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Abstract

Gaussian processes are a state-of-the-art
method for learning models from data. Data
with an underlying periodic structure ap-
pears in many areas, e.g., in climatology or
robotics. It is often important to predict
the long-term evolution of such a time se-
ries, and to take the inherent periodicity ex-
plicitly into account. In a Gaussian process,
periodicity can be accounted for by an ap-
propriate kernel choice. However, the stan-
dard periodic kernel does not allow for ana-
lytic long-term forecasting. To address this
shortcoming, we re-parametrize the periodic
kernel, which, in combination with a dou-
ble approximation, allows for analytic long-
term forecasting of a periodic state evolution
with Gaussian processes. Our model allows
for probabilistic long-term forecasting of pe-
riodic processes, which can be valuable in
Bayesian decision making, optimal control,
reinforcement learning, and robotics.

1 Introduction

Modeling, prediction, and decision making play an im-
portant role not only in machine learning, but also in
other disciplines, such as control, signal processing,
or climatology. Periodic or quasi-periodic behaviors
appear almost everywhere, e.g., in robotics, the joint
angle of a rotating robotic arm naturally follows a pe-
riodic pattern. Periodic time series appear in climate
science, where temperature and CO2 emissions follow
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quasi-periodic patterns. Moreover, (seasonal) rainfall,
famines, sleeping patterns, or traffic congestion pos-
sess periodic trends. To make informed decisions, it
is often necessary to forecast the system’s evolution a
long time ahead. With good models that account for
the inherent periodicity of the data we can make well-
informed long-term predictions and, thus, decisions.

In the context of regression, non-parametric Gaussian
processes (GPs) (O’Hagan, 1978; Neal, 1997; Williams
and Rasmussen, 1996) are the state-of-the-art method
since they allow for flexible modeling while express-
ing uncertainties in a consistent way. Assumptions re-
garding the system’s characteristics, e.g., smoothness
or periodicity, can be encoded explicitly into the kernel
of the GP (Rasmussen and Williams, 2006). Periodic
GPs are used by Durrande et al. (2013) to detect pe-
riodically expressed genes or by Reece and Roberts
(2010) in the context of target tracking.

Multiple-step ahead predictions, i.e., long-term fore-
casts with GPs, require approximations for nonlinear
kernel functions, such as the Gaussian kernel. These
approximations can be based either on stochastic sam-
pling or on analytic closed-form computations, such as
linearization (Girard et al., 2003) or moment match-
ing (Quiñonero-Candela et al., 2003; Deisenroth et al.,
2014), which approximate the multiple-step ahead pre-
dictive distribution by a Gaussian. Monte Carlo meth-
ods are straightforward to implement and flexible, but
they can be computationally prohibitive in high di-
mensions. Although long-term forecasting and uncer-
tainty propagation in terms of moment matching can
be done with the Gaussian kernel, it is analytically
intractable with the common periodic kernel.

In this paper, we propose a “double approximation”,
which allows for analytic long-term predictions of pe-
riodic patterns with GPs. The key idea is to exploit
an equivalent representation of the standard station-
ary periodic kernel, which is based on a trigonomet-
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ric transformation u of the original inputs x. This
re-parametrization allows us to analytically propagate
Gaussian distributions p(xt) through the GP to ap-
proximate the moments of the predictive distribution
p(xt+1). This process requires two analytic approxi-
mations: First, we require a Gaussian approximation
p(ut) of the trigonometrically transformed input p(xt).
Second, the predictive distribution p(xt+1) is approx-
imated by a Gaussian.

The paper is organized as follows: In Section 2, we
provide an overview of Gaussian processes and kernels.
In Section 3, we introduce our double approximation
for approximate inference with periodic kernels. Sec-
tion 4 provides an empirical evaluation of the method,
and Section 5 summarizes the paper.

2 Gaussian Processes

In the following, we cover the background on GPs.
For a comprehensive introduction, we refer to MacKay
(1998) or the book by Rasmussen and Williams (2006).

