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Abstract

As robots and other intelligent agents move from simple environments

and problems to more complex, unstructured settings, manually pro-

gramming their behavior has become increasingly challenging and ex-

pensive. Often, it is easier for a teacher to demonstrate a desired be-

havior rather than attempt to manually engineer it. This process of

learning from demonstrations, and the study of algorithms to do so, is

called imitation learning. This work provides an introduction to imi-

tation learning. It covers the underlying assumptions, approaches, and

how they relate; the rich set of algorithms developed to tackle the prob-

lem; and advice on effective tools and implementation.

We intend this paper to serve two audiences. First, we want to famil-

iarize machine learning experts with the challenges of imitation learn-

ing, particularly those arising in robotics, and the interesting theoreti-

cal and practical distinctions between it and more familiar frameworks

like statistical supervised learning theory and reinforcement learning.

Second, we want to give roboticists and experts in applied artificial in-

telligence a broader appreciation for the frameworks and tools available

for imitation learning.

We organize our work by dividing imitation learning into directly

replicating desired behavior (sometimes called behavioral cloning [Bain

and Sammut, 1996]) and learning the hidden objectives of the desired

behavior from demonstrations (called inverse optimal control [Kalman,

1964] or inverse reinforcement learning [Russell, 1998]). In addition to

method analysis, we discuss the design decisions a practitioner must

make when selecting an imitation learning approach. Moreover, appli-

cation examples—such as robots that play table tennis [Kober and

Peters, 2009] and programs that play the game of Go [Silver et al.,

2016]— illustrate the properties and motivations behind different forms

of imitation learning. We conclude by presenting a set of open questions

and point towards possible future research directions.

T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel and J. Peters. An

Algorithmic Perspective on

Imitation Learning. Foundations and Trends® in Robotics, vol. 7, no. 1-2,
pp. 1–179, 2018.
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Introduction

Programming autonomous behavior in machines and robots tradition-

ally requires a specific set of skills and knowledge. However, human

experts know how to demonstrate the desired task even if they do not

know how to program the necessary behavior in a machine or robot.

The purpose of imitation learning is to efficiently learn a desired be-

havior by imitating an expert’s behavior. The application of imitation

learning is not limited to physical systems. It can be a powerful tool

to design autonomous behavior in systems such as web sites, computer

games, and mobile applications. Any system that requires autonomous

behavior similar to human experts can benefit from imitation learning.

However, imitation learning may be essential for robotics. It is now

considered to be a key technology for applications such as manufac-

turing, elder care, and the service industry. These robots will be ex-

pected to work closely with humans in a dramatic shift from prior

uses of robots. Powerful robotic manipulators are dangerous and have

therefore been used mainly in constrained, predefined industrial appli-

cations; employees must undergo special training before working with

them. This is changing due to recent advances in robotics from com-

pute to the use of light, compliant, and safe robotic manipulators. They

3
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are ideal for applications where robots work alongside people, such as

collaborating with human operators and reducing the physical work-

load of care givers. These applications require efficient, intuitive ways

to teach robots the motions they need to perform from domain experts

who may not possess special skills or knowledge about robotics.

In recent years, imitation learning has been investigated as a way to

efficiently and intuitively program autonomous behavior[Schaal, 1999,

Argall et al., 2009, Billard et al., 2008, Billard and Grollman, 2013,

Bagnell, 2015, Billard et al., 2016]. In imitation learning, a human

demonstrates how to perform a task. A robotic system learns a pol-

icy to execute the given task by imitating the demonstrated motions.

Numerous imitation learning methods have been developed and imita-

tion learning has become a gigantic field of research. As a consequence,

capturing the entire field of imitation learning is not a trivial task.

The purpose of this survey is to provide a structural understanding

of existing imitation learning methods and its relationship with other

fields from supervised learning to control theory. We will describe what

has been developed in the field of imitation learning and what should

be developed in the future.

1.1 Key successes in Imitation Learning

One of the earliest and most well-known imitation learning success sto-

ries was the autonomous driving project Autonomous Land Vehicle In

a Neural Network (ALVINN) at Carnegie Mellon University [Pomer-

leau, 1988]. In ALVINN, a neural network learned how to map input

images to discrete actions in order to drive a vehicle. ALVINN’s neu-

ral network had one hidden layer with five units. Its input layer had

30 by 32 units; its output layer had 30 units. Although the structure

of this network was simple compared to modern neural networks with

millions of parameters, the system succeeded at driving autonomously

across the North American continent.

The Kendama robot developed by Miyamoto et al. [1996] is an-

other successful application of imitation learning. In the early days

of imitation learning, roboticists were mainly interested in teaching
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higher-level tasks from human demonstrations, such as “pick,” “move,”

and “place” Kang and Ikeuchi [1993], Kuniyoshi et al. [1994]. In those

settings, lower-level tasks were often considered to be simple, point-to-

point motions. In the late 1990s, this focus shifted from task-level plan-

ning to trajectory-level planning. The term “learning from demonstra-

tion” has become very popular since its use by S. Schaal and G. Atke-

son [Schaal, 1997, Atkeson and Schaal, 1997]. Since then, learning robot

motions has been a key domain of imitation learning.

Recently, learning from human demonstrations has benefited from

developments in deep neural networks. Recurrent neural networks such

as long short-term memory (LSTM) networks Hochreiter and Schmid-

huber [1997] have played a significant role in demonstrating how

to succeed in many previously difficult sequential tasks by learning

from demonstrated data. This includes tasks for generating handwrit-

ing Chung et al. [2015], natural language Wen et al. [2015], or image

captions Karpathy and Fei-Fei [2015]. Furthermore, AlphaGo, the al-

gorithm which was able to beat a human Go master and which we

discuss in more detail in §3.4.2, initializes a deep neural network pol-

icy from human demonstrations Silver et al. [2016]. Often these recent

approaches require a large amount of data. In §3, we will discuss how

to learn from data to reproduce observed behavior in specific problem

settings.

1.2 Imitation Learning from the Point of View of

Robotics

Imitation learning is a class of methods that reproduces desired be-

havior based on expert demonstrations. In many cases, the experts are

human operators and the learners are robotic systems, Thus, imitation

learning is a technique that enables skills to be transferred from hu-

mans to robotic systems. To perform imitation learning, we need to

develop a system that records demonstrations by experts and learns a

policy to reproduce the demonstrated behavior from the recorded data.

For this purpose, we need to answer the following questions.
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General Aspects:

1. Why and when should imitation learning be used? This

question clarifies the motivation for using imitation learning and

what we should do with it.

2. Who should demonstrate? In many cases, the experts are hu-

man operators. Many imitation learning methods implicitly as-

sume that demonstrations are provided by a single expert. When

multiple experts are available, we need to decide which one should

be imitated or how we can incorporate demonstrations from mul-

tiple experts.

3. How should we record data of the expert demonstra-

tions? There are multiple ways of recording the behavior of

experts. For example, motion capture systems and teleoperated

robotic systems record data from expert behavior. This choice is

closely related to the embodiment problem between experts and

learners, which will be discussed in §3.7.1.

4. What should we imitate? The recorded data often includes

redundant information about expert behavior. In such cases, fea-

tures appropriate for the desired behavior should be selected.

Meanwhile, the recorded data also includes unnecessary motions,

which should not be imitated. The data must be segmented to

extract the motions to be imitated.

Algorithmic Aspects:

5. How should we represent the policy? Expert behavior can

be represented using methods such as symbolic representation,

trajectory-based representation, and state-action space represen-

tation. The choice depends largely on the design of the entire

system.

6. How should we learn the policy? Many algorithms for learn-

ing the policy have been developed over the past several decades.

The choice of the algorithm for learning the policy is closely re-

lated to the choice of policy representation.
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With regard to the first four questions, several survey papers on

imitation learning [Argall et al., 2009, Billard et al., 2008, Billard and

Grollman, 2013, Billard et al., 2016], provide a taxonomy of imitation

learning from the perspective of robotics. Argall et al. [2009] indicate

that it is essential to design an imitation learning system by considering

the correspondence between the expert and the learner, data acquisi-

tion methods, and limitations of the demonstration dataset. Billard

et al. [2008, 2016] provide an overview of imitation learning methods

and highlight techniques for trajectory learning. However, none of the

previous review articles focused on the design decisions needed to de-

velop new imitation learning algorithms to enable answering questions

five and six related to the algorithmic aspects discussed above. In ad-

dition, these articles did not discuss the algorithmic details of exist-

ing methods because the enormous amount of prior work on imitation

learning makes it challenging to cover the entire range of previous stud-

ies.

In this survey, we provide an overview of existing methods from

the algorithmic point of view, which will be useful for both readers

beginning the practice of imitation learning and readers who want to

achieve a deeper understanding of the theoretical aspects of imitation

learning. We discuss the design choices which one should consider in or-

der to develop novel imitation learning algorithms. Although our survey

cannot be exhaustive, we discuss the algorithmic details of existing al-

gorithms as much as possible, which will be useful to readers who want

to implement imitation learning techniques. Additionally, we develop

an information theoretic understanding of existing methods, which will

help readers to understand how existing methods relate to each other

and figure out how they could be extended.

Let us illustrate how different design choices of imitation learn-

ing algorithms can be made in different applications. Figure 1.1 shows

three applications of imitation learning: 1) an RC helicopter, 2) robotic

surgery, and 3) quadruped robot locomotion. In these applications, de-

sign of the policies for motion planning and control vary. Abbeel et al.

[2010] demonstrates acrobatic RC helicopter flight by learning from tra-

jectories demonstrated by a human expert. In this system, the desired
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Demonstration by experts

Observation

Gyro sensors

Accelerometers

Magnetometers

GPS

Vision system

�

Control inputs

Forward-backward tilt

Left-right tilt

Vertical rotational rate

Roter collective pitch

�

https://commons.wikimedia.org/w/index.php?curid=11467562

(a) Learning of acrobatic RC helicopter maneuvers [Abbeel et al., 2010]. The tra-
jectories for acrobatic flights are learned from a human expert’s demonstrations.
To control the system with highly nonlinear dynamics, iterative learning control
was used.

Demonstration by experts

Position of the 

slave manipulator

Position of the 

master manipulator

Control inputs Observation

(b) Learning with a teleoperated system [Osa et al., 2014] where a posi-
tion/velocity controller is available. To generalize the trajectory to different situ-
ations, a mapping from task situations to trajectories is learned from demonstra-
tions under various situations.

Demonstration by experts

Control inputs Observation

Terrain features

Foot step locations

Analog joystick 

value 

(c) Learning quadruped robot locomotion [Zucker et al., 2011]. The footstep plan-
ning was addressed as an optimization of the reward/cost function, which was re-
covered from the expert demonstrations. Learning the reward/cost function allows
the footstep planning strategy to be generalized to different terrains.

Figure 1.1: Observations y and control inputs u for imitation learning in (a)
helicopter flight, (b) surgery, and (c) locomotion. Motion planning is formulated in
different ways in these examples.
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trajectories of acrobatic flights were learned from demonstrations with a

supervised learning method. Osa et al. [2017b] also learned trajectories

for autonomous knot tying from demonstrations by a human expert. To

generalize a trajectory, Osa et al. [2017b] learned a direct mapping from

task situations (contexts) to trajectories using demonstrations recorded

under various situations. Contrary to [Abbeel et al., 2010, Osa et al.,

2017b], Zucker et al. [2011] formulated footstep planning for quadruped

robot locomotion as an optimization of the reward/cost function. The

reward/cost function was recovered from demonstrations. In [Zucker

et al., 2011], learning the reward/cost function as a function of terrain

features enables the footstep planning strategy to be generalized to dif-

ferent terrains. Learning such reward/cost functions for manipulation

tasks like as knot-tying [Osa et al., 2017b] is not trivial, since complex

manipulation tasks often require nonlinear reward/cost functions.

Methods for learning policies also differ between applications. The

observation and control inputs of the RC helicopter system are much

noisier than those of the other two systems, and its dynamics are highly

nonlinear [Abbeel et al., 2010]. Therefore, it is essential to estimate the

true state using various sensory information and learn an adaptive con-

troller through iterations of trials to achieve acrobatic RC helicopter

flight. On the other hand, we can assume that the system state is

precisely known and a position/velocity controller is available in the

case of the tele-operation system in [Osa et al., 2014], which simplifies

imitation learning significantly. In [Osa et al., 2014], the conditional

trajectory distribution given a context can be learned with a simple re-

gression method, and the planned trajectory can be executed by a stan-

dard velocity controller. In locomotion planning for a quadruped robot

in [Zucker et al., 2011], estimating the reward/cost function requires

an iterative learning process with virtual simulation of the learned pol-

icy. As one can see from these examples, learning methods can be very

different between applications.

To apply imitation learning, it is essential to identify the structure

of the system, formulate a given problem, and design an algorithm to

solve the problem efficiently. In this survey, we focus on the algorithmic

aspects of imitation and discuss necessary design choices, exploring
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various solutions proposed by previous studies.

In the rest of this chapter, we introduce several concepts in machine

learning that are essential to understand imitation learning algorithms.

We discuss the design choices of imitation learning algorithms in Chap-

ter 2. We describe the details of behavioral cloning methods and inverse

reinforcement learning methods in Chapters 3 and 4, respectively. To

conclude, we list open questions of imitation learning in Chapter 5.

1.3 Key Differences between Imitation Learning and

Supervised Learning

The imitation learning problem has special properties that distinguish

it from the better known supervised learning setting [Shalev-Shwartz

and Ben-David, 2014] : 1) the solution may have important structural

properties including constraints (for example, robot joint limits), dy-

namic smoothness and stability, or leading to a coherent, multi-step

plan [Bagnell, 2015]; 2) the interaction between the learner’s decisions

and its own input distribution (an on-policy versus off-policy distinc-

tion) , and 3) the increased necessity of minimizing the typically high

cost of gathering examples.

As we learn a policy π from a dataset D, imitation learning is

closely related to supervised learning, and is particularly related to

the field of structured prediction [Daumé III et al., 2009, Ratliff et al.,

2006a, Taskar, 2005] , where the task is to learn a mapping from in-

puts x to a complex, structured output y (plans, parse trees, com-

plex motions). Reductions of structured prediction to sequential deci-

sion [Daumé III et al., 2009], and reductions of imitation learning to

structured prediction [Ratliff et al., 2006b] show the close connection,

and cross-fertilization between these research areas has been important

for both. In practice, distinctions arise because of the structural prop-

erties of policies we attempt to imitate, and the difficulty of "resetting"

state and restarting predictions is too costly or even infeasible in most

imitation learning settings because a physical system is often involved.

In addition, it is often the case that the embodiments of the expert

and the learner are different. For example, when transferring human

skills to a humanoid robot, the motion captured from a human expert
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may be infeasible for the humanoid. In such a case, the demonstrated

motion needs to be adapted to be feasible for the humanoid. This kind

of adaptation is less common in the standard supervised learning.

In machine learning, the prediction problem where the source do-

main distribution and the target domain distribution are different is of-

ten referred to as “covariate shift” or “domain adaptation” [Sugiyama,

2015]. In imitation learning, the source domain corresponds to expert

demonstrations and the target domain to learner reproductions. In im-

itation learning, the demonstration dataset does not cover all possible

situations since collecting expert demonstrations to cover all situations

is usually too expensive and time-consuming. As a result, the learner

often encounters states which were not encountered by the expert dur-

ing demonstrations, which means that the target domain distribution is

different from the source distribution. Therefore, covariate shift or do-

main adaptation is closely related to imitation learning [Bagnell, 2015].

Imitation learning is also closely related to reinforcement learn-

ing (RL), which tries to obtain a policy that maximizes an expected

reward [Sutton and Barto, 1998] signal. In RL, we employ a reward

function that encourages a desired behavior. However, in imitation

learning we often assume optimal (or at least “good”) expert demon-

strations which are not available in basic reinforcement learning, and

which provide prior knowledge that allows for dramatically more effi-

cient methods. Recent work by Sun et al. [2017] demonstrates a po-

tentially exponential decrease in sample complexity in learning a task

by imitation rather than by trial-and-error reinforcement learning, and

empirical results have long shown such benefits [Silver et al., 2016,

Kober and Peters, 2009, Abbeel et al., 2010]. Moreover, in the imi-

tation learning setting, as we detail below, we may or may not have

access to a true reward function.

1.4 Insights for Machine Learning and Robotics Re-

search

As imitation learning offers intuitive ways to program robotic motions

by demonstrating the desired motion, imitation learning attracted in-

terests from robotic researchers. The robotics community has devel-
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oped many imitation learning methods for motion planning and robot

control. When planning a trajectory for a robotic system, it is often

necessary to make sure that a planned trajectory satisfies some con-

straints such as smooth convergence to a new goal state. For this rea-

son, robotics researchers have developed “custom” trajectory represen-

tations that explicitly satisfy constraints necessary for robotic appli-

cations. Machine learning techniques are often used as a part of such

frameworks. However, robotics researchers need to be aware that rich

set of algorithms have been developed by the machine learning com-

munity and some of new algorithms might eliminate the need for cus-

tomizing policy or trajectory representation.

For machine learning researchers, imitation learning offers interest-

ing practical and theoretical problems, which differ from standard su-

pervised and reinforcement learning settings. Although imitation learn-

ing is closely related to structured prediction, it is often challenging to

apply existing machine learning methods to imitation learning, espe-

cially robotic applications. In imitation learning, collecting demonstra-

tions and performing rollouts are often expensive and time-consuming.

Therefore, it is necessary to consider how to minimize these costs and

perform learning efficiently. In addition, embodiments and observabil-

ity of the learner and the expert are different in many applications. In

such cases, the demonstrated motion needs to be adapted based on the

learner’s embodiment and observability. These difficulties in imitation

learning present new challenges to machine learning researchers.

1.5 Statistical Machine Learning Background

To understand imitation learning algorithms, familiarity with several

concepts in statistical machine learning is essential. In this section, we

briefly introduce the notation we use and these concepts.

1.5.1 Notation and Mathematical Formalization

Before introducing important concepts in machine learning, we intro-

duce the notation in this article. Table 1.1 summarizes our notation.

Throughout this survey, we use the bold style for vector values, and the
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non-bold style for scalar values. Demonstrations by an expert are often

given as a set of trajectories. In this case, the dataset of demonstra-

tions is given by D = {τ 0, . . . , τ m}. We use the lower script to denote

the time index; xt represents the state of the system at time step t.

We review many methods that manipulate probability distributions in

various ways. To make equations concise, the probability distribution

induced by the experts’ policy is denoted by q, and the distribution

induced by the learner’s policy is denoted by p. For example, p(τ )

represents the probability distribution over trajectories induced by the

learner’s policy. The term “action” is mainly used in machine learning

community, and “control input” is mainly used in robotic community

and control theory community. Since imitation learning methods have

been developed in all of these communities, we use the word “action”

Table 1.1: Table of Notation. We use a notation common in the control literature
for states and controls.

x system state

s context

φ feature vector

u control input/action

τ trajectory

π policy

D dataset of demonstrations

q probability distribution induced by an expert’s policy

p probability distribution induced by a learner’s policy

t time

T finite horizon

N number of demonstrations

E
superscript representing an expert

e.g. πE denotes an expert’s policy

L
superscript representing a learner

e.g. πL denotes a learner’s policy

demo
superscript representing a demonstration by an expert

e.g. τ demo denotes a trajectory demonstrated by an expert
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and “control input” interchangeably. We use the term “context” to refer

to the condition relevant to the task. The context s can be the initial

state of the system x0 or the state of relevant objects. For instance, the

position of the ball can be part of the context in a hitting-a-ball task.

We use T to denote the finite horizon of the trajectory. Therefore, the

total number of the time steps of a single trajectory is T + 1 in our

notation.

1.5.2 Markov Property

A sequence of states x0, ..., xt is a Markov chain if at any time t, the

future states xt+1, xt+2, ... depend on the history x0, ..., xt only through

the present state xt [Serfozo, 2009]. In other words, the next state xt+1

only depends on the current state xt in a Markov chain. This property

is called the Markov property.

1.5.3 Markov Decision Process

A Markov decision process (MDP) is a process that satisfies the Markov

property. If the state and action spaces are finite, then it is called a finite

Markov decision process (finite MDP) [Sutton and Barto, 1998]. An

MDP is defined as a tuple (X , U , P, γ, D, R). X is a finite set of states;

U is a set of control inputs; P is a set of state transitions probabilities;

γ ∈ [1, 0) is a discount factor; D is the initial-state distribution from

which the initial state x0 is drawn; and R : X Ô→ R is the reward

function.

1.5.4 Entropy

Given the random variable x and its probability distribution p(x), the

entropy

H (p) = −
∫

p(x) ln p(x)dx (1.1)

is defined as the amount of information conveyed by transmitting

x [Bishop, 2006]. Note that the entropy H(x) is a convex function.
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1.5.5 Kullback-Leibler (KL) Divergence

In the field of information geometry, the KL divergence is used to quan-

tify a difference between two probability distributions[Kullback and

Leibler, 1951], i.e.,

DKL (p(x)||q(x)) =

∫

p(x) ln
p(x)

q(x)
dx. (1.2)

Since the KL divergence identifies a difference between two probability

distributions, it is useful for cases in which stochastic policies are go-

ing to be learned, or stochastic trajectories result from a deterministic

policy. Please note that the KL divergence is not symmetric, therefore

DKL (p||q) Ó= DKL (q||p). The KL divergence can be obtained as a Breg-

man divergence derived from the negative entropy [Amari, 2016] and

is widely used as a measure in multiple imitation learning approaches.

1.5.6 Information and Moment Projections

One common approach to learning a policy from a dataset is to consider

“projecting” that dataset onto the space of the policy model. Informa-

tion theory emphasizes two kinds of projections: the Information(I)-

projection and the Moment(M)-projection [Bishop, 2006]. Using the

Kullback-Leibler (KL) divergence [Kullback and Leibler, 1951], the I-

projection is

p∗ = arg min
p

DKL(p ‖ q) , (1.3)

and, the M-projection

p∗ = arg min
p

DKL(q ‖ p) . (1.4)

As the KL divergence is not symmetric, these two projections result in

different solutions when a given distribution is multi-modal as shown in

Figure 1.2. While the M-projection averages over the several modes, the

I-projection concentrates on a single mode. Performing the I-projection

is often not straight-forward, although the M-projection can often be

performed relatively easily by maximizing the likelihood with respect

to a given training dataset [Bishop, 2006].
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Figure 1.2: Illustration of I- and M- projections. Given a distribution with two
modes as shown in black, M-projection will give a solution that averages over two
modes as shown in red. On the contrary, I-projection will give a solution that con-
centrates on one of the modes.

1.5.7 The Maximum Entropy Principle

Let us consider a probability distribution p(x) that matches the fea-

tures of an unknown distribution q, i.e. it satisfies

Ep[φ(x)] = Eq[φ(x)],

where q(x) is an unknown probability distribution and Eq[φ(x)], which

is the expectation of a feature function φ(x), is available. As there are

typically an infinite amount of such distributions, we need an additional

constraint to obtain a unique solution [Amari, 2016].

The maximum entropy principle [Jaynes, 1957] suggests to choose

a distribution that maximizes the entropy

H(p) = −
∫

p(x) ln p(x)dx

among the distributions that satisfy Ep[φ(x)] = Eq[φ(x)]. From this

constrained optimization program, the maximum entropy distribution

can be computed as

p(x) ∝ exp
(

w⊤φ(x)
)

, (1.5)

where w is a vector-valued Lagrangian multiplier for the feature match-

ing constraint. While the maximum entropy principle does not directly

translate into a practical algorithm, it uncovers an interesting obser-

vation. Every distribution that is in a log-linear representation given

by Equation 1.5, is the maximum entropy distribution that can match

specific feature expectations given by the feature vector φ(x). This is
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true for typical distributions from the exponential family such as the

Gaussian distribution, which is the maximum entropy distribution that

matches first and second order moments. The notion of Maximum En-

tropy generalizes to Maximum Causal Entropy, which turns out to be

a natural notion of uncertainty for dynamical systems [Ziebart et al.,

2013].

1.5.8 Background: Reinforcement Learning

Reinforcement learning is a class of methods that autonomously learns

policies through iterations of trials and evaluations. The goal of

reinforcement learning is to learn a policy π that maps the state of

the system to the control input so as to maximize the expected reward

J(π). The reward rt represents the quality of the given state, action

or trajectory at time t. For example, rt could be large when a robot is

close to the desired trajectory and small when the robot is far from the

trajectory, or, rt could be large for stable robot grasps and small for

unstable ones. With a finite horizon T , the expected return is given by

the accumulation of the reward at each time step,

J(π) = E

[

T
∑

t=0

rt

∣

∣

∣

∣

∣

π

]

. (1.6)

Alternatively, the discounted accumulated reward is used for the infi-

nite horizon scenario, i.e.,

J(π) = E

[

∞
∑

t=0

γtrt

∣

∣

∣

∣

∣

π

]

, (1.7)

where the discounted factor γ controls the trade-off between shorter

term rewards and longer term rewards. The desired policy π∗ is given

by

π∗ = arg max
π

J(π). (1.8)

The value of a state x under a policy π can be computed as the expected

reward when starting from x and following π

V π(x) = E

[

∞
∑

t=0

γtrt

∣

∣

∣

∣

∣

x0 = x, π

]

. (1.9)
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V π(xt) is often called the value function [Sutton and Barto, 1998].

Likewise, the value of taking action u in state x under a policy π can

be computed as the expected reward when starting from the action u

in a state x and thereafter following policy π

Qπ(x, u) = E

[

∞
∑

t=0

γtrt

∣

∣

∣

∣

∣

x0 = x, u0 = u, π

]

. (1.10)

Qπ(xt, ut) is often called the action-value function [Sutton and Barto,

1998].

For an overview of reinforcement learning methods, please refer to

[Sutton and Barto, 1998, Szepesvari, 2010, Wiering and van Otterlo,

2012, Sugiyama et al., 2013] and for an overview in reinforcement learn-

ing in robotics, please refer to Kober et al. [2013], Deisenroth et al.

[2013b].

1.6 Formulation of the Imitation Learning Problem

The goal of imitation learning is to learn a policy that reproduces the

behavior of experts who demonstrate how to perform the desired task.

Suppose that the behavior of the expert demonstrator (or the learner

itself) can be observed as a trajectory τ = [φ0, ..., φT ], which is a

sequence of features φ. The features φ, which can be the state of the

robotic system or any other measurements, can be chosen according to

the given problem. Please note that the features φ do not have to be

manually specified, and φ could be as general as simply pixels in raw

images.

Often, the demonstrations are recorded under different conditions,

for example, grasping an object at different locations. We will refer to

these task conditions as context vector s of the task which is stored

together with the feature trajectories. The context s can contain any

information relevant to the task, e.g., the initial state of the robotic

system or positions of target objects. Note that, as the context describes

the current task, it is typically fixed during task execution and the only

dynamic aspects of the problem are the state features φt. Optionally,

a reward signal r that the expert is trying to optimize is also available

in some problem settings [Ross and Bagnell, 2014].



1.6. Formulation of the Imitation Learning Problem 19

In imitation learning, we collect a dataset of demonstrations D =

{(τ i, si, ri)}N
i=1 that consists of pairs of trajectories τ , contexts s, and

optionally reward signals r. The data collection process can be both of-

fline and online. Using the collected dataset D, a common optimization-

based strategy learns a policy π∗ that satisfies

π∗ = arg min D (q(φ), p(φ)) , (1.11)

where q(φ) is the distribution of the features induced by the experts’

policy, p(φ) is the distribution of the features induced by the learner,

and D(q, p) is a similarity measure between q and p. Both offline and

online learning scenarios of this problem have been considered [Ross

et al., 2011]. Please note that, when the dataset contains demonstra-

tions of multiple tasks and the contexts include information of each

task, this problem can be considered multitask learning as in recent

work by Duan et al. [2017], Finn et al. [2017a,b].

In addition, we often have access to an environment such as a sim-

ulator or a physical robotic system where we can perform and evaluate

a policy through interaction. This simulator can be used to gather new

data and iteratively improve the policy to better match the demonstra-

tions.
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Design of Imitation Learning Algorithms

In this chapter, we discuss the design choices of imitation learning

methods. First, we describe what design choices need to be consid-

ered, and we then discuss what options we can consider for each design

decision. Thereafter, we discuss imitation learning methods from an

information theoretic point of view.

2.1 Design Choices for Imitation Learning Algorithms

When developing an imitation learning method, it is necessary to make

several design choices to formalize the problem. In this section, we

present a list of some of these design choices.

• Access to the reward function: imitation learning or

reinforcement learning. A central distinction in imitation

learning is whether or not the learner has access to both an expert

demonstrator and a reward signal that the expert is attempting

to optimize. For instance, in learning to play Atari games [Mnih

et al., 2015] or play Go [Silver et al., 2016] there is an unambigu-

ous score metric. On the other hand, there exists tasks where

it is feasible for the expert to demonstrate the optimal behavior

20
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and it is hard to define the reward manually including, learning

to drive a car by demonstration [Pomerleau, 1988] and complex

manipulation such as knot-tying [Osa et al., 2017b].

One might naturally ask what benefit is conferred by an expert if

a reward signal is available– surely we can simply solve the prob-

lem by reinforcement learning? The expert’s role is to reign in

the need for tremendous and expensive global exploration. This

has been consistently demonstrated empirically to speed learn-

ing even on problems with a clear metric (e.g., the ball-in-a-cup

task in [Kober and Peters, 2009]) and recently shown theoret-

ically to provide a potentially exponential improvement in the

number of samples required to learn [Sun et al., 2017]. The most

common approach to leverage such information is initialize a pol-

icy by imitation learning with coarse demonstration and refined

by reinforcement learning through trial and error [Silver et al.,

2016, Tesauro, 1995]. Algorithms like SEARN [Daumé III et al.,

2009] and AggreVaTe [Ross and Bagnell, 2014, Sun et al., 2017],

intermix the process of imitation and reinforcement– the learner

attempts multiple actions and the expert provides the best strat-

egy or an estimate of cost-to-go given the learner’s decision. This

intermixing ensures that the learner is able (with enough samples

and representational power) to recover a policy that is guaran-

teed to be nearly as good as the expert (and can be much better),

and prevents small mistakes from cascading into poor overall be-

havior.

The emergence of the “V-style jump” [Maryniak et al., 2009]

shown in Figure 2.1 in ski jumping is a textbook example of such

imitation learning by humans. Although it took decades to be

recognized, soon after some athletes achieved successful results

with the V-style jump in 1990s, it has become prominent in the

sport and has been mastered by all the athletes performing ski

jumps. This example illustrates that local optimization around

the initial demonstration can only find local optima while imita-

tion learning leads to fast skill acquisition.
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Figure 2.1: A ski jumper flies through the air using the highly aerodynamic “V-
style”. “V-style” was adopted by most ski jumpers in the 1990s after some jumpers
demonstrated impressive results with the style (public domain picture from Wiki-
media Commons).

• Parsimonious description of the desired behavior: behav-

ioral cloning or inverse reinforcement learning. Data effi-

cient learning demands we identify the most compact represen-

tation of a behavior. Often a direct mapping from features to

trajectories/actions is the most parsimonious description of the

policy and the approach known as behavioral cloning approach is

used. However, particularly for problems where the behavior is,

crudely speaking, deliberative and focused on long-horizon plan-

ning, the most parsimonious description of the policy may be

to encode the policy as the solution of an optimization or plan-

ning problem [Ratliff et al., 2009, Bagnell, 2015] Inverse Optimal

Control approaches learn a (surrogate) cost function so that the

behavior that results from solving that optimization is in some

sense similar to that demonstrated by the expert.

• Access to system dynamics: model-based or model-free.

