
Learning Inverse Kinematics with Structured Prediction

Botond Bócsi Duy Nguyen-Tuong Lehel Csató Bernhard Schölkopf Jan Peters

Abstract— Learning inverse kinematics of robots with redun-
dant degrees of freedom (DoF) is a difficult problem in robot
learning. The difficulty lies in the non-uniqueness of the inverse
kinematics function. Existing methods tackle non-uniqueness
by segmenting the configuration space and building a global
solution from local experts. The usage of local experts implies
the definition of an oracle, which governs the global consistency
of the local models; the definition of this oracle is difficult. We
propose an algorithm suitable to learn the inverse kinematics
function in a single global model despite its multivalued na-
ture. Inverse kinematics is approximated from examples using
structured output learning methods. Unlike most of the existing
methods, which estimate inverse kinematics on velocity level,
we address the learning of the direct function on position level.
This problem is a significantly harder. To support the proposed
method, we conducted real world experiments on a tracking
control task and tested our algorithms on these models.

I. INTRODUCTION

Kinematic relationships map configuration space to oper-
ational space. They are essential components in many robot
applications, such as in manipulation and task-space control
[1], [2]. Unlike industrial robots, less rigid and less accurate
systems, as well as systems with a nonlinear perceptual
transformation may not allow an equally accurate modeling.
For such robot systems, data-driven model learning presents
an appealing alternative to analytical models. However, while
forward kinematics models (i.e., mappings from joint-space
to task-space) are straightforward to obtain using standard
regression techniques [3], learning of inverse kinematics
models is more difficult. For redundant robots, learning such
a mapping from task-space to configuration space is a highly
ill-posed problem. Given a task-space position, there can
be many joint-space configurations which may form a non-
convex solution space [4]. Naively learning a mapping from
task-space to joint-space using standard regression can lead
to degenerate models that provide inconsistent predictions in
joint-space.

Learning inverse kinematics has been studied in the past
[4]–[9]. Most of the proposed methods, attempt to learn
the inverse kinematics on the velocity level, i.e., learning
differential inverse kinematics [4], [7], [8]. However, to the
best of our knowledge, there are only few approaches which

Botond Bócsi and Lehel Csató are with Faculty of Mathematics and
Informatics, Babeş-Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca,
Romania, {bboti, lehel.csato}@cs.ubbcluj.ro

Duy Nguyen-Tuong, Bernhard Schölkopf, and Jan Peters
are with Department of Empirical Inference, Max Planck
Institute for Intelligent Systems, Spemannstraße 38, 72076
Tübingen, Germany, {duy, bernhard.schoelkopf,
jan.peters}@tuebingen.mpg.de

Jan Peters is with Technische Universitaet Darmstadt, Intelligent Au-
tonomous Systems Group, Hochschulstr. 10, 64289 Darmstadt, Germany

deal with the direct inverse kinematics on the position level
[10]. The main advantage of the second approach is that it
does not require the segmentation of the input space to obtain
a global solution. Differential inverse kinematics provide
only locally unique solutions [4]. In this paper, we focus on
learning a direct mapping from the task-space position to the
joint-space configuration using structured output prediction
[11], [12]. The basic idea behind this approach is that a
probabilistic model of the joint input-output space is well-
defined and can be learned in the first step. Subsequently,
predictions for target outputs, i.e., joint-space configurations,
can be obtained by maximizing this probabilistic model for
given inputs, i.e., task-space positions. Thus, the potential
ambiguity in the output space, i.e., different joint configura-
tions resulting in the same end-effector position, is resolved
by finding the most probable output solutions, which explain
the current input trajectory.

The remainder of the paper is organized as follows. First,
we state the problem of inverse kinematics and give an
overview of the related work. Section II contains an introduc-
tion to structured output learning highlighting the properties
that make them adequate to model multivalued functions.
A detailed presentation of joint kernel support estimation is
also given in Section II-A. In Section III, we explain how
joint kernel support estimation is used in conjunction with
learning inverse kinematics models. Results of real world
experiments on a Barrett WAM are presented in Section IV.
We summarize the contributions of the paper in Section V
and indicate possible future directions.

