lyapunov-functions [9],

and various probabilistic approaches, including probabilistic

movement primitives [18] and Gaussian mixture models [8].

A detailed introduction and analysis of l1-regularized l2-

norm regression (from hereon referred to as Lasso) can be

found in [4]. Interest in Lasso lies in the fact that Lasso can

perform feature selection automatically. Lasso was extended

to the multi-task case (i.e., multi-output case with shared

features) in [17]. The Elastic Net imposing additional l2-

regularization to Lasso was introduced in [21], where it was

noted that a basic transformation converts the problem to a

standard Lasso regression, and this is also valid in the multi-

task setting. A new incremental procedure to solve ordinary

least squares regression as well as Lasso problems was pro-

posed in [2]. This algorithm, called Least Angle Regression

or LARS for short, yields piecewise linear homotopy paths of

the regression problem as a function of the l1-regularization

term. Elastic Net paths can also be generated with Lars, since

the Elastic Net can be converted to a standard Lasso problem.

To the best of our knowledge, the multi-task Elastic Net

was not combined before with Radial Basis Functions in a

nonlinear feature selection and optimization framework. We

also think that ranking the learned parameters in terms of

importance is a new approach that was not explored in the

RL community.

II. NOTATION

We start by formulating the constraints that need to be

satisfied for a successful table tennis serve. The notation that

Fig. 1: Our robot table tennis setup with a seven DOF

Barrett WAM robot, ready to serve a table tennis ball. Two

cameras on the opposite side of the ceiling track the ball

continuously at a rate of 180 Hz. A metal piece is attached

to the endeffector of the Barrett WAM, which connects to

a standard sized table tennis racket. An egg-holder on the

metal piece holds the ball before the serve. We compare

and evaluate throughout the paper different learning from

demonstration approaches to achieve a successful table tennis

serve. We propose a new iterative optimization approach to

learn sparse parameters and to adapt the features of our

movement primitives on multiple demonstration data.

we use throughout the paper is standard: for a robot arm

with n degrees of freedom (DoF), the joint configurations

are q ∈ Q = {q ∈ Rn |q
min
≤ q ≤ q

max
}. The recorded

joint positions over a movement is represented as a matrix

q(t) ∈ RN×n of N rows, with columns storing the joint

position at the corresponding time step. If multiple demon-

strations are needed for learning, i.e., qij(t) is recorded for

i = 1, . . . , n DoF and j = 1, . . . , d demonstrations, these

recordings are stacked to form the Q matrix. The degrees

of freedom are concatenated horizontally in this case for a

single demonstration, while the columns store the different

demonstration data, i.e., Qi,j = qij(t) ∈ RN for a recording

of N time points.

The Frobenius norm of a matrix ‖M‖2F =
∑

i

∑

jm
2

ij ,

whereas the ‖ · ‖21 norm used in the Elastic Net is defined

as ‖M‖21 =
∑

i

√

∑

jm
2

ij , i.e., l2-norm along the columns

(degrees of freedom in our setting) and l1-norm along the

rows (time steps).

III. METHOD

In this section, we discuss learning an initial sparse move-

ment pattern from human demonstrations. We present first an

algorithm that requires only a single human demonstration,

and then present a suitable variant that can be employed

for multiple demonstrations. This variant of the algorithm

decouples the number of learned parameters from the degrees

of freedom of the robot.

A. Learning a sparse representation from a single demon-

stration

Given a single demonstration q(t) at the (observed) time

points t, we’d like to extract a movement primitive that

can be easily refined later via (policy search) RL and

optimization. Throughout the parametric optimization, we’d

like to impose a good fit with as few basis functions as

possible, while keeping the accelerations low during the

trained movement pattern. Having low accelerations is bene-

ficial both for robot safety as well as improving the tracking

(execution) accuracy of the trajectories [14]. Mathematically,

the criterion that we optimize can be written as

min
β,θ
‖q(t)−Ψ(t,β)θ‖2F +λ1‖θ‖21+λ2‖Ψ̈(t,β)θ‖2F , (1)

where Ψ(t,β) ∈ RN×p are the evaluations of the basis

functions at t, θ ∈ Rp×n are the (sparse) regression param-

eters, and q(t) are the joint observations during the shown

movement. The nonlinear radial basis functions (RBF) are

parameterized by β. A l2-penalty is put on the accelerations

Ψ̈(t,β)θ of the extracted movement pattern, while a penalty

with the l1-norm on the (rows of the) regression parameters

θ encourages sparsity of the found solutions.