Access to system dynamics is required for making some prob-

lems tractable. For instance, estimation of the system dynamics

is often required for motion planning in under-actuated robots,

in which accurate controllers are not available. Meanwhile, ac-

cess to the system is not necessary when a controller of sufficient
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quality is available. It is desirable to avoid learning of the system

dynamics because it is not a trivial problem. Thus, it is essential

to identify whether access to system dynamics is necessary for

controlling the given system or not.

• Similarity measure between policies. In the event that there

is not a clear notion of reward function being optimized, a sur-

rogate notion of similarity between the experts’ policy and the

learner’s policy needs to be established to reproduce the behav-

ior of the expert. This similarity can be defined at the level of

individual decisions, although it is usual preferred that the notion

of similarity be defined over trajectories the learner and system

take together [Ziebart et al., 2013].

• Features. It is essential to select appropriate features that en-

able the desired behavior to be expressed. Features should contain

enough information to solve the problem while limiting the com-

plexity of learning. The features can be various measurements re-

lated to the desired task, such as kinematic/dynamic state of the

robotic system and/or the surrounding objects. Learning tech-

niques, based on deeper representations have enabled features

representations to be at least partially extracted automatically,

e.g., using deep learning [Ratliff et al., 2006a, Bradley, 2010,

Grubb and Bagnell, 2010, Levine et al., 2016, Ho and Ermon,

2016, Finn et al., 2016b].

• Policy representation. Policy representation needs to be cho-

sen such that the desired behavior can be properly captured. For

example, a policy can be represented by a neural network or a lin-

ear function. With respect to the task abstraction level, we need

to decide at which level of the task we learn, such as task level,

trajectory level, and action-state level. While it is necessary to

select a sufficiently informative representation to model the de-

sired behavior, increasing the complexity of policy representation

usually leads to the increase of the required training data and

learning time.
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As one can see above, these design choices are not independent and

the order of these design choices are flexible. For example, the choice of

similarity measures between policies is related to the choice of policy

representations. In the following sections, we present possible options

for some of these design choices.

2.2 Behavioral Cloning and Inverse Reinforcement

Learning

One way to obtain a policy that reproduces the demonstrated behav-

ior is to learn a policy that directly maps from the input to the ac-

tion/trajectory. In problems, where a dataset of demonstrated trajec-

tories with state-action pairs and contexts D = {(xt, st, ut)} is given,

we can directly compute a mapping from states or/and contexts to

control inputs as

u = π(xt, st). (2.1)

This kind of policy can be usually obtained through a standard super-

vised learning method. Learning a policy that directly maps from the

state or/and the context to the control input is often referred to as

Behavioral Cloning (BC) [Bain and Sammut, 1996].

Alternatively, given a reward signal, a policy can be obtained so as

to maximize the expected return. Such a policy can be expressed as

π = arg max
π̂

J(π̂), (2.2)

where J(π̂) is the expectation of the accumulated reward given the pol-

icy π as in (1.7). However, the reward function is considered unknown

and needs to be recovered from expert demonstrations under the as-

sumption that the demonstrations are (approximately) optimal w.r.t.

this reward function. Recovering the reward function from demonstra-

tions is often referred to as Inverse Reinforcement Learning (IRL) [Rus-

sell, 1998] or Inverse Optimal Control (IOC) [Moylan and Anderson,

1973].

BC and IRL form two major classes of imitation learning methods.

In order to select one of BC and IRL, it is essential to consider what is

the most parsimonious description of the desired behavior? The policy
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learned by an IRL method is valid as long as the estimated reward

function represents the desired behavior appropriately, while a policy

learned by a BC method is valid as long as the learned mapping from

states to actions is valid. A choice between BC and IRL is to select the

best way to describe the desired behavior, which is totally dependent

on a given problem setting. It is essential to analyze how the desired

behavior should be performed when applying imitation learning meth-

ods.

2.3 Model-Free and Model-Based Imitation Learning

Methods

Whether we access the system dynamics for imitation learning or not

is one of the crucial design decisions. Although learning and leveraging

the system dynamics often enables data-efficient learning with a system

that has nonlinear and unknown dynamics, learning the system dynam-

ics can be often challenging. In the reinforcement learning literature,

methods that learn a forward model of the system and leverage it for

learning a policy are often referred to as model-based, while methods

that do not explicitly learn a forward model of the system are referred

to as model-free [Kober et al., 2013, Deisenroth et al., 2013b]. In this

survey, we apply the same categorization to imitation learning meth-

ods. Table 2.1 shows a summary of the advantages and disadvantages

of model-free and model-based methods in imitation learning.

Model-free imitation learning methods attempt to learn a policy

that reproduce the behavior demonstrated by experts without learn-

ing/using a forward model of the system. Therefore, there is no need to

estimate the system dynamics in model-free imitation learning method.

Yet, the system dynamics is encoded only implicitly in policies learned

by model-free methods. In many robotic systems, especially in indus-

trial applications, position/velocity controllers are often available for

controlling joints. In such cases, we can assume that the robot is fully

actuated, and the dynamics of the system is almost negligible in motion

planning if a reasonably smooth trajectory is used. Model-free imita-

tion learning methods can be easily applied to motion planning for such

(nearly) fully-actuated robotic systems when the demonstrations by ex-
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perts are available. For this reason, behavioral cloning methods which

learn a direct mapping from states/contexts to actions have focused on

model-free methods until recent years.

For motion planning of underactuated systems, it is often neces-

sary to plan a feasible trajectory by considering the system dynamics.

It can be challenging to use model-free BC methods to learn trajec-

tories in such underactuated systems where the reachable states are

limited. However, recent IRL work by Boularias et al. [2011], Finn

et al. [2016b], Ho and Ermon [2016] shows how one can learn skills

in underactuated systems through iterative rollouts without explicitly

learning a dynamics model.

Model-based imitation learning methods attempt to learn a policy

that reproduces the demonstrated behavior by learning/using the sys-

tem dynamics, e.g. a forward model of the system. This property can

be critical especially for underactuated robots. Since underactuation

limits the number of reachable states, it is essential to take into ac-

count the dynamics of the system when planning feasible trajectories.

Moreover, the prior knowledge of the system dynamics makes inverse

reinforcement learning easier since the learner’s performance can be

easily predicted when the system dynamics is known. However, in a

Table 2.1: Advantages and disadvantages of model-based and model-free methods
in imitation learning. Model-free methods learn a policy without knowledge on the
system dynamics, and the system dynamics is encoded only implicitly in policies.
Model-based methods learn a policy that explicitly satisfies the system dynamics by
leveraging the system dynamics. However, learning/estimating the system dynamics
can be challenging.

Model-free Model-based

Advantages

A policy can be
learned without learn-
ing/estimating the system
dynamics.

The learning process can
be data-efficient.
A learned policy satisfies
the system dynamics.

Disadvantages

The prediction of future
states is difficult.
The system dynamics is
only implicitly considered
in the resulting policy.

Model learning can be
difficult.
Computationally expen-
sive.



2.3. Model-Free and Model-Based Imitation Learning Methods 27

real robotic system, it is often challenging to learn the system dynam-

ics. For example, it is hard to model the contact between deformable

objects, and it will be difficult to apply model-based methods to tasks

that involve such contacts.

Existing imitation learning methods can be categorized into be-

havioral cloning and inverse reinforcement learning with a distinction

between model-free and model-based methods as shown in Table 2.2.

At a glance, one can see that studies on behavioral cloning have focused

Table 2.2: Categorization of existing imitation learning methods with distinction
between model-free and model-based methods. Model-free methods are dominant in
behavioral cloning, and model-based methods are dominant in inverse reinforcement
learning. Recent studies on IRL have proposed model-free methods.

Model-free Model-based

Behavioral

Cloning

Widrow and Smith [1964],
Chambers and Michie
[1969], Pomerleau [1988],
Schaal et al. [2004],
Schaal [1999], Ijspeert
et al. [2013], Calinon
et al. [2007], Khansari-
Zadeh and Billard [2011],
Paraschos et al. [2013],
Osa et al. [2014], Ross
and Bagnell [2010], Ross
et al. [2011], Takano and
Nakamura [2015], Maeda
et al. [2016], Deniša et al.
[2016], Ho and Ermon
[2016]

Ude et al. [2004], Englert
et al. [2013], van den Berg
et al. [2010]

Inverse

Reinforcement

Learning

Boularias et al. [2011]
Kalakrishnan et al. [2013]

Abbeel and Ng [2004],
Ratliff et al. [2006b], Sil-
ver et al. [2010], Ziebart
et al. [2008], Ziebart
[2010], Levine et al. [2011],
Levine and Koltun [2012],
Hadfield-Menell et al.
[2016], Finn et al. [2016b]
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DemonstrationExpert Learner

Figure 2.2: Diagram of general imitation learning. The learner cannot directly
observe the expert’s policy in many problems. Instead, a set of trajectories induced
by the expert’s policy is available in imitation learning. The learner estimates the
policy that reproduces the expert’s behavior using the given demonstrations. Please
note that the process of querying the demonstration and updating the learner’s
policy can be interactive.

on model-free methods and studies on inverse reinforcement learning

have focused on model-based methods, although recent studies on IRL

have proposed model-free methods. BC methods have been mainly fo-

cused on trajectory planning for robotic systems in which a lower-level

controller is available. A model-free approach is a reasonable choice in

such applications because the dynamics of the system is not crucial.

On the other hand, IRL has focused on learning a policy in action-

state space which needs to be iteratively evaluated in a given system.

A model-based approach is suitable for such applications, and this is

why many model-based methods have been developed for IRL.

2.4 Observability

The main goal of many imitation learning methods is to learn a pol-

icy that reproduces the expert’s behavior. Since the expert’s policy

cannot be directly observed, the learner recovers the policy from the

expert’s demonstrations. The diagram in Figure 2.2 illustrates the im-

itation learning process. To formulate a imitation learning problem, it

is necessary to consider the observability in practice.

For a formal definition, it is necessary to figure out observability of

the state. Observability can vary significantly between different appli-

cations leading to different kinds of learning methods.
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2.4.1 Trajectories in Fully Observable Settings

When the state of the system is fully observable, we can obtain a tra-

jectory as a sequence of the state and the control input as

τ = [x0, u0, x1, u1, . . . , xT , uT ]. (2.3)

For instance, both the state and the control inputs are observable in a

teleoperated system in [Abbeel et al., 2010, van den Berg et al., 2010,

Osa et al., 2014, Ross et al., 2011], although observation can be noisy.

2.4.2 Trajectories in Partially Observable Settings

In some settings of imitation learning, the control input by the experts

is not observable in demonstrations, and only the states of the system

during the demonstrations are given. In such cases, the trajectory is

given as a sequence of the state of the system,

τ = [x0, x1, . . . , xT ]. (2.4)

For example, the control inputs to achieve the demonstrated trajectory

are often unobservable in kinesthetic teaching [Kober and Peters, 2009,

Englert et al., 2013, Maeda et al., 2016]. Also, when transferring mo-

tions captured from a human expert to a humanoid robot the control

inputs to achieve the desired motion in the learner’s embodiment can-

not be observed [Ijspeert et al., 2002b, Grimes et al., 2006b, Grimes

and Rao, 2009]. In addition, the state of the system is often partially

observable. In this case, the trajectory is given as a sequence of the

partial observation of the system,

τ = [y0, y1, . . . , yT ]. (2.5)

where yt is the partial observation of the system, which is often given

by yt = fo(xt) where fo is the observation function. As a special case,

the observation y can be linear w.r.t. the state x as yt = Htxt where

Ht is the observation matrix.
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2.4.3 Differences in observability between the expert and the
learner

In imitation learning, the expert and the learner often observe the

environment differently. For example, in robotic manipulation tasks a

human expert often obtains much richer sensory information compared

to a robot learner due to the differences in their sensory embodiments.

As another example, a robotic learner may be able to record sensory

information more accurately and at a higher rate than a human ex-

pert. In such cases, the information of the learner about the environ-

ment/system differs from the information of the expert and should be

taken into account when formalizing the imitation learning problem.

In general, the observability of the expert and learner can manifest in

different ways:

• The expert observes partially

– the system state

– the control inputs by the expert

– learner’s observations

• The learner observes partially

– the system state

– expert’s observations

– the control inputs by the expert

– the control inputs by the learner

These cases need to be taken into account when deciding on the im-

itation learning approach for a specific application. When the expert

observes the system state partially, the expert demonstrations can be-

come sub-optimal requiring careful consideration. Moreover, when the

expert observes the learner, the learner may have more information

about its own embodiment. For example, if a human expert uses kines-

thetic teaching to show how to grasp an object, the demonstration may

be sub-optimal for a robot learner if the expert does not see what the

robot observes.

In imitation learning, the expert is often assumed to behave opti-

mally. However, this optimality is often based on partial observations
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which may differ significantly from the observations of the learner. For

example, if the human expert performs a motion which goes around

an obstacle which the robot learner does not observe, a robot learner

learns to perform a similar circumnavigation motion even when there

are no obstacles. Moreover, when the learner observes only partially

expert observations the learner can make wrong predictions about the

policy behind expert behavior.

2.5 Policy Representation in Imitation Learning

One of the important design choices in imitation learning is policy

representation. In this section, we discuss the design choices related to

policy representation.

2.5.1 Levels of Policy Abstraction

For imitation learning, several types of policy abstractions can be

used. We can categorize the policy representations into three types:

1) symbolic-level abstraction, 2) trajectory-level abstraction, and

3) action-state space abstraction. In task level planning, the learner

learns a policy that generates an option o ∈ O where O is the set of

options. Options are often defined as policies of taking actions over a

period of time [Sutton et al., 1999]. In this task-level planning, each

option often consists of a set of actions or trajectories. A policy maps

given states xt and contexts s to sequences of options in the task-level

abstraction.

π : xt, s Ô→ [o1, . . . , oT ], (2.6)

where T is the horizon of the task. A complex task is often hard to

model as a single movement. The task-level abstraction enables model-

ing such complex task as a sequence of simple movements. BC methods

such as [Konidaris et al., 2011, Niekum et al., 2014, Kroemer et al.,

2015] model complex task as a sequence of movement primitives.

In trajectory planning, a policy maps a context s to a trajectory τ

that is a sequence of the state of the system x (and control inputs u)
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as

π : s Ô→ τ . (2.7)

BC methods such as DMP [Schaal et al., 2004, Ijspeert et al., 2013]

and ProMP [Paraschos et al., 2013, Maeda et al., 2016] learn such

trajectory-based policies.

In the action-state space level, a policy maps states of the system

xt and contexts s to control inputs ut as

π : xt, s Ô→ ut. (2.8)

BC methods such as [Chambers and Michie, 1969, Pomerleau, 1988,

Khansari-Zadeh and Billard, 2011, Ross et al., 2011] and IRL methods

such as [Abbeel and Ng, 2004, Ziebart et al., 2008, Boularias et al.,

2011, Finn et al., 2016b] learn policies in action-state space. These

abstractions are summarized in Table 2.3.

Existing imitation learning methods can be categorized based on

task abstractions as shown in Table 2.4. The table displays an abun-

dance of model-free methods for trajectory learning. On the contrary,

many model-based IRL methods have been developed with action-space

space abstractions. Since commercially available robotic manipulators

often have a position/velocity controller, model-free methods are pre-

ferred for trajectory planning in such systems. This is especially pro-

nounced in motion planning methods designed for robotic manipulators

Table 2.3: Abstraction and the related policy in imitation learning. In a task-
level abstraction, the policy maps from the initial state x0 to a sequence of discrete
options, where an option at time step t is denoted with ot. In a trajectory-level
abstraction, the policy maps from an initial state x0 to a trajectory τ . In an action-
state space abstraction, the policy maps from the current state xt to a control ut.

Abstraction Level Policy

Task-level abstraction π : x, s Ô→ [o1, . . . , oT ]

Trajectory-based abstraction π : x0, s Ô→ τ

Action-state space abstraction πt : xt, s Ô→ ut
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in the robotics research community. On the other hand, the machine

learning community have developed many IRL methods for learning a

policy in action-state space.

2.5.2 Hierarchical vs Monolithic Policies

When we consider a single abstraction level of policy, the policy will

be non-hierarchical/monolithic. BC methods such as [Chambers and

Michie, 1969, Pomerleau, 1988, Schaal et al., 2004, Khansari-Zadeh

and Billard, 2011, Paraschos et al., 2013, Ross et al., 2011] and IRL

methods such as [Abbeel and Ng, 2004, Ratliff et al., 2006b, Ziebart,

2010, Finn et al., 2016b] are monolithic. Thus far, numerous methods

have been developed for learning a monolithic policy. However, we need

to employ a complex policy representation such as a neural network

Table 2.4: Categorization of imitation learning methods based on different policy
abstractions with distinction between model-free and model-based methods. Many
model-free methods have been developed for imitation learning with trajectory-
based abstractions. On the contrary, many model-based IRL methods have been
developed with action-space space abstractions.

Model-free Model-based

Task-level

abstration

Takano and Nakamura
[2015], Niekum et al. [2014],
Konidaris et al. [2014],
Inamura et al. [2004]

-

Trajectory-

based

abstraction

Schaal et al. [2004], Schaal
[1999], Ijspeert et al. [2013],
Calinon et al. [2007],
Khansari-Zadeh and Bil-
lard [2011], Paraschos et al.
[2013], Osa et al. [2014],
Maeda et al. [2016], Deniša
et al. [2016]

Ude et al. [2004], Englert
et al. [2013], van den Berg
et al. [2010], Abbeel et al.
[2010]

Action-

state space

abstraction

Chambers and Michie [1969],
Widrow and Smith [1964],
Pomerleau [1988], Ross
and Bagnell [2010], Ross
et al. [2011], Boularias et al.
[2011], Kalakrishnan et al.
[2013], Ho and Ermon [2016]

Abbeel and Ng [2004], Ratliff
et al. [2006b], Silver et al.
[2010], Ziebart et al. [2008],
Ziebart [2010], Levine et al.
[2011], Levine and Koltun
[2012], Hadfield-Menell et al.
[2016], Finn et al. [2016b]
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policy in [Finn et al., 2016b] in order to learn a complex task with a

monolithic policy.

On the contrary, by combining the different levels of abstraction,

we can learn a hierarchical policy where the lower-level policies learn

to perform the primitive behavior and the upper-level policy learns

to plan a sequence of the lower-level policies. BC methods such as

[Niekum et al., 2014, Konidaris et al., 2014, Kroemer et al., 2015] and

IRL methods such as [Kolter et al., 2008, Choi and Kim, 2015, Krishnan

et al., 2016] learn hierarchical policies. Since a hierarchical policy can

be decomposed into a sequence of the lower-level policies, we do not

have to use complex policy representation for the lower-level policies.

On the other hand, it is not trivial to learn all of the lower-level and

upper-level policies simultaneously.

2.5.3 Feedback vs Open-Loop/Feedback-Free Policies

With regard to feedback of the state, policies can be categorized into

two types: feedback and open-loop/feedback-free policies. A feedback

policy iteratively determines the control input/desired behavior based

on the feedback from the environment. In other words, a feedback policy

considers the changes of the environment caused by the previous control

input in sequential decision making. A policy for determining the torque

input to a robotic manipulator is often learned in robotic applications

such as [Boularias et al., 2011, Englert et al., 2013]. Such a torque-

based control is often learned as a feedback policy since it is essential

to consider the state of the system in sequential decision making where

a small mistake can cause a big error in the next state.

In contrast, an open-loop/feedback-free policy determines the con-

trol input/desired behavior just based on the initial input. Therefore,

once a open-loop policy starts running, it does not use the feedback

from the environment. A policy for planning a desired trajectory can

be often learned as an open-loop policy since it can be addressed as

a one shot decision making for a given situation such as in [Calinon

et al., 2007, Takano and Nakamura, 2015]. However, there are methods

for planning and updating the desired trajectory during the task execu-

tion such as [Ijspeert et al., 2013, Paraschos et al., 2013, Schulman et al.,
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Stationary

deterministic policy
Non-stationary

stochastic

Stationary

stochastic

Non-stationary

deterministic

Figure 2.3: Illustration of the relationships between basic policy classes. Stationar-
ity is a special case of non-stationarity and determinism is a special case of stochas-
ticity. We use the terms “stationary” and “time-invariant” interchangeably. Likewise,
“non-stationary” and “time-variant” are used interchangeably. Please see § 2.5.4 for
more details.

2013, Osa et al., 2017b]. For example, in the framework of [Schulman

et al., 2013], the trajectory is learned as a direct function of the pixel

values observed, and the desired trajectory is updated online.

Different policy types can be used in the same system at the dif-

ferent level. In the acrobatic helicopter flights by Abbeel et al. [2010],

the scheme for planning the desired trajectory can be interpreted as

an open-loop policy because the system does not update the desired

trajectory during the flight. Meanwhile, an iterative LQR controller for

the lower-level control in [Abbeel et al., 2010] can be considered as a

feedback policy because it determines the control input based on the

observation of the system.

2.5.4 Stationarity and Stochasticity of Policies

With respect to stationarity, we can categorize policies into stationary

and non-stationary policies, depending on whether the policy depends

on time. Moreover, we can categorize policies into deterministic and

stochastic policies in terms of stochasticity. Note that stationarity is

a special case of non-stationarity and determinism is a special case of

stochasticity. Figure 2.3 illustrates relationships between these policy

classes.
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2.5.4.1 Stationary vs. Non-Stationary Policies

A non-stationary (time-variant) policy depends on time. Typically tra-

jectory based policies are non-stationary since the policy depends on

the time step or phase of the trajectory. For example, a complex move-

ment of a robot arm through space [van den Berg et al., 2010, Osa

et al., 2014] needs to be performed such that the learned speed is sim-

ilar to the demonstrated speed over the whole trajectory, which often

requires a non-stationary policy. A stationary (time-invariant) policy

depends only on the current state of the system. Stationary policies are

typically used in applications where data from different time steps can

be similar. For example, in a racing car simulation [Abbeel and Ng,

2004, Ross et al., 2011], steering right when about to drive left off the

road is a useful action independent of the time this occurs. In another

instance, simple motion for approaching an object can be also learned

as a stationary policy [Khansari-Zadeh and Billard, 2011].

2.5.4.2 Deterministic Policy

A deterministic policy for trajectory planning determines a unique tra-

jectory τ for a given initial state x0 and/or context s as

τ = π(x0, s). (2.9)

Behavior cloning methods such as dynamic movement primi-

tives [Ijspeert et al., 2013, Schaal et al., 2004] can be interpreted as

deterministic policy representations for trajectory planning.

A deterministic policy in action-state space determines a unique

control input u for a given state x and/or context s as

u = π(x, s). (2.10)

In this case, π represents a deterministic function of x. When a deter-

ministic policy is used and both states and actions are fully observable,

the distribution of the trajectory τ = [x0, u0, . . . , xT , uT ] is given as

p(τ ) = p(x0)
T

∏

t=1

p(xt+1|xt, πt(xt)). (2.11)
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Commonly, in non-adversarial sequential decision making problems,

such as Markov decision processes, the optimal policy for accom-

plishing the objective for a given model is deterministic. Inverse

reinforcement learning methods such as MMP [Ratliff et al., 2006b]

and LEARCH [Ratliff et al., 2009, Zucker et al., 2011] employ a de-

terministic policy derived from a reward/cost function recovered from

demonstrations. Behavior cloning methods such as [Pomerleau, 1988,

Khansari-Zadeh and Billard, 2011] also employ deterministic policies.

2.5.4.3 Stochastic Policy

A stochastic policy in action-state space draws a control input u ac-

cording to a probability distribution for a given state x and/or context

s as

u ∼ π(u|x, s). (2.12)

In this case, π represents a conditional distribution of the control input

u given x and s. If the probability distribution is given as a delta

function, the policy is deterministic. When a stochastic policy is used

and both states and actions are fully observable, the distribution of the

trajectory τ = [x0, u0, . . . , xT , uT ] is given as

p(τ ) = p(x0)
T

∏

t=1

p(xt+1|xt, ut)π(ut|xt). (2.13)

A stochastic policy is useful to model the stochastic behavior of the

expert. Inverse reinforcement learning methods such as [Ziebart et al.,

2008, Boularias et al., 2011] employ a stochastic policy to represent such

stochastic behavior. Stochastic policies introduce uncertainty, which

is useful for exploring the parameter space of the policy in iterative

methods. Model-based behavior cloning methods such as [Englert et al.,

2013] and inverse reinforcement learning methods such as [Finn et al.,

2016b] employ a stochastic policy and learn system dynamics through

iterative learning.



38 Design of Imitation Learning Algorithms

2.6 Behavior Descriptors

In imitation learning, it is essential to quantify the behavior and mea-

sure the difference between the expert’s behavior and the learner’s be-

havior. For this purpose, we need to consider “what should be matched

between the expert and the learner?” In the following, we list descrip-

tors of behavior, which can be matched between the expert and the

learner in imitation learning.

2.6.1 State-action Distribution

Given a dataset D = {(x, u)} that consists of state-control input pairs,

we can model the joint distribution of the state and the control in-

put p(x, u) or the conditional distribution of the control input given

the state p(u|x). Early imitation learning approaches [Chambers and

Michie, 1969, Widrow and Smith, 1964, Pomerleau, 1988] learned a

policy by modeling state-action distributions using supervised learning

methods. However, since a state-action distribution only describes the

short term behavior, matching only the state-action distribution can

lead to a mismatch with long term behavior.

2.6.2 Trajectory Feature Expectation

To match the behavior between the expert and the learner over a long

horizon, it is necessary to consider trajectory features. Since both a

trajectory itself and observations of it are often stochastic and noisy,

the expectation of trajectory features (an expectation has less noise

compared to individual instances) is often used to describe the behavior

of the expert and the learner. The expectation of the trajectory features

with respect to the learner’s policy is given by

Ep(τ )[φ(τ )] =

∫

p(τ )φ(τ )dτ , (2.14)

where p(τ ) is the trajectory distribution induced by the learner’s policy

and φ(τ ) is the feature vector of the trajectory τ . The expectation of

the trajectory E[τ ] can be interpreted as a special case of the feature

expectation. When a dataset of trajectories D = {τ demo
i }N

i=1 is avail-

able, the expectation of the trajectory feature can be approximated
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as

Ep(τ )[φ(τ )] ≃ 1

N

N
∑

i=1

φ(τdemo
i ). (2.15)

Feature expectation matching appears both in behavior

cloning [Ijspeert et al., 2002a, Osa et al., 2014] and inverse

reinforcement learning [Abbeel and Ng, 2004, Ratliff et al., 2006b,

Ziebart et al., 2008].

2.6.3 Trajectory Feature Distribution

A distribution over trajectory features p(φ(τ )) is also often used for

matching the behavior between the expert and the learner. We can

match not only the first order moment (mean) of the distribution but

also higher order moments. The trajectory distribution p(τ ) can be

considered as a special case of the feature distribution. Behavior cloning

methods such as [Paraschos et al., 2013, Englert et al., 2013] and inverse

reinforcement learning methods such as [Arenz et al., 2016] use feature

distributions.

2.7 Information Theoretic Understanding of Feature

Matching in Imitation Learning

As we discussed in § 1.6, imitation learning can be formulated as a prob-

lem of finding a policy that minimizes the difference between demon-

strated and learned behavior. For this purpose, many imitation learning

methods perform a “projection” of demonstrated behavior into a pa-

rameterized policy space. Projecting demonstrations onto a manifold

of a parameterized policy requires considering the relationship between

the distribution of the demonstrations and the distribution of the pa-

rameterized policy. Information theory provides a principled way of

assessing this relationship.
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Data manifold Policy model manifold

Figure 2.4: Illustration of M- and I- projections from the data manifold onto the
policy model manifold. The solutions of M- and I- projections are different since the
KL divergence is not symmetric.

2.7.1 Information Theoretic Understanding of Imitation
Learning Algorithms for Trajectory Learning

Consider a trajectory distribution p(τ |w) induced by a policy π with

a parameter vector w. Supervised learning methods often obtain a

solution based on the maximum likelihood of the given training data.

As is well known Bishop [2006], maximizing the (causal) likelihood is

equivalent to minimizing the KL divergence

DKL (q(τ )||p(τ |w)) =

∫

q(τ ) ln
q(τ )

p(τ |w)
dτ , (2.16)

where q(τ ) is the empirical distribution over trajectories induced by

the expert’s policy and τ is a trajectory. This equation can be in-

terpreted as a projection from the data manifold to the policy model

manifold [Amari, 2016]. On the other hand, as the KL divergence is not

symmetric, minimizing DKL (q(τ )||p(τ |w)) is not equivalent to mini-

mizing

DKL (p(τ |w)||q(τ )) =

∫

p(τ |w) ln
p(τ |w)

q(τ )
dτ , (2.17)

which represents the projection from the policy model manifold to the

data manifold. We discuss a few more details of minimizing the different

projections in the following.

First, we consider imitation learning methods for trajectory learn-

ing based on the M-projection defined in (1.4). The goal of imitation
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learning in this case is to learn a parameter vector w, such that the

M-projection is minimized, i.e.,

w∗ = arg min
w

DKL (q(τ )||p(τ |w)) . (2.18)

The resulting objective function can also be written as

LM = DKL (q(τ )||p(τ |w)) =

∫

q(τ ) ln
q(τ )

p(τ |w)
dτ (2.19)

= Eq[ln q(τ )] − Eq[ln p(τ |w)] , (2.20)

where Eq[·] is the expectation with respect to q(τ ) [Bishop, 2006,

Sugiyama, 2015]. The expectations Eq[·] in (2.20) can be estimated us-

ing the demonstrated trajectories drawn from q(τ ). Since the first term

in (2.20) is independent from w, DKL (q(τ )||p(τ |w)) can be minimized

by maximizing the expected log likelihood Eq[ln p(τ |w)]. Hence, imita-

tion learning based on simple supervised learning can be seen as a spe-

cial case of computing the M-projection as these algorithms essentially

perform a likelihood maximization. Examples of such algorithms are

the least square solution for DMPs, expectation maximization (EM)

for ProMPs, and EM for SEDS, which minimize DKL (q(τ )||p(τ |w))

with different parameterizations [Ijspeert et al., 2013, Paraschos et al.,

2013, Khansari-Zadeh and Billard, 2011].

It is informative to note that there is a close relation between the

maximum likelihood solution and the solution obtained from the prin-

ciple of maximum entropy. Consider, for instance, average feature con-

straints

Ep[φ(τ )] = a. (2.21)

If we chose subject to the feature matching constraint the distribu-

tion that results in maximum entropy, we cover the exponential family

parametrization of p(τ |w) Amari [2016]:

p(τ |w) =
exp

(

w⊤φ(τ )
)

Z
. (2.22)

Substituting the resulting form p(τ |w) with (2.22) into the original

maximum entropy problem ignoring terms which do not depend on the

parameters w, the resulting dual objective function (or equivalently
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the one in (2.20)) yields

LM = Eq[w⊤φ(τ )] − ln Z. (2.23)

Differentiating (2.23) w.r.t. w yields the following gradient which can

be used for optimization of the parameters:

dLM

dw
= Eq[φ(τ )] − 1/Z

∫

exp
(

w⊤φ(τ )
)

φ(τ )dτ (2.24)

= Eq[φ(τ )] − Ep[φ(τ )]. (2.25)

Note that setting the gradient to 0 in order to obtain the optimum

yields the optimality condition required to hold in the primal, that is

that feature expectations match:

Ep[φ(τ )] = Eq[φ(τ )]. (2.26)

From (2.26), we can conclude that maximum likelihood on an as-

sumed exponential family form is also a solution to finding the max-

imum entropy distribution (2.22) which respects the average feature

constraint (2.26). The latter viewpoint allows us to reason about, for

instance, cost function matching in Inverse Reinforcement Learning and

to automatically construct an appropriate form for policies.