2.1 Model and Predictions

GPs are a state-of-the-art non-parametric regression
method. A GP is a probability distribution over func-
tions f . More formally, a GP is a collection of random
variables f = f1, f2, . . . , any finite number of which is
Gaussian distributed Rasmussen and Williams (2006).
A Gaussian process is fully determined by a mean m
and a kernel/covariance function k, such that

f ∼ GP(m, k), (1)

p(f(x1), . . . , f(xn)|x1, . . . , xn) = N (m,K) , (2)

where K is the full covariance matrix of the func-
tion values f(x1), . . . , f(xn), and m is the correspond-
ing mean vector. Throughout this paper, we consider
a prior mean function that is zero everywhere, i.e.,
m ≡ 0. This means, all relevant structure of the func-
tion f is expressed by the kernel k. The kernel encodes
high-level assumptions of the underlying function f .
The kernel trick (Schölkopf and Smola, 2002) allows
us to compute the covariance between function values
f(xi) and f(xj) by evaluating the kernel at the corre-
sponding inputs, i.e., C[f(xi), f(xj)] = k(xi,xj).

Given a training data set D = {X,y}, where yi =
f(xi)+εi, i = 1, . . . , n, and εi ∼ N (0, σ2

ε), the GP pre-
dictive distribution of f(x∗) at a test point x∗ is Gaus-
sian and given by p(f(x∗)|D) = N (µ(x∗), σ

2(x∗)),
where

µ(x∗) = k(x∗,X)(K + σ2
εI)−1y = k>∗ β , (3)

σ2(x∗) = k∗∗ − k>∗ (K + σ2
εI)−1k∗ , (4)

where k∗∗ = k(x∗,x∗) is the variance of the function
value f(x∗) at the test input x∗, k∗ = k(X,x∗), and
β = (K+σ2

εI)−1y. The matrix K ∈ Rn×n is the ker-
nel matrix whose entries are given by Kij = k(xi,xj),
i, j = 1, . . . , n.

We train the Gaussian processes by maximizing
the marginal likelihood with respect to the hyper-
parameters of the kernel and the measurement noise
variance σ2

ε (Rasmussen and Williams, 2006).

2.2 Kernels

Kernels impose characteristics on the underlying func-
tion to be modeled by the GP. For example, a Gaussian
kernel implies that the modeled function f is smooth,
whereas other kernels encode lower degrees of differen-
tiability (Matérn) or periodicity. In the following, we
introduce two kernel functions, the common Gaussian
(squared exponential) kernel and the periodic kernel,
both of which will be used later.

The Gaussian kernel is defined as

kSE(x,x′) = α2 exp
(
− 1

2

∑D

d=1

(xd−x′d)
2

l2d

)
, (5)

where the hyper-parameters are the signal variance α2

and the characteristic length-scales ld, which control
the relevance of each input dimension d = 1, . . . , D.

The Gaussian kernel in (5) is well suited for modeling
smooth functions. However, it cannot capture period-
icity. For this purpose, MacKay (1998) proposed the
periodic kernel

kper(x,x
′)=α2 exp

(
− 1

2

∑D

d=1

(
sin(b(xd−x′d))

ld

)2)
. (6)

The periodicity hyper-parameter is denoted by b1, the
signal variance by α2, and li are the length-scales as
in the case of the Gaussian kernel in (5).

Figure 1 illustrates the difference between a Gaussian
and a periodic kernel in a GP that models a periodic
function. The training targets are shown in red, the
periodic latent function in blue. The shaded areas rep-
resent the ±2σ bounds of the predictive distribution
around the predicted mean values of f(x∗). Figure 1a
displays the predictive performance of the GP with the
Gaussian kernel. Close to the training data the model
is confident. However, since the periodicity of the sig-
nal is not encoded in the kernel, the model cannot ex-
trapolate with confidence and falls back to the prior,
indicated by the increasing error bars for |x∗| > 17.
On the other hand, the GP with a periodic kernel ex-
trapolates the periodic signal with confidence as shown
in Figure 1b.