This regression problem, for fixed β, is known as the

multi-task Elastic Net in the literature, where the features

are shared among the sparse parameters along each degree

of freedom. As opposed to the standard (multi-task) Lasso,

the 2-norm penalty in the optimization (III-A) penalizing the

accelerations throughout the motion, also adds stability to the

Lasso solutions [21].

The solution to the weighted Elastic Net problem (III-A)

for fixed β can be obtained by transforming the problem to

an equivalent (unweighted) Lasso problem, solving it via a

convex optimizer (e.g., coordinate descent is very effective

for Lasso problems), and then transforming the solutions

back to Elastic Net parameters.

We can solve the original problem (III-A) iteratively (as

in Expectation-Maximization type of algorithms) by first

starting the iteration with a Lasso solution of an overly-

parameterized radial basis function regression. At each it-

eration, the RBF parameters βi corresponding to the basis

functions with nonzero Lasso regression parameters θij >
0, j = 1, . . . , n are updated for each i = 1, . . . , p via

nonlinear optimization. These two alternating steps can be

continued till convergence, or rather terminated in a fixed

number of steps. The iterations converge when the change

in function value of the total cost in (III-A) is below a certain

tolerance ǫ. Depending on the initial solution parameters β
0

and θ0, the iteration converges to a local minimum.

The full procedure is shown in Algorithm 1 in detail. We

call the resulting algorithm Learning Sparse Demonstration

Parameters or LSDP for short. The algorithm alternates

between the multi-task Elastic Net (lines 3 and 9) and the

nonlinear optimizer (BFGS, in line 7). In between, the zero

entries of the regression parameters θ and the corresponding

columns of Ψ, Ψ̈ are removed in the Prune step (lines 4
and 12). The pruning operation simplifies the optimization

in the upcoming iterations, as the pruned RBF cannot then

be re-elected later. We use the squared exponential kernel to

construct our basis functions, i.e., for every i, j we use

Ψij(ti) = exp((−ti − µj)
2/(2σ2

j), (2)

to form the (i, j)’th element of the Ψ matrix. The data

is initially centered in line 2, i.e., the mean of each joint

recording is subtracted from the signal, and the means q0

are stored as the intercepts for the particular demonstration.

For a good performance of the algorithm, i.e., obtaining

low residuals with a sparse set and low accelerations, choos-

ing the regularizer constants λ1 and λ2 suitably is crucial.

These parameters can be set using cross-validation either

before Algorithm 1 or in line 3 together with the regression.

The regularizers should be scaled down accordingly with

the decreasing residual norms (see line 11), otherwise the

algorithm can converge to the empty set for the parameters

θ. See the Experiments section for more discussion on the

implementation details.

B. Coupling the parameters across dimensions

The algorithm LSDP discussed in the previous subsection

uses the multi-task Elastic Net to enforce the same basis

functions for each degree of freedom (along the columns

of q(t) and θ), and the parameters are decoupled across

the degrees of freedom (DoF) of the robot. In particular, the

number of regression parameters grow linearly with the robot

Algorithm 1 Learning sparse parameters with regression

(LSDP) for a single demonstration

Require: q, t, µ, σ2, λ1, λ2, ǫ > 0
1: Initialize β0 = [µ,σ2]
2: Center the data, q

0
,q← Center(q)

3: Form Ψ, Ψ̈ using β0 and t

4: θ0 ← MultiTaskElasticNet(Ψ, Ψ̈, q, λ1, λ2)