This observation is called the maximum likelihood / maximum

entropy duality Dudík and Schapire [2006]. Furthermore, as the M-

projection yields the same solution as maximizing the likelihood, we

can conclude that the M-projection solution for an exponential family

of trajectory distributions is equivalent to the maximum entropy one.

It is often useful to consider the maximum entropy principle in its

regularized form [Ziebart et al., 2013] [Boularias et al., 2011], that is,

instead of finding a maximum entropy distribution we want to find

a distribution with the minimal KL divergence relative to a “prior”

distribution p0(τ ) while matching the features of the demonstrator,

that is,

arg min
w

DKL (p(τ )||p0(τ )) (2.27)

s.t.: Ep[φ(τ )] = Eq[φ(τ )]. (2.28)
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The solution to this problem can again be obtained by the method of

Lagrangian multipliers

p(τ |w) =
p0(τ ) exp

(

w⊤φ(τ )
)

Z
(2.29)

with p0(τ ) = exp
(

w⊤
0 φ(τ )

)

/Z0.

A particularly elegant result due to [Dudík and Schapire, 2006]

demonstrates that if we have bounds on the accuracy with which

our feature matching constraints hold, the resulting maximum entropy

problem gives rise via duality to a regularized likelihood equivalent to

a maximum a-posterior estimate with a prior on the dual parameters.

It is, however, important to note that such maximum entropy prin-

ciples should not to be confused with the I-projection, which computes

arg min
w

DKL (p(τ |w)||q(τ )) .

Here, the data is induced via the distribution q(τ ) on the right-hand

side of the KL, while in the maximum entropy principle, the data is

induced by the feature averages and p0(τ ) on the right-hand side of

the KL is just a prior. The I-projection does not match features of

the demonstrator. Whenever an algorithm matches average features,

it is an instance of an M-projection based algorithm. Since ln q(τ ) is

unknown and hard to evaluate in practice, it is challenging to perform

the I-projection in the context of imitation learning. To the best of our

knowledge, there is no existing imitation learning method that performs

the I-projection exactly.

As we have seen from our discussion above, many imitation learning

methods can be seen as related to the M-projection and to the principle

of maximum entropy. This is true for most model-free and model-based

methods. Model-free methods based on standard supervised learning

[Ijspeert et al., 2013, Khansari-Zadeh and Billard, 2011] do not require

access to the system dynamics or iterative data acquisition.

In contrast, model-based imitation learning methods often try to

match features of the state distribution so as to satisfy Ep[φ(τ )] =

Eq[φ(τ )]. In order to do so, we either need access to the system dy-

namics [Ziebart et al., 2008, Ziebart, 2010] or require iterative data

acquisition [Boularias et al., 2011].



44 Design of Imitation Learning Algorithms

2.7.2 Information Theoretic Understanding of Imitation
Learning Algorithms in Action-State Space

In this section, we have a look at imitation learning in action-state

space from an information theoretic point of view. In a Markov model,

the probability distribution over trajectories p(τ ) can be decomposed

as a sequence of states and actions

p(τ ) = p(x0)
T

∏

t=0

p(xt+1|xt, ut)π(ut|xt) , (2.30)

where the policy π(ut|xt) maps from the states of the system to the

control inputs. Let us consider the trajectory distribution p(τ ) induced

by the learner’s policy and the trajectory distribution q(τ ) induced by

the expert’s policy. If the embodiments of the learner and the expert

are equivalent and stationary, that is, q(xt+1|xt, ut) = p(xt+1|xt, ut) =

p(xt|xt−1, ut−1), the relation of p(τ ) and q(τ ) is given by

p(τ )

q(τ )
=

∏T
t=0 πL(ut|xt)

∏T
t=0 πE(ut|xt)

, (2.31)

where πL is the learner’s policy and πE is the expert’s policy. In this

case, imitation learning methods based on the M-projection minimize

DKL (q(τ )||p(τ )) =

∫

q(τ )
T

∑

t=0

ln
πE(ut|xt)

πL(ut|xt)
dτ (2.32)

=

∫

q(x, u) ln
πE(u|x)

πL(u|x)
dxdu (2.33)

= Eq(x,u)[ln πE(u|x) − ln πL(u|x)], (2.34)

where q(x, u) is the state action distribution induced by the trajectory

distribution q(τ ) of the expert. Since Eq[·] can be approximated using

the trajectories drawn from q(τ ), minimization of the KL divergence

in (2.34) can be solved using only the demonstrated trajectories. Early

studies on imitation learning such as [Widrow and Smith, 1964, Pomer-

leau, 1988] are based on this kind of supervised learning. However, these

methods may not work well in many applications as indicated by [Ross

et al., 2011, Bagnell, 2015].
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On the contrary, we could try to base imitation learning techniques

on an I-projection [Amari, 2016] that minimizes

DKL (p(τ )||q(τ )) =

∫

p(x, u) ln
πL(u|x)

πE(u|x)
dxdu (2.35)

= Ep[ln πL(u|x) − ln πE(u|x)]. (2.36)

However, it is hard to minimize DKL (p(τ )||q(τ )) in practice as we can

not evaluate ln πE(u|x), and there is no prior work on imitation learn-

ing methods that minimize DKL (p(τ )||q(τ )) to the best of our knowl-

edge. Exploring imitation learning methods based on I-projection will

be an interesting research direction. Intuitively, the solution obtained

by DAGGER [Ross et al., 2011] may result in a smaller KL-divergence

under the I-projection than the one obtained by ordinary supervised

learning as DAGGER attempts to achieve good performance under the

learner’s own data distribution.



3

Behavioral Cloning

In this chapter, we review behavioral cloning (BC) methods. BC meth-

ods learn a direct mapping from states/contexts to trajectories/actions

without recovering the reward function. Behavioral cloning can be an

efficient way to reproduce the demonstrated behavior when such di-

rect mapping is the most parsimonious way to represent the desired

behavior.

We start by reviewing model-free BC methods and continue by

reviewing model-based BC methods, which leverage information about

system dynamics.

3.1 Problem Statement

A controller for a robotic system often has a hierarchical structure.

Figure 3.1 shows a control diagram of a robotic system with imitation

learning. The upper-level controller plans the desired trajectory based

on a given context and/or observations. Meanwhile, the lower-level con-

troller determines the control input to achieve the desired trajectory.

The main target of imitation learning for robotic systems is to learn

these controllers.

46
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Figure 3.1: Control diagram of a robotic system with imitation learning. An ex-
pert demonstrates the desired behavior generating a dataset D. Based on D and
observations about the current context and system state an upper-level controller
generates the desired trajectory τ d. A lower-level feedback controller tries to follow
τ d using observation feedback to generate a control u which causes a change to
the system state x and a new observation. In imitation learning, the controllers are
tuned to imitate the expert demonstrations.

When learning trajectories, the aim of imitation learning is to learn

a policy that generates a desired trajectory

τ d = π(s) (3.1)

for a given context s. The context s can be the initial state of the

robotic manipulator x0 or the state of objects relevant to a given task.

In action-state space learning, the aim is to learn a policy that generates

a control input ut for a given state xt and/or context s,

ut = π(xt, s). (3.2)

In imitation learning, we assume that a dataset of experts’ demon-

strations is available. When learning trajectories, the dataset consists

usually of a set of trajectories and contexts D = {(τ i, si)}N
i=1. In action-

state space learning, the dataset will be given as a set of control inputs

and states D = {(ui, xi)}N
i=1. Using such datasets, a policy can be

learned as the direct mapping from the context to the trajectory or

from the state to the control input. This learning problem can be for-

mulated as a supervised learning problem in which a policy can be
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Algorithm 1 Abstract of behavioral cloning

Collect a set of trajectories demonstrated by the expert D
Select a policy representation πθ

Select an objective function L
Optimize L w.r.t. the policy parameter θ using D
return optimized policy parameters θ

obtained by solving a simple regression problem. We call this approach

“behavioral cloning”. Algorithm 1 abstracts the procedure of BC meth-

ods. The first step of BC is to record a set of expert demonstrations

D which are usually given as a set of trajectories. Thereafter, we need

to select a policy representation πθ appropriate for a given application.

In addition, we need to select an objective function L that represents

the similarity between the demonstrated behaviors and the learner’s

policy. The policy parameters θ are then optimized using the collected

dataset of demonstrations.

3.2 Design Choices for Behavioral Cloning

In addition to the design choices we described in Chapter 2, we list

here some essential design choices for BC methods.

1. What surrogate loss function should be used to repre-

sent the difference in demonstrated and produced behav-

ior? BC methods require a surrogate loss function which quan-

tifies the difference between the demonstrated behavior and the

learned policy. The choice of the surrogate loss function influ-

ences strongly how to train the policy, and we need to select the

appropriate surrogate loss function to achieve efficient learning.

2. What regression method should be used to represent the

policy? To obtain satisfactory system performance, it is essential

to select the appropriate regression method. The regression model

should be sufficiently expressive to represent the desired behavior

but simple enough to allow for efficient training of the model. For
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efficient learning the regression method should be chosen together

with the surrogate loss function.

3.2.1 Choice of Surrogate Loss Functions for Behavioral
Cloning

We discuss some options for surrogate loss functions in this section.

3.2.1.1 Quadratic Loss Function

The quadratic loss function is the most common choice for the loss

function. Given two vectors, x1 and x1, a quadratic loss function is

given by

ℓquad(x1, x2) = (x1 − x2)⊤(x1 − x2). (3.3)

For example, the difference between the state xL induced by the

learner’s policy and the state xdemo demonstrated by the expert can

be formulated as

ℓquad(xL, xdemo) = (xL − xdemo)⊤(xL − xdemo). (3.4)

The quadratic loss function is also called the ℓ2-loss function, and re-

gression with minimizing the quadratic loss function is often called least

squares (LS) regression or ℓ2-loss minimization Sugiyama [2015].

Minimizing the quadratic loss function is closely related to maxi-

mizing the expected log likelihood under the Gaussian distribution as-

sumption. Let us consider the regression function fθ(x) parameterized

by θ. Suppose that the target variable y follows the equation

y = fθ(x) + ǫ, (3.5)

where ǫ is drawn from the Gaussian distribution as ǫ ∼ N (0, σ). In this

model, the probability distribution of y is given by

p(y|x, θ) =
1√
2πσ

exp

(

−(y − fθ(x))2

2σ

)

. (3.6)
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Finding the model fθ(x) that maximizes the expected log likelihood

can be formulated as

argmax
θ

E[log p] = argmax
θ

E



log exp

(

−(y − fθ(x))2

2σ

)2


 (3.7)

= arg min
θ

E[(y − fθ(x))2] (3.8)

≈ arg min
θ

1

N

∑

i

(y − fθ(x))2. (3.9)

Therefore, minimizing the quadratic loss function is equivalent to maxi-

mizing the expected log likelihood under the Gaussian distribution. BC

methods such as DMP [Schaal et al., 2004, Ijspeert et al., 2013] and

ProMP [Paraschos et al., 2013, Maeda et al., 2016] learn a trajectory

representation by minimizing quadratic loss functions.

Additionally, one can also use a weighted quadratic loss function

ℓwquad(x1, x2, W ) = (x1 − x2)⊤W (x1 − x2) (3.10)

when an appropriate weight W is known. For example, Mahalanobis

distance [Mahalanobis, 1936] given by

ℓMahal(x1, x2) = (x1 − x2)⊤
Σ

−1(x1 − x2), (3.11)

where Σ is the covariance matrix of a distribution of interest, is often

used in the literature [Rozo et al., 2016, Osa et al., 2017a].

3.2.1.2 ℓ1-Loss Function

The ℓ1-loss function is often employed for regression. The ℓ1-loss func-

tion is given by

ℓabs(x1, x2) =
∑

i

|x1,i − x2,i| , (3.12)

where x1,i and x2,i are the ith element of the vectors x1 and x2, re-

spectively. The ℓ1-loss function is also called the absolute loss function,

and regression with minimization of ℓ1-loss is called least absolute de-

viations regression or ℓ1-loss minimization Sugiyama [2015]. Usually,
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ℓ1-loss minimization is more robust to outliers than ℓ2-loss minimiza-

tion. This robustness can be attributed to the property of ℓ1-loss min-

imization, which gives the median of training samples, while ℓ2-loss

minimization gives the mean of training samples. Effectively, in ℓ2-loss

minimization a few large outliers can influence the mean significantly

while in ℓ1-loss minimization the median can be largely unaffected by

a few large outliers. In addition, unlike ℓ2-loss minimization, ℓ1-loss

minimization results in a sparse solution, which can be computation-

ally efficient. Although, in imitation learning, there are not many prior

studies on using ℓ1-loss minimization, the discussed properties of the

ℓ1-loss could be beneficial.

3.2.1.3 Log Loss Function

The log loss function is defined by

ℓlog(q, p) = −
∑

i

qi ln pi, (3.13)

where q is the true probability and p is the predicted probability. In

binary classification, the log loss function is given by

ℓlog(q, p) = −q log p + (1 − q) log(1 − p). (3.14)

Since the log loss is equivalent to the cross entropy, the log loss is also

called the cross-entropy loss [Sugiyama, 2015].

In binary classification (in imitation learning classification can be

used to learn a discrete control policy from expert demonstrations),

minimizing the log loss function is equivalent to maximizing the log

likelihood in logistic regression. In more detail, suppose that we want to

learn a binary classification where the probability follows the Bernoulli

distribution

p(y = 1|x, θ) = fθ(x), p(y = 0|x, θ) = 1 − fθ(x), (3.15)

which can be more compactly written as

p(y|x, θ) = (fθ(x))y (1 − fθ(x))1−y . (3.16)
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Maximizing the expected log likelihood E[log p] of Bernoulli distributed

data follows then as

maxE[log p] = maxE[y log fθ(x) + (1 − y) log(1 − fθ(x))]

= max
1

N

∑

(y log fθ(x) + (1 − y) log(1 − fθ(x)))

= min ℓlog(y, fθ(x)). (3.17)

Therefore, in binary classification, minimizing the log loss function

is equivalent to maximizing the expected log likelihood under the

Bernoulli distribution.

3.2.1.4 Hinge Loss Function

Hinge loss is a loss function often used for maximum margin optimiza-

tion in classifiers such as support vector machines (SVMs) [Cortes and

Vapnik, 1995]. Given two scalar variables, x1 and x2, the hinge loss can

be defined as

ℓhinge(x1, x2) = max (0, 1 − x1x2) . (3.18)

Intuitively, the hinge loss assigns zero costs if a classification is correct:

ℓhinge(x1, x2) = 0. For “wrong” classifications the cost is linear w.r.t. the

parameters. This also explains the term “hinge”; in a visual illustration

of the cost function one can imagine a hinge at x1x2 = 1. While hinge

loss is discontinuous at the “hinge” location x1x2 = 1, optimization

solutions still exist in practice. Moreover, since the hinge loss function

is convex, it can be optimized efficiently with various convex optimizers.

3.2.1.5 Kullback-Leibler Divergence

In the field of information geometry, Kullback-Leibler (KL) divergence

is used to quantify the difference between two probability distribu-

tions [Kullback and Leibler, 1951]

DKL (p(x)||q(x)) =

∫

p(x) ln
p(x)

q(x)
dx. (3.19)

Since the KL divergence measures the difference between two prob-

ability distributions, it is useful when learning stochastic policies.
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Please note that the KL divergence is not symmetric, therefore

DKL (p(x)||q(x)) = DKL (q(x)||p(x)) does not hold in general. BC meth-

ods such as [Englert et al., 2013] use the KL divergence as the loss

function.

3.2.2 Choice of Regression Methods for Behavioral Cloning

When applying behavioral cloning, an appropriate regression method

must be chosen. Table 3.1 lists regression methods found in the liter-

ature. As discussed by Bishop [2006], one must choose a model that

has appropriate complexity. Simple models which can be trained using

linear regression are easy to train, but may not be sufficiently infor-

mative. Complex models such as neural networks can represent highly

nonlinear mappings. However, training such complex models requires a

large amount of training data. In addition, it is important to note that

imitation learning cannot be addressed as simple supervised learning

in many applications as we discussed in §2.7. We discuss an approach

for reducing imitation learning to supervised learning with interaction

in §3.4.3.

3.3 Model-Free and Model-Based Behavioral Cloning

Methods

As discussed in §2.3, BC methods can be categorized into model-free

and model-based methods. Table 3.2 shows advantages and disadvan-

tages of both model-free and model-based BC methods.

Model-free BC methods learn a policy that reproduces the expert’s

behavior without learning/estimating system dynamics nor recovering

the reward function. Since model-free BC methods do not require learn-

ing of system dynamics, model-free BC methods often do not require

iterative learning and are relatively simple to implement compared to

model-based BC methods. However, in trajectory learning, model-free

BC methods do not ensure that the resulting trajectory is feasible in a

given system. For this reason, it is hard to apply model-free methods to

underactuated systems in which the set of reachable states is limited.

Contrary to model-free BC methods, model-based BC methods
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learn a policy using information about the system dynamics. By learn-

ing forward dynamics, it is possible to plan a feasible trajectory close to

the expert’s behavior even if a robotic system is underactuated. How-

ever, in many applications, learning a forward model is a non-trivial

problem. In addition, model-based BC methods often require iterative

learning, which is usually time-consuming compared with learning with

model-free BC methods.

3.4 Model-Free Behavioral Cloning Methods in Action-

State space

In this section we discuss behavioral cloning methods in action-state

space. Although it seems that simple supervised learning can work in

imitation learning, such a naive approach does not work in many appli-

cations. We will identify potential problems encountered when applying

Table 3.1: Regression methods in model-free behavioral cloning for both trajectory
and action-state space learning. The output trajectory in trajectory learning consists
of a long high dimensional sequence of variables while in action-state space learning
the output is a single action. Therefore, some methods such as look-up tables have
not been applied to trajectory learning. For modeling uncertainty in demonstrations,
regression methods need to have explicit support for variance. Gaussian model,
GMM and GPR methods model uncertainty explicitly.

Trajectory

Gaussian Model
[Paraschos et al., 2013, Maeda et al.,

2016]

Learning

GMR

[Calinon and Billard, 2009,
Gribovskaya et al., 2011,

Khansari-Zadeh and Billard, 2014,
Calinon, 2016]

LWR
[Schaal and Atkeson, 1998, Mülling

et al., 2013, Osa et al., 2017a]
LWPR [Vijayakumar et al., 2005]
GPR [Osa et al., 2017b]

Action-State

Look-Up Table [Chambers and Michie, 1969]

Space

Linear Regression [Widrow and Smith, 1964]

Neural Network
[Pomerleau, 1988, LeCun et al., 2006,
Stadie et al., 2017, Duan et al., 2017]

Decision Tree [Sammut et al., 1992]
LWR [Atkeson and Schaal, 1997]

LWPR [Vijayakumar and Schaal, 2000]



3.4. Model-Free Behavioral Cloning Methods in Action-State space55

supervised learning to imitation learning and discuss how we can alle-

viate these problems.

3.4.1 Model-Free Behavioral Cloning as Supervised Learn-
ing

Early studies on imitation learning such as [Widrow and Smith, 1964,

Chambers and Michie, 1969, Pomerleau, 1988] employed supervised

learning methods for imitation learning in action-state space. Among

such early studies, in the seminal work ALVINN (Autonomous Land Ve-

hicle In a Neural Network), Pomerleau [1988] developed an autonomous

driving system using imitation learning. Pomerleau [1988] collected

pairs of camera images and steering angles and trained a a neural net-

work that modeled a direct mapping from camera images to steering

angles. However, this simple approach can fail in practice and the au-

tonomous car drives off the road quickly. As Bagnell [2015] indicated,

learning errors cascade in sequential decision making, which makes the

learner encounter unknown states that the expert never encounters in

her/his successful demonstrations. Pomerleau [1988] described “If the

network is not presented with sufficient variability in its training exem-

Table 3.2: A main choice when doing behavior cloning is whether to use a model-
based or a model-free method. Model-free methods can directly learn a policy from
data without learning a dynamics model. Direct learning also usually means that
the learning algorithm does not need to iterate between trajectory and behavior gen-
eration. However, model-free methods are hard to apply to underactuated systems
since without a model predicting desired behavior is hard. Model-based methods
may work in underactuated systems but learning the actual model can be in many
cases difficult.

Model-free Model-based

Advantages

A policy can be usually
learned without iterative
learning.

Applicable to underactu-
ated systems.

Disadvantages

Hard to apply to underac-
tuated systems.
Hard to predict future
states.

Model learning can be
very difficult.
An iterative learning pro-
cess is often required.
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plars to cover the conditions it is likely to encounter when it takes over

driving from the human operator, it will not develop a sufficiently robust

representation and will perform poorly. In addition, the network must

not solely be shown examples of accurate driving, but also how to recover

(i.e. return to the road center) once a mistake has been made.” That

is, the distribution of the states that the learner encounters is different

from the distribution of the states in the given demonstration data. Su-

pervised learning is usually based on the assumption that training data

samples are independent and identically distributed. However, this as-

sumption is often violated in an imitation learning problem, especially

when a policy for sequential decision making needs to be learned. To

address this issue, Ross and Bagnell [2010], Ross et al. [2011] proposed

an approach which reduces imitation learning to supervised learning

with interaction, which we discuss in § 3.4.3.

3.4.2 Imitation as Supervised Learning with Neural Net-
works

Using neural networks for learning has attracted great interest in vari-

ous fields. Supervised learning of neural networks can be also used for

imitation learning: the desired neural network policy can be learned

from the dataset generated/demonstrated by the expert. In this sec-

tion, we shortly highlight some recent imitation learning successes with

neural networks.

3.4.2.1 Recent Successes of Imitation Leaning with Neural

Networks

Recently, using neural networks for imitation learning has shown im-

pressive results in certain applications such as learning to play Go [Sil-

ver et al., 2016], generating handwriting [Chung et al., 2015], gener-

ating natural language [Wen et al., 2015], or generating image cap-

tions [Karpathy and Fei-Fei, 2015]. Moreover, supervised learning of

neural networks has been used as a building block for example for

learning the policy or the cost function in inverse reinforcement learn-

ing (please see §4.4.6 for more details).
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Figure 3.2: The game of Go is played on a 19x19 board. Even though the total
number of possible board configurations exceeds 10170 and thus the training data can
not cover all possible plays, the simple imitation learning approach in [Silver et al.,
2016] was able to learn a competitive policy from demonstrations and improve the
policy using self-play. [Figure from https://commons.wikimedia.org/wiki/File:

Tuchola_026.jpg. CC license.]

Supervised imitation learning can be challenging when demonstra-

tions do not cover the states that the learner encounters. For some

applications, such as board games where the state space is known in

advance, demonstrations could in principle be made to cover the state

space. However, for example in the game of Go shown in Figure 3.2,

the set of possible states is too large to cover completely and the su-

pervised training approach needs to be able to generalize from training

data. AlphaGo, an algorithm which was able to beat a human Go mas-

ter [Silver et al., 2016], succeeded to learn a competitive Go policy

using supervised imitation learning and then improve the policy using

reinforcement learning.

AlphaGo trains a value network, which approximates the value

function to predict the expected outcome of the game, and a policy

network, which outputs actions using a representation of the image in-

put of the board. The policy network is initialized by supervision using

a large set of expert demonstrations, in total 30 million positions from

the KGS Go Server. The value and policy networks are improved using

data collected through self-play. AlphaGo selects actions by evaluating

them with the policy and value networks.
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The trained policy is a 13-layer deep neural network with alternat-

ing convolutional layers and rectifier nonlinearity layers, and the output

is a soft-max layer resulting in a probability distribution over actions.

The neural network receives as input a representation of the board

state. For supervised training of the policy AlphaGo uses stochastic

gradient ascent to maximize the likelihood of expert demonstrations

w.r.t. parameters θ: ∆θ ∝ ∂ log πθ(ut|xt)
∂θ

, where ∆θ is the change in pa-

rameters, ut is the expert action and xt is the state. AlphaGo also

utilizes a smaller, less accurate, but faster policy for predicting the

expected outcome of actions.

3.4.2.2 Learning with Recurrent Neural Networks

In many applications, supervised learning of recurrent neural networks

has made imitation learning of complex time series predictions possible.

Wen et al. [2015] show how to generate human like natural language

using a special form of the long short-term memory (LSTM) [Hochreiter

Table 3.3: Natural language generated by the semantically controlled LSTM (SC-
LSTM) cell neural network proposed in [Wen et al., 2015]. The table shows an
example dialogue act and related natural language samples from [Wen et al., 2015].
The neural network generates natural language learned from human demonstrations.
The neural network is conditioned on the dialogue act which limits the generated
sentences to specific meanings.

Dialogue act:
inform(name=”red door cafe”, goodformeal=”breakfast”,

area=”cathedral hill”, kidsallowed=”no”)

Generated samples:
red door cafe is a good restaurant for breakfast in the area

of cathedral hill and does not allow children .
red door cafe is a good restaurant for breakfast in the cathedral hill

area and does not allow children .
red door cafe is a good restaurant for breakfast in the cathedral hill

area and does not allow kids .
red door cafe is good for breakfast and is in the area of cathedral hill

and does not allow children .
red door cafe does not allow kids and is in the cathedral hill area

and is good for breakfast .



3.4. Model-Free Behavioral Cloning Methods in Action-State space59

and Schmidhuber, 1997] network. Wen et al. [2015] train their system

using data collected from a spoken dialogue system. Table 3.3 shows an

example of natural language generated by the trained neural network.

As is common when designing neural network based systems, the

neural network architecture in [Wen et al., 2015] is adapted to the

task at hand. Moreover, neural network approaches need to take prob-

lems such as vanishing gradients, co-adaptation, and overfitting into

account. Vanishing gradients can be a problem especially for recurrent

neural networks due to the high optimization depth. The neural net-

work architecture in [Wen et al., 2015] includes skip connections [Graves

et al., 2013] to soften vanishing gradients and Wen et al. [2015] utilize

dropout [Srivastava et al., 2014], a technique which randomly deac-

tivates connections in the neural network during training, to reduce

co-adaptation and overfitting.

Learning recurrent neural networks from demonstrations has been

shown to work also for other kinds of data. Karpathy and Fei-Fei [2015]

show how to learn to generate annotations for image regions from

demonstrations. The approach of [Karpathy and Fei-Fei, 2015] learns

from a combination of image and language data to generate natural lan-

guage descriptions of images. Chung et al. [2015] show how to learn to

generate handwriting and natural speech from demonstrations. Chung

et al. [2015] propose a new type of recurrent neural network with hid-

den random variables and argue that random variables are needed to

model variability in data with complex correlations between different

time steps, for example, in natural speech.

3.4.3 Teacher-Student Interaction during Behavioral
Cloning

Although the goal of imitation learning is to learn a policy that repro-

duces the expert’s behavior, any learned policy will inevitably make at

least occasional mistakes. As a result small error may cascade [Bagnell,

2015]: a small error at an early time-step may lead the learner to a state

which deviates from expert demonstrations. Consequently, the learner

will make further mistakes, leading to poor performance.

This highlights a central difference between imitation learning and
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the traditional setting of supervised learning, where we typically as-

sume the input distribution to be independent and identically dis-

tributed [Shalev-Shwartz and Ben-David, 2014]. Instead, in imitation

learning, the features/states in a dataset of demonstrations are not

drawn from the distribution of the features which the learner will en-

counter using their own policy. This means that the assumption of

independent and identically distributed (i.i.d.) data is often violated

in imitation learning. Crudely speaking, a policy for recovering from

mistakes needs to be learned as suggested by Pomerleau [1988].

However, in even modest-scale imitation learning problems it is in-

feasible to collect demonstrations under all possible situations, and in-

stead we must focus corrections to the most relevant scenarios. Instead,

a policy can be iteratively learned by alternating between policy up-

dates and requesting additional demonstrations for the current state

distribution [Ross and Bagnell, 2010, Ross et al., 2011, Bagnell, 2015].

We review methods that address this problem in the following section.

3.4.3.1 Reduction of Structured Prediction to Iterative

Learning of Simple Classification

The task of learning a function that maps inputs x to structured out-

puts y (for example, parse trees, trajectories, matchings, etc. [Taskar,

2005]) is referred to as structured prediction [Tsochantaridis et al.,

2005, BakIr et al., 2007]. Problems of imitation learning can often prof-

itably be phrased as structured prediction [Ratliff et al., 2006b,a, 2009],

and has led to developments of some techniques we cover extensively

in this survey in § 4.4.2.

Conversely, Search-based structured prediction (SEARN) proposed

by Daumé III et al. [2009], is a seminal work that demonstrated that

one can also reduce structured prediction to a kind of imitation learn-

ing. In particular, SEARN crafts a series of reductions from structured

prediction to simple classification. In SEARN, structured prediction is

formulated as a search process over the components yt of the structured

output y, where the tth decision is dependent on the preceding t − 1

decisions. Therefore, the training process of a classifier in SEARN is

dependent on the classifier itself.
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SEARN learns a multiclass cost-sensitive classifier, e.g. [Zadrozny

et al., 2003], for each state in the dataset through an iterative process.

By performing the prediction using the current classifier π, SEARN cre-

ates new cost-sensitive samples. These cost-sensitive samples are used

to learn a new classifier π′ which SEARN combines with the current

classifier h in a stochastic manner. Daumé III et al. [2009] show that

the performance of SEARN is competitive with other methods such

as structured SVM [Tsochantaridis et al., 2005] and Conditional Ran-

dom Field [Lafferty et al., 2001], while often being tremendously faster

to learn. Modern, high performance, implementations of such search

based structured prediction use online learning methods of DAGGER

[Ross et al., 2011, 2013], AggreVaTe [Ross and Bagnell, 2014, Sun et al.,

2017], or LOLS [Chang et al., 2015, Daumé III and Langford, 2015].

However, for each time step, simple implementations of these search

based structured prediction require a state reset and an expert demon-

stration. Such a reset is often infeasible in the physical world, and

even if possible, the expert may need to provide a prohibitively large

number of demonstrations. For these reasons, SEARN, AggreVaTe and

LOLS require substantial care to implement efficiently, using e.g. ban-

dit methods or value regression, and deal with resets [Chang et al.,

2015].

3.4.3.2 Confidence-Based Approach

Chernova and Veloso [2009] proposed a method that learns a policy by

requesting additional expert demonstrations based on the confidence

of a given state. In this method, the learner learns how to select the

action from a finite set of action primitives by using classifiers that

return selection confidence, e.g. Gaussian mixture models. When the

confidence is lower than a threshold, additional expert demonstrations

are requested. In addition, when the expert observes incorrect actions

by the learner, the expert corrects the action and the corrected action is

added to the training dataset. By requesting additional demonstrations,

this method also tries to empirically learn a policy under the state

distribution induced by the learner’s policy.
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Algorithm 2 Confidence-based autonomy algorithm: confident execu-

tion and corrective demonstration [Chernova and Veloso, 2009]

Input: Demonstration of the action-state pairs D = {(xi, ui)}N
i=1,

confidence threshold c0

Initialize the policy π

repeat

Observe the state x

Compute the confidence c(x)

Plan action uL

if c(x) < c0 or Corrective demonstration is necessary then

Receive the demonstration data Dnew = {(xnew, unew)}
Update the dataset D ← D ∪ Dnew

Update the policy πL

end if

until the task learned

3.4.3.3 Data Aggregation Approach: DAGGER

Ross et al. [2011] proposed an meta-algorithm called DAGGER , which

attempts to collect expert demonstrations under the state distribution

induced by the learned policy. It can be seen most naturally as an on-

policy approach 1 [Sutton and Barto, 1998] to imitation learning: the

expert provides the correct actions to take, but the input distribution

of examples comes from the learner’s own behavior.