1More specifically, π/b determines the distance between
repititions of the function.
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Figure 1: Comparison of GPs with a Gaussian and
b periodic kernels to model a periodic signal. Red
crosses denote the training targets yi and the blue line
the true latent function. The shaded areas represent
the ±2σ bound of the marginal predictive distribu-
tion of the GP models. Outside the training data, the
GP with the Gaussian kernel falls back to the prior,
whereas the GP with the periodic kernel tracks the
signal with high confidence.

3 Long-Term Forecasting

In order to predict long-term state evolutions
p(x1), p(x2), . . . we iteratively concatenate one-step
predictions. For a deterministic input xt, the GP
predictive distribution p(xt+1|xt) is given in (3)–(4),
where xt plays the role of the test input x∗ and xt+1

plays the role of f(x∗).
2 In the case of long-term

predictions, however, the inputs xt are typically not
given deterministically but by a probability distribu-
tion p(xt), which we assume to be Gaussian. The pre-
dictive distribution

p(xt+1) =

∫∫
p(xt+1|xt)p(xt)dxtdf (7)

requires to integrate out both xt ∼ p(xt) and the
function f ∼ GP, which is analytically intractable for
nonlinear kernels k. Therefore, approximations of the
predictive distribution p(xt+1) are required. We fo-
cus on Gaussian approximations by means of moment
matching (Quiñonero-Candela et al., 2003), where
we compute the mean and the variance of p(xt+1)
analytically. Therefore, the predictive distributions
p(x1), p(x2), . . . can be computed in closed form by
repeated application of this Gaussian approximation.

In the following, we will derive the high-level steps
for moment matching and identify the integrals, which
cannot be computed in closed form when we use a pe-
riodic kernel. Subsequently, we will detail our double-
approximation scheme to sidestep this difficulty to al-
low long-term forecasting with periodic Gaussian pro-
cesses.

2To keep notation uncluttered, we tacitly ignore the
Gaussian likelihood arising from the noise ε.

3.1 Moment Matching with Gaussian
Processes

For moment matching with GPs, we compute the pre-
dictive mean and variance of p(xt+1) in (7). We as-
sume that p(xt) = N (xt|µt,Σt) and that f ∼ GP.

The exact predictive mean µt+1 is obtained by apply-
ing the law of iterated expectations and given by

µt+1 = Ext
[Ef [xt+1|xt]] = Ext

[m(xt)] , (8)

where m(xt) is the (posterior) mean function of the
GP evaluated at xt. By plugging in (3) for the pre-
dicted mean, we obtain

µt+1 = β>
∫
k(X,xt)N (xt|µt,Σt)dxt , (9)

where β = (K + σ2
εI)−1y and X,y are the training

inputs and targets, respectively.

Similarly, the predictive variance is given as

Σt+1 = Ext
[Vf [xt+1|xt]] +Vxt

[Ef [xt+1|xt]]
= Ext

[σ2(xt+1)] + Ext
[m(xt)m(xt)

>]

− µt+1µ
>
t+1 ,

(10)

where σ2(xt) is the predictive GP variance at xt,
see (4). The last term in (10) is the predictive mean
µt+1, which is computed in (8). By plugging in the
GP mean and variance from (3) and (4), respectively,
the first two terms in (10) are given as

Ext
[σ2(xt)] =

∫
k(xt,xt)p(xt)dxt

−
∫
k(xt,X)(K + σ2

εI)−1k(X,xt)p(xt)dxt (11)

and

Ext [m(xt)m(xt)
>] =

∫
m(xt)m(xt)

>p(xt)dxt

= β>
∫
k(X,xt)k(xt,X)p(xt)dxtβ . (12)

The integrals in (9), (11), and (12) depend on the
choice of the kernel k. For polynomial kernels or
Gaussian kernels these integrals can be computed an-
alytically (Quiñonero-Candela et al., 2003; Deisenroth
et al., 2012). However, for the periodic kernel in (6),
they cannot be computed in closed form, rendering the
problem of analytic moment matching for long-term
forecasting of periodic GPs intractable.