5: θ0,β0
← Prune(θ0,β0

)

6: Form Ψ, Ψ̈ using β and t

7: repeat k = 1, . . . ,
8: βk ← BFGS(Ψ, Ψ̈, βk−1, θk−1, q, λ1, λ2)

9: Form Ψ, Ψ̈ using βk and t

10: θk ← MultiTaskElasticNet(Ψ, Ψ̈, q, λ1, λ2)

11: Calculate residual norm rk , total cost fk using (III-A)

12: Scale penalties λi ← λir
2

k/r
2

k−1
, i = 1, 2

13: θk,βk ← Prune(θk,βk)

14: Form Ψ, Ψ̈ using β and t

15: until ‖fk − fk−1‖ < ǫ

DoF, which is undesirable for applying policy search RL

approaches to high dimensional robotic systems especially.

Furthermore, the algorithm has to be applied for each

demonstration separately, i.e., there is no coupling or infor-

mation shared between the demonstrations. In order to en-

force rather the features to be shared across demonstrations

rather than the robot DoFs, we discuss here first a variant of

the algorithm LSDP, which we call coupled LSDP, or cLSDP

for short.

Algorithm 2 requires only a few changes compared to

Algorithm 1. The data is centered for each demonstration to

obtain the intercepts Q
0
. The algorithm stacks in lines 1− 3

the dependent regression variables qi and RBF parameters

βi for each degree of freedom i = 1, . . . , n across rows

to form the matrices Q ∈ RNn×d and Ψ ∈ RNn×p as

well as its second time derivative Ψ̈. Unlike LSDP, this

procedure n requires n times the RBF parameters β to be

optimized (line 8), as the features are adapted independently

for each DoF. The regression parameters θ on the other hand,

are now reduced n times, and coupled across the DoFs.

The parameters for each demonstration are also estimated

together, i.e., the columns of the θ matrix correspond to the

regression parameters for different demonstrations.

C. Ranking the demonstration parameters

The regression parameters estimated with cLSDP can also

be ranked using the Elastic Net regularization path, which

traces the evolution of the parameters as the l1-norm bound

(or equivalently, the regularization term) of the coefficients

increases. Using the LARS algorithm [2], one can trace

the addition of the demonstration parameters in a final

Elastic Net path computation after running Algorithm 2. An

example path for only eight selected parameters are plotted

in Figure 2. These parameters can be ranked according to the

evolution, i.e., the coefficients that early on during the path

become nonzero are likely to signal more causally effective

Algorithm 2 Learning coupled sparse parameters with re-

gression (cLSDP) across multiple demonstrations

Require: qij , t, µi, σ
2

i , λ1, λ2, ǫ > 0
1: Stack qij to form Q, i ∈ [1, n], j ∈ [1, d]
2: Center the data, Q

0
,Q← CenterStacked(Q)

3: Stack β0 = [µ1, . . . ,µn,σ
2

1
, . . . ,σ2

n]
4: Stack Ψ, Ψ̈ using β0 and t across DoFs

5: θ0 ← MultiTaskElasticNet(Ψ, Ψ̈, Q, λ1, λ2)

6: θ0,β0 ← PruneStacked(θ0,β0)

7: Stack Ψ, Ψ̈ using β and t across DoFs

8: repeat k = 1, . . . ,
9: βk ← BFGS(Ψ, Ψ̈, βk−1, θk−1, Q, λ1, λ2)

10: Stack Ψ, Ψ̈ using βk and t across DoFs

11: θk ← MultiTaskElasticNet(Ψ, Ψ̈, Q, λ1, λ2)

12: Calculate residual norm rk , total cost fk using (III-A)

13: Scale penalties λi ← λir
2

k/r
2

k−1
, i = 1, 2

14: θk,βk ← PruneStacked(θk,βk)

15: Stack Ψ, Ψ̈ using β and t across DoFs

16: until ‖fk − fk−1‖ < ǫ

components of the motion. More prominent components

of the motion can be adapted earlier with RL strategies

to reduce the curse of dimensionality in high dimensional

robots.