Figure 3.3 shows an overview of the DAGGER approach to imita-

tion learning. The simplest form of DAGGER proceeds as follows. At

the first iteration, the policy is initialized by behavioral cloning of the

expert demonstrations, resulting in policy πL
1 . Subsequently, the policy

is used to collect a dataset of trajectories, and those newly obtained

trajectories and the demonstrated trajectories are aggregated into a

dataset D, which is used to train a policy πL
2 . At iteration n, a pol-

icy πL
n is used to collect more trajectories, and those trajectories are

1The first using of the phrasing of on-policy, which nicely evokes the closely
related approaches and issues in Reinforcement Learning is due to [Laskey et al.,
2017].
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Figure 3.3: An overview of DAGGER from [Bagnell, 2015]. In each iteration,
DAGGER generates new examples using the current policy with corrections (labels)
provided by the experts, adds the new demonstrations to a demonstration dataset
and computes a new policy to optimize performance in aggregate over that dataset.
The figure illustrates a single iteration of DAGGER . The basic version of DAGGER
initializes the demonstration dataset from a single set of expert demonstrations and
then interleaves policy optimization and data generation to grow the dataset. More
generally, there is nothing special about aggregating data– any method, like gradient
descent or weighted majority that is sufficiently stable in its policy generation and
does well on average over the iterations (or more broadly, all no-regret algorithm run
over each iterations dataset) will achieve the same guarantees, and maybe strongly
preferred for computational reasons.

added to the dataset D. The next policy πL
n+1 is trained so that πL

n+1

mimics the expert on the whole dataset D. To leverage the presence of

the expert, DAGGER queries partial expert demonstrations πE in the

learning phase, and the policy πi = βiπ
E + (1 − βi)π

L
i — a stochas-

tic mixing of expert and learner– is used to collect the next dataset.

In other words, partial expert demonstrations are requested under the

states induced by the learned policy πL
i . Thus, DAGGER learns a policy

from the expert demonstrations under the state distribution induced

by the learned policy. Algorithm 3 shows the details of the general

DAGGER algorithm.
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Algorithm 3 DAGGER [Ross et al., 2011]

Input: initial dataset of demonstrations D = {(x, u)}, {βi} such

that 1
N

∑N
i=1 βi → 0

Initialize: πL
1

for i = 1 to N do

Let πi = βiπ
E + (1 − βi)π

L
i .

Sample trajectories τ = [x0, u0, ..., xT , uT ] using πi

Get dataset Di of visited states by πi and actions given by expert.

Aggregate datasets: D ← D ∪ Di

Train the policy πL
i+1 on D.

end for

return best πL
i on validation.

By collecting the expert demonstrations under the state which the

learner encountered, DAGGER alleviates the problem that the state dis-

tribution induced by the learner’s policy is different from the state dis-

tribution in the initial demonstration data. This approach significantly

reduces the size of the training dataset necessary to obtain satisfactory

performance[Ross et al., 2011], and often achieves much better perfor-

mance even asymptotically. DAGGER can be interpreted as a reduction

of imitation learning to supervised learning with interaction Bagnell

[2015].

Crucially, the DAGGER approach is not limited to naive aggre-

gation of all previous data: in fact, any algorithm (like gradient de-

scent, some variants of newton’s method, the exponentiated gradient

approach, etc.) that enjoys the property of being no-regret can be used

to learn iteratively on each newly collected data-set, and achieve the

related formal guarantees. In practice, for instance, training complex

policies with substantial training data is often based on online learning

approaches like gradient descent.2 We can think crudely of no-regret

algorithms as the class of methods whose predictions are asymptoti-

2Note it is not technically correct to refer to these as Stochastic Gradient Descent

(SGD) methods because the data being generated is not independent and identically
distributed. Instead, the more general analysis of Online Gradient Descent [Hazan,
2016] is required.
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cally good on average over the data-sets they are presented, and are

sufficiently stable between iterations [Hazan, 2016].

Data as Demonstrator: Venkatraman et al. [2015] extended

DAGGER and proposed a framework called Data as Demonstrator

(DaD) where the problem of multi-step prediction is formulated as im-

itation learning. Prediction errors will cascade over time in multi-step

prediction as in the case of learning a policy, and this prediction error

can also be improved by a data aggregation approach. Recent work

shows the efficacy of DaD in control problems [Venkatraman et al.,

2016].

3.5 Model-Free Behavioral Cloning for Learning Trajec-

tories

In this section, we review approaches to learn trajectories from demon-

strations. In robotic manipulation, trajectory planning is one of the

most significant problems. If we assume that the system is (nearly)

fully actuated and that a low-level controller to achieve the desired

state is available, a trajectory for a given task can be learned without

explicitly estimating the system dynamics. Since many commercial-

ized robotic manipulators usually have such low-level controllers, this

model-free BC approach has been dominant in imitation learning re-

search for robotic manipulator trajectory planning. Next, we show how

the choice of the trajectory representation influences trajectory learning

and how the representation needs to fit to the application at hand.

3.5.1 Trajectory Representation

In order to learn trajectories we first need to define how to represent

a trajectory. The choice of trajectory representation determines the

parameterized space where demonstrated trajectories are projected.

Therefore, it is essential to figure out the most parsimonious repre-

sentation for a given application.

For planning a desired trajectory, we need a policy that generates a

trajectory τ ∈ T . The trajectory is given by a sequence of desired states

and/or control inputs based on a given context s ∈ S. Given a set of
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demonstrated trajectories D = {(si, τ i)}N
i=1, we can use a supervised

learning method to learn a policy which directly maps from contexts

to trajectories

π : S Ô→ T . (3.20)

For this purpose, we can use various regression methods developed in

the field of machine learning. For example, Calinon et al. [2007] em-

ployed Gaussian mixture regression to model a mapping from time

to states, and Osa et al. [2017b] used Gaussian Process regression for

learning a mapping from contexts to trajectories. For learning such poli-

cies the choice of methods is usually not limited to specific regression

methods, and we can also employ various machine learning techniques

such as dimensionality reduction [Sugiyama, 2015] in order to alleviate

the challenges of trajectory learning.

However, when planning a desired trajectory for a robotic system

we need to ensure that the planned trajectory is physically feasible and

a naive application of regression may not be the best choice. It is often

necessary to impose some constraints on the planned trajectory, such as

smooth convergence to the goal state. Such constraints may be implic-

itly satisfied when regression methods are used to learn a policy, but

it is often convenient to use a policy that explicitly satisfies some con-

straints. Dynamic movement primitives (DMPs) [Schaal et al., 2004,

Ijspeert et al., 2013] and the stable estimator of dynamical systems

(SEDS) approach [Khansari-Zadeh and Billard, 2011] are representa-

tions that explicitly satisfy the condition of smooth convergence to the

goal state. For learning these policies, regression methods are used in

specific ways such that the desired constraints are satisfied. In the fol-

lowing, we discuss the details of different trajectory representations.

3.5.1.1 Keyframe/Via-Point Based Approaches

One obvious way to represent trajectories is as a sequence of keyframes

or via-points. In the field of computer graphics, the term “keyframe”

is used to express important states which are needed for accomplish-

ing a given task [Parent, 2002]. In a keyframe-based approach, a task

trajectory is represented as a sequence of keyframes. In robotic motion
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planning literature, the term “via-point” is used similarly to the term

keyframe [Pastor et al., 2009, Paraschos et al., 2013, Zucker et al., 2013].

Instead of using the terms “keyframe” and “via-point”, several articles

describe a trajectory as consisting of a sequence of discrete states [Lee

and Nakamura, 2009, Takano and Nakamura, 2015].

A keyframe-based trajectory representation appears in several im-

itation learning applications. Nakaoka et al. [2007] developed a hu-

manoid system that learns dancing from human expert demonstration

using a keyframe-based approach. The motion of the human expert

was captured by a 3D motion tracking system, and the keyframes

were subsequently extracted. By modifying the keyframes according

to the dynamics of the humanoid, the humanoid was able to perform

the demonstrated dance properly. Okamoto et al. [2014] developed a

system that can perform a dance synchronously to music with differ-

ence rhythms by learning the correspondence between the music and

the dancing motion.

Trajectories can be represented using discrete states. For discrete

states one natural dynamics and observation model representation is

the hidden Markov model which we will discuss next.

3.5.1.2 Representation with Hidden Markov Models

A hidden Markov model (HMM) is often used to model the proba-

bilistic transition between discrete states [Inamura et al., 2004, Kulić

et al., 2008, Lee and Nakamura, 2009, Takano and Nakamura, 2015].

A discrete HMM consists of a finite set of latent states X, a finite

set of observation labels Y , a state transition matrix A = {aij}, an

output probability matrix B = {bij}, and an initial distribution vector

di. When an HMM is used to represent motion, the latent state often

represents the phase of the motion, and the observation represents the

kinematic state of the system. Given a set of observation sequences

and the set of states, A and B can be obtained by the Baum-Welch

algorithm, which is a variant of the Expectation-Maximization (EM)

algorithm. Once A and B are trained, a motion sequence can be esti-

mated for a given initial state.

One of the benefits of an HMM representation is the ability to
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recognize the current system state based on the learned probabilistic

model. HMMs have been used in classical speech recognition [Rabiner,

1989], and motion recognition can be performed in the same manner

using HMMs [Inamura et al., 2004, Takano and Nakamura, 2015]. Given

an HMM λ = (A, B) and an observation sequence Y ′, the likelihood of

observing a given sequence p(Y ′|λ) can be computed. Therefore, the

observed motion can be recognized as

λ∗ = arg max
λ

p
(

Y ′|λ)

. (3.21)

In the framework in [Inamura et al., 2004], HMMs are used to represent

primitive motions. The library of primitive motions are represented by

a set of HMMs, and the motion is recognized based on the likelihood as

in (3.21). This framework is extended to clustering and segmentation

of demonstrated trajectories in [Kulić et al., 2008, Lee and Nakamura,

2009, Lee et al., 2010, Takano and Nakamura, 2015, 2016].

On the other hand, one of the drawbacks of the HMM representation

is discreteness. Recognition with HMMs works well when the number

of states is relatively low [Kulić et al., 2008]. However, HMMs with

too few states may not be capable of reproducing a motion sequence.

In robotic applications, HMMs are often used to represent the discrete

high-level state of the system, assuming a low-level controller to achieve

the desired state is available. However, it is non-trivial to plan smooth

and feasible trajectories in many robotic systems.

To overcome the discreteness of HMMs, recent work uses other

techniques in combination with HMMs, such as state specific Gaus-

sian models [Calinon et al., 2010] to represent continuous values such

as velocity, spatial position, or force [Racca et al., 2016]. Recent work

also uses Hidden Semi-Markov Models (HSMM) [Yu, 2010] to model

more complex state duration distributions [Calinon et al., 2011]. The

work by Rozo et al. [2016] employs an LQR controller to address the

problem of optimizing a trajectory retrieved from an HSMM. Addition-

ally, Takano and Nakamura [2017] recently proposed an HMM-based

method for planning joint torques to control the contact force.
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(a) (b) (c)

Figure 3.4: Schematic illustration of DMP. DMPs represent the demonstrated
motion as a combination of a nonlinear force term and an attractor force term. Blue
and red points represent the start and goal positions, respectively. Suppose that
the trajectory shown in (a) is given as a demonstrated trajectory. The nonlinear
force term along the trajectory, which is dependent on the phase of the motion, is
shown as orange vectors, and in (b) green vectors represent the attractor force term,
which is stationary and dependent on the state of the system. The dynamics of the
demonstrated motion is learned as a sum of these terms shown in (c).

3.5.1.3 Dynamic Movement Primitives

Dynamic Movement Primitives (DMPs) were introduced by Ijspeert

et al. [2002a,b], Schaal et al. [2004], Ijspeert et al. [2013]. DMPs are

motivated by differential equations of well-defined attractor dynamics.

Representation with DMPs ensures the smoothness and continuity of

the trajectory. In addition, a DMP is able to represent nonlinear move-

ments without losing the stability of the behavior. Figure 3.4 shows a

schematic illustration of DMPs. DMPs represent demonstrated motion

with a combination of a nonlinear force term and an attractor force

term. The nonlinear force term enables expressing complex motions.

Since the nonlinear force term decays in time, the goal attractor force

term is dominant in the end of the motion and a path planned by a

DMP smoothly converges to the goal state.

We describe details of DMPs in the following. In a DMP, the demon-

strated motion with one degree of freedom (DoF) is modeled as a

spring-damper system

τ2ẍ = αx (βx(g − x) − τ ẋ) + f, (3.22)

where x is the state of the system, f is the forcing function that deter-

mines the nonlinear behavior, αx and βx are constants that determine



70 Behavioral Cloning

the damping and spring behavior, respectively. τ is a constant that de-

termines the temporal behavior, and g denotes the goal state. In the

example shown in Figure 3.4, the forcing function f and the goal at-

tractor term αxβx(g − x) are visualized in Figure 3.4(b). In imitation

learning with DMPs, we can often assume that the final state xdemo(T )

of the demonstrated motion is the goal state g = xdemo(T ).

One significant feature of DMPs is time modulation by using a

phase variable. By choosing the appropriate form of the basis function

of the forcing function and the phase variable, DMPs can represent var-

ious movements with different execution speeds [Ijspeert et al., 2013].

Let us denote by z a phase variable. For a striking movement, one can

introduce the phase variable that follows the first-order linear dynamics

as

τ ż = −αzz, (3.23)

where αz is a constant. Ijspeert et al. [2013] called this equation the

canonical system because it models the generic behavior of the system.

In this case, the phase variable z is given by a function of time t

z = z0 exp

(

−αz

τ
t

)

, (3.24)

where z0 is the initial value of z. The phase variable z exponentially

converges to zero from an arbitrary initial state. Typically, the phase

variable z is used as z ∈ [0, 1] for a striking movement.

The forcing function that models the nonlinear behavior is learned

as a function of the phase variable z. Using a Gaussian basis function

with this phase variable z, the forcing function can be formulated as

f(z) = (g − x0)
M
∑

i=1

ψi(z)wiz, (3.25)

where x0 denotes the initial position and M the number of the basis

functions. The Gaussian basis function ψi(z) is given by

ψi(z) =
exp

(−hi(z − ci)
2
)

∑N
j=1 exp (−hj(z − cj)2)

, (3.26)

where hi and ci are constants that determine the width and centers of

the basis functions, respectively. This system represents stable attractor
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Algorithm 4 Learning dynamic movement primitives [Schaal et al.,

2004, Ijspeert et al., 2013]

Input: demonstrated trajectory τ demo, parameters αx, βx, τ, αz, ωz

Choose a system of a phase variable z, e.g., (3.23)

Choose a basis function ψ of the forcing function f

Compute the forcing function at each time step using τ demo with

(3.27)

Find a weight vector w that minimize LDMP in (3.28) using a least-

square solution (3.29)

dynamics with nonlinear behavior. DMPs can be also used to represent

rhythmic movements by using periodic basis functions [Schaal et al.,

2004, Ijspeert et al., 2013].

If we assume that a demonstrated trajectory τ demo is given, the

weight vector w can be learned as a supervised learning problem [Schaal

et al., 2004, Ijspeert et al., 2013]. From the given trajectory, we compute

the position, velocity and acceleration at each time step. To obtain the

weight parameters in a DMP, we compute the target value of the forcing

function from the given trajectory as

ftarget(t) = τ2ẍdemo (t) − αx

(

βx(g − xdemo(t)) − τ ẋdemo(t)
)

, (3.27)

where xdemo(t), ẋdemo(t), ẍdemo(t) are the position, velocity and accel-

eration at the time t, respectively. Subsequently, we can find the weight

vector w that minimizes the sum of the squared error

LDMP =
T

∑

t=0

(ftarget(t) − ξ(t)Ψw)2 , (3.28)

where ξ(t) = (g − x0)z(t) for the discrete system and ξ(t) = 1 for the

rhythmic system, and the entry of Ψ is computed as Ψij = ψi (tj) with

(3.25). The weight vector w can be obtained by a least-square solution

w =
(

Ψ
⊤

Ψ

)−1
Ψ

⊤F . (3.29)



72 Behavioral Cloning

For the attractor dynamics in (3.25), F is given by

F =

[

ftarget (0)

(g − x0)z(0)
, . . . ,

ftarget(t)

(g − x0)z(t)
, . . . ,

ftarget(T )

(g − x0)z(T )

]⊤

, (3.30)

where T is the number of the total time steps. Algorithm 4 summarizes

the procedure for learning DMPs. Since DMPs are primarily designed

for learning a motion for a single degree of freedom, multiple DMPs

need to be learned for each dimension when learning motions with mul-

tiple dimensions.

Variants of Dynamic Movement Primitives: Since DMPs have

been proposed, numerous variants of DMPs have been developed. Hoff-

mann et al. [2009] proposed an extended version of DMPs for obstacle

avoidance and real-time goal adaptation. Deniša et al. [2016] developed

Compliant Movement Primitives (CMPs) for learning compliant mo-

tions that require physical interaction between a robot and objects. For

learning coupled motions, several variants of DMPs have been proposed

by Kober et al. [2008], Gams et al. [2014], Amor et al. [2014]. Mülling

et al. [2013] proposed a Mixture of Movement Primitives (MoMPs),

which generalize the movement primitives to new contexts by mixing a

set of learned movement primitives. DMPs have been applied to various

robotic tasks and recognized as one standard representation of robotic

motions.

Relation to Hilbert Norm Minimization: Dragan et al. [2015]

revealed the relation between DMP-like methods and trajectory opti-

mization based on Hilbert norm minimization such as CHOMP Zucker

et al. [2013]. Dragan et al. [2015] formulated the problem of adapt-

ing a demonstrated trajectory τ demo to new start and goal states as

minimization of the distance between the demonstration and the new

trajectory subject to the new start and goal point constraints:

τ ∗ = arg min
∥

∥

∥τ demo − τ
∥

∥

∥

2

M
(3.31)

s.t. x(0) = xnew
s (3.32)

x(T ) = xnew
g (3.33)

where xnew
s and xnew

g are the new start and goal states, M is a linear

operator that defines the inner product in the Hilbert space. When time



3.5. Model-Free Behavioral Cloning for Learning Trajectories 73

is discrete, M is a matrix, and the norm is given by ‖τ‖2
M = τ ⊤Mτ .

This formulation can be generalized to arbitrary norms, and Dragan

et al. [2015] prove that trajectory adaptation with DMPs performs

this norm minimization with a particular choice of the Hilbert norm,

which is the same as the norm often used in trajectory optimization

algorithms such as CHOMP Zucker et al. [2013].

3.5.1.4 Probabilistic Movement Primitives

While DMPs represent the movement in a deterministic way, demon-

stration performed by human experts is often stochastic. Such proba-

bilistic behavior cannot be represented by DMPs. Probabilistic Move-

ment Primitives (ProMPs) proposed by Paraschos et al. [2013] rep-

resent movement as a distribution over trajectories. In ProMP, the

trajectory is parameterized as a linear combination of basis functions

ψ(t). The state of the system x(t) at time t is expressed as

x(t) =

[

q(t)

q̇(t)

]

= Ψ(t)⊤ω + ǫx, (3.34)

where Ψ(t) is a M ×2 dimensional time-dependent basis matrix defined

as

Ψ(t) =









ψ1(t) ψ̇1(t)
...

...

ψM (t) ψ̇M (t)









, (3.35)

ω is a weight vector, and ǫx ∼ N (0, Σx) is zero-mean i.i.d. Gaussian

noise. Here, the probability of observing the state x(t) is expressed as

p(x(t)|ω) = N (x(t)|Ψ(t)⊤ω, Σx). (3.36)

Thus, the probability of observing the whole trajectory τ =

[x(0), . . . , x(T )] is written as

p (τ |ω) =
∏

t

N
(

x(t)|Ψ(t)⊤ω, Σx

)

. (3.37)

By introducing a phase variable z(t), we can achieve temporal mod-

ulation in ProMP. The phase variable is defined as z(0) = 0 at the

beginning of the movement and as z(T ) = 1 in the end. The basis
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function directly depends on the phase variable by replacing ψ(t) with

ψ(z(t)) and ψ̇(t) = dψ
dz

dz(t)
dt

.

The basis function should be selected according to the type of

the movement as in DMPs. For point-to-point movements, one typi-

cal choice is a Gaussian function bG, that is,

bG
i (z(t)) = exp

(

−(z(t) − ci)
2

2h

)

, (3.38)

where h defines the width of the basis function and ci is the center

for the ith basis function. For rhythmic movements, the Von-Mises

function can be used to model periodicity.

For imitation learning, the weight vectors ω and the covariance

matrix Σy need to be learned from the demonstrated trajectories. This

problem can be formulated as a simple supervised learning problem.

Let us assume that the trajectories demonstrated by experts are given

as D = [τ1, . . . , τN ]. If we assume that the demonstrated trajectories

are aligned properly in the time domain, a weight vector wi for the

ith demonstrated trajectory can be obtained by minimizing the sum of

squared errors

LProMP =
T

∑

t=0

∥

∥

∥x(t) − Ψ(t)⊤w
∥

∥

∥

2
, (3.39)

where x(t) = [q(t) q̇(t)]⊤. The solution is given by a least squares

solution

ωi =
(

ΓΓ
⊤

)−1
Γ



















qi(0)

q̇i(0)
...

qi(T )

q̇i(T )



















, (3.40)

where the basis function matrix Γ is given by

Γ =









ψ1(0) ψ̇1(0) · · · ψ1(T ) ψ̇1(T )
...

. . .
...

ψM (0) ψ̇M (0) . . . ψM (T ) ψ̇M (T )









. (3.41)

For each demonstrated trajectory, we obtain a weight vector and for

the whole set of demonstrated trajectories D we obtain a set of weight
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Algorithm 5 Learning probabilistic movement primitives [Paraschos

et al., 2013]

Input: Multiple demonstrated trajectories D = {τ demo
i }N

i=1

Choose a basis function ψ and the number of the basis function M

Compute the basis function matrix Ψ(t)

for each demonstrated trajectory do

Obtain ω by computing (3.40)

end for

Compute p(ω) ∼ N (µω, Σω)

vectors Ω = [ω1, . . . , ωN ]. From the set of weight vectors Ω we can

estimate a distribution over the weight vectors p (ω) ∼ N (µω, Σω). The

distribution of the state at time t can be modeled as

p(x(t)) = N
(

x(t)
∣

∣

∣Ψ(t)⊤µω, Ψ(t)⊤
ΣΨ(t) + Σx

)

. (3.42)

Algorithm 5 summarizes the procedure for learning ProMPs.

One of the characteristic features of ProMPs is the conditional

distribution of the weight conditioned on a sequence of states x∗ =

[x(t), . . . , x(t′)]. When x∗ is specified as via-points, the distribution

of the weight vector conditioned on x∗(t) is given as a Gaussian with

mean and variance

µ+
ω = µω + K (x∗ − Ψ(t)µω) ,

Σ
+
ω = Σω − KH⊤(t)Σω. (3.43)

where K = ΣωH⊤(t)
(

Σx + H⊤(t)ΣωH(t)
)−1

and H is the observa-

tion matrix defined as H = [Ψ(t), . . . , Ψ(t′)]⊤. By using this condition-

ing, ProMPs can deal with modulation of via-points, final positions, or

velocities. Figure 3.5 visualizes the conditioning of the trajectory dis-

tribution on the target position as an example.

3.5.1.5 Trajectory Representation with Time-Invariant Dy-

namical Systems

Khansari-Zadeh and Billard [2011] developed a framework to rep-

resent task trajectories as a time-invariant dynamical system (DS)
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Figure 3.5: Conditioning of the learned distribution on the target position
[Paraschos et al., 2013].

[Gribovskaya et al., 2011, Khansari-Zadeh and Billard, 2014]. While

DMPs model the attractor dynamics and nonlinear behavior as sepa-

rate terms, this framework models demonstrated movements as a single

nonlinear dynamical system. The trajectory generated from this time-

invariant DS is stably attracted to the given target position in the

Lyapunov sense. The time-invariant DS representation cannot repre-

sent time-variant behavior by its nature.

[Khansari-Zadeh and Billard, 2011, Gribovskaya et al., 2011] mod-

eled demonstrated trajectories as an autonomous system [Khalil, 1996],

which follows time-invariant dynamics as

ẋ = f(x), (3.44)

where x is the system state, and f is a function that governs the be-

havior of the system. Khansari-Zadeh and Billard [2011], Gribovskaya

et al. [2011] learn the function f as a GMM.

Let us define x as the state vector of the system. When a set of

demonstrated trajectories is given, the joint distribution of x and ẋ can

be estimated from the observations using a GMM. The kth component

of the GMM models the distribution p(x, ẋ|k) as

p(x, ẋ|k) ∼ N
([

x

ẋ

]∣

∣

∣

∣

∣

[

µx

µẋ

]

,

[

Σx,k Σxẋ,k

Σẋx,k Σẋ,k

])

. (3.45)

The estimated dynamics function f̂ is learned as

f̂ =
K

∑

k=1

hk(x)
(

µẋ + Σẋx,kΣ
−1
x,k(x − µx,k)

)

, (3.46)
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where

hk(x) =
p(k)p(x|k)

∑K
i=1 p(i)p(x|i)

=
πxN (x|µx,k, Σx,k)

∑K
i=1 πiN (x|µx,i, Σx,i)

, (3.47)

where πk is the prior of the kth Gaussian component.

The study by Khansari-Zadeh and Billard [2011] showed that the

system described by (3.46) is globally asymptotically stable at the tar-

get x∗ if the condition
{

Ak + (Ak)⊤is negative definite,

−Akx∗ = µẋ,k − Akµx,k,
(3.48)

is satisfied for all k = 1, . . . , K where Ak = Σẋx,k(Σx,k)−1.

Khansari-Zadeh and Billard [2011] proved that (3.48) is the suffi-

cient condition to show that the system is globally asymptotically stable

in the sense of Lyapunov. For the details of the proof, we refer to the

original paper [Khansari-Zadeh and Billard, 2011]. Khansari-Zadeh and

Billard [2011] call this time-invariant DS represented by GMMs with

constraints of (3.48) stable estimator of dynamical systems (SEDS).

This representation with time-invariant DS is nonparametric, and

models the correlation of movements in multiple DoFs. In addition,

this approach can be also used to learn second-order dynamics as

ẍ = g(x, ẋ) (please refer to [Khansari-Zadeh and Billard, 2011] for

more details). The approaches with DS have been applied to various

applications, such as learning coupled movements and learning stiff-

ness [Shukla and Billard, 2012, Lukic et al., 2014, Kim et al., 2014].

The limitation of this approach is that the time-invariant repre-

sentations cannot represent time-variant behaviors by its nature. In

addition, due to the constraint of (3.48), SEDS can handle only mod-

els in which the dimensions of the input and output are equal [Shukla

and Billard, 2012].

3.5.2 Comparison of Trajectory Representations

We show a comparison of different trajectory representations in Ta-

ble 3.4. As can be seen from Table 3.4, every representation has

strengths and weaknesses.
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When choosing a trajectory representation, it is essential to con-

sider the most parsimonious description for the desired trajectories

and select a representation with a model complexity appropriate for

the desired behavior. For example, SEDS in [Khansari-Zadeh and Bil-

lard, 2011, 2014] represents the motion as a time-invariant dynamical

system. Although SEDS may be insufficient to model time-dependent

motions, SEDS works well for some tasks such as catching a flying ob-

ject [Kim et al., 2014]. With regard to stable attraction to a target

position, global asymptotic stability is guaranteed in the sense of Lya-

punov for SEDS [Khansari-Zadeh and Billard, 2011]. This property is

useful for planning a stable behavior to approach a target position.

DMP is a good option for learning a point-to-point motion since

motions can be easily generalized to different start and goal positions.

In addition, bounded-input bounded-output (BIBO) stability is guar-

Table 3.4: Comparison of trajectory representations. Time dependence means here
that the learned policy differs for each time step. With regard to stable attraction
to a target position, bounded-input bounded-output (BIBO) stability is guaranteed
for DMPs [Ijspeert et al., 2013], and global asymptotic stability is guaranteed in
the sense of Lyapunov for SEDS [Khansari-Zadeh and Billard, 2011]. Stochasticity
of trajectories means that a method takes uncertainty into account when modeling
behavior. Encoding spatial coordination means here that a method can explicitly
model the coordination of multi-dimensional motions.

Time
dependence

Stable
attraction
to a target
position

Stochasticity
of

trajectories

Encoding
spatial co-
ordination
patterns

Way points / Keyframe
[Abbeel et al., 2010,

Nakaoka et al., 2007]
X - - -

HMMs
[Inamura et al., 2004,

Takano and Nakamura,
2015]

( X) - X X

DMP
[Schaal et al., 2004,

Ijspeert et al., 2013]
X X - -

ProMP
[Paraschos et al., 2013,

Maeda et al., 2016]
X - X X

SEDS
[Khansari-Zadeh and
Billard, 2011, 2014]

- X - X



3.5. Model-Free Behavioral Cloning for Learning Trajectories 79

anteed with regard to stable attraction to a target position. For this

reason, DMP is often used to represent primitive motions in task-level

motion planning Kroemer et al. [2015], Niekum et al. [2014], Manschitz

et al. [2015]. On the other hand, stochasticity of the demonstrated tra-

jectories cannot be encoded by DMPs, and multi-dimensional motion

needs to be modeled by separate DMPs. ProMPs can address these

problems. However, unlike DMP and SEDS, ProMPs do not guarantee

stability of planned trajectories.

In this section we presented several different trajectory represen-

tations and gave some suggestions how to choose them based on the

different properties of the representations. However, the way to choose

among the trajectory representations is still an interesting open ques-

tion. Although efforts for benchmarking these different techniques have

been made, e.g. [Lemme et al., 2015], it is necessary to establish metrics

and benchmarks for comparing existing methods.

3.5.3 Generalization of Demonstrated Trajectories

Generalization of the demonstrated trajectories is one of the most im-

portant problems in imitation learning. The parameterization of trajec-

tories enables generalizing the movements to new scenes. For example,

a movement represented as a DMP can be adapted to a new scene

by changing parameters such as goal and start positions. A popular

approach for generalizing a parametrized motion is conditioning Gaus-

sian distributions. This approach appears in several frameworks such

as ProMP and SEDS. However, generalization with conditioning on

Gaussian distributions is limited to situations where feature vectors

with fixed length are available. Therefore, these methods often require

manually selected feature vectors which are sufficiently informative.

Another way to generalize demonstrated skills is to leverage geomet-

rical warping from a demonstrated scene to a new scene. Recent work

such as [Schulman et al., 2013, Lee et al., 2015a,b, Huang et al., 2015]

propose methods for generalizing skills to new scenes based on non-rigid

registration of point clouds, which does not rely on feature vectors of

fixed length. In the following, we describe a short overview of general-

ization of demonstrated behaviors using different representations.
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Motion Generalization with DMP: A trajectory represented with

DMPs can be generalized to different start and goal positions [Schaal

et al., 2004, Ijspeert et al., 2013]. For generalization according to addi-

tional features, some extensions are required. For example, Amor et al.

[2014] proposed to model the joint distribution of DMP parameters and

generalize learned motion in human-robot interaction scenarios.

Motion Generalization with ProMP: ProMP learns the distribu-

tion of the demonstrated trajectory in a parameter space. By condi-

tioning the learned distribution, we can generalize the demonstrated

trajectories to new start and goal positions or via-points [Paraschos

et al., 2013, Maeda et al., 2016]. Maeda et al. [2016] show how to adapt

learned ProMP skills in the context of human-robot interaction.

Motion Generalization with SEDS: Since the SEDS approach

learns the joint distribution of the state and motion of the system,

the demonstrated motion can be generalized to new states [Khansari-

Zadeh and Billard, 2011].