To address this issue, we propose a re-parametrization
of the periodic kernel in (6), which allows for an ana-
lytic approximate solution to the integrals in (9), (12),
and (11). In particular, we propose a double approxi-
mation to analytically compute these integrals by ex-
ploiting the fact that these expressions can be solved
analytically for the Gaussian kernel.
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3.2 Double Approximation for Analytic
Inference with Periodic GPs

In the following, we derive a kernel, which is equiva-
lent to the periodic kernel in (6). After this, we will
exploit this new kernel representation for a double ap-
proximation, which enables analytic inference.

3.2.1 Kernel Re-parametrization

Let us consider scalar inputs x in the following. The
extension to multivariate inputs is straightforward and
given by Haji Ghassemi (2013). Our periodic kernel
uses a trigonometric transformation u of the inputs x
and is given by

kper(x, x
′) = kSE(u(x), u(x′))

= α2 exp
(
− 1

2z
>Λ−1z

)
,

(13)

where

u(x) = [sin(ax) cos(ax)]> ,

z = u(x)− u(x′) =

[
sin(ax)− sin(ax′)
cos(ax)− cos(ax′)

]
,

and Λ = diag[λ21, λ
2
2], where we assume that λ1 = λ =

λ2, such that the sin and cos terms are scaled by the
same value. The kernel in (13) is effectively a Gaus-
sian kernel wrapped around a complex representation
u(x) ∈ R2 of the input x ∈ R. Therefore, this kernel
is valid (MacKay, 1998).

In the following, we show that the kernel in (13) is
equivalent to the periodic kernel in (6). For this
purpose, let us ignore the diagonal scaling matrix Λ
in (13) for a moment. Multiplying out 1

2z
>z yields

1
2z
>z = 1− sin(ax) sin(ax′)− cos(ax) cos(ax′). (14)

With the identity

cos(x− x′) = cos(x) cos(x′) + sin(x) sin(x′)

we obtain 1
2z
>z = 1− cos(a(x− x′)). Now, we apply

the identity cos(2x) = 1− 2 sin2(x) and obtain

1
2z
>z = 2 sin2

(a(x−x′)
2

)
.

Incorporating the diagonal scaling Λ from (13) yields

exp
(
− 1

2z
>Λ−1z) = exp

(
−

2 sin2
(a(x−x′)

2

)
λ2

)
.

With λ2 = 2l2 and a = 2b, we see that the kernel
in (13) is equivalent to the periodic kernel in (6).

3.2.2 Approximate Inference

In the following, we detail how the kernel in (13) can be
used for long-term forecasting, where we approximate
the intractable integrals in (9), (11), and (12).

The high-level idea is to use a two-step approxima-
tion (double approximation) to compute a Gaussian
approximation to the desired predictive distribution
p(xt+1) from p(xt). First, we analytically compute
a Gaussian approximation p(u(xt)) of the trigono-
metrically augmented state xt. Second, we analyti-
cally compute a Gaussian approximation to p(xt+1)
by exploiting the fact that we can map the Gaussian
p(u(xt)) through a Gaussian kernel. Figure 2 illus-
trates this procedure. The top row of the figure shows
the desired path, which is intractable. The two steps
at the bottom of the figure correspond to our pro-
posed double approximation using the periodic kernel
in (13). First, the input distribution p(xt) is mapped
to the trigonometric space p(u(xt)), which is subse-
quently mapped through a GP with a Gaussian kernel.
In the following, we discuss both steps in detail.