IV. EXPERIMENTS

In this section, we conduct experiments to learn a sparse

set of demonstration parameters using the proposed ap-

proaches and compare with various competing movement

primitive learning methods. Finally we present a real robot

experiment on our table tennis platform where we show that

the learned sparse movements nevertheless look natural and

can be implemented safely on the robot.

A. Learning from Demonstrations

The algorithms LSDP and its coupled variant cLSDP,

discussed in Section III, is applied here on the demonstrated

robot joint movements. From a continuous stream of joint

recordings, occurring at 500 Hz, we preprocess a predeter-

mined number of d movements, by detecting the maximum d
velocities in joint space and windowing around these points

for a fixed duration of one second.

The processed examples using this procedure result in the

joint matrix q ∈ R500×7 for each example. The initial RBF

centers µ0 ∈ R500 are placed at every point uniformly and

the RBF widths σ2
0 are set to 0.1 for every time point.

We implement the preprocessing as well as the Algorithms

in Python, using the scikit-learn toolbox for the multi-task

Lasso and the scipy toolbox for the nonlinear optimization

(BFGS, see lines 8 and 9 for each algorithm). The algorithm

LSDP stretches, prunes and expands these basis functions

throughout the optimization to produce a very sparse, nonuni-

form set of basis functions shared across the seven degrees

of freedom or the demonstrations, respectively. For LSDP,

the final regression parameters θi ∈ R7 are separate for

each basis function Ψi kept by the algorithm. cLSDP on

0.0 0.2 0.4 0.6 0.8 1.0

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

|coef| / max |coef|

C
o

ef
fi

ci
en

ts

Elastic Net Path

Fig. 2: An example Elastic Net path for eight parameters is

shown for one of the demonstrations. As the l1-norm con-

straint is relaxed (or equivalently, the regularization param-

eter is reduced), the coefficients converge to their ordinary

least squares solution at the right hand side of the plot. Each

dashed line signals a change in the regularization term, and

the coefficients are updated accordingly. We can use this path

to rank the parameters of the movement primitive in terms

of importance.

the other hand shares the set of basis functions across

multiple demonstrations. The learned parameters, along with

the intercepts, are saved to a json file offline, to be loaded

by the real-time robot controller in C++ during the online

experiments.

The proposed two algorithms LSDP and cLSDP are com-

pared against two other baselines below in Table I. The

first baseline is the Dynamic Movement Primitives (DMPs)

with a fixed number of basis functions. The second base-

line is l2-penalized standard regression, with the penalty

again on acceleration. During the experiments we used a

total of ten basis functions for both the DMPs and the

l2-penalized standard regression. The basis functions are

spread uniformly around the one second long (preprocessed)

demonstrations. DMPs, as a result of the dynamic constraint

of reaching a desired goal position, incur very high initial

accelerations in joint space. Even if the hyperparameters are

optimized accordingly to prevent such high accelerations,

slight adjustments of initial joint position will again give

rise to high accelerations. The suggestion proposed in [10] to

modify the accelerations with the phase can reduce the initial

accelerations, but then we have found that the convergence

to the goal suggestion can suffer drastically. The fixed basis

function regression does not have this problem, but as in

DMPs, optimizes a fixed number of parameters, which is

typically double the number optimized by cLSDP in order

to fit the demonstrations well.