Trajectory Transfer with Geometrical Warping: Although condi-

tioning on Gaussian distributions are popular methods for generalizing

skills, such methods are limited to the generalization with feature vec-

tors with a fixed length. Another way to generalize demonstrated skills

is to leverage Geometrical warping of the demonstrated scene to a new

scene. Recently, Schulman et al. [2013] proposed a method to gener-

alize the demonstrated trajectories based on non-rigid registration. In

the non-rigid registration problem, one tries to find a correspondence

between two point-sets and determine a good non-rigid transforma-

tion that can map one point-set onto the other [Chui and Rangarajan,

2003]. Thus far, non-rigid registration has been applied to for example

template matching in OCR, motion generation in animation, or image

registration in medical image analysis. Schulman et al. [2013] used non-

rigid registration in order to transfer the demonstrated trajectories to

new contexts as shown in Figure 3.6.

The trajectory transfer method consists of three steps: 1) find a

transformation from the training scene to the test scene using a non-

rigid registration method, 2) apply the transformation to the demon-

strated end-effector trajectory in task space, and 3) convert the end-
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Figure 3.6: Trajectory transfer using non-rigid registration [Schulman et al., 2013].

effector trajectory in task space into a joint space.

This method has been extended in various ways [Lee et al., 2015a,b,

Huang et al., 2015]. Trajectory transfer with non-rigid registration can

be used to generalize both spatial motion and force profiles [Lee et al.,

2015a]. Although the original work on trajectory transfer with non-

rigid registration employed the thin plate spline robust point matching

(TPS-RPM) approach proposed in [Chui and Rangarajan, 2003], the

framework is not limited to specific non-rigid registration methods. The

recent work by Lee et al. [2015b] shows that the use of the coherent

point drift (CPD) algorithm improves trajectory transfer performance.

Unlike methods such as ProMPs or the dynamical systems ap-

proach, non-rigid registration based trajectory transfer works directly

on point clouds and can generalize demonstrated trajectories to new

scenes without modeling the distribution over demonstrated trajecto-

ries. However, non-rigid trajectory transfer requires that system dy-

namics are approximately invariant between source and target scenar-

ios [Schulman et al., 2013]. In order to plan a trajectory in a new scene,

one must select demonstrations performed in scenes with covariant sys-

tem dynamics. For thousands of stored demonstrations, this search for

an appropriate demonstration is a time-consuming process.

We discussed generalizing policies to new demonstrated trajectories.

Table 3.5 shows a comparison of methods for generalizing demonstrated

trajectories. DMPs allow stable convergence to arbitrary goal positions,

but DMPs’ generalization capability is relatively limited compared to

other methods. ProMPs can generalize trajectories by Gaussian condi-
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tioning, but there is no guarantee of stable behavior. SEDS can gener-

alize the trajectories with a guarantee of stable behavior, but cannot

model the time dependence of movements. Trajectory transfer using

non-rigid registration can achieve complex generalization, but does not

incorporate stochasticity in demonstrations and there is no guarantee

of stable behavior.

In addition to methods discussed above, there are numerous stud-

ies on generalizing demonstrated trajectories. Calinon [2015] proposed

task-parameterized Gaussian mixture model (TP-GMM), which en-

codes the context information in its trajectory model. The approach

based on TP-GMM has been recently employed in several studies [Cali-

non, 2016, Rozo et al., 2016]. The recent work by Osa et al. [2017a] pro-

posed a trajectory optimization method for collision avoidance, which

incorporates the distribution of the demonstrated trajectories. In ad-

Table 3.5: Generalization of skills using existing methods. DMPs enable stable con-
vergence to arbitrary goal positions. ProMPs can generalize trajectories by Gaussian
conditioning, but there is no guarantee of stable behavior. SEDS can generalize tra-
jectories while guaranteeing stable behavior, but cannot model time dependence
of movements. Trajectory transfer using non-rigid registration can achieve complex
generalization, but does not incorporate stochasticity of demonstrations and there
is no guarantee of stable behavior.

Method
Generalizable

context
Advantages Disadvantages

DMP
[Schaal et al., 2004,
Ijspeert et al., 2013]

Start and goal
positions

Guarantee of
stable behavior

Limited
generalization
capabilities

ProMP
[Paraschos et al., 2013,

Maeda et al., 2016]

Any subset of
the observations
of the system

Generalization
based on

stochasticity of
demonstrations

No guarantee of
stable behavior

SEDS
[Khansari-Zadeh and
Billard, 2011, 2014]

State of the
system with

fixed
dimensionality

Generalization
with guarantee

of stable
behavior

No time-
dependence

Way points with
non-rigid registration

[Schulman et al., 2013]

A point cloud of
the given scene

Generalization
based on point

clouds of a
given scene

Stochasticity of
demonstrations

is not
considered
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dition, although we focused on the trajectory-based approach, recent

work such as [Finn et al., 2017b, Nair et al., 2017, Liu et al., 2017,

Rahmatizadeh et al., 2017] addressed the problem of generalizing skills

based on visual information by using a deep learning approach, which

is a promising way to deal with complex environments.

3.5.4 Information Theoretic Understanding of Model-Free
BC

Trajectory representations such as DMP, ProMP, and SEDS param-

eterize the trajectories as p(τ |w) by solving linear equations using a

least-squares method. Solving linear equations by minimizing a sum-of-

squares error function is equivalent to maximizing the likelihood for the

given dataset of demonstrations D = {τ demo
i }N

i=1 under the assumption

that the noise is drawn from a Gaussian distribution. This solution can

be interpreted from an information theoretic point of view.

According to information theory, the entropy is a quantity that

represents the amount of information, and the KL divergence can be

obtained as a Bregman divergence derived from the entropy [Amari,

2016]. As described in [Bishop, 2006], finding parameters that maximize

the likelihood p(τ |w) for the given dataset is equivalent to minimizing

the KL divergence given by

DKL (q(τ )||p(τ |w)) =

∫

q(τ ) ln
q(τ )

p(τ |w)
dτ .

where q(τ ) is the distribution of the trajectory induced by the experts’

policy. A sample of the demonstrated trajectories τ demo is drawn from

the distribution q(τ ) induced by the experts’ policy. Therefore, the

expectation with respect to q(τ ) can be approximated as

DKL (q(τ )||p(τ |w)) ≃ 1

N

N
∑

i=1

(

− ln p(τ demo
i |w) + ln q(τ demo

i )
)

. (3.49)

Since ln q(τ ) is independent from w, minimizing DKL (q(τ )||p(τ |w))

is equivalent to maximizing the likelihood ln p(τ |w) for the given

dataset D.

Therefore, a policy obtained by model-free BC methods based on

maximizing the likelihood under the Gaussian noise assumption can be
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Learn the policy

Figure 3.7: Schematic illustration of model-free BC methods. Model-free BC meth-
ods can be often interpreted as an M-projection onto the policy model manifold.

regarded as the policy that minimizes the KL divergence as

π∗ = arg min
π

DKL (q(τ )||p(τ |w))) .

Thus, we can see that model-free methods discussed in the previous

section parameterize the demonstrated behaviors by minimizing the

KL divergence in a different parameter space as shown in Figure 3.7.

It is important to note that these model-free methods can suffer

from the problem of covariate shift where the distribution of the test

condition is different from the distribution of the demonstrated con-

ditions. In other words, the learned skill may not work when the test

condition is too different from the demonstrated condition. To cope

with this problem, we will need incremental learning methods, which

are discussed in § 3.5.7.

3.5.5 Time Alignment of Multiple Demonstrations

When the expert demonstrates the task trajectory multiple times, the

execution speeds are different for each demonstration. Therefore, when

a task trajectory is learned from multiple demonstrations, the time

alignments of the demonstrated trajectories often need to be normalized

if a time-dependent trajectory representation is used.

For this purpose, dynamic time warping (DTW) proposed by Sakoe

and Chiba [1978] is often employed. Although DTW is originally devel-
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Algorithm 6 Estimate the latent trajectory and the time alignments

of multiple demonstrations [van den Berg et al., 2010]

Initialize: Rj = I, and zj
t = z T j

Tave

repeat

ξ ← KalmanSmoother(y, R, z)

R ← arg maxR Eξ (l(R|ξ, y))

zj ← arg maxz Eξ

(

l(zj |ξ, y)
)

until convergence

oped for speech recognition, DTW is frequently used to deal with the

time alignment of trajectories in robotics. The original formulation of

DTW finds the best time alignment of two data sequences. However,

we often obtain more than two demonstrations, and we need to align

all of them appropriately in the time domain.

In the field of imitation learning, Coates et al. [2008] proposed

a method to normalize the time alignment of multiple demonstrated

trajectories. Similar approaches appear in applications such as au-

tonomous helicopter flight [Abbeel et al., 2010] and automation of

robotic surgery [van den Berg et al., 2010, Osa et al., 2014]. Here,

we review the method employed by van den Berg et al. [2010].

van den Berg et al. [2010] regarded the demonstrated trajecto-

ries as noisy ’observations’ of the ’reference’ trajectories. The refer-

ence trajectory and the time mapping from the reference trajectory to

the demonstrated trajectory are computed using the EM (Expectation

Maximization)-algorithm.

The linear system is described as

ξ(t + 1) =

[

A B

0 I

]

ξ(t) + w(t), w(t) ∼ N
(

0,

[

P 0

0 Q

])

(3.50)

where ξ(t) = [x⊤(t), u⊤(t)]⊤ is the state and the control input of the

system at time t, A and B are the state matrix and the input matrix,

respectively. w(t) is the noise that follows the zero-mean Gaussian dis-

tribution. P and Q are the covariance matrices of process noise and

observation noise, respectively. If we assume that the jth demonstrated

trajectory τ j is given by τ j = [xj(0), uj(0), · · · , xj(T j), uj(T )j ], the
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relation between the reference trajectory and the observed trajectories

is represented as
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, (3.51)

where v is the noise that follows a zero-mean Gaussian distribution,

and zj
t is the mapping of time t in the reference trajectory ξ to the cor-

responding time in trajectory τ j . The covariance matrices Rj behave

as weights on the jth demonstrated trajectory τ j for estimating the

reference trajectory ξ.

The reference trajectory ξ, covariance matrices R and the time-

mapping τ are estimated using the EM algorithm. In the E-step, the

reference trajectory z can be estimated using a Kalman smoother based

on the model in (3.50). In the M-step, the time mapping τ and the

covariance matrices R are updated by maximizing the likelihood with

respect to the estimated z. DTW is used to update the time mapping

τ in [Abbeel et al., 2010, van den Berg et al., 2010]. This procedure is

summarized in Algorithm 6.

3.5.6 Learning Coupled Movements

It is often necessary to learn the correlation of movements between

multiple DoFs or multiple agents. For example, in human-robot inter-

action, an autonomous agent needs to know how to react to a human

operator’s movements. In such a case, the human movement and the

robot reaction can be considered as coupled movements. In this section,

we review how to learn such correlations of movements with multiple

DoFs or agents. One typical approach is modeling the joint distribu-

tion of the parameterized trajectories in multiple DoFs with a Gaussian

(or a mixture of Gaussians) distribution. When partial observations of

the coupled movements are given, the rest of movements are estimated

by computing the conditional distribution on the partial observation.

We will see in the following section that the choice of the trajectory

representation plays an important role in modeling the trajectory dis-

tribution.
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3.5.6.1 Learning Coupled Movements with DMPs

DMPs have been used to learn both perceptual coupling and coupling

for human-robot collaborative motion [Kober et al., 2008, Amor et al.,

2014]. In robotic applications, a movement is often represented as tra-

jectories in multiple spaces. For example, a position of an end effector

can be measured using a vision system in Cartesian space, while a

trajectory of a robotic manipulator is often controlled in joint space.

When DMP is used, trajectories in different spaces are often learned

as separate DMPs. However, it is essential to learn the coupling be-

tween the trajectories in different spaces. Kober et al. [2008] proposed

to learn such perceptual coupling for motor skills with DMPs. Instead

of using the forcing function shown in (3.25), the perceptual coupling

is modeled using the modified forcing function

f̂ =
M
∑

i=1

ψi(z)ŵz +
Mc
∑

j=1

ψ̂j(z)
(

κ⊤
j (y − ȳ) + δ⊤

j (ẏ − ˙̄y)
)

, (3.52)

where y denotes the state of the external variable, ȳ is the expected

state of the external variable, κ and δ are the coupling factors that

act as the gains on difference between the desired and actual behaviors

of the external variable. Mc is the number of the basis function for

modeling the coupled behavior. While the weight vectors w and ŵ can

be learned from a single demonstration, the coupling factors κ and δ

cannot be learned from demonstrations since the deviation from the

nominal behavior is necessary for learning these parameters. For this

reason, Kober et al. [2008] used a reinforcement learning method for

learning κ and δ through trial and error.

3.5.6.2 Learning Coupled Movements with Gaussian Condi-

tioning

Statistical machine learning methods offer ways to model correlation

of variables. For example, Gaussian conditioning is a simple way to

model such correlations. Coupled motion in robotic applications can be

learned using such statistical methods. Amor et al. [2014] represented
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the motions of two agents using DMPs and learned the correlations of

the distribution of the motion parameters. When one agent’s motion

is observed, the motion of the other agent can be predicted based on

Gaussian conditioning.

Likewise, ProMPs have also been used to learn the correlation of

multiple agents’ motion. Maeda et al. [2016] developed an imitation

learning framework called Interaction ProMP to learn coupled motions

in human-robot collaboration. In the framework of Interaction ProMP,

correlated movements are learned as a distribution of the correlated

weight vectors of ProMPs. Using a partial observation of the movement,

unobserved movements are estimated as a conditional distribution of

the weight vectors on the given partial observation.

Here, we describe details of Interaction ProMP. Suppose demon-

strations of human robot collaborative movements are given. Here, we

define the state vector as a concatenation of the P DoFs executed by

the human, followed by the Q DoFs executed by the robot

x(t) =

[

xh(t)

xr(t)

]

, (3.53)

where xh(t) is a P × 1 dimensional vector that represents the state of

the human, and xr(t) is a Q × 1 dimensional vector that represents

the state of the robot at time t. The distribution of the trajectory is

parameterized as

p(x|ω) = N (x|H⊤(t)ω, Σy), (3.54)

where

H⊤(t) = diag(Ψ⊤(t), . . . , Ψ
⊤(t)), (3.55)

Ψ
⊤(t) is a M ×2 matrix defined as (3.35) and M is the number of basis

functions. When a trajectory of a human-robot collaborative movement

is demonstrated, the weight vector ω can be learned as

ω̄ = [(ωh
1)⊤, . . . , (ωh

P )⊤, (ωr
1)⊤, . . . , (ωr

Q)⊤]⊤. (3.56)

By learning from multiple demonstrations, we can obtain the distribu-

tion of the weight vector p(ω̄) ∼ N (µω̄, Σω̄) where µω̄ ∈ R
(P +Q)M×1

and Σω̄ ∈ R
(P +Q)M×(P +Q)M . After learning the distribution of the
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Figure 3.8: Overview of Interaction ProMPs in [Maeda et al., 2016]. In the interac-
tion ProMP framework, correlated movements are learned as the joint distribution
of weight vectors of ProMPs. Thanks to the probabilistic modeling of the trajectory
distribution, the interaction ProMP framework works with noisy observations of
trajectories [Maeda et al., 2016]. In this figure, ω̄ represents the weight vector that
contains movements of all DoFs controlled by the robot and the human operator as
defined in (3.56).

weight vector p(ω̄), the robot’s reaction to an observed human move-

ment can be planned as the conditional distribution of the weight

vectors. When a sequence of the observations of the human move-

ment y∗ is given, the conditional distribution of the ProMP param-

eters given the observation, p(ω̄|y∗), can be computed by applying

the Bayes theorem (3.43). By using a mixture of Interaction ProMPs,

the non-Gaussian distribution p(ω̄) can be represented as a mixture of

Gaussians [Ewerton et al., 2015, Maeda et al., 2016]. The framework

of Interaction ProMPs is summarized in Figure 3.8.

In the Interaction ProMP framework, correlated movements are

learned as correlated weight vectors of ProMPs. Thanks to the proba-

bilistic modeling of the trajectory distribution, the interaction ProMP

framework works with noisy observations of trajectories [Maeda et al.,

2016].

3.5.6.3 Learning Coupled Movements with Time-Invariant

Dynamical Systems

The Time-invariant dynamical system (DS) approach in [Khansari-

Zadeh and Billard, 2011] can be also used to learn coupled move-
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ments [Shukla and Billard, 2012, Lukic et al., 2014, Kim et al., 2014].

Shukla and Billard [2012] developed a framework for learning coupled

movement based on DS, which they call the Coupled Dynamical Sys-

tem (CDS) model. The idea of CDS is to model the correlation between

two agents using statistical models.

Let us assume two agents, which we call the master and slave,

perform a coupled motion. The correlation of the movement of the

master xs and the movement of the slave xs can be modeled with CDS.

In CDS, three GMMs are trained to model three joint distributions:

1) the joint distribution of the master movement p(xm, ẋm)

2) the joint distribution of the states of the master and the desired

state of the slave p
(

Φ(xm), xd
s ,

)

3) the joint distribution of the slave movement p(x̃s, ẋs)

where x̃s = xs − xd
s and xd

s is the desired state of the slave. To ensure

the stability of the system, SEDS is used to model these three joint

distributions [Khansari-Zadeh and Billard, 2011]. The function Φ(·)
maps xm to the same dimensionality of xs. This mapping is necessary

because SEDS can handle only models in which the inputs and outputs

have the same dimensionality [Shukla and Billard, 2012].

The reproduction of learned motions is performed by repeating

three steps: First, the movement of the master is planned using

p(xm, ẋm). Subsequently, the state of the slave is estimated based

on p
(

xd
s |Φ(xm)

)

. Third, the motion of the slave is planned based on

p(xs, ẋs). These steps are repeated until the system converges to the

goal position. The CDS approach has been applied to learn the cor-

relation between the arm and fingers [Shukla and Billard, 2012, Kim

et al., 2014], or the eye and arm [Lukic et al., 2014].

3.5.7 Incremental Trajectory Learning

Demonstrations by human experts are not always optimal for the

learner, and the performance of the learner can be unsatisfactory after

learning from demonstrations. In such cases, corrective actions can be

used to improve the performance of the learner.

The study by Calinon and Billard [2007] extended the framework

of statistical trajectory learning in [Calinon et al., 2007] to incremen-
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Algorithm 7 Incremental gesture learning [Calinon and Billard, 2007]

repeat

Record the demonstrated trajectories

Project demonstrated trajectories onto the latent space with PCA

Recognize the motion

Train GMMs

Plan a trajectory in the latent space using the updated GMMs

Re-project the planned trajectory onto the joint space

Execute/simulate the trajectory

until task learned

tal learning. In [Calinon and Billard, 2007], GMMs are initialized with

trajectories demonstrated by a human wearing a motion sensor. Subse-

quently, the motion of the humanoid robot is modified through kines-

thetic teaching by a human coach. Through this iterative process, the

model of the trajectory distribution is improved incrementally. The

method in [Calinon and Billard, 2007] is summarized in Algorithm

7. The method in [Lee and Ott, 2011] used a similar representation

by combining GMMs with HMMs. In the framework of [Lee and Ott,

2011], the compliance of a robot manipulator is controlled in order to

represent an area where motion refinement is allowed. However, the

method in [Calinon and Billard, 2007] does not address the context

of the task. Therefore, the generalization of the demonstrated trajecto-

ries to new situations is not concerned. Recent follow-up work [Havoutis

and Calinon, 2017] addressed the online learning and the adaptation

of the skill to new contexts by combining an optimal control approach

and TP-GMM in [Calinon, 2015].

Ewerton et al. [2016] used ProMPs for incremental imitation with

generalization to different contexts. Ewerton et al. [2016] parameterizes

trajectories with ProMPs as p(τ |w). To generalize the demonstrated

trajectories to new contexts, the joint distribution of trajectory param-

eters and the Gaussian context p(w, s) is incrementally learned under

the supervision of a human. Given a new context snew, the trajec-

tory is planned as a conditional distribution p(τ |snew). The method

in [Ewerton et al., 2016] which is suitable for incremental learning of
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Algorithm 8 Incremental imitation learning of context-dependent mo-

tor skills [Ewerton et al., 2016]

Input: demonstrated trajectories and the contexts D = {τ , s}
Initialize p(w, s) with D
for each new context s do

Compute µw|s and Σw|s

Compute µτ |s and Στ |s

repeat

Plan the trajectory based on p(τ |s)

Execute the trajectory with human intervention

Record the context and the executed trajectory τ new, snew

until human decides to stop

Compute the weight vector wnew for τ new

Update p(w, s) using wnew and snew

end for

time-dependent trajectories is summarized in Algorithm 8. Recently,

an incremental learning method which combines DMPs and Gaussian

Processes (GPs) was proposed by Maeda et al. [2017]. By modeling the

conditional trajectory distribution with GPs, the system can generalize

the trajectories to new scenes and request additional demonstrations

when the prediction uncertainty is large. In addition, the convergence

to the desired point can be ensured by DMPs.

Kronander et al. [2015] proposed incremental trajectory learning

using a local modulation in a time-invariant dynamical system. The

concept of local modulation is applicable to various vector fields. We

describe some details of the framework in the following. Let M(x) be

the local modulation function. The velocity for the state x is given by

ẋmod = M(x)ẋini (3.57)

where ẋmod is the velocity with the local modulation and ẋini is the

velocity given by the initial dynamical system. The local modulation

is represented by scaling and rotation of the original dynamics in the

framework of [Kronander et al., 2015]. Therefore, the modulation func-
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tion is given by

M(x) = (1 + κ(x))R(x) (3.58)

where κ is a scaling factor and R is a rotation matrix. For 2D motion

R is parameterized by a rotation angle φ. For 3D motion R is param-

eterized by a rotation angle φ and the rotation vector µR. When local

additional demonstrations are given, the nonlinear local dynamics is

modeled with a GP.

While a GP was used to model the local modulation, the frame-

work in [Kronander et al., 2015] is not limited to a specific regression

method. For movement which can be represented as a vector field, the

method in [Kronander et al., 2015] is considered a reasonable option

for incremental learning.

3.5.8 Combining Multiple Expert Policies

When multiple movement primitives can be learned, it is possible to

combine movement primitives to generalize them to new situations.

Jacobs et al. [1991] proposed the concept of mixture of experts, which

generates a policy by mixing multiple experts’ policies. Given multiple

experts’ policies {πi}M
i=1, the policy can be obtained as a mixture of

these policies

π(x) =

∑M
i=1 oiπi(x)
∑M

i=1 oi

, (3.59)

where oi is the weight on each expert policy.

Another way of combining multiple experts’ policies is products of

experts proposed by Hinton [2002]. The policy can be obtained as a

product of multiple experts’ policies

π(x) =

∏M
i=1 πi(x)

∫
∏M

i=1 πi(x)dx
. (3.60)

In imitation learning literature, the concept of mixture of experts

has been applied to multiple DMPs [Mülling et al., 2013]. Mülling et al.

[2013] learned a library of DMP based movement primitives for hitting

a table tennis ball. In [Mülling et al., 2013], given a new ball coming, a
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mixture of learned policies generates a striking movement. In addition

to initializing policies by learning from demonstration, Mülling et al.

[2013] used a reinforcement learning method to improve the perfor-

mance.

Likewise, Ewerton et al. [2015] learned human-robot collaborative

motions as a mixture of ProMPs. Ewerton et al. [2015] learned vari-

ous interaction patterns as Gaussian Mixture models of ProMP weight

vectors. This method can also be interpreted as a variant of mixture of

experts.

Haruno et al. [2001] proposed the modular selection and identifi-

cation for control (MOSAIC) model, which learns multiple modules of

forward and inverse dynamics models. In the MOSAIC model, each

module learns local models, and the control input is determined by a

mixture of multiple modules.

Although the concept of products of experts has been used in

reinforcement learning, it has not been popular in imitation learning

so far. An interesting direction of future work could be using products

of experts for combining multiple expert policies in imitation learning.

3.6 Model-Free Behavioral Cloning for Task-Level Plan-

ning

When a task requires a complex motion, it is often necessary to plan

the motion as a sequence of primitive motions. This kind of high level

motion planning is known as task-level planning [Lozano-Perez et al.,

1989, Ekvall and Kragic, 2008, Cambon et al., 2009, Lagriffoul et al.,

2014]. In this section, we review model-free behavioral cloning methods

for task-level planning.

3.6.1 Segmentation and Clustering for Task-Level Planning

Although model-free methods for trajectory learning often implicitly

assume that each demonstrated trajectory contains a single motion, a

demonstrated trajectory may consist of a sequence of different types of

primitive motions in practice. Therefore, in order to learn each prim-

itive motion, it is necessary to segment the demonstrated trajectory.
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In addition, after the segmentation of trajectories, it is often neces-

sary to cluster the segmented motions in order to learn multiple types

of primitive motions. However, manual segmentation and clustering of

trajectories is often time-consuming. For this reason, methods for seg-

menting and clustering the demonstrated trajectories have been inves-

tigated in the field of imitation learning. The development of methods

for trajectory segmentation is closely related to the theoretical advances

in clustering in machine learning. Although theories for segmentation

and clustering are out of our scope, we shortly review methods for

segmentation and clustering in imitation learning.

Kohlmorgen and Lemm [2001] developed an online segmentation

method based on HMMs. By computing the “distance" between nearby

data windows, Kohlmorgen and Lemm [2001] segments human mo-

tion data using unsupervised learning. Kulić et al. [2008] proposed a

method for segmenting and clustering whole body motions by using

factorized HMMs. In their method, the distances between HMMs are

computed, and segments of the observed motion are clustered into a

tree structure. Fearnhead and Liu [2007] proposed an online direct sim-

ulation algorithm for online inference in change-point problems (prob-

lems where the probability distribution changes at “change-points”).

Konidaris et al. [2011] extended the approach in [Fearnhead and Liu,

2007] to learning skill trees. The beta process autoregressive HMM (BP-

AR-HMM) developed by Fox et al. [2009] is a Bayesian nonparametric

approach, which finds dynamic features in time-series data. The BP-

AR-HMM is also employed by Niekum et al. [2014] for learning primi-

tive motion sequences in robotics. As seen from these previous studies,

advances in trajectory segmentation in imitation learning [Kulić et al.,

2008, Konidaris et al., 2011, Niekum et al., 2014] are closely related

to the methodological advances [Fearnhead and Liu, 2007, Fox et al.,

2009] in the machine learning community.

3.6.2 Learning a Sequence of Primitive Motions

For learning a sequence of primitive motions, it is necessary to model

the structure of the skill and learn the transition between primitive

motions from the demonstrated behavior.
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Figure 3.9: Learning a motion sequence in [Manschitz et al., 2015]. A library
of movement primitives are learned from demonstrations, and transitions between
movement primitives are modeled using SVMs.

One way of learning a sequence of movement primitives is to learn

a tree-like structure of skills. Konidaris et al. [2011] proposed an on-

line algorithm for constructing skill trees from demonstrations. Based

on change point detection using MAP estimation [Fearnhead and Liu,

2007], a demonstrated trajectory is segmented into a skill chain. Multi-

ple skill chains are merged into a skill tree by identifying similar skills

in different skill chains. The method in [Konidaris et al., 2011] has been

applied to path planning of a mobile robot.

Another way to sequence movements is to learn a transition model

between different movement primitives. Manschitz et al. [2015] learns

a library of movement primitives and uses a support vector machine

(SVM) to compute the solution to the multi-class classification prob-

lem of choosing the next movement primitive for each current move-

ment primitive. This results in a movement primitive graph structure

as shown in Figure 3.9.

For learning a probabilistic transition model between movement

primitives, HMM-based methods are often used. In the autoregres-

sive hidden Markov Model (STARHMM) [Kroemer et al., 2014] the

probability distribution over latent variables also depends on the ob-

served state contrary to the classical auto-regressive hidden Markov

model (AR-HMM) where the current state depends only on the pre-

vious state. STARHMM includes a latent phase variable that defines

the current phase of the task. The framework in [Kroemer et al., 2015]

uses STARHMM to represent a task as a sequence of DMPs [Ijspeert

et al., 2013], where the phase variable corresponds to the currently

active DMP. The model allows for a conditional movement primitive



3.6. Model-Free Behavioral Cloning for Task-Level Planning 97

(a) (b)

Figure 3.10: Learning a hierarchical skill in [Kroemer et al., 2015]. Left: A sequence
of skills are modeled using a variant of HMM. Right: The learned DMPs can be
adapted to different objects.

Algorithm 9 Incremental semantically grounded learning from

demonstration [Niekum et al., 2014]

Input: Demonstrated trajectories and object poses D = {τ demo, o}
Segment the demonstrations with BP-AR-HMM

for each segment do

Learn parameters of DMP

end for

Construct FSM

Replay the task based on the current observation

if correction is necessary then

Collect interactive correction from users

end if

plan that switches from one DMP to another based on the observations.

Kroemer et al. [2015] learn DMPs using imitation learning and optimize

high-level policies using reinforcement learning. Kroemer et al. [2015]

demonstrate the approach in robotic manipulation tasks as shown in

Figure 3.10.

Although it is often assumed that a sufficient amount of demonstra-

tion data is available, this may not be the case in many applications.

Incremental imitation learning for task-level planning proposed by

Niekum et al. [2014] can address this issue. The framework in [Niekum

et al., 2014] leverages unstructured demonstrations and corrective ac-
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Figure 3.11: Mutual language model between motion and sequence in [Takano
and Nakamura, 2015](Figure used with permission of Wataru Takano). Relevance
between words and motion is learned using a probabilistic model. The approach
can work in two directions: generating sentences from motion or generating motion
from sentences. When motion is observed, a motion language semantic graph model
generates words for the observed motion. A natural language model arranges the
words then into sentences. When observing language the language is segmented into
words using a natural language model and the words are then transformed into
motion using a semantic graph.

tions by human experts. Niekum et al. [2014] segment the demonstrated

task using a Beta Process Autoregressive Hidden Markov Model (BP-

AR-HMM) [Fox et al., 2009], and model the transition between discrete

primitives as a finite-state automaton (FSA). When a new situation is

given, the learner uses the trained FSA to plan the task as a sequence

of movement primitives. If an expert considers that refinement of the

planned motion is necessary, she/he can stop the autonomous execu-

tion of the task and correct the motion through kinesthetic teaching.

In this way, the learner improves the performance through interaction

with experts. Algorithm 9 summarizes the procedure.

One interesting approach for task-level planning is to leverage an-

notation of demonstrated motions. Recently, Takano and Nakamura

[2015] developed methods for learning a mutual model between lan-

guage and motions, which leverage a dataset of demonstrated motions

and annotated sentences. In the framework of [Takano and Nakamura,

2015], the relationship between the motion symbols and words via la-

tent variables is learned as a motion language model, and the sentence
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Algorithm 10 Motion language model [Takano and Nakamura, 2015]

Learning:

Input: demonstrated trajectories and sentences D = {τ demo, y}
Train a set of HMMs that represent the primitive motions

Train the motion language model and the natural language model

Prediction:

Input: a motion sequence or a sentence

if the given input is a motion sequence then

Recognize the motion symbol λin using HMMs

Predict words for the given motion

y∗ = arg maxy p(y|λin)

Arrange the order of the words using the natural language model

return sentence

end if

if the given input is a sentence then

Predict a motion symbol corresponding to the given sentence yin

λ∗ = arg maxλ∈Λ p(λ|yin)

Predict the motion sequence from the motion symbol λ∗

return motion sequence

end if

structure is learned as a natural language model using an n-gram model.