Step 1: Mapping to Trigonometric Space
When mapping a Gaussian distribution p(x) through
u, we obtain a non-Gaussian distribution p(u(x)) =
p(sin(ax), cos(ax)), which cannot be computed ana-
lytically. In this paper, we propose a Gaussian ap-
proximation to p(u), which will be convenient for the
purpose of long-term forecasting. It turns out that the
mean and variance of the trigonometrically augmented
variable u(x) ∈ R2D can be computed analytically.
For notational convenience, we will detail the compu-
tations in the following for scalar variables x ∈ RD.
The extension to multivariate x is detailed by Haji
Ghassemi (2013).

Let us assume that p(x) = N (x|µ, σ2). The mean µ̃
and covariance Σ̃ of p(u(x)) are given as

µ̃ =

[
E[sin(ax)]
E[cos(ax)]

]
, (15)

Σ̃ =

[
V[sin(ax)] C[sin(ax), cos(ax)]

C[cos(ax), sin(ax)] V[cos(ax)]

]
, (16)

where C denotes the covariance between two variables.

Using results from convolving trigonometric functions
with Gaussians (Gradshteyn and Ryzhik, 2000), we
obtain

E[sin(ax)] = exp(− 1
2a

2σ2) sin(aµ) , (17)

E[cos(ax)] = exp(− 1
2a

2σ2) cos(aµ) , (18)

which allows us to compute the mean µ̃ in (15) ana-
lytically.
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Figure 2: The objective is to map a Gaussian distribution (left) through a periodic GP (top) to compute
the exact mean and variance of the predictive distribution (right). This ideal path is analytically intractable.
Therefore, we propose a two-step approximation (bottom path). First, the input distribution is mapped into a
trigonometrically augmented space via analytic moment matching. Subsequently, the Gaussian approximation
in this augmented space is mapped through a GP with a Gaussian kernel to approximate the exact moments of
the predictive distribution.

To compute the covariance matrix Σ̃ in (16),
we need to compute the marginal variances
V[sin(ax)], V[cos(ax)] and the cross-covariance
terms C[sin(ax), cos(ax)].

The marginal variance of sin(ax) is given by

V[sin(ax)] = E[sin2(ax)]− E[sin(ax)]2 , (19)

where E[sin(ax)] is given in (17) and

E[sin2(ax)] =

∫
sin2(ax)p(x)dx (20)

= 1
2 (1− exp(−2a2σ2) cos(2aµ)) . (21)

Similarly, the marginal variance of cos(ax) is given by

V[cos(ax)] = E[cos2(ax)]− E[cos(ax)]2 , (22)

where E[cos(ax)] is given in (18) and

E[cos2(ax)] = 1
2 (1 + exp(−2a2σ2) cos(2aµ)) . (23)

The cross-covariance term C[sin(ax), cos(ax)] is

C[sin(ax), cos(ax)]

= E[sin(ax) cos(ax)]− E[sin(ax)]E[cos(ax)] ,
(24)

where E[sin(ax)] and E[cos(ax)] are given in (17)
and (18), respectively. The first term in (24) is com-
puted according to

E[sin(ax) cos(ax)] = 1
2 exp(−2a2σ2) sin(2aµ) , (25)

where we exploited that sin(x) cos(x) = sin(2x)/2.

These results allow us to analytically compute the
mean µ̃t and the covariance matrix Σ̃t of a trigonomet-
rically transformed variable u(xt) for xt ∼ N (µt,Σt).
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Step 2: Computing the Predictive Distribu-
tion Now we turn to the second step of the double
approximation, which is the analytic computation of
the terms (9)–(11) with the trigonometrically trans-
formed inputs ut = u(xt), where ut ∼ N (ut|µ̃t, Σ̃t).
For this purpose, we also augment the GP training in-
puts X trigonometrically into U and use results from
Quiñonero-Candela et al. (2003) and Deisenroth et al.
(2012) to map p(u(xt)) ≈ N (µ̃t, Σ̃t) through a GP
with a Gaussian kernel to compute the mean and the
covariance of p(xt+1).