Table I summarizes the results of learning movement

primitives from five different demonstrations. These five

demonstrations are fed together to cLSDP, whereas LSDP is

run separately for each demonstration to obtain the mean and

1.5

1.6

1.7

0.5

1.0

0.9
0.8
0.7

1.0

1.5

0.8

0.6

0.50

0.25

0.0 0.2 0.4 0.6 0.8 1.0

1.75

1.50

t(s)

1

q2

q3

q4

q5

q6

q7

q

(rad)

1.75

2.00

0.75

1.00

1.25

1.00

0.75

1.0

1.5

1.25

1.00

0.6

0.4

0.0 0.2 0.4 0.6 0.8 1.0

1.25

1.00

t(s)

1.75

2.00

0.0

0.5

1.0

1.00

0.75

1.3

1.4

0.8

0.6

0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0

1.3

1.2

t(s)

Fig. 3: Three movement primitives learned by cLSDP, are plotted in joint space against the recorded movements. The

recorded table tennis serve movements, shown in blue, are one second long each. The movement primitives, shown in

orange, share the learned parameters across the degrees of freedom of the robot. This is a desirable property for a movement

primitive serving as a policy in a policy search based reinforcement learning setup, as the number of rollouts needed to

improve the expected reward will then be reduced.

the standard deviations reported in the table. Note that the

number of parameters in total used by cLSDP (37) is much

lower than the on-average 16.8 parameters used by LSDP

for each robot DoF. The residual is naturally higher, this is a

result of the parameters being shared across the dimensions.

In particular, we have observed that cLSDP does not fit the

last three wrist joints as tightly as LSDP. This could be

because the motion of the wrist is highly varying across the

movements and the coupling induced by the algorithm across

demonstrations brings these movements closer. See Figure 3

for three example regression results.

Three example demonstrations are plotted in task space

in Figure 4 along with the recorded ball positions, detected

and triangulated from two cameras opposite to the robot. The

initial positions of the racket center and the ball in the egg-

holder are marked as 0 in red and blue, respectively. The

egg-holder is at a distance of roughly 14 cm to the racket

center. During the movement the ball is hit by the human

demonstrator moving the robot arm, and as the demonstrator

slows down the motion to a halt, the ball is seen flying

towards the table.

B. Robot Experiments

Finally, we conduct experiments in our real robot table

tennis platform, see Figure 1. Our table tennis playing

robot is a seven degree of freedom Barrett WAM arm that

is capable of reaching high accelerations and velocities.

However it is cable-driven and high accelerations can cause

the cables to break easily. A standard size racket is attached

TABLE I: Comparison of different learning from demonstra-

tions approaches, averaged over five different serve demon-

strations

No. par. (‖θ‖0) Acc. norm Res. norm
LSDP (16.8± 3.25) × 7 59.04 ± 7.0 0.59± 0.11
cLSDP 37 55.98 ± 11.78 0.73± 0.09
DMPs 11× 7 621.73 ± 57.45 0.92± 0.06
l2-reg. regr. 11× 7 215.45 ± 35.25 2.12± 0.47

to the end-effector via a metal bar. The racket has a radius

of roughly rR = 7.6 cm. The table and the table tennis

balls are standard sized, balls have a radius of 2 cm, and the

table geometry is roughly 276 × 152 × 76 cm. Throughout

the experiments, the Barrett WAM is placed at a distance

of about one meter to the end of the table and its base is

located 95 cm above the table. This makes it difficult (but

not impossible) for the robot to hit the table.

An egg-holder holds the table tennis ball initially, wrapped

around the metal bar connecting the end-effector and the

racket, see Figure 1. To get accurate ball positions during

the demonstrations and the robot rollouts, we calibrated the

two cameras on the ceiling opposite to the robot with respect

to the robot base frame, by collecting pairs of image and

robot joints correspondances. The ball detection algorithm is

run separately online on every image, running at around 180

frames per second. A linear triangulation algorithm provides

then ball position estimates and the resulting estimates of the

ball center of mass are then triangulated and filtered with an

Extended Kalman Filter (EKF).

A successful serve in our robot platform is shown in

Figure 5. The ball is initially placed on top of the egg-holder

(approximately 14 cm away from the racket center along

the racket plane). During the movement, as a result of the

robot’s accelerating motion, the ball takes off from the robot

arm. The ball is then hit by the robot towards the table. The

arm then decelerates towards a resting posture as the ball

lands on the robot court, passes the net, and lands again

on the opposite side. We notice that the initial accelerating

motion is critical for a good serve, as without the initial

accelerations, the ball has no chance to take-off. The DMPs

that we tested immediately start the movements with very

large accelerations, these can be dangerous for the robot and

the low-level Barrett WAM controllers do not support such

movements. We have seen that cLSDP, on the contrary, starts

with lower accelerations and catches up later.