Figure 3.11 summarizes the framework of a mutual model between lan-

guage and motion. HMMs are used to represent primitive motions,

and the library of primitive motions are learned as a set of HMMs.

In the motion language model, the probability p(λ|y) and p(y|λ) are

learned, where y is an annotated sentence and λ is the motion symbol.

This motion language model can be learned using an EM algorithm.

Meanwhile, a natural language model learns the transition between two

words p(yi|yj). When a new motion τ in is observed, the correspond-

ing motion symbol λin is predicted using HMMs. Subsequently, words

associated with the motion symbol are estimated as

y∗ = arg max
y

p(y|λin), (3.61)

where λin is the recognized motion symbol. Thereafter, the estimated



100 Behavioral Cloning

words are arranged grammatically using the natural language model.

When a new sentence yin is given, the motion symbol is selected so

as to maximize the likelihood of observing yin

λ∗ = arg max
λ∈Λ

p(λ|yin), (3.62)

where Λ is a set of learned motion symbols, and λ∗ is the predicted

motion symbol. A motion sequence is then generated using the pre-

dicted motion symbol. The method is summarized in Algorithm 10.

Leveraging the mutual model between language and motion will be an

interesting research direction in imitation learning.
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3.7 Model-Based Behavioral Cloning Methods

We discuss model-based behavioral cloning (BC) in this section. As

we discussed in §2.3, model-based BC methods require an iterative

learning process with access to a forward dynamics model. Next, we

discuss model-based BC in more detail.

3.7.1 Model-Based Behavioral Cloning Methods with
Forward Dynamics Models

In imitation learning, experts demonstrate behavior and an au-

tonomous agent tries to imitate the demonstrations. However, the em-

bodiment of the expert is often different from the embodiment of the

learner. In such cases, the demonstrated trajectory needs to be ad-

justed for the embodiment of the learner. Otherwise, the learner fails

to perform the intended task properly. This problem is known as the

“correspondence problem” in imitation learning [Billard et al., 2008].

The correspondence problem frequently appears when we try to teach

humanoids how to imitate human motion obtained e.g. from motion

trackers [Ude et al., 2004, Nakaoka et al., 2007]. Due to the different

embodiments between a human expert and a robot learner, it is es-

sential to adapt the demonstrated trajectories to follow the constraints

and dynamics of the learner.

Even when the embodiments of the demonstrator and learner

match, we may face a similar correspondence problem when we try

to execute a trajectory at a velocity differing from the original veloc-

ity [van den Berg et al., 2010, Englert et al., 2013]. Even if the desired

configuration is kinematically feasible, the demonstrated/desired veloc-

ity may be infeasible due to the underactuation of the manipulator. In

this case, it is also necessary to adjust the planned trajectory based on

the system dynamics.
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The straightforward way for solving the correspondence problem is

to explicitly learn a forward dynamics model of the system

xt+1 = f(xt, ut) (3.63)

and then plan trajectories based on the learned forward model. Forward

dynamics model learning can be framed as a regression problem. Ta-

ble 3.6 lists different regression methods which have been utilized in

model-based BC. Although locally weighted regression and Gaussian

mixture regression were used in early studies of model-based methods,

recent studies often employ Gaussian Processes. As we will review in

§3.7.1.2, Gaussian Processes can incorporate inputs with uncertainty.

This property is important for multi-step forward prediction since the

uncertainty is propagated over time. However, due to the computational

cost, Gaussian Process regression is not suitable for high-dimensional

data. To deal with high-dimensional data such as raw images, a deep

learning approach is employed for modeling a forward dynamics in the

most recent studies [Oh et al., 2015, Finn et al., 2017a, Baram et al.,

2017, Nair et al., 2017]. In the following sections, we review some of

the model-based methods with explicit learning of a forward model.

Table 3.6: Model-based behavioral cloning methods using different regression meth-
ods. Early studies on model-based behavior cloning focused on locally weighted
regression but later studies have moved to Gaussian mixture regression and even
more recently to Gaussian processes. We expect that studies based on deep neural
networks will be popular in the near future.

Regression Employed by ...

Locally Weighted

Regression
[Atkeson et al., 1997, Schneider, 1997]

Gaussian Mixture

Regression
[Grimes et al., 2006b, Grimes and Rao,

2009]

Gaussian Process

Regression
[Grimes et al., 2006a, Englert et al., 2013,

Deisenroth et al., 2014]

Neural Networks [Baram et al., 2017, Nair et al., 2017]
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3.7.1.1 Imitation with a Gaussian Mixture Forward Model

We will now discuss details of the methods in [Grimes et al., 2006b,

Grimes and Rao, 2009] as an example of learning forward dynamics

with Gaussian Mixture Models (GMMs).

We can obtain a dataset of state xt and action ut trajectories D =

{τ i = [xi
1, ui

1 · · · , xi
T , ui

T ]}M
i=1 from sensor readings. If we introduce

zt = [xt, ut], the joint distribution of xt+1 and zt can be modeled as a

mixture of Gaussian distributions as

p(xt+1, zt) =
∑

k

p(k)N (µk, Σk), (3.64)

where p(k) is the prior and the kth Gaussian component is given by

p(xt+1, zt|k) = N
([

zt

xt+1

]∣

∣

∣

∣

∣

[

µz,k

µx,k

]

,

[

Σz,k Σzx,k

Σxz,k Σx,k

])

. (3.65)

The conditional distribution of xt+1 for a given z∗
t is a Gaussian dis-

tribution with the mean and variance given by

µx|z =
∑

wkµx|z,k,

Σx|z =
K

∑

k=1

wk

(

Σx|z,k + µx|z,kµ⊤
x|z,k

)

− µx|zµ⊤
x|z, (3.66)

where

µx|z,k = µx,k + Σxz,k(Σz,k)−1(z∗
t − µz,k),

Σx|z,k = Σx,k − Σxz,k (Σz,k)−1
Σzx,k, (3.67)

wk =
p(k)N (z∗

t |µz,k, Σz,k)
∑K

k=1 p(k)N (z∗
t |µz,k, Σz,k)

.

When a given input is drawn from a Gaussian distribution z∗
t ∼

N (µin, Σ
in), the marginal distribution p(xt+1|µin, Σ

in) is a Gaussian

distribution with the mean µt+1 and covariance Σt+1 given by

µx|z =
∑

wkµx|z,k,

Σx|z =
K

∑

k=1

wk

(

Σx|z,k + µx|z,kµ⊤
x|z,k

)

− µx|zµ⊤
x|z, (3.68)
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Algorithm 11 Behavior acquisition via Bayesian inference and learn-

ing [Grimes and Rao, 2009]

Observe an expert’s demonstrations [o1, · · · , oT ]

Estimate the kinematics of the expert

Initialize the forward model f

Infer bootstrap actions based on the forward model

repeat

Execute actions

Learn/update the GMR forward model

Infer constrained actions

until task learned

where

µx|z,k = µx,k + Σxz,k

(

Σz,k + Σ
in

)−1
(z∗

t − µz,k),

Σk,t+1 = Σx,k − Σxz,k

(

Σz,k + Σ
in

)−1
Σzx,k, (3.69)

wk =
p(k)N (z∗

t |µz,k, Σz,k + Σ
in)

∑K
k=1 p(k)N (z∗

t |µz,k, Σz,k + Σ
in)

.

Grimes and Rao [2009] used this GMR for one-step prediction and

recursively predicted learner’s trajectories. Using the learned forward

model, the action is selected so as to maximize the posterior likelihood

as

u∗
1, · · · , u∗

T = arg max
u1,··· ,uT

p(u1, · · · , uT |o1, · · · , oT , c1, · · · , cT ), (3.70)

where [o1, · · · , oT ] is a time series of the observed demonstrated states,

and [c1, · · · , cT ] is a time series of the feasible states of the learner under

the kinematic and dynamic constraints. By repeating the execution of

the planned trajectories, the estimation of the forward model improves.

Algorithm 11 summarizes the procedure in [Grimes and Rao, 2009].

3.7.1.2 Imitation with a Gaussian Process Forward Model

Recent studies on model-based BC have employed Gaussian Processes

(GPs) for modeling the forward dynamics of the system f ∼ GP
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[Englert et al., 2013, Deisenroth et al., 2014]. Given a dataset D =

{xt+1, zt} where z = [x⊤
t , u⊤

t ]⊤, a GP models a mapping from the

input zt to the output xt+1 = f(zt) as

f(zt) ∼ GP (

m(zt), k(zt, z′
t)

)

, (3.71)

where k(z, z′) is the covariance function. A popular choice of a co-

variance function is the squared exponential covariance function given

by

k(z, z′) = exp

(

−‖z − z′‖2

l2

)

. (3.72)

The joint distribution of the given target value and the function value

xt+1 at the test input z∗
t can be written as

[

xt+1

x∗
t+1

]

∼ N
(

0,

[

K(Z, Z) + σ2
nI K(Z, z∗

t )

K(z∗
t , Z) K(z∗

t , z∗
t )

])

, (3.73)

where Z is a matrix in which the input vectors zt for all training

samples are aggregated. The conditional distribution of x∗
t+1 given the

test input z∗
t is a Gaussian with mean and variance

µ(z∗
t ) = k⊤K−1xt+1,

σ2(z∗
t ) = k (z∗

t , z∗
t ) − k⊤K−1k,

(3.74)

where K = K(Z, Z) + σ2
nI and k = K(z∗

t , Z).

As with GMR, propagation of uncertainty can be approximately

modeled by GPs. If we assume that z = [x⊤
t , u⊤

t ]⊤ is drawn from a

Gaussian distribution p(zt|µt, Σt), the predictive distribution of the

state at time t + 1 is given by

p(xt+1|µt, Σt) =

∫

p(f(zt)|zt, D)p(zt)dzt, (3.75)

where p (f(x)|x, D) is a Gaussian distribution given by (3.74). The

marginal distribution p(xt+1|µt, Σt) in (3.75) can be approximated by

a Gaussian distribution by following the results from [Deisenroth and

Rasmussen, 2011, Deisenroth et al., 2013a].

Englert et al. [2013] used GPs for predicting the trajectory distri-

bution, and the KL divergence was used to evaluate the similarity of
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Algorithm 12 Probabilistic model-based imitation learning [Englert

et al., 2013]

Input: n trajectories τ i demonstrated by the expert

Estimate the expert distribution over trajectories q(τ demo)

Record state-action parts of the robot through applying random con-

trol inputs

repeat i = 1 to N do

Learn/update probabilistic GP forward model

Predict the new trajectory distribution p(τ )

Learn policy πL = arg minπ DKL

(

q(τ demo)||p(τ )
)

Apply πL to the system and record data

until task learned

the demonstrated and learned behaviors. Englert et al. [2013] modeled

trajectories as a Gaussian distribution

p (τ ) ∼
T

∏

t=1

p (x(t)) =
T

∏

t=1

N (x(t)|µ(t), Σ(t)). (3.76)

For two given Gaussian distributions p(x(t)) ∼ N (x|µp(t), Σp(t)) and

q(x(t)) ∼ N (x|µq(t), Σq(t)), the KL divergence of q and p can be com-

puted in closed form. Using the factorization in (3.76), the KL diver-

gence between the trajectory distribution induced by the expert policy

q(τ ) and the trajectory distribution induced by the learned policy p(τ )

can be computed as

DKL (q(τ )||p(τ )) =
T

∑

t=1

DKL(q (x(t)) ||p (x(t))). (3.77)

Englert et al. [2013] used this KL divergence to define the objec-

tive function to be minimized as LKL = DKL (q(τ )||p(τ )). To min-

imize LKL we can compute the gradient analytically and use gradi-

ent descent [Deisenroth, 2010, Deisenroth and Rasmussen, 2011]. Al-

gorithm 12 summarizes the procedure in [Englert et al., 2013]. The

method in [Englert et al., 2013] matches the first and second moment of

the trajectory distribution through iterative learning. Since the deriva-
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Algorithm 13 Iterative control learning [van den Berg et al., 2010]

Input: desired trajectory τ d, learning rate α

Initialize the target trajectory as τ = τ d

repeat

Execute a controller with the target trajectory τ̂

Record the executed trajectory τ

Update the target trajectory τ̂ ← τ̂ − α(τ − τ d)

until τ ≈ τ d

tives can be analytically computed when using a GP forward dynamics

model, imitation learning can be efficiently performed.

3.7.2 Imitation Learning through Iterative Learning Control

In order to develop a controller to achieve the desired trajectory, we

can also use an iterative learning control approach without a forward

dynamics model. Abbeel et al. [2010], van den Berg et al. [2010] learn

a controller iteratively to reproduce a desired trajectory.

While van den Berg et al. [2010] uses a Linear Quadratic Regulator

(LQR) [Anderson and Moore, 1990] for optimal control, the method is

not limited to a specific controller. Algorithm 13 shows how iterative

control learning in [van den Berg et al., 2010] works. Given a desired

trajectory τ d, LQR control is performed to track the target trajectory

τ̂ . In the initial step, the target trajectory is initialized as τ̂ = τ d.

When the executed trajectory τ deviates from the desired trajectory

τ d, the approach updates the target trajectory as τ̂ ← τ̂ − α(τ − τ d),

where α is the learning rate. By repeating this execution and update,

a target trajectory τ ≈ τ ∗ can be obtained. Although this method is

simple and easy to implement, the controller cannot be generalized to

different desired trajectories.

When a given system is fully controllable, we can learn forward and

inverse dynamics of the system. As indicated by [Nguyen-Tuong and

Peters, 2011], various methods have been developed for model learning.

However, it is often challenging to apply such approaches to not fully

controllable systems. Iterative LQR (iLQR) is often employed to con-



108 Behavioral Cloning

Policy model manifoldData manifold

Learn the policy so as to satisfy

Execute the policy

Figure 3.12: Schematic illustration of model-based BC methods. Model-based BC
methods often iterate between policy updates and task execution so as to match the
expected features as Eq[φ] ≃ Ep[φ].

trol a system of which the dynamics is not accurately known [Todorov

and Li, 2005, Abbeel et al., 2010, Tassa et al., 2012]. iLQR learns a

linear feedback controller to follow a trajectory through an iterative

learning process. Abbeel et al. [2010] learns from experts’ demonstra-

tions trajectories for acrobatic RC helicopter flights, and utilizes iLQR

to reproduce the desired trajectory.

3.7.3 Information Theoretic Understandings of Model-
Based Behavioral Cloning Methods

BC methods with forward dynamics models such as [Englert et al.,

2013, Grimes and Rao, 2009] iteratively evaluate the learned policy

πL(u|x) in order to reproduce trajectories close to the demonstrations.

These methods evaluate the trajectory under the distribution induced

by the learned policy and match its expected feature with that of the

expert demonstrations. This approach can be interpreted as a process

to empirically learn the policy πL(u|x) that satisfies

Ep[φ(τ )] ≃ Eq[φ(τ )], (3.78)

where q(τ ) is the expert trajectory distribution and p(τ ) is the trajec-

tory distribution induced by the learner’s policy. The learning process

of BC methods with forward dynamics can be illustrated as Figure 3.12.

In addition, the method in [Englert et al., 2013] assumes that the tra-
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jectory distribution is Gaussian. As Park and Bera [2009] indicated,

Gaussian distribution is one of the maximum entropy distributions.

Therefore, matching the feature expectation as in (3.78) under the

assumption of the Gaussian distribution can be interpreted as the M-

projection onto the manifold of the maximum entropy distribution as

we discussed in §2.7.1.

3.8 Robot Applications with Model-Free BC Methods

Robot Applications with Model-Free Behavioral Cloning Methods In

this section, we show several examples of model-free behavioral cloning

(BC) in robotic applications, to demonstrate the capability of model-

free BC methods. Model-free BC methods have been utilized suc-

cessfully in various applications, including autonomous RC helicopter

flight, ball-hitting tasks, and robotic surgery. Abbeel et al. [2010] uses

an iterative LQR controller in acrobatic helicopter flight to control the

nonlinear system. [Osa et al., 2017b] performs knot-tying tasks using a

standard PD controller on a surgical robot. From the following applica-

tion examples, one can see that different applications require different

controllers and learning methods.

3.8.1 Learning to Hit a Ball with DMP

Hitting a ball is a typical example of tasks that can be learned as

a point-to-point motion. Ijspeert et al. [2002b] showed that a tennis

swing can be learned with DMPs. The motion of a tennis swing was

demonstrated by a human, and the motion was recorded using a mo-

tion capture suit, which can mechanically measure the joint angles of

35 DoFs of the human body at 100Hz. The recorded motion was re-

produced in a humanoid robot with 30 DoFs. To accurately reproduce

the trajectories, an inverse dynamics controller was employed in this

experiment. The experimental results showed that the learned motion

was generalized to different target positions.



110 Behavioral Cloning

Figure 3.13: Learning rhythmic motions for the Ball-Paddling task in [Kober and
Peters, 2009]. Kober and Peters [2009] used kinesthetic teaching to demonstrate
periodic hitting motions in Ball-Paddling and trained rhythmic DMPs to reproduce
the demonstrated periodic movements.

Kober and Peters [2009] learned a Ball-Paddling task shown in Fig-

ure 3.13 from demonstrations. The goal of this task is to have the ball

repeatedly bouncing. Kober and Peters [2009] used the seven degrees

of freedom Barrett WAM arm to demonstrate trajectories using kines-

thetic teaching and learned periodic motion using rhythmic DMPs. In

the experiments, ten basis functions per motor primitive were used to

represent the task.

3.8.2 Learning Hand-Over Tasks with ProMPs

Motion planning in the context of human-robot collaboration often re-

quires learning the coupled motions of a human operator and a robot.

Maeda et al. [2016] shows that correlation of the two agents’ motion

can be modeled using ProMPs. Maeda et al. [2016] illustrates the ap-

proach in a hand-over motion: when a human extends her/his hand to

receive a plate or screw, the robot grasps and gives it to the human

operator. Maeda et al. [2016] used a KUKA LWR robot and kines-

thetic teaching for demonstrating tasks, and the motion of a human

operator was tracked using a 3D optical tracking system. The task

was demonstrated 13-20 times. Demonstrated trajectories are shown
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robot

human

(a) Handing over a plate (b) Handing over a screw

robot

human

(c) Holding the screw driver

robot

human

Figure 3.14: Learning human-robot collaborative motions in [Maeda et al., 2016].
Maeda et al. [2016] used kinesthetic teaching to demonstrate coupled movements,
where both the human and robot need to move to perform a task. The demonstra-
tions were used to train interaction ProMPs which take correlations between human
and robot movement into account: the robot motion can be planned as conditional
distribution given the human movement. The pictures show how the robot is able
to adapt its movement in several tasks.

in Figure 3.14. The correlation of the robot’s motion and the human

operator’s motion was learned with interaction ProMPs, which is an

extension of ProMPs proposed by Paraschos et al. [2013]. To achieve

the human-robot collaborative task, the robot motion was planned by

conditioning the learned distribution on the observed motion of the

human operator. Maeda et al. [2016] applied interaction ProMPs to

several tasks as shown in Figure 3.14. The study by Maeda et al. [2016]

showed that the reactive motions of the robot were successfully planned

based on the observed motions of the human operator.

Recent work by Lioutikov et al. [2017] proposed a method for seg-

menting demonstrated trajectory in a probabilistic manner and learn-

ing a sequence of movement primitives represented by ProMPs. Tasks

that emulate table tennis, writing and chair assembly are reported in

[Lioutikov et al., 2017].
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(a) Slave manipulator (b) Visualization of planned trajectories

Figure 3.15: Autonomous knot-tying with a surgical robot [Osa et al., 2017b]. Left:
Bimanual manipulation tasks were learned using a model-free BC method. Right:
The trajectories can be updated in real time when the context is changing during
task execution. The demonstration was performed under various contexts, and the
trajectory distribution was modeled using a Gaussian Process. A force controller
was build as an outer loop of the standard PD position controller.

3.8.3 Learning to Tie a Knot by Modeling the Trajectory
Distribution with Gaussian Processes

Knot-tying in robotic surgery is one of the tasks that is hard to learn

as a sequence of point-to-point motions. In a looping motion required

for the knot-tying task, the topological shape of the entire trajectory

is critical, although the start and goal positions of the trajectory is

not critical to the success of the task. Osa et al. [2017b] applied a

behavioral cloning method to this knot-tying task as shown in Fig-

ure 3.15. Osa et al. [2017b] learned a conditional distribution of the

demonstrated trajectories given the context as a Gaussian Process al-

lowing generalizing demonstrated trajectories to a new context in real

time. Additionally, the learned trajectory distribution was used to plan

and control the contact force between the surgical instruments and ob-

jects. Osa et al. [2014] employed Algorithm 6 for normalizing the time

alignment of multiple demonstrated trajectories.

In experiments with a bimanual teleoperated master-slave system

for robotic surgery shown in Figure 3.15, the system performed tasks

that emulate tying a knot and cutting soft tissues. The task was demon-

strated 9-20 times under various contexts. The experimental results

show that the trajectories can be updated in real time.



3.9. Robot Applications with Model-Based BC Methods 113

Figure 3.16: Learning autonomous helicopter maneuvers from expert demonstra-
tions in [Abbeel et al., 2010]. Acrobatic flights were learned in a system that involves
highly nonlinear dynamics. An iterative LQR controller is employed to execute the
trajectory learned from demonstrations.

3.9 Robot Applications with Model-Based Behavioral

Cloning Methods

We present applications of model-based BC methods in this section.

Model-based BC methods can be used to control robotic systems with

nonlinear dynamics. A remarkable application example of model-based

BC methods is acrobatic helicopter flights [Abbeel et al., 2010]. Addi-

tionally, we discuss an application for learning from different embodi-

ments. Subsequently, we show applications of planning in action-state

space.

3.9.1 Learning Acrobatic Helicopter Flights

Autonomous flight of an RC helicopter involves nonlinear dynamics,

making helicopter control non-trivial. Abbeel et al. [2010] showed how

to learn acrobatic RC helicopter flight from experts’ demonstrations.

For modeling time-dependent trajectories, Abbeel et al. [2010] nor-

malizes the temporal alignment of the demonstrated trajectories using

an Expectation Maximization (EM)-like method, which we discussed

in §3.5.5. Abbeel et al. [2010] learns acrobatic flight trajectories us-

ing a model-based behavioral cloning method. Due to the challenge

of controlling the highly nonlinear helicopter dynamics, Abbeel et al.

[2010] uses an iterative LQR controller. In the experiments, the heli-
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Figure 3.17: Learning to hit a ball with an underactuated manipulator in [En-
glert et al., 2013]. Englert et al. [2013] learned a forward model of the system
using Gaussian Processes. Together with the forward model Englert et al. [2013]
used PILCO Deisenroth and Rasmussen [2011], Deisenroth et al. [2013a] as the
reinforcement learning method Englert et al. [2013] to train a policy to reproduce
demonstrated trajectories.

copter control system performs various maneuvers including in-place

flips, in-place rolls, loops and hurricanes, and even auto-rotation land-

ings, chaos and tic-toc. Figure 3.16 shows a snapshot of the acrobatic

flight reported in [Abbeel et al., 2010]. Previously, these acrobatic ma-

neuvers could only be performed by exceptional experts, but Abbeel

et al. [2010] showed that such expert skills can be transferred to a

robotic system by combining model-based BC and iterative controller

learning.

3.9.2 Learning to Hit a Ball with an Underactuated Robot

Learning tasks with an underactuated robot is challenging since fea-

sible trajectories are limited. Englert et al. [2013] learned ball hitting

with an underactuated robot using a model-based imitation learning

method. In the experiments, the trajectories were demonstrated by

kinesthetic teaching, and the trajectory and the controller to achieve

the task were learned from demonstrations. BioRobTM [Lens et al.,

2010] robot, which is an underactuated and compliant manipulator,

was used in the experiments. Figure 3.17 shows a task with the under-

actuated manipulator reported in [Englert et al., 2013]. Since Englert
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Figure 3.18: Applications of DAGGER [Ross et al., 2011]. Left: Learning to play
a video game [Ross et al., 2011]. Right: Learning autonomous UAV flight [Ross
et al., 2013]. The UAV flew autonomously in real forest environments. In DAGGER
, the learner complements initial demonstrations by querying an expert online for
demonstrations specifically for states induced by the learner’s policy.

et al. [2013] learns a robot-specific controller, the controller is robust

to the correspondence problem compared with model-free behavioral

cloning methods. Learning a robot-specific policy is one of the benefits

of model-based imitation learning. Although developing a controller for

an underactuated robot with unknown nonlinear dynamics is not triv-

ial, model-based behavioral cloning methods can address this problem

by exploiting the learned forward dynamics model. This method re-

quires an iterative learning process to obtain a policy that reproduces

the expert’s trajectory.

3.9.3 Learning to Control with DAGGER

Ross et al. [2011] demonstrated how the DAGGER algorithm learns to

play a video game as shown in Figure 3.18. Visual features of 2D images

were used as system state, and a policy linear to the visual features was

learned using DAGGER . A human expert demonstrated the correct

steering for observed game images. DAGGER has also been applied to

control UAVs as shown in Figure 3.18 [Ross et al., 2013]. Ross et al.

[2013] trained a controller that can avoid trees in natural environments

using a small set of human demonstrations and performed autonomous

flights in a real forest. In both examples, a small error at an early time-

step may lead the learner to an unseen state which largely deviates from
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expert demonstrations. Since the learner encounters various states in

which the expert did not demonstrate how to act, an online learning

approach such as DAGGER is essential in these applications.



4

Inverse Reinforcement Learning

In inverse reinforcement learning (IRL) [Russell, 1998], also called in-

verse optimal control [Kalman, 1964, Moylan and Anderson, 1973, Dvi-

jotham and Todorov, 2010, Levine and Koltun, 2012], inverse planning

[Baker et al., 2009], or structural estimation of MDPs Rust [1994] the

learner tries to recover a reward function from a policy (or demon-

strations of a policy). Recovering the reward function can be beneficial

when the reward function is the most parsimonious way to describe the

desired behavior.

We begin discussion of inverse reinforcement learning (IRL) with

a definition of IRL in §4.1, discuss the critical assumption of linear

vs. nonlinear reward functions in §4.2, continue with model-based IRL

methods in §4.4 and model-free IRL methods in §4.5, give an informa-

tion theoretic interpretation of IRL methods in §4.6, show how partial

observability affects IRL in §4.7, and, finally finish with applications of

IRL in §4.8.

117
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4.1 Problem Statement

Russell defines the problem of IRL [Russell, 1998] as follows:

Given 1) measurements of an agent’s behavior over time, in a

variety of circumstances, 2) measurements of the sensory inputs to

that agent; 3) a model of the physical environment (including the

agent’s body).

Determine the reward function that the agent is optimizing.

A common assumption in IRL is that the demonstrator utilizes

a Markov decision process (MDP) for decision making. Formally, an

MDP is a tuple (X , U , P, γ, D, R). X is a finite set of states; U is a set

of control inputs; P is a set of state transitions probabilities; γ ∈ [1, 0)

is a discount factor; D is the initial-state distribution from which the

initial state x0 is drawn; and R : X Ô→ R is the reward function. In

addition, many IRL methods assume that there are vectors of features

φ : X Ô→ [0, 1]k. IRL methods often estimate the reward function as a

function of these features φ.

The goal of IRL is to recover the unknown reward function R(τ )

from the expert’s trajectories. However, since a policy can be optimal

for multiple reward functions, the problem of determining the reward

function is “ill-posed”. To obtain the unique solution in IRL, many

studies have proposed additional objective functions to be optimized,

such as margin between the optimal policy and others [Ng and Russell,

2000, Abbeel and Ng, 2004, Ratliff et al., 2006b,a, 2009, Silver et al.,

2010] and to maximize the entropy [Ziebart et al., 2008, Ziebart, 2010,

Kitani et al., 2012, Shiarlis et al., 2016].

Many IRL methods usually require an iterative learning process (al-

though see Ratliff et al. [2006b] for a description directly in terms of a

quadratic program). Algorithm 14 summarizes a class of IRL methods

that proceed by alternatingly solving an RL style problem and updating

a cost function estimate. In order to obtain the performance equiva-

lent to the expert’s policy, state-action visitation frequency µ needs

to be matched between demonstrated trajectories and the trajectories
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Algorithm 14 Abstract version of feature matching inverse

reinforcement learning

Input: Expert trajectories D = {τ i}N
i=1

Initialize the reward function and policy parameters w, θ

repeat

Evaluate the state-action visitation frequency µ of the current pol-

icy πθ

Evaluate the objective function L and its derivative ∇wL by com-

paring µ and the state-action distribution implied by D
Update the reward function parameter w

Update the policy parameter θ with a reinforcement learning

method

until

return optimized policy parameters θ and reward function param-

eter w

induced by the learner’s policy as indicated by Abbeel and Ng [2004],

Ho and Ermon [2016]. The reward function parameter w is updated

through optimizing the objective function under the expected feature

matching constraint. This objective function is designed to estimate the

reward function which makes the demonstrations appear more optimal

than the current policy. The policy parameters θ are then updated

using an optimal control solution (i.e. reinforcement learning method)

based on the current estimate of the reward function. For this purpose,

inverse reinforcement learning methods often have a RL style proce-

dure in an inner loop. By repeating this process, the policy and reward

function parameters can be obtained.

Each IRL method has a different way of performing these steps.

Model-based methods require the knowledge of system dynamics in

order to evaluate the state-action visitation frequency. On the con-

trary, model-free methods often employ sampling-based methods for

this purpose. In order to obtain an optimal policy based on the recov-

ered reward function, various reinforcement learning methods can be

used. Although MDP solvers can be used for the policy optimization

in discrete state-action space as in [Abbeel and Ng, 2004, Ratliff et al.,
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2006a], recent policy search methods can be also used. For example,

Finn et al. [2016b] employed guided policy search [Levine and Abbeel,

2014], and Ho and Ermon [2016] and Ho et al. [2016] employed trust

region policy optimization [Schulman et al., 2015].

4.2 Model-Based and Model-Free Inverse

Reinforcement Learning Methods

As with behavioral cloning methods, IRL methods can be categorized

into two categories: model-based and model-free methods. Model-based

IRL methods assume that the dynamics of the system, e.g. state tran-

sition probabilities, are known. The prior knowledge of the system dy-

namics is often used to evaluate and update the learned reward function

and policy. These model-based IRL method are relatively simple to im-

plement when the system dynamics are known. However, it is challeng-

ing to apply model-based IRL methods to applications with nonlinear

dynamics, which are hard to estimate. On the other hand, model-free

IRL methods do not require prior knowledge of the system dynamics.

Model-free IRL methods evaluate and update the learned reward func-

tion and policy using sampling-based methods, which can be applied

to systems with nonlinear dynamics. However, it is necessary to sample

many trajectories to estimate the trajectory distribution, which can be

time-consuming and computationally expensive. Table 4.1 summarizes

the advantages and disadvantages of model-free and model-based IRL

methods.

4.3 Design Choices for Inverse Reinforcement Learning

Methods

In addition to design choices we described in Chapter 2, there are IRL

specific design choices:

1. What objective should be used to obtain the unique so-

lution in IRL? As discussed in §4.1, IRL itself is an ill-posed

problem, and it is necessary to design the objective function so

as to obtain the unique solution in IRL. Table 4.2 summarizes



4.3. Design Choices for Inverse Reinforcement Learning Methods 121

different objectives for learning reward functions. As shown, the

maximum entropy principle is a popular choice in recent studies

on IRL, although the concept of maximizing the margin between

the optimal policy and others was popular in the early studies on

IRL. The maximum entropy principle is well-founded in informa-

tion theory, and we review the related IRL methods in §4.4.3.