The predictive mean µt+1 in (9) can be written as

µt+1 = β̃
>
∫
kSE(U ,ut)N (ut|µ̃t, Σ̃t)dut ,

where we define β̃ = (kSE(U ,U) + σ2
εI)−1y ∈ Rn.

Note that the kernel in this integral is no longer a
periodic kernel, but a Gaussian (squared exponential)
kernel, applied to the trigonometrically transformed
inputs ut. We define

q =

∫
kSE(ut,U)p(ut)dut ,

which can be computed analytically. The elements of
q ∈ Rn are given by

qj = α2√
|Σ̃tΛ−1+I|

exp(− 1
2ζ
>
j (Σ̃ + Λ)−1ζj) (26)

for j = 1, . . . , n, where ζj = (uj − µ̃t).

To compute the predictive covariance matrix Σt+1, we
need to solve the following integrals, see (11)–(12):∫

kSE(ut,ut)p(ut)dut , (27)∫
kSE(U ,ut)kSE(ut,U)p(ut)dut . (28)

Note that the second integral in (11) can be expressed
in terms of (28) by using a>b = trace(ba>). Since the
Gaussian kernel kSE is stationary, the integral in (27)
is simply given by the signal variance α2. The integral
in (28) results in a matrix Q, whose entries are

Qij = |2Λ−1Σ̃t + I|−1/2

× kSE(ui, µ̃t)kSE(uj , µ̃t)

× exp(− 1
2 (ν − µ̃t)>( 1

2Λ + Σ̃t)
−1(ν − µ̃t))

for i, j = 1, . . . , n and with ν = (ui + uj)/2.

These results allow us to analytically compute approx-
imations to the mean µt+1 and the covariance Σt+1 of
the successor state distribution p(xt+1) for GPs with
periodic kernels. Although all computations can be
performed analytically, the additional Gaussian ap-
proximation of the trigonometrically transformed state
variable ut (Step 1) makes the computation of µt+1

and Σt+1 only approximate. In Section 4 we will shed
some light on the quality of this approximation.

4 Experiments

In this section, we assess the quality of the proposed
double approximation for a single time step and for
long-term forecasting of periodic signals. More specif-
ically, in Section 4.1, we quantify the error introduced
by the double approximation compared to an optimal
Gaussian approximation and a kernel density estima-
tor of the true predictive distribution. In Section 4.2,
we demonstrate the advantage of our model when pre-
dicting the long-term evolution of a periodic pattern.

4.1 Quality of the Double Approximation

To evaluate the quality of our proposed double ap-
proximation, we considered the periodic signal y =
sin(x/2)+cos(x+0.35)+ε, where ε ∼ N (0, 1.6×10−3).
We trained our GP model on a data set of size 400,
where the training inputs xi were linearly spaced be-
tween −17 and 17. The test data were in the range
[−11π, 11π]. The function and the range of the train-
ing data are visualized in Figure 1b in blue and red,
respectively.

We defined test input distributions p(xij0 ) = N (µi, σ
2
j )

from which we sampled 100 inputs x∗ and mapped
them through the periodic GP. The mean values µi
of the test input distributions p(xij0 ) were selected on
a linear grid from −11π to 11π. The corresponding
variances σ2

j were set to 10−j , j = 0, . . . , 4. More-

over, we tested the approximation for σ2
0 = 0, which

corresponds to a deterministic input.

We computed the root-mean-squared error (RMSE)
and the negative log predictive density (NLPD) of the
true function values under three models for p(y): our
proposed analytic double approximation (DA), an op-
timal Gaussian approximation of the true predictive
density (SA), which was determined from the sam-
ple mean and variance, and a ground-truth baseline
(BASE) using a kernel density estimator.

Table 1 shows the average performance of the dou-
ble approximation, where we averaged the NLPD and
RMSE values over all means µi of the test input dis-
tributions. The RMSE values for DA, SA, and BASE
are basically identical across varying input variances
σ2
j . This means that the mean estimate by the double

approximation is relatively robust. The NLPD val-
ues on the other hand indicate that the coherence of
the predictive distribution suffers to from increasing
uncertainty in the input distribution. However, the
sampling-based optimal Gaussian approximation (SA)
and the double approximation perform equally well.