−1

−0.8

−0.8
−0.6

−0.4

−0.6

−0.4

−0.2

0

0.962

0

0.874

x
y

z

robot

ball

−1
−0.8

−0.8

−0.6

−0.4

−0.6

−0.4

−0.2

0

0.962

0

0.874

x
y

z

robot

ball

−0.9

−0.8

−0.7

−0.8−0.7−0.6−0.5

−0.6

−0.4

−0.2

0
0.962

0

x

y

z

robot

ball

Fig. 4: Three example demonstrations in task space. The initial position of the racket center and the ball in the egg-holder

are marked as 0 in red and blue circles, respectively. The egg-holder is located approximately 14 cm away from the racket

centre. Before the racket stops moving, the ball is already hit, flying towards the table.

Fig. 5: A successful rollout during real robot experiments. The ball is initially on top of the egg-holder and during the

movement, as a result of the acceleration of the arm, it takes-off from the robot, to be later hit by the racket towards the

table. The arm then decelerates towards a safe resting posture.

V. CONCLUSION

In this paper we presented a new learning from demonstra-

tions (LfD) approach to represent and learn table tennis serve

movements. The proposed algorithms LSDP and cLSDP

learn sparse parameters of the radial basis functions (RBF)

from single and multiple demonstrations, respectively. The

algorithms employ iterative optimization, alternating between

a weighted multi-task Elastic Net regression step that learns

sparse parameters given the features and a nonlinear opti-

mization step that adapts the features (more specifically, the

widths and centers of the RBFs corresponding to the nonzero

regression parameters). The algorithm cLSDP, unlike LSDP,

learns (sparse) parameters that are independent of the robot

DoF. This desirable property is achieved by having different

basis functions that are adapted across each DoF separately.

The multi-task Elastic Net, in this case, forces the joint-

dependent features to be shared across multiple demonstra-

tions.

The cost function chosen for the optimization includes

the residual of the fit, as well as l2-regularization terms

on the accelerations and l1-regularization on the regression

coefficients. We compared the performance of the proposed

algorithms with Dynamic Movement Primitives (DMPs) and

the standard l2-regularized regression, and we evaluated the

performance of each on the different components of the

chosen cost function. Finally, we presented a successful table

tennis serve rollout using our framework on the real robot

table tennis setup. The results are preliminary, however, one

can see that the style of the movement is preserved while

maintaining low accelerations throughout the motion, which

is important for the safety of the robot.

The sparsity of the parameters, as well as their decoupling

from the robot DoF, is a desirable property for policy-search

RL approaches, that could adapt the regression parameters

online based on a suitable reward structure. We have pre-

sented a way to rank these policy parameters based on

how well the parameters explain the (multiple) demonstra-

tion recordings. We think that this is a promising research

direction to combat the curse of dimensionality in high

dimensional robotics learning tasks, and we will focus on

it more in future experiments.

One of the things that immediately comes to mind when

we think of a good table tennis serve is spin. Including the

effects of angular velocity in our ball prediction models and

adjusting the policies accordingly is one solution to vary the

style of the serves. However spin is difficult to model (and to

learn) and giving a spin to the ball involves cutting the path

of the ball with the racket at an incline. This means that

there is an inherent robustness vs. style trade-off in table

tennis: trying to impart spin to the balls necessarily reduces

the robustness of the learned policies to execution and ball

estimation/prediction errors. Future work will focus on such

stylistic improvements to our learned policies.

REFERENCES

[1] Russell L. Anderson. A Robot Ping-pong Player: Experiment in Real-

time Intelligent Control. MIT Press, Cambridge, MA, USA, 1988.
[2] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani.