2. Should the reward function be linear or nonlinear to

the features? Although many IRL methods employ a reward

function linear to the features, complex tasks in robotics require

Table 4.1: Advantages and disadvantages of model-based and model-free methods
in inverse reinforcement learning. Model-based IRL methods can be more data-
efficient compared to model-free methods. However, it is challenging to apply model-
based IRL methods to systems with nonlinear dynamics. Model-free IRL methods
have been applied to systems with nonlinear dynamics.

Model-free Model-based

Advantages

Applicable to systems
with nonlinear and un-
known dynamics

Estimation of the trajec-
tory distribution is data-
efficient.

Disadvantages

It is necessary to sample
many trajectories to esti-
mate the trajectory distri-
bution.

Model learning can be
very difficult.
It is hard to apply to un-
deractuated systems.

Table 4.2: Objectives to obtain the unique solution in inverse reinforcement learn-
ing. The concept of maximizing the margin between the optimal policy and others
was popular in the early studies on IRL. The maximum entropy principle is a dom-
inant choice for recent IRL methods.

Objectives Employed by
Maximum margin [Ng and Russell, 2000, Abbeel and Ng, 2004,

Ratliff et al., 2006b,a, 2009, Silver et al., 2010,
Zucker et al., 2011]

Maximum entropy [Ziebart et al., 2008, Ramachandran and Amir,
2007, Choi and Kim, 2011b, Ziebart, 2010,
Boularias et al., 2011, Kitani et al., 2012,
Shiarlis et al., 2016, Ho and Ermon, 2016, Finn
et al., 2016b]

Other [Doerr et al., 2015, Arenz et al., 2016]
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a nonlinear reward function. On the other hand, IRL with the

reward function nonlinear to the features is more challenging

than IRL with the linear reward functions. Therefore, we need

to consider the most parsimonious representation of the reward

function among sufficiently expressive ones.

Table 4.3 shows categorization of the existing IRL methods. As

one can see, many IRL methods are model-based and use the

linear reward function. On the contrary, model-free methods with

nonlinear reward functions have not been investigated well.

In the next section, we review model-based IRL methods, and there-

after, we review model-free IRL methods.

4.4 Model-Based Inverse Reinforcement Learning Meth-

ods

In this section, we review model-based IRL methods, which leverage

prior knowledge about system dynamics.

Table 4.3: Categorization of existing inverse reinforcement learning methods. How-
ever, tasks such as manipulation in robotic applications require a nonlinear reward
function.

Model-free Model-based

Linear

reward
[Boularias et al., 2011,
Kalakrishnan et al., 2013]

[Abbeel and Ng, 2004,
Ratliff et al., 2006b, Silver
et al., 2010, Ramachan-
dran and Amir, 2007, Choi
and Kim, 2011b, Ziebart
et al., 2008, Ziebart, 2010,
Levine and Koltun, 2012,
Hadfield-Menell et al., 2016]

Nonlinear

reward
[Finn et al., 2016b, Ho and
Ermon, 2016]

[Ratliff et al., 2006a, 2009,
Silver et al., 2010, Grubb
and Bagnell, 2010, Levine
et al., 2011]
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Algorithm 15 IRL by expected feature matching [Abbeel and Ng,

2004]

Input: Dataset of the demonstrations D = {(xi, ui)}N
i=1, termina-

tion threshold ǫ

Randomly pick some policy πL
0

Compute µE using D
Perform rollouts and µL

0 = µ(πL
0 )

Set i = 1

repeat

Compute t = maxw:‖w‖
2
≤1 minj∈{0,...,i−1} w⊤(µE − µL

j )

Compute the optimal policy πL
i based on r(x) = w⊤φ(x)

Compute µL
i = µ(πL

i )

Set i ← i + 1

until ti < ǫ

return πi : i = 0, . . . , n

4.4.1 Feature Expectation Matching

Abbeel and Ng [2004] proposed to match the feature expectation in

order to solve IRL problems. If we assume the reward function is linear

w.r.t. the features, the reward function is given by

r(x) = w⊤φ(x), (4.1)

where φ(x) is the feature vector of the state x, and w is a weight

vector. Therefore, the expected reward of a policy π is given by

E[R|π] = E

[

T
∑

t=0

γ
t
r(xt)

∣

∣

∣

∣

∣

π

]

= E

[

T
∑

t=0

γ
t
w

⊤
φ(xt)

∣

∣

∣

∣

∣

π

]

= w
⊤
E

[

T
∑

t=0

γ
t
φ(xt)

∣

∣

∣

∣

∣

π

]

.

(4.2)

Abbeel and Ng [2004] defined the feature expectation of a policy π as

µ(π) = E

[

T
∑

t=0

γtφ(xt)

∣

∣

∣

∣

∣

π

]

∈ R
k . (4.3)

Using this notation the value of a policy can be rewritten as

E[R|π] = w⊤µ(π), (4.4)
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where R =
∑T

t=0 γtr(xt). Based on this matching of the feature ex-

pectation, Abbeel and Ng [2004] proposed to learn the policy from

demonstrations so as to maximize the difference between the optimal

policy and others. Maximization of the difference between the optimal

policy and others was formulated as a quadratic program. By iter-

atively updating the learned policy, the algorithm finds the optimal

policy close to the demonstrated policy. Algorithm 15 summarizes the

method in [Abbeel and Ng, 2004].

The matching feature expectation appears also in other IRL meth-

ods, such as Ziebart et al. [2008]. However, matching the expected

feature count is ambiguous since multiple policies can achieve the same

expected feature counts. Therefore, it is necessary to use additional

conditions that should be satisfied by the optimal policy.

4.4.2 Maximum Margin Planning

To obtain the unique solution in IRL, Ratliff et al. [2006b] proposed

maximum margin Planning (MMP). The idea of MMP is to find the

cost function that maximizes the difference between the optimal pol-

icy and others. MMP finds the cost function in which the cost of the

demonstrated trajectory C(τ demo) is lower than the cost of other al-

ternative trajectories C(τ ) by a certain margin. This constraint can be

expressed as

C(τ demo) ≤ C(τ ) − L(τ ), (4.5)

where L(τ ) is the loss function. If the loss function L(τ ) is large, the

cost difference between the demonstrated trajectory and other trajec-

tories is large. Since we need to consider only the minimizer of the

right-hand side of (4.5), (4.5) can be rewritten as

C(τ demo) ≤ min{C(τ ) − L(τ )}. (4.6)

In MMP in [Ratliff et al., 2006b], it is assumed that the cost function

is linear to the features of the trajectory as C(τ ) = w⊤φ(τ ) where w

is the weight and φ(τ) are the trajectory features. If the trajectory fea-

tures φ(τ) are linear to the state-action frequency counts µ ∈ R
|X ||U|,

φ(τ) is given by φ(τ ) = Fµ where F ∈ R
d×|X ||U| is the feature matrix.
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Likewise, if the loss function L(τ ) is linear to µ, the loss function of the

trajectory is given by L(τ ) = l⊤µ where l ∈ R
|X ||U| is the loss vector.

Given a training set D = {Fi, τ i, li}N
i=1, the problem of finding w can

be formalized as a quadratic program:

min
w,ζi

1

2
‖w‖2 +

1

N

N
∑

i=1

ζi (4.7)

s.t.∀i, w⊤φi(τ i) ≤ min
{

w⊤φi(τ ) − l⊤
i µ

}

+ ζi (4.8)

The slack variable {ζ}N
i=1 allows the violation of the constraints in a

similar manner as in support vector machines [Vapnik, 1998]. If we use

a slack variable ζi = w⊤Fiµi − minµ

{

w⊤Fiµ − l⊤
i µ

}

, the objective

function can be obtained as

LMMP(w) =
1

N

N
∑

i=1

(

w⊤Fiµi − min
µ

{

w⊤Fiµ − l⊤
i µ

}

)

+
λ

2
‖w‖ ,

(4.9)

which Ratliff et al. [2009] call the maximum margin objective where

λ > 0 is the regularization parameter.

For solving this problem, a method based on subgradients is used

in Ratliff et al. [2006b]. MMP assumes access to a MDP solver that

returns the optimal trajectory by solving the problem

τ ∗ = arg min C(τ ), (4.10)

where C(τ ) is the cumulative cost of the trajectory τ . MMP uses the

loss-augmented cost map C̃(τ ) = C(τ ) − L(τ ) to plan the trajectory.

Algorithm 16 summarizes the procedure of MMP.

The MMP framework was extended to LEARCH (LEArning to

seaRCH), which is a framework for learning nonlinear cost functions

efficiently [Ratliff et al., 2009, Silver et al., 2010, Zucker et al., 2011].

In LEARCH, exponential functional gradient descent was used for op-

timizing the maximum margin planning objective.

The policy obtained in MMP is based on efficient MDP solvers,

which generate deterministic optimal policies. However, robotic sys-

tems with large configuration space dimensionality often require a
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Algorithm 16 Maximum margin planning Ratliff et al. [2006b]

input: Training set D = {Fi, τ i, li}N
i=1, regularization parameter λ >

0, stepsize sequence {αt}, iteration T

while t < T do

for i = 1, ..., N do

Compute the loss-augmented cost map c̃i = w⊤Fi − l⊤
i

Compute the optimal trajectory τ ∗
i = arg min c̃iµ

Compute the state-action frequency couts µ∗
i

end for

Compute the subgradient g ∈ ∂LMMP(w)

w ← w − αtg

(Optional) Project w on to any additional constraint

t ← t + 1

end while

return w

stochastic policy and approximations in planning [Ratliff et al., 2009].

In the next section, we review the maximum entropy IRL by Ziebart

et al. [2008] that considers the distribution of the resulting trajectories.

4.4.3 Inverse Reinforcement Learning Based on the Maxi-
mum Entropy Principle

In recent studies on IRL, the maximum entropy principle [Jaynes, 1957]

is often used to obtain the unique reward function. In the following sec-

tion, we review IRL methods based on the maximum entropy principle.

4.4.3.1 Maximum Entropy Inverse Reinforcement Learning

As described in §4.1, the IRL problem is ill-posed because a policy can

be optimal for multiple reward functions. The max-margin approach

described in the previous section works well when there is a single

reward function that is clearly better than alternatives. However, in

other cases optimizing a distribution over behaviors may be preferable.

The maximum entropy principle [Jaynes, 1957] suggests to choose

a distribution that maximizes the entropy among the distributions
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that matches the feature expectations of the demonstrator [Dudík and

Schapire, 2006, Ziebart et al., 2008]. Following this principle, Ziebart

et al. [2008] proposed to learn a policy that maximizes the entropy

H(p(τ )) =
∑

p(τ ) ln
1

p(τ )
(4.11)

subject to the constraints

EπL [φ(τ )] = EπE [φ(τ )], (4.12)
∑

τ

p(τ ) = 1, ∀τ , p(τ ) > 0, (4.13)

where EπL [φ(τ )] is the expected feature count with respect to the

learner’s policy and EπE [φ(τ )] is the expected feature count with re-

spect to the expert’s policy.

Among the distributions that satisfy EπL [φ(τ )] = EπE [φ(τ )], the

maximum entropy distribution follows

p(τ ) ∝ exp (R(τ )) , (4.14)

where p(τ ) is the probability of the trajectory τ , and R(τ ) = w⊤φ(τ )

is the reward of τ . The parameter vector w is the Lagrangian multiplier

for the feature matching constraint. Hence, we can see that, due to the

feature matching constraint, the reward function is linear in the trajec-

tory features. The probability of the trajectory can hence be expressed

as

p(τ |w) =
1

Z(w)
exp

(

w⊤φ(τ )
)

, (4.15)

where Z(w) is the partition function given by Z(w) =
∑

τ exp
(

w⊤φ(τ )
)

.

However, Equation 4.15 only holds for deterministic environments.

For stochastic environments, the trajectory distribution is also affected

by the transition probabilities, i.e.,

p(τ |w) =
1

Z(w)
exp

(

w⊤φ(τ )
)

∏

xt+1,ut,xt∈τ

p(xt+1|ut, xt). (4.16)

The implication of this observation is that the agent is now trying to

optimize

R̃(τ ) = w⊤φ(τ ) +
∑

t

log p(xt+1|ut, xt),
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where we have a bias term due to the stochasticity of the environment.

This is one of the main theoretical drawbacks of maximum entropy

IRL, which is addressed by follow-up work such as the maximum causal

entropy IRL [Ziebart, 2010].

The parameter w of the reward can be obtained by maximizing the

likelihood of the observed data under the maximum entropy distribu-

tion as

w∗ = arg max
w

LME(w) = arg max
w

∑

τ demo

ln p(τ demo|w). (4.17)

Since maximizing the likelihood is equivalent to the M-projection, this

problem formulation can be interpreted as M-projection onto the mani-

fold of the maximum entropy distribution, which we discussed in §2.7.1.

Since the objective function LME(w) is convex, this optimization can

be solved using gradient-based methods. The gradient is given by the

difference between the empirical feature counts from demonstrations

and the expected feature counts from the learner’s policy as

∇LME(w) = EπE [φ(τ )] −
∑

τ

p(τ |w)φ(τ ) = EπE [φ(τ )] −
∑

xi

Dxi
φ(xi).

(4.18)

If φ(τ ) =
∑T

t=0 φ(xt), then the expectation over the state-features

φ(x) can be computed by estimating the expected state visitation fre-

quencies Dxi
of the current reward model, at least in discrete domains.

For computing these frequencies, a backward-forward message passing

algorithm can be used. Algorithm 17 summarizes the procedure for

computing the state visitation frequencies.

Although the maximum entropy IRL proposed by Ziebart et al.

[2008], Rust [1994] works well in MDP problems, it assumes that the

state transition distribution is known, which is not the case in many

robotic applications. Sampling-based or model learning extensions must

be applied for problems where the model is not specified.
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Algorithm 17 Expected edge frequency calculation [Ziebart et al.,

2008]

Backward pass

Set Zxterminal
= 1

Recursively compute for N iterations

Zui,j
=

∑

k p(xk|xi, ui,j) exp(R(xi|w))Zxk

Zxi
=

∑

j Zui,j

Local action probability computation

p(ui,j |xi) =
Zui,j

Zxi

Forward pass

Set Dsi,t = p(xi = xinitial)

Recursively compute for t = 1 to N

Dxk,t+1 =
∑

xi

∑

ui,j
Dxk,tp(ui,j |xi)p(xk|xi, ui,j)

Summing frequencies

Dxi
=

∑

t Dxi,t

4.4.3.2 Maximum Causal Entropy Inverse Reinforcement

Learning

In order to fix the theoretical drawbacks of max-ent IRL in case of

stochastic dynamics, Ziebart [2010] proposed to use the maximum

causal entropy for IRL. The key idea of the causal entropy is that

action choices need to be causal, i.e., the action selection at time step

t needs to be independent from future states in the trajectory. Using

these insights, a new algorithm can be developed that also incorporates

the stochasticity of the dynamics in the reward estimation. Contrary

to maximum entropy IRL, maximum causal entropy IRL removes the

“bonus entropy” that is due to the stochastic dynamics of an envi-

ronment itself. This prevents learning policies that simply attempt to

target areas in state-space of high stochasticity.

Maximum causal entropy IRL Ziebart [2010], tries to find the pol-

icy π∗(u|x), which maximizes the causal entropy H(u1:T ||x1:T ) of the

actions given the states, i.e,

π∗(u|x) = argmax
πL(u|x)

H(u1:T ||x1:T ) (4.19)
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subject to the constraint of feature expectation matching

EπL [φ(τ )] = EπE [φ(τ demo)],
∑

u

πL(u|x) = 1, πL(u|x) ≥ 0 , (4.20)

where the feature function φ(τ ) =
∑

t φt(xt, ut) is given by the sum

over state-action features. The causal entropy is defined as

H(u1:T ||x1:T ) =
T

∑

t=1

H(ut|u1:t−1, x1:t) (4.21)

= −
T

∑

t=1

∑

u1:t,x1:t

p(u1:t, x1:t) ln (π(ut|x1:t, u1:t−1)) ,

where H(ut|u1:t−1, x1:t) is the conditional entropy and p(u1:t, x1:t) is

the joint distribution over all states and actions until time step t. Con-

trary to the conditional entropy H(u1:T |x1:T ), that is implicitly used

in standard max-ent IRL, the causal entropy H(u1:T ||x1:T ) conditions

action choices at time step t only on states until time step t, while the

conditional entropy would make the action choice also dependent on

future states (i.e., it ignores the causality).

Under the assumption that the system is Markovian,

p(xt|x1:t−1, u1:t−1) reduces to p(xt|xt−1, ut−1), and π(ut|x1:t, u1:t−1)

reduces to π(ut|xt). Causal entropy can be maximized using dynamic

programming [Ziebart, 2010] resulting in equations similar to those

found in soft value-iteration methods.

4.4.3.3 IRL from Failed Demonstrations

Although the usual aim of inverse reinforcement learning is to learn an

optimal policy from demonstrated successful trajectories, failed demon-

strations also contain information that can be used for learning. Shiarlis

et al. [2016] extends the maximum causal entropy IRL [Ziebart, 2010]

method to learning from failed demonstrations. When using the max-

imum entropy approach for learning from successful demonstrations,

the learned feature expectations should be similar to the demonstrated

ones. In order to take failed demonstrations into account, Shiarlis et al.
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[2016] modifies the maximum causal entropy IRL [Ziebart, 2010] opti-

mization problem so that the optimized policy favors trajectories with

features which are dissimilar to the features found in failed demonstra-

tions

max
πL(u|x),w,z

H(u1:T ||x1:T ) +
K

∑

k=1

wkzk − λ

2
||w||2 (4.22)

subject to

EπL(u|x)[φ(τ S)] = EπE [φ(τ demo
S )],

EπL(u|x)[φ(τ F)] − EπE [φ(τ demo
F )] = zk,

∑

u

πL(u|x) = 1 , πL(u|x) ≥ 0 ,

where λ is a constant, K is the number of features, and w are fea-

ture weights to optimize. While the original maximum causal entropy

approach used only features of successful demonstrations φ(τ demo
S ) the

approach of Shiarlis et al. [2016] uses also failed demonstration features

φ(τ F). The term
∑K

k=1 wkzk favors large distances between policy gen-

erated features and features in failed demonstrations. λ
2 ||w||2 is a reg-

ularization term to keep w small enough. In order to find a solution to

the program in Equation 4.22, Shiarlis et al. [2016] performs gradient

ascent to find the feature weights while incrementally decreasing λ until

hitting a λ threshold. The idea in this procedure is to first emphasize

finding good weights for successful demonstrations and then focus on

finding weights for failed demonstrations.

4.4.3.4 Connection of Maximum Entropy Methods to Eco-

nomics

For discrete MDPs, the Boltzmann policy form and closely-related dy-

namic programs have been developed in the econometrics community

under the rubric of “structural estimation” from a completely different

analysis. Notably, Rust [1994] derived predictive distributions of agents’

actions by developing a framework for learning cost functions and pre-

dictive stochastic policies for agents acting according to a Markov De-

cision Process. Intriguingly, the MaxEnt policy structure and the dy-

namic programming algorithms derived from the maximum entropy
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formulation arise as well by considering an economist with only partial

access to the prediction problem and including random “shocks” in a

model of what would otherwise be optimal behavior. These close con-

nections between operations research (“structural estimation”), con-

trol theory (“inverse optimal control”) and machine learning (“inverse

reinforcement learning”) deserve much deeper investigation and better

cross-fertilization between communities.

4.4.4 Miscellaneous Important Model-Based IRL Methods

Although the maximum entropy principle is becoming dominant in

recent studies on IRL, various other model-based IRL methods have

been proposed. We review some of them in the following sections.

4.4.4.1 Linearly-Solvable MDPs

The linearly-solvable MDP approach of Dvijotham and Todorov [2010]

differs from standard inverse reinforcement learning approaches since

it estimates a value function instead of a reward or cost function. A

reward function can be used to optimize a policy under different system

dynamics but a value function may require system dynamics similar to

those used for learning the value function.

The linearly-solvable MDP approach of Dvijotham and Todorov

[2010] is designed to not require solving an MDP repeatedly. Dvi-

jotham and Todorov [2010] assume a special kind of linearly-solvable

MDP where the system dynamics are divided into passive dynamics

and policy specific active dynamics. The cost function is a combination

of state specific cost c(x) and the cost on the difference between passive

dynamics p(xt+1|xt) and policy specific dynamics π(xt+1|xt):

c(xt, π) = c(xt) + DKL(π||p) . (4.23)

While the maximum entropy approach of [Ziebart et al., 2008] prefers

exponentially larger rewards, Dvijotham and Todorov [2010] prefers

exponentially larger value functions of the next state which is influenced

by the policy π:

π(xt+1|xt) =
p(xt+1|xt)z(xt+1)

Z
, (4.24)
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where z(xt+1) = exp (V (xt+1)) is the desirability function, Z is for

normalization, and V (xt+1) is the value function. Note that the pol-

icy π(xt+1|xt) is a scaled version of the passive transition probabilities

p(xt+1|xt). The IRL problem is then to estimate the value function

from state transition samples. Dvijotham and Todorov [2010] finds the

maximum likelihood value function from an unconstrained convex op-

timization problem. The advantage of the approach is that it does not

require solving the MDP repeatedly. Disadvantages are that in continu-

ous states spaces Dvijotham and Todorov [2010] needs to approximate

the value function which may be more challenging then approximating

reward functions which is the common approach in IRL. Moreover, a

learned reward function can be used under different dynamics while

this can be challenging for a value function which has been optimized

for specific application dynamics.

4.4.4.2 IRL Methods Based on a Bayesian Framework

The Bayesian framework is a powerful tool in machine learning which

allows updating the current hypothesis based on new evidence. Ra-

machandran and Amir [2007] proposed an IRL method based on the

Bayesian framework. In this framework, the action of the expert is

considered as evidence that can be used to update a prior on reward

functions. As in [Ziebart et al., 2008], a (different) log-linear distribu-

tion is assumed, and the posterior probability of the reward function

can be computed using Bayes theorem as

p(R|τ ) =
p(τ |R)p(R)

p(τ )
=

1

Z
exp(αE(τ , R))p(R), (4.25)

which can be considered as a Boltzmann-type distribution with energy

E(τ , R). Computing the mean of this posterior distribution requires

to recover the reward function and to learn the optimal policy from

demonstrations. In the study by Ramachandran and Amir [2007], an

MCMC algorithm was used to generate samples from distributions and

the sample mean was used as an estimate of the mean of the true

distribution.

Instead of computing the posterior mean, Choi and Kim [2011b]

proposed to use maximum-a-posterior(MAP) inference. The IRL prob-
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lem with MAP inference can be formulated as finding the reward func-

tion RMAP that maximizes the posterior

RMAP = arg max
R

p(R|D) = arg max
R

[ln p(D|R) + ln p(R)] , (4.26)

where D = {(xt, ut)} is a set of state-action pairs demonstrated by

the expert. The likelihood p(R|D) can be interpreted as a measure

of the compatibility of the reward function R with the demonstrated

behavior data D. For solving this problem, the method in Choi and

Kim [2011b] used gradient-based optimization. Choi and Kim [2011b]

suggested that MMP, Maximum entropy IRL, and other IRL methods

can be interpreted in a Bayesian framework.

4.4.5 Learning Nonlinear Reward Functions

While research on inverse reinforcement learning originally focused

mostly on learning reward functions linear with respect to feature vec-

tors [Abbeel and Ng, 2004, Ziebart et al., 2008, Ratliff et al., 2006a,

Boularias et al., 2011], many tasks, for example in robotics, require non-

linear reward functions [Silver et al., 2010, Ratliff et al., 2006b, Grubb

and Bagnell, 2010, Levine et al., 2011, Finn et al., 2016b]. We discuss

below such model-based approaches for modeling nonlinear rewards.

4.4.5.1 Boosting Methods

The earliest approaches to rich reward function learning from model

classes with high representational power was the use of gradient-

boosting. These methods, typified by Ratliff et al. [2006b], Silver et al.

[2010], Ratliff et al. [2009] can use arbitrary supervised learning algo-

rithms in an ensemble to create highly non-linear cost functions. This

approach has been used to learn locomotion strategies by demonstra-

tion Zucker et al. [2011] as well as to learn to match the real-world,

rough, terrain driving strategies Silver et al. [2010, 2016, 2013]. These

are among the easiest and most general approaches to implement, and

an example of their use is discussed in 4.8.2.
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4.4.5.2 Deep Network Methods

Deep neural approaches to complex IRL cost functions were first

demonstrated in Grubb and Bagnell [2010], Bradley [2010]. These ap-

proaches both build on the maximum margin formalism (although ap-

ply equally to related ones like Maximum Entropy), and use variants

of backpropagation to learn sophisticated cost functions from demon-

strations for interpreting sensor data.

4.4.5.3 Gaussian Process IRL

To learn a nonlinear reward function, Levine et al. [2011] use a Gaus-

sian Process (GP) approach based on the maximum entropy princi-

ple [Ziebart et al., 2008]. The original maximum entropy based ap-

proach Ziebart et al. [2008] uses linear reward features for the reward

function. Levine et al. [2011] use GP inverse reinforcement learning

(GPIRL) to represent a reward function which is nonlinear in the fea-

tures. In general, a GP [Rasmussen and Williams, 2006] defines a proba-

bility distribution over possible outputs given some input coordinates,

and, kernel hyperparameters define the actual shape of the GP. In

GPIRL, the kernel hyperparameters θ define the shape of the reward

function, manually chosen feature coordinates φu correspond to input

coordinates, outputs correspond to demonstrated actions, and a GP

models the probability distribution over true actions u. The probabil-

ity distribution over u and θ is

p(u, θ|D, φu) ∝
[∫

r
p(D|r)p(r|u, θ, φu)dr

]

p(u, θ|φu) , (4.27)

where p(D|r) is the distribution over demonstrated trajectories and is

given by the maximum entropy principle yielding trajectories exponen-

tially more likely closer to larger rewards. p(r|u, θ, φu) is the condi-

tional GP posterior reward probability, and p(u, θ|φu) is the prior GP

probability for u and θ. In order to compute 4.27, Levine et al. [2011]

use several approximations. The choice of φu is particularly important

since it has a large impact on both whether the solution covers the

true reward function and on the computational requirements: GPs are

computationally intensive because of the required covariance matrix
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inversion where the size of the matrix depends on input space size.

4.4.6 Guided Cost Learning

Recently, Finn et al. [2016b] extended the use of non-linear neural cost

function approach described above Grubb and Bagnell [2010] using an

adaptive sampling scheme rather then an analytic approximation as

the policy optimization step in an unknown Markov Decision Process.

In order to solve the cost function non-uniqueness problem as well as

imperfect demonstration, Finn et al. [2016b] use the popular maximum

entropy principle Ziebart et al. [2008]. For optimizing a policy and

learning the cost function, the approach of Finn et al. [2016b] repeats

two steps: 1) updates the cost function based on samples from both

the policy and demonstrations, 2) updates the policy based on the new

cost function.

Guided cost learning finds the maximum likelihood solution un-

der the maximum entropy principle as in [Ziebart et al., 2008]. Under

the maximum entropy assumption, the probability distribution of the

trajectory τ is given by p(τ ) = 1
Z

exp(−cw(τ )), where cw is the cost

function parameterized with a vector w. The objective function LGCL

of the guided cost learning is given by the negative log-likelihood of the

maximum entropy distribution

LGCL =
1

N

∑

τ j∈Ddemo

cw(τ i) + ln Z (4.28)

≈ 1

N

∑

τ i∈Ddemo

cw(τ i) + ln
1

M

∑

τ j∈Dsamp

exp(−cw(τ j))

q(τ j)
, (4.29)

where Ddemo is the set of demonstrated trajectories, Dsamp is the set of

samples, and q is the distribution from which the τ j is sampled. The

gradient of the cost cw with respect to the parameter can be efficiently

computed when the cost is represented by a neural network.

Algorithm 18 summarizes the approach. In more detail, at each it-

eration, Finn et al. [2016b] samples additional trajectories using the

current policy and a black box simulator. Next, the cost function is up-

dated based on all sampled trajectories and the demonstrations. The

parameters of the neural network, representing the cost function, are
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Algorithm 18 Guided cost learning Finn et al. [2016b]

Initialize qk(τ ) at either a random initial controller or from demon-

strations

for iteration i = 1 to I do

Generate samples Dtraj from qk(τ )

Append samples: Dsamp ← Dsamp ∪ Dtraj

Use Dsamp to update the cost cw using Algorithm 19

Update qk(τ ) using Dtraj and the method from Levine and Abbeel

[2014] to obtain qk+1(τ )

end for

return optimized cost parameters w and trajectory distribution

q(τ )

updated based on the gradient computed using the exponential cost

typical for maximum entropy based approaches. For updating the pol-

icy based on the new cost function and samples, Finn et al. [2016b]

uses a constrained version of linear quadratic regular (LQR) based

trajectory optimization together with linearizing dynamics of local ap-

proximate Gaussian distributions estimated from the samples [Levine

and Abbeel, 2014].

The approach of Finn et al. [2016b] has several interesting proper-

ties. Firstly, the policy optimization part of the approach is designed for

smooth continuous trajectories found e.g. in robotics. Secondly, the ap-

proach requires a black box simulator but no explicit dynamics model.

Recently, Finn et al. [2016a], Ho and Ermon [2016] identified the

close connection between Inverse Reinforcement Learning and the more

recent generative adversarial networks [Goodfellow et al., 2014]. In gen-

erative adversarial networks, a generative model G is trained to gen-

erate data samples so as to mimic the true data distribution, while

the discriminator D is trained to discriminate the data generated by

G and the true data. These works demonstrate that optimization/RL

play the role of a generator while the learned cost function plays the

role of a discriminator, albeit with the generalization of applying to

any trajectory a system could take. This viewpoint sheds light on the
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Algorithm 19 Nonlinear IOC with stochastic gradients [Finn et al.,

2016b]

for iteration k = 1 to K do

Sample demonstration batch D̂demo ⊂ Ddemo

Sample background batch D̂samp ⊂ Dsamp

Append demonstration batch to background batch

D̂samp ← D̂demo ∪ D̂samp

Estimate dLGCL

dw
(w) using D̂demo and D̂samp

Update parameters w using gradient dLGCL

dw
(w)

end for

return optimized cost parameters w

instabilities of GANs and the potential power of combining algorithms

used in each field.

4.5 Model-Free Inverse Reinforcement Learning Meth-

ods

In robotics and other application fields, exact dynamics models are of-

ten difficult to come by. Model-free IRL methods side step the problem

by not requiring such prior knowledge. Model-free IRL methods often

employ sampling-based approaches to estimate the trajectory distribu-

tion. Although this approach requires many samples of trajectories in

the learning process, it avoids the explicit learning of system dynamics.

4.5.1 Relative Entropy Inverse Reinforcement Learning

Although model-based IRL methods assume that the system dynam-

ics, e.g. state transition probability, is known, model-free IRL methods

do not require such prior knowledge on the system dynamics. Relative

entropy IRL in [Boularias et al., 2011] is one of such model-free IRL

methods. Boularias et al. [2011] proposed to minimize the relative en-

tropy between a prior trajectory distribution q0(τ ) induced by a base-

line policy and the trajectory distribution p(τ ) induced by the learner’s

policy. For minimizing the relative entropy without prior knowledge of
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the system dynamics, importance-sampling is used to estimate the ex-

pected feature count in [Boularias et al., 2011]. Relative entropy IRL

also assumes that the reward is given as a linear function of the fea-

ture vector as R(τ ) = w⊤φ(τ ). This problem can be formulated as

minimizing the relative entropy

min
∑

p(τ ) ln
p(τ )

q0(τ )
, (4.30)

subject to the constraints

∀i ∈ {1, ...k}, |EπL [φi(τ )] − EπE [φi(τ )]| ≤ ǫi, (4.31)
∑

τ∈T

p(τ ) = 1, (4.32)

∀τ ∈ T , p(τ ) ≥ 0, (4.33)

where EπE [φi(τ )] is the empirical expectation of the ith feature vec-

tor calculated from demonstrations, EπL [φi(τ )] =
∑

τ p(τ )φi(τ ) is the

expectation of the feature vector with respect to the learner’s policy,

k is the number of features, T is a set of feasible trajectories, and the

threshold ǫi is calculated by using Hoeffding’s bound. The Lagrangian

of this problem is given by

LRE(p, w, η) =
∑

p(τ ) ln
p(τ )

q0(τ )
− w⊤

(

∑

τ

p(τ )φ(τ ) − EπE [φ(τ )]

)

−
k

∑

i=1

|wi|ǫi + η

(

∑

τ∈T

p(τ ) − 1

)

.