Figure 3 shows examples of the quality of the approxi-
mation of the predictive distribution p(y) for all three



Nooshin Haji Ghassemi, Marc Peter Deisenroth

Table 1: Average NLPD and RMSE performance of the double approximation (DA), an optimal single approxi-
mation (SA) by sampling-based moment matching, and a ground-truth baseline (BASE).

NLPD RMSE (×10−2)
σ2
j 0 10−4 10−3 10−2 10−1 1 0 10−4 10−3 10−2 10−1 1

DA −1.78 −1.77 −1.65 −1.18 −0.24 0.85 4.1 4.1 4.7 7.9 21.1 57.4
SA −1.78 −1.77 −1.65 −1.18 −0.24 0.84 4.1 4.1 4.7 7.9 21.1 57.3

BASE −1.78 −1.76 −1.65 −1.17 −0.31 0.58 4.1 4.1 4.7 7.9 21.1 57.4
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Figure 3: Predictive distributions when mapping a Gaussian (with different variances (columns) and at two
different means (rows)) through a periodic GP. The Gaussian computed by means of the proposed double
approximation is shown in red, an optimal Gaussian approximation (moment matching) based on sampling is
shown in black. A kernel density estimate of the true predictive density is shown in blue. We observe that
the double approximation is close to the optimal Gaussian across all experiments and that the kernel density
estimate is close to these Gaussians for small variances (σ2 ≤ 0.1), which is also confirmed by Table 1.

models. The double approximation is close to the op-
timal Gaussian and that the kernel density estimate is
close to these Gaussians for small variances (σ2 ≤ 0.1).

4.2 Long-Term Forecasting of Limit-Cycle
Behavior

To evaluate the long-term performance of our double
approximation, we considered limit-cycle behavior of
a pendulum motion. The state x of the pendulum sys-
tem was given by the angle ϕ and the angular velocity
ϕ̇. The angle ϕ measures the deviation of the pendu-
lum from the vertical, measured anti-clockwise in radi-
ans. A constant torque was applied to the pendulum,
such that it reached a limit-cycle behavior after about
2 s, in which both the angle and the angular velocity
followed periodic patterns. Once the pendulum was in
the limit cycle, we trained a GP on 300 data points,
where the measurement noise variance was 10−2I.

For model learning, we trained the hyper-parameters
of the periodic GP (periodicity a, length-scales li, sig-
nal variance α2, and noise variance σ2

ε). Moreover,
we trained a GP with a Gaussian kernel, where the
hyper-parameters were the length-scales li, the signal
variance α2, and the variance σ2

ε . The training targets
for both GP models were the differences between con-

secutive states, i.e., yi = xi − xi−1, which effectively
encodes a constant prior mean function.

To evaluate the performance of the models for long-
term forecasting, the models were used to predict the
pendulum’s state evolution for 100 time steps ahead.
We took the last point in our training set as the mean
µ0. We set the initial covariance to 0.01I, i.e., the 95%
confidence bound allowed for a deviation of about 12◦

in the angle ϕ. For long-term forecasting with the
Gaussian kernel, we used the moment-matching tech-
nique proposed by Quiñonero-Candela et al. (2003).

Figure 4 shows the long-term predictive performance
of both the GP with a Gaussian kernel and the GP
with a periodic kernel. When the predictive distribu-
tions are no longer “covered” by the training data, the
GP with Gaussian kernel suffered from the stationar-
ity assumption and lost track of the state. On the
other hand, the periodic GP could predict the long-
term limit-cycle behavior of the pendulum’s state bet-
ter. Despite an 80-step ahead prediction, the uncer-
tainty is fairly small in both the angle and angular
velocity (right graphs in Figures 4a and 4b).