Least angle regression. Annals of Statistics, 32:407–499, 2004.
[3] Carlos E. Garcı́a, David M. Prett, and Manfred Morari. Model

predictive control: Theory and practice - a survey. Automatica,
25(3):335 – 348, 1989.

[4] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements

of Statistical Learning. Springer Series in Statistics. Springer New
York Inc., New York, NY, USA, 2001.

[5] Y. Huang, B. Schölkopf, and J. Peters. Learning optimal striking points
for a ping-pong playing robot. In IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 4587–4592, 2015.
[6] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and

Stefan Schaal. Dynamical movement primitives: Learning attractor
models for motor behaviors. Neural Comput., 25(2):328–373, Febru-
ary 2013.

[7] Steven G. Johnson. The nlopt nonlinear-optimization package.
http://ab-initio.mit.edu/nlopt.

[8] S. M. Khansari-Zadeh and A. Billard. Learning stable nonlinear
dynamical systems with gaussian mixture models. IEEE Transactions

on Robotics, 27(5):943–957, Oct 2011.
[9] Seyed Mohammad Khansari-Zadeh and Aude Billard. Learning

control lyapunov function to ensure stability of dynamical system-
based robot reaching motions. Robotics and Autonomous Systems,
62:752–765, 2014.

[10] J. Kober, K. Muelling, O. Kroemer, C.H. Lampert, B. Schoelkopf, and
J. Peters. Movement templates for learning of hitting and batting. In
IEEE International Conference on Robotics and Automation (ICRA),
2010.

[11] J. Kober and J. Peters. Policy search for motor primitives in robotics.
In Advances in Neural Information Processing Systems 22 (NIPS

2008), Cambridge, MA: MIT Press, 2009.
[12] O. Koc, G. Maeda, G. Neumann, and J. Peters. Optimizing robot

striking movement primitives with iterative learning control. In 15th

IEEE-RAS International Conference on Humanoid Robots, 2015.
[13] O. Koc, G. Maeda, and J. Peters. A new trajectory generation

framework in robotic table tennis. In 2016 IEEE/RSJ International

Conference on Intelligent Robots and Systems, in press.
[14] Okan Koc, Guilherme Maeda, and Jan Peters. Online optimal tra-

jectory generation for robot table tennis. Robotics and Autonomous

Systems, 105:121 – 137, 2018.
[15] K. Muelling, J. Kober, O. Kroemer, and J. Peters. Learning to select

and generalize striking movements in robot table tennis. International

Journal of Robotics Research, 3:263–279, 2013.
[16] K. Muelling, J. Kober, and J. Peters. A biomimetic approach to robot

table tennis. Adaptive Behavior Journal, (5), 2011.
[17] Guillaume Obozinski and Ben Taskar. Multi-task feature selection.

In In the workshop of structural Knowledge Transfer for Machine

Learning in the 23rd International Conference on Machine Learning

(ICML 2006). Citeseer, 2006.
[18] Alexandros Paraschos, Christian Daniel, Jan R Peters, and Gerhard

Neumann. Probabilistic movement primitives. In C. J. C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 26, pages 2616–
2624. Curran Associates, Inc., 2013.

[19] M. Ramanantsoa and A. Durey. Towards a stroke construction model.
Int. Journal of Table Tennis Science, 2:97–114, 1994.

[20] S. Schaal. The SL simulation and real-time control software package.
Technical report, 2006.

[21] Hui Zou and Trevor Hastie. Regularization and variable selection
via the elastic net. Journal of the Royal Statistical Society, Series B,
67:301–320, 2005.

http://ab-initio.mit.edu/nlopt

	I Introduction
	II Notation
	III Method
	III-A Learning a sparse representation from a single demonstration
	III-B Coupling the parameters across dimensions
	III-C Ranking the demonstration parameters

	IV Experiments
	IV-A Learning from Demonstrations
	IV-B Robot Experiments

	V Conclusion
	References