(4.34)

The dual problem is given by maximizing the dual function

gRE(w) = w⊤
EπE [φ(τ)] − ln Z(w) −

k
∑

i=1

|wi|ǫi. (4.35)

This dual problem can be solved by using a sub-gradient-based method

and importance sampling in Boularias et al. [2011]. Since the expected

feature count is estimated through sampling, this method can be ap-

plied to a system with unknown dynamics.
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Algorithm 20 Generative adversarial imitation learning

Input: Expert trajectories D = {τ i}N
i=1, initial policy and discrimi-

nator parameters θ0, w0

for iteration i = 1 to K do

Sample Trajectories τ i ∼ πL
i

Update the discriminator parameters from wi to wi+1 with the

gradient

EπL
i

[∇w ln(Dw(s, a))] + EπE [∇w ln (1 − Dw(s, a))]

Update a policy πL
i using the TRPO rule with the cost func-

tion ln(Dwi+1
(s, a)), which takes a KL-constrained natural gra-

dient step with

EπL
i

[

∇θ ln πL(u|x)Q(x, u) − λ∇θH(πL)
]

,

where Q(x̄, ū) = EπL
i

[

ln
(

Dwi+1
(x, u)

) |x0 = x̄, u0 = ū
]

end for

return optimized policy parameters θ

4.5.2 Generative Adversarial Imitation Learning

Recently, Ho and Ermon [2016] proposed generative adversarial imita-

tion learning (GAIL) by leveraging the connection noted above between

GANs [Goodfellow et al., 2014] and IRL. 1 This viewpoint enables con-

straining the behavior of the agent to be approximately optimal ac-

cording to an unknown reward function without explicitly attempting

to recover that reward function.

Ho and Ermon [2016] trained a policy that reproduces the expert’s

behavior and a discriminator that distinguishes trajectories induced by

the learner’s policy from trajectories demonstrated by the expert. The

state-action occupancy induced by the expert’s policy in GAIL is anal-

ogous to the true data distribution in GANs. Algorithm 20 summarizes

GAIL. Ho and Ermon [2016] indicated that IRL is a dual of the occu-

pancy measure matching under the maximum entropy principle. Based

1GAIL [Ho and Ermon, 2016] cannot be fully classified as an IRL approach since
GAIL does not recover the reward function. However, we introduce the study [Ho
and Ermon, 2016] in the IRL section since it is relevant to the concept of IRL.
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on this consideration, the objective function

LGA = EπL
θ

[ln(Dw(x, u))] − EπE [ln(1 − Dw(x, u))] − λH(πL
θ ) (4.36)

is optimized to match the occupancy measure, where πL
θ is the learner’s

policy parameterized with θ, Dw is the discriminator network parame-

terized with w, H(πL
θ ) ≡ EπL

θ

[− ln πL
θ (u|x)] is the γ-discounted causal

entropy of the policy πL
θ in [Bloem and Bambos, 2014]. Through op-

timizing LGA, the discriminator network Dw and the policy πL
θ are

trained. Here, trust region policy optimization (TRPO) proposed by

Schulman et al. [2015] is used to optimize LGA with respect to the pol-

icy parameter θ. TRPO employs the constraint between the current

and updated policies in order to avoid unstable policy updates. For

this purpose, the KL divergence is used as a measure of the dissimilar-

ity of policies in TRPO.

Recent work by Baram et al. [2017] extended GAIL to the model-

based approach. Baram et al. [2017] proposed to make the computation

for training a stochastic policy fully differentiable by using a forward

model. The empirical results show that the model-based GAIL outper-

forms the model-free GAIL in continuous control tasks. In addition, the

work by Henderson et al. [2018] extended GAIL to the option frame-

work for a hierarchical policy.

4.6 Interpretation of IRL with the Maximum Entropy

Principle

As we have seen so far, many IRL methods iteratively estimate the

reward function to make the demonstrations appear more optimal than

other policies, then update the policy under the updated reward func-

tion, and execute the policy to get more samples which the reward

function attempts to distinguish. This process is summarized in Fig-

ure 4.1. To obtain the unique solution of the “ill-posed” IRL problem,

the maximum entropy principle is often used. Here, we discuss the in-

terpretation of IRL with the maximum entropy principle.

Let us consider a prior trajectory distribution p0(τ ) and the tra-

jectory distribution p(τ ) induced by the learner’s policy. Information
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Data manifold Policy model manifold

Execute the learned policy

Update the policy

Estimate the 

reward function

Figure 4.1: Illustration of many IRL approaches. Such IRL methods iteratively
estimate the reward function to make the demonstrations appear more optimal
than the current policy, then update the policy under the new reward function, and
execute the policy virtually or physically to get more samples which the reward
function attempts to distinguish.

geometry suggests to minimize the KL divergence DKL(p(τ )||p0(τ ))

from p(τ ) to p0(τ ) [Amari, 2016]. The maximum entropy principle in

[Jaynes, 1957] suggests to choose a distribution that maximizes the

entropy among the distributions that achieve at least the same total

reward. Entropy H(p(τ )) is defined as

H(p(τ )) ≃
∑

p(τ ) ln
1

p(τ )
, (4.37)

whereas the KL divergence DKL(p(τ )||p0(τ )) is defined as

DKL(p(τ )||p0(τ )) ≃
∑

p(τ ) ln
p(τ )

p0(τ )
. (4.38)

Therefore, maximizing the entropy H(p(τ)) is equivalent to minimizing

the KL divergence DKL(p(τ )||p0(τ )) under the assumption that p0(τ )

is the uniform distribution. Alternate prior distributions can be easily

taken into account by simply adding a “feature” that is log p0(τ ) either

with a weight fixed to 1.0 or allowed to adapt and learn.

The maximum causal entropy distribution [Ziebart et al., 2013] can

be understood to assume to remove the effects of stochastic dynamics

as well. For learning tasks involving physical systems, it is often desir-

able to consider alternate p0(τ ), particularly by exploiting information
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in the system dynamics. For this reason, Dvijotham and Todorov [2010]

proposed to use the trajectory distribution induced by the passive dy-

namics p(xt+1|xt) of the system as the KL divergence term p0(τ ) of

the cost function. Kalakrishnan et al. [2013] also approximated a trajec-

tory distribution using trajectories sampled from the system dynamics.

These methods consider the passive dynamics of the system in their

problem formulation.

The relative entropy IRL approach by Boularias et al. [2011] at-

tempts to minimize the KL divergence DKL(p(τ )||p0(τ )), with feature

matching constraints. By using importance sampling, the expected fea-

ture counts are approximated without prior knowledge of the system

dynamics. Since the trajectories sampled from the actual system fol-

low the system dynamics, we can consider that the expected feature

counts approximated using importance sampling implicitly encode the

system dynamics. Arenz et al. [2016] use the M-projection to obtain

the data state distribution analytically, and then use the I-projection

to obtain the policy given the analytic model of the data distribution.

Methods that directly try to minimize the KL to the data distribution

DKL(p(τ )||qdemo(τ )), where qdemo(τ ) is the trajectory distribution in-

duced by the expert policy, have not been widely researched in imitation

learning to our knowledge. However, some recent research shows that

any f -divergence can be minimized [Nowozin et al., 2016] in GANs and

given the close connection to IOC methods we expect that investiga-

tions into this area may be profitable.

4.7 Inverse Reinforcement Learning under Partial Ob-

servability

Partial observability is common in robotics and other domains due to

sensor noise and occlusions caused by objects, robots, humans, and

the environment. Moreover, the whole process of IRL can be seen as

a process where the agent has incomplete observations about the true

reward function. Here, we discuss the cases when the expert and learner

make partial observations, and, the case of formally framing IRL as

the learner making partial observations about the reward function.

Section 4.7.1 discusses the case when the learner partially observes
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the demonstrations, Section 4.7.2 then discusses the case when the ex-

pert makes partial observations when performing demonstrations, Sec-

tion 4.7.3 describes how IRL can be framed as a partially observable

Markov decision process, and Section 4.7.4 discusses a model for opti-

mizing the behavior of both the expert and learner when the reward

function is partially observable.

4.7.1 IRL from Partially Observable Demonstrations

Recently, inverse reinforcement learning with partially observable ex-

pert demonstrations has gained interest in vision research [Kitani et al.,

2012] and robotics [Boularias et al., 2012, Bogert and Doshi, 2014, 2015,

Bogert et al., 2016].

Noisy sensors are a common source of partial observability. To fore-

cast human activities from noisy images, [Kitani et al., 2012] extends

maximum entropy IRL [Ziebart et al., 2008] into domains where the

learner only partially observes expert demonstrations. To handle par-

tial observability, Kitani et al. [2012] proposes to use a hidden variable

Markov decision process (hMDP). In hMDP, observation probabilities

are part of the joint maximum entropy state-observation probability

distribution

p(τ |o, θ) ≈ exp(w⊤φ′
τ )

Z(w)
(4.39)

which is similar to the maximum entropy IRL trajectory probability

distribution in (4.15), but, the state features φ′
τ in (4.39) include the

logarithm of the probability of the observations o. For simplicity, in [Ki-

tani et al., 2012], the observation probability is Gaussian.

Boularias et al. [2012] deal with noisy features using a graphical

model based on Markov random fields (MRFs) that allows correlation

between actions of similar states. Intuitively, utilizing correlations re-

duces noise due to the smoothing effect on observations over similar

states. In many problems state similarity is easy to determine. For ex-

ample in navigation, Euclidean distance can be used as a similarity

measure. Boularias et al. [2012] demonstrate the approach in a simu-

lated navigation and in a simulated grasping task. One disadvantage

of the approach is that the algorithms presented in [Boularias et al.,
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2012] are computationally heavy.

Motivated by occlusions in robotic problems, Bogert and Doshi

[2014, 2015], Bogert et al. [2016] study the problem of reward learning

from partially occluded demonstrations. Moreover, the demonstrations

are performed by multiple experts. Contrary to [Natarajan et al., 2010],

the experts’ policies are not independent from each other but take other

experts into account. The methods developed in [Bogert and Doshi,

2014, 2015, Bogert et al., 2016] are based on maximum entropy IRL

[Ziebart et al., 2008]. To handle partial observability, Bogert and Doshi

[2014] simply do not consider occluded states and actions, but, instead,

compute feature expectations only for observable states. Bogert and

Doshi [2014] demonstrate the approach in multi-robot patrolling: the

learner has to find out the reward functions of patrolling robots in or-

der to plan a route around them. Bogert and Doshi [2015] consider also

uncertain transition functions. Instead of discarding partially observed

time steps, Bogert et al. [2016] follow a different approach by treating

missing data as hidden variables and presents an expectation maxi-

mization (EM) approach for a locally optimal solution. Bogert et al.

[2016] demonstrates the EM approach in a simulated reconnaissance

scenario with dynamically changing occlusions and shows how a robot

learns to perform a sorting task demonstrated by a human.

4.7.2 IRL with Incomplete Expert Observations

Usually the basic premise in IRL is that the expert observes the world

state fully. However, similarly to the learner, the expert may only

partially observe the world when demonstrating the task. Thus in-

stead of an MDP model a partially observable Markov decision process

(POMDP) model is needed for the expert. The formal POMDP model

is identical to the MDP model except that a POMDP additionally

includes observation probabilities conditioned on the next state and

current action. Policy computation for POMDPs is challenging com-

pared to MDPs. The same applies to IRL in POMDPs [Choi and Kim,

2011a]. Choi and Kim [2011a] extend classical IRL algorithms [Ng and

Russell, 2000, Abbeel and Ng, 2004] to two different POMDP settings:

1) learning from a given expert’s policy and 2) learning from expert
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trajectories. Learning from a given policy is a simpler problem than

learning from trajectories. Because of the computational difficulty the

demonstrations on benchmark problems are relatively simple.

4.7.3 Active Inverse Reinforcement Learning as a POMDP

With active inverse reinforcement learning we refer to learning the

reward function when the robot is able to influence the demonstra-

tions [Daniel et al., 2015]. An appealing way is to model the process of

active inverse reinforcement learning as a partially observable Markov

decision process (POMDP) where the reward function is a hidden

quantity which the agent partially observes. Solving the POMDP then

yields optimal actions for both gathering information about the reward

function and other task specific objectives. Computational methods

exist for both parametric [Dearden et al., 1999, Poupart and Vlas-

sis, 2008] and non-parametric [Doshi-Velez et al., 2012, 2015] learning

of the reward function when the IRL problem itself is modeled as a

POMDP. The main disadvantage of POMDPs is the high computa-

tional complexity. The current application of POMDPs for active IRL

in robotic applications is limited but an interesting avenue for future

work since POMDPs offer a principled way of modeling IRL. For exam-

ple, POMDPs do not suffer from the exploration-exploitation dilemma

which could be a useful property in active IRL.

4.7.4 Cooperative Inverse Reinforcement Learning

In the vein of the approaches discussed above, Hadfield-Menell et al.

[2016] frame the problem of IRL as learning a hidden reward func-

tion as a partially observable Markov decision process (POMDP).

Hadfield-Menell et al. [2016] define and study the cooperative inverse

reinforcement learning (CIRL) problem. A CIRL is a two player game

where the human observes the reward function but the robot not. Tra-

ditional IRL [Ng and Russell, 2000] assumes that the demonstrator is

acting based on an optimal policy. Hadfield-Menell et al. [2016] show

that in CIRL, the human may accept sub-optimal reward if it can

provide the robot with more information. CIRL defines optimal be-

havior for both the human and the robot when optimizing reward for
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the human. CIRL potentially leads to policies where human teaching

and robot learning are jointly optimized. Hadfield-Menell et al. [2016]

show that finding optimal policies for the human and robot in CIRL

corresponds to solving a POMDP. A drawback of the POMDP model

is that in practice exact optimal solutions for the model are hard to

come by but the POMDP model can be used as a theoretical tool and

a basis for practical solutions.

Hadfield-Menell et al. [2016] demonstrate the CIRL framework in

simple simulated scenarios. Considering more complicated robotic ex-

periments, the traditional way of IRL of performing close to optimal

demonstrations could be easier for a human compared to teaching a

robot optimally. In order to perform demonstrations which teach the

robot optimally, the human has to consider how the robot optimizes

learning in addition to the actual task being demonstrated.

4.8 Robot Applications with Inverse Reinforcement

Learning Methods

Inverse reinforcement learning has been used for tasks such as parsing

sentences Neu and Szepesvári [2009], car driving Abbeel and Ng [2004],

path planning Ratliff et al. [2006b], Silver et al. [2010], Zucker et al.

[2011], and robot motions Boularias et al. [2011], Finn et al. [2016b].

First, we review applications of model-based inverse reinforcement

learning methods. Since model-based IRL methods assume that the

dynamics of the system is available, they have been applied to prob-

lems where the system dynamics is completely known such as a driv-

ing simulator. Thereafter, we review applications of model-free inverse

reinforcement learning methods. Since model-free IRL methods do not

require prior knowledge of the system dynamics, they can be applied to

robotic tasks where the dynamics of a manipulator is hard to obtain.

4.8.1 Learning to Drive a Car in a Simulator

Simulating car-driving is a typical application which can be modeled

as an MDP problem. It is often assumed that the policy is stationary

(independent of time) and that the state-action space can be approx-
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Figure 4.2: Screen shot of the driving simulator used in [Abbeel and Ng, 2004]. A
time-invariant policy was learned using a model-based IRL method. Experimental
results show that a different driving style can be learning using different demonstra-
tion data.

imated by a set of discrete states and actions. Abbeel et al. demon-

strated the performance of IRL in a car-driving simulation shown in

Figure 4.3 [Abbeel and Ng, 2004]. In the car simulation, five actions

were available, three of which were to steer the car to one of the lanes,

and two of which were to drive off the road on the left or the right side.

The expert’s features were computed from a single trajectory of 1200

samples. In this experiment, different driving styles were demonstrated

by the expert. The results show that the method in [Abbeel and Ng,

2004] is able to imitate different driving styles.

4.8.2 Learning Path Planning with MMP

Ratliff et al. [2006b], Silver et al. [2010] apply maximum margin plan-

ning (MMP) and LEARCH for finding a path with minimum accu-

mulated cost (see Figure 4.3). Interestingly, from raw perceptual data,

lattice planners can be taught human-like rough terrain driving more

efficiently compared to manually programmed behavior Silver et al.

[2010]. LEARCH learns the cost as a function of features and the op-

timal path can be found by using classic motion planning methods on

the recovered cost function. The features of the MDP are based on

visual (images/lidar) input as shown in Figure 4.4. The learned cost
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Figure 4.3: The learning to search (LEARCH) approach for identifying a cost func-
tion has been applied to various robotic applications including learning rough terrain
navigation from sensor data. The approach iterates between building a discrimina-
tive classifier between states visited by the learner and the demonstrator, updating
the cost function with the discriminative classifier, and then using classical path
planning methods to identify a new proposed optimal plan.

Figure 4.4: Examples of path planning with LEARCH [Silver et al., 2010]. Top
figures show the satellite images and the bottom figures show the costs. The cost
function evolves from left to right in the learning process. The red line represents the
example path and the green represents the current plan. The learned cost function
reproduces paths more similar to the example path as the learning evolves. The
upper set of images shows the raw visual (camera) data being interpreted by the
learner, the lower images show the interpretation in terms of costs (white expensive,
dark low-cost).
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Figure 4.5: Learning house-keeping tasks in [Finn et al., 2016b]. Tasks that require
a nonlinear reward function and a complex policy were learned using guided cost
learning.

function reproduces paths incrementally more similar to the example

path as the learning evolves. MMP and LEARCH have been applied to

various robotic systems, including footstep planning for a quadruped

robot [Zucker et al., 2011].

4.8.3 Learning Motion Planning with Deep Guided-Cost
Learning

Learning manipulation tasks often requires nonlinear reward functions.

Finn et al. [2016b] applied guided cost learning to house-keeping tasks

such as moving dishes and pouring water shown in Figure 4.5. Demon-

strations were recorded using kinesthetic teaching with a PR2 robot.

As we described in §4.4.6, guided cost learning uses a neural network

to represent the reward function. The state of the system was rep-

resented by vision-based features obtained by using an unsupervised

learning method [Finn et al., 2016b]. The experimental results show

that guided cost learning can be used to learn robotic manipulation

tasks that require a nonlinear reward function under unknown dynam-

ics.
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Figure 4.6: Learning ball-in-the-cup in [Boularias et al., 2011]. The KL divergence
between the expert policy and the learner’s policy was minimized using a sampling-
based method.

4.8.4 Learning a Ball-in-a-Cup task with Relative Entropy
Inverse Reinforcement Learning

Learning robotic tasks with an underactuated manipulator is non-

trivial because the dynamics of the system is hard to estimate. Since

model-based IRL methods require an accurate model of the system

dynamics, applying model-based IRL methods to such tasks can be

challenging. Boularias et al. [2011] applied the model-free Relative En-

tropy Inverse Reinforcement Learning (RE-IRL) approach to the Ball-

in-a-cup task with an underactuated robot shown in Figure 4.6. A hu-

man demonstrated the ball-in-a-cup motion 17 times, and the motions

were recorded using a 3D motion capture system. Robotic simulations

showed successful learning of the demonstrated motion.
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Challenges in Imitation Learning for

Robotics

We have surveyed the state of the art in imitation learning for robotics.

Although imitation learning has progressed rapidly, it is clear that there

are still many problems and challenges which need to be investigated.

In this section, we highlight open questions and technical challenges in

imitation learning.

5.1 Behavioral Cloning vs Inverse Reinforcement Learn-

ing

Behavioral cloning (BC) and inverse reinforcement learning (IRL)

methods form the two major classes of imitation learning methods.

As discussed in § 2, “BC vs IRL” is the first question that one needs

to answer when applying imitation learning to the problem at hand.

Recovering the reward function can be interpreted as inferring the

expert’s intent since the reward function encodes the objective for the

desired task. For example, when learning from a sequence of images

without kinematic information of the expert, it is not clear how to ap-

ply behavioral cloning. In such a case, we need to infer what is desired

by the expert and then estimate a policy to achieve the inferred goal.

152
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For example, to address the problem of imitation from observation, the

recent work by Sermanet et al. [2017] and Liu et al. [2017] proposed

methods for recovering the reward function from visual features ex-

tracted by deep neural networks. Thus, IRL is a reasonable choice for

such problems where inference of the expert’s intent is necessary even

if the policy itself is more compact than a reward function.

When both behavioral cloning or inverse reinforcement learning can

be applied to a given problem, it is essential to consider “what is the

most parsimonious description of the desired behavior, reward or pol-

icy?”. Ho and Ermon [2016] recently indicated that under the maxi-

mum entropy assumption recovering the reward function is the dual

of matching the expectation of states and actions. This implies that

BC and IRL can be equivalent under certain assumptions since BC

methods learn a policy by matching the expectation of states and ac-

tions and IRL methods learn a policy based on the reward function

recovered by matching the expectation of states and actions. Since IRL

recovers the “hidden” reward function, IRL often adds complexity to

the solution approach compared to BC. Thus, in order to select BC or

IRL, it is essential to clarify whether recovering the reward function is

beneficial or not.

For instance, recovering a reward function for a manipulation task

is often difficult since it is not trivial to extract features of the given

scene which are relevant to the task. On the other hand, the distri-

bution of the demonstrated trajectories for manipulation can be often

learned without recovering the reward function. When the distribution

of necessary trajectories can be predicted for a given context, the task

can be performed without any knowledge about the reward function of

the task. In this case, the distribution of the demonstrated trajectories

can be considered a parsimonious description of the desired behavior.

As another example, learning a reward function for footstep plan-

ning for a quadruped robot enables generalizing the footstep planning

strategy to different terrains. If the reward function that tells “which

footstep location is stable” is recovered, footstep locations can be adap-

tively selected based on this criteria. Such generalization is hard to ob-

tain if we only learn the distribution of the footstep locations. In this
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case, the reward function is considered a parsimonious description of

the desired behavior, which enables good generalization of skills.

Overall, the answer to the question “BC vs IRL” totally depends

on the problem setting. It is essential to analyze what and how the task

should be performed when applying imitation learning methods.

5.2 Open Questions in Imitation Learning

We have discussed the state of the art in imitation learning in this

survey. Although imitation learning methods so far have demonstrated

great capability, it is clear that there still exists several challenges to be

solved. In this section, we highlight open questions in imitation learning

and try to clarify what problems need to be solved.

5.2.1 Problems Related to Demonstrated Data

The first step of imitation learning is to collect expert demonstration

data. However, it is often not trivial to obtain appropriate data to

achieve satisfactory performance in imitation learning. Below we list

questions related to data collection.

How to learn from multiple experts? It is known that imitation

learning methods work well for demonstrations performed by one

expert rather than multiple experts [Camacho and Michie, 1995].

Therefore, when multiple human experts give instructions to a robotic

system, one could extract one expert from multiple experts. However,

this problem has not been sufficiently addressed.

How to deal with undesirable motions in demonstrations?

Many imitation learning methods assume that demonstrated behavior

is (sub-)optimal. However, in practice, demonstrated behavior often

contains undesirable motions which may may result in low performance

policies. To address this issue, reinforcement learning can be used to

improve the learned policy [Kober et al., 2013, Mnih et al., 2015, Silver

et al., 2016]. Nevertheless, explicitly detecting unnecessary motion and

removing it from demonstrated behavior is still an open problem.
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How to learn from raw sensory inputs without embodiment

information? When learning only from vision we cannot directly

measure the kinematic information of the expert. While learning from

raw sensory inputs without embodiment information is challenging,

humans can do it based on prior knowledge. Recent work by Sermanet

et al. [2017] shows that the reward function can be inferred from few

demonstrations by using visual representations learned by deep models.

How to deal with different viewpoints? Current imitation learn-

ing methods are usually limited to the case where the demonstration

is supplied in the first-person, i.e., a sequence of states and actions is

provided similarly to how the learner would observe the task. However,

humans can learn by observing the behavior of other humans. When

learning from the third-person view it is necessary to infer how the

task should be performed. Recent work on third-person imitation

learning [Stadie et al., 2017] addresses this problem in some simple

environments.

How to leverage past demonstrations of other related tasks,

to learn more quickly the current task? While it is challenging to

learn a very complex task from one demonstration, humans can learn

from few demonstrations because they have so much prior knowledge.

In principle, this knowledge could be captured and reused for other

tasks. Recent work such as [Gupta et al., 2017, Finn et al., 2017a,b,

Duan et al., 2017] addresses this research direction.

5.2.2 Open Questions Related to Design Choices

When we implement imitation learning in an actual robotic system,

we need to make several design choices as we discussed in Chapter 2.

There are still several open questions when making such design choices.

What is the best similarity measure of policies? To obtain a

policy that imitates experts’ behavior, it is essential to measure the
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similarity of policies. Although we discussed some similarity measure

such as KL divergence and Euclidean distance, there exist many

other options. For example, recently the Wasserstein divergence (aka

Earth-mover distance) [Arjovsky et al., 2017] has been shown to

improve the performance of generative adversarial networks (GANs)

[Goodfellow et al., 2014] which have inspired some recent imitation

learning approaches [Ho and Ermon, 2016, Finn et al., 2016a]. Ex-

ploring new similarity measures is a promising way to discover new

imitation learning methods which may work in situations not handled

by current methods.

How to learn from multiple instruction types? In practice,

various types of instructions are available, such as corrective motion

from operators, preferences on optional actions and evaluation of

the performance. To achieve intuitive human-robot interaction and

efficient learning, it is necessary to utilize various instruction types.

Although some methods incorporate multiple instruction types Jain

et al. [2015], this research direction has not been well-investigated yet.

How to incorporate prior knowledge? How to do it explic-

itly? Although prior knowledge of the system or environment, e.g.,

kinematics and the mass of a manipulator, are often available, many

imitation learning methods utilize only demonstrations. However,

incorporating available prior knowledge will be useful for system

control and trajectory planning. On the other hand, many methods

use implicit prior knowledge such as assuming a Gaussian distribution

of samples. Methods that explicitly incorporate prior knowledge could

lower the amount of demonstration data required and make new

robotic applications possible.

How to learn from various sensors? Many studies on imitation

learning implicitly select sensory information appropriate for their

method. However, in practice, we can use various redundant sen-

sory information such as tactile information, RGB-D images, audio

information, and encoders in robot joints. Fusing of various sensory
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information will lead to more robust and adaptive behavior.

How to learn tasks humans cannot do? Imitation learning

methods assume that demonstrations of the desired task are available.

However, it is often the case that human operators cannot appropri-

ately demonstrate the given task, especially in cases where a robot has

a physical advantage compared to a human. For example, a robotic

system may have more than two arms making it challenging for the

human operator to demonstrate the desired behavior. To achieve

performance beyond human capability, methods that iteratively

improve the performance of the system will be necessary.

How to choose a trajectory representation? In §3.5.1, we dis-

cussed several different trajectory representations. An interesting open

question is how to choose among the trajectory representations. We

gave in §3.5.2 some suggestions how to choose based on the different

properties of the representations. However, there is no definite answer

on how to select a trajacectory presentation. Note that choosing a

trajectory representation is analogous to model selection in machine

learning [Bishop, 2006]. Considering trajectory representation selection

as a model selection problem could lead to interesting advances.

5.2.3 Problems Related to Algorithms

When we want to overcome limitations in current imitation learning,

we also need to face several open questions related to algorithmic

aspects of imitation learning.

How to generalize skills with complex conditions? Many

methods model the distribution over demonstrated trajectories and

generalize the skill by conditioning the distribution Khansari-Zadeh

and Billard [2011], Paraschos et al. [2013] for example on different

start or end positions. However, such methods might not scale to high

dimensional conditions. Although some work addresses scaling up

generalization of skills with high dimensional inputs Schulman et al.
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[2013], further investigation is necessary. Recent work by Finn et al.

[2017b], Sermanet et al. [2017], Liu et al. [2017], and Rahmatizadeh

et al. [2017] proposed methods for learning from visual information

using deep neural networks, which is a promising way to address the

skill generalization with complex conditions.

How to find solutions with guarantees? In current imita-

tion learning, there are performance guarantees, e.g., stability of

DMPs [Ijspeert et al., 2002a, Schaal et al., 2004] and a proof of low

error in DAGGER [Ross et al., 2011]. However, currently, for many

imitation learning methods there are no performance guarantees.

Especially in robotics, guarantees such as stability or convergence

can be very important in practice. Finding guarantees for common

imitation learning methods is a worthy research direction.

How to scale up with respect to the number of dimensions?

Motion planning in a robotic system requires a high dimensional

solution. For example, a humanoid robot often has over 50 joints.

However, existing imitation learning methods are often inefficient for

such high dimensional motion due to the different embodiment of the

learner and the expert. Recent studies show that the dimensionality of

the input space can be scaled up using convolutional neural networks.

However, current methods for high dimensional inputs are often limited

to 2D images. Incorporating high dimensional sensory inputs is still

an open question. In addition, scaling up the dimensionality of actions

is also an open problem. Incorporating dimensionality reduction in

imitation learning is an interesting research direction [Sugiyama et al.,

2010, Tangkaratt et al., 2015]

How to find globally optimal solutions in high dimensional

spaces? How to make it tractable? In robotic applications, it is

essential to find solutions in a continuous and high dimensional space.

Many imitation learning methods find locally optimal solutions close

to the behavior demonstrated by experts. However, there may exist a

better solution which is different from the demonstrated behavior.
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How to perform imitation by multiple agents? In multi-agent

domains, an agent needs to consider how the other agents’ behavior

may influence the outcome. Prior work [Waugh et al., 2011, Kuleshov

and Schrijvers, 2015] addresses how to infer the reward function,

which represents the equilibrium of agents’ strategies, from observed

behavior of multiple agents. However, the results are still quite limited

to simple problem settings and have not migrated to large scale robot

applications.

How to perform incremental/active learning in IRL?

Although many inverse reinforcement learning (IRL) methods assume

a sufficient number of demonstrations, it is often not the case in

practice. When the policy learned from the initial dataset of demon-

strations does not show satisfactory performance, the policy can

be incrementally improved. Silver et al. [2012], Lopes et al. [2009]

proposed methods for IRL with active learning. Such incremental IRL

methods have not been investigated sufficiently.

5.2.4 Performance Evaluation

Since the purpose and target applications of imitation learning are very

broad, benchmarking imitation learning methods can be challenging.

The following open questions are related to performance evaluation in

imitation learning.

How to establish benchmark problems for imitation learning?

Unlike other machine learning fields, there is no widely accepted

set of benchmark problems for imitation learning. Although efforts

for benchmarking different techniques have been made, e.g. [Lemme

et al., 2015], there is no clear way to compare performance between

methods. Benchmark problems such as data mining and computer

vision communities should be established.

What metric should be used to evaluate imitation learning
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methods? There are various ways to quantify imitation learning per-

formance. However, there is no established way to evaluate imitation

learning methods, nor are there yet large scale benchmarks that make

it effective and easy to compare and contrast approaches.
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