Table 2 summarizes the average long-term predictive
performance of the periodic GP using the proposed
double approximation and the GP with a Gaussian



Analytic Long-Term Forecasting with Periodic Gaussian Processes

0 20 40 60 80 100

80

85

90

95

100

105

110

115

120

125

Prediction Steps

A
ng

le
 (i

n 
R

ad
)

Test Data
Training Data
Predictive Mean

20 40 60 80 100

80

85

90

95

100

105

110

115

120

Prediction Steps

A
ng

le
 (i

n 
ra

d)

Test Data
Training Data
Predictive Mean

0

(a) Long-term prediction of the angle with GPs. Left: Gaus-
sian kernel, right: periodic kernel.
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(b) Long-term prediction of the angular velocity prediction
with GPs. Left: Gaussian kernel, right: periodic kernel.

Figure 4: GP long-term predictions of the limit-cycle behavior of the pendulum system. The training and test
data are shown in green and red, respectively. The mean predictions of the model are indicated by the circles.
The corresponding 2σ confidence bounds are represented by the error bars. Once the test inputs are sufficiently
far from the training data, the GP with the Gaussian kernel loses track of the state, while the periodic GP
predicts the state with high confidence, even 80 time steps ahead. a: Multiple-step ahead prediction of the
pendulum’s angle, b: multiple-step ahead prediction of the angular velocity.

Table 2: Average NLPD and RMSE (pendulum tracking) for GPs with Gaussian and periodic kernels.

NLPD RMSE (angle) RMSE (angular velocity)
k-Step Ahead Prediction k-Step Ahead Prediction k-Step Ahead Prediction

Kernel 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Gaussian 5.89 5.67 6.52 7.11 7.38 1.31 2.18 3.01 4.32 5.50 8.59 10.76 7.80 2.58 9.40
Periodic 0.80 1.19 1.49 1.75 2.29 0.15 0.15 0.13 0.16 0.22 0.89 0.94 0.82 0.92 1.08

kernel for predicting the pendulum’s limit-cycle behav-
ior. We averaged the performance for k-step ahead
predictions over 100 different initial states and 100
trajectories per state. The relatively small RMSE
(Gaussian kernel) of predicting the angular velocity
for k = 80 steps ahead occurs since at this time step
the true angular velocity is fairly close to zero, which
corresponds to the posterior predictive mean of the GP
with Gaussian kernel. While the GP with a Gaussian
kernel immediately loses track of the state (RMSE is
measured in radians) when predicting the limit-cycle
behavior, the periodic GP predicts the true periodic
behavior with high confidence. The slight performance
loss in NLPD and RMSE is due to the repeated prop-
agation of uncertainty over time without obtaining a
single new measurement.

5 Conclusion

In this paper, we proposed an algorithm for long-
term forecasting with periodic Gaussian processes. For
long-term forecasting, it is necessary to iteratively map
probability distributions through a Gaussian process.
If these probability distributions are Gaussians, the
moments of the predictive distributions can only be
computed for Gaussian or polynomial kernels, but not
for periodic kernels. We exploited a re-parametrization
of a commonly used stationary periodic kernel, which
is equivalent to applying a standard Gaussian kernel
to a trigonometrically transformed input. This allowed

us to employ an analytic double-approximation strat-
egy to compute the moments of the predictive distribu-
tion. We evaluated the quality of the double approxi-
mation on a periodic example system and applied our
methodology to long-term forecasting of the limit-cycle
behavior of a pendulum system.

Currently, our approach is limited to data sets, which
are exactly periodic, e.g., angular relationships. In
future, we will generalize our inference method to data
sets, which have a periodic trend but where the periods
are not exactly identical. This can be achieved by
multiplying the periodic kernel with a Gaussian kernel,
for instance, which has also been suggested by Roberts
et al. (2013). We will investigate the extension of these
models to long-term forecasting. Moreover, we believe
that spatio-temporal models could greatly profit from
long-term forecasting with periodic kernels.
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