A. Problem Statement

Modeling forward kinematics is a straightforward prob-
lem. Here, we need to model the unique relationship x=g(θ)
mapping joint angles θ into task-space positions x, where
x ∈ Rp and θ ∈ Rn. Modeling inverse kinematics means
finding a mapping from the end-effector coordinates into
joint angles. Thus,

θ = g−1(x). (1)

Finding g−1(·) is not straightforward. For redundant robot
systems, i.e., when the dimension of the task-space is smaller
than the dimension of the joint-space (p < n), g−1(·) is not
a unique mapping. Given a task-space position x, there can
be many corresponding joint-space configurations θ. Thus,
learning the direct inverse kinematics function g−1(·) relates
to the problem of learning a multivalued function.

Many attempts have been done in solving inverse kinemat-
ics on the velocity level, i.e., the differential inverse kinemat-
ics [1], [2]. Here, the derivative of the forward kinematics

model is employed, i.e., ẋ = JJJ(θ)θ̇, where JJJ(θ) = ∂g/∂θ
is the Jacobian. Differential inverse kinematics approaches
determine the desired joint velocity θ̇, and use this online.
This joint velocity can be obtained by the Jacobian transpose
method, i.e., θ̇ = JJJ(θ)>ẋ, or by the resolved velocity
method, i.e., θ̇ = JJJ(θ)†ẋ, where JJJ(θ)† is the pseudo-inverse
of the Jacobian [1]. Note that resolved velocity method will
not work when JJJ(θ) is a singular matrix, thus, the inversion
of the Jacobian is an ill-posed problem and JJJ(θ)† does not
exist.

Numerically solving for θ = g−1(x) can be done by
iterating either of the previous differential inverse kinematics
methods, e.g., θ′ = θ + JJJ(θ)†ẋ, until convergence, i.e.,
x = g(θ) and hence θ = g−1(x) is fulfilled.

For redundant robots there exist multiple solutions for
θ and one has to favor certain solutions. To resolve this
redundancy, gradient projection methods put additional con-
strains on θ by optimizing a cost function h(θ) in the null-
space of the mapping JJJ(θ) [2], [8], i.e., θ̇ = JJJ(θ)†ẋ +[
III − JJJ(θ)†JJJ(θ)

]
∂h/∂θ .

Beyond traditional numerical methods, learning inverse
kinematics (approximating g−1(·) from Equation (1) using
sampled data) can be an appealing alternative for several
reasons: (1) traditional numerical methods require a precise
kinematic model of the robot that might not be available,
e.g., for complex robots or flexible joint robots, or when
uncalibrated cameras provide noisy Cartesian coordinates.
(2) Iterative solutions are often too slow for real-time ap-
plications. (3) If a system can change over time, we need
to adapt the inverse kinematics model as well. In the next
section, we give a brief overview of how machine learning
have been used to learn inverse kinematics so far.

B. Related Work

Most of the proposed learning approaches to the inverse
kinematics problem attempt to learn the inverse kinematics
on the velocity level [4], [8]. Locally weighted projection
regression has been used to learn the differential inverse
kinematics [8]. Here, the local linearity of the mapping
(ẋ,θ) → θ̇ was proven. This insight allows for a locally
consistent algorithm, however, this does not induce global
consistency. Global consistency is achieved by selectively
generating data [8]. It trains several linear models and choose
from them partitioning the input space.

A similar idea to the above of giving a modular construct-
ing of g−1(·) is employed by Susumu and Tachi [9] using
neural networks as local models and a gating neural network
that chooses one of them. The later approach also suffers
from the need of an oracle which determines which local
model will be used. Finding such an oracle becomes hard in
high dimensional spaces.

The multivalued nature of inverse kinematics is addressed
by Jordan and Rumelhart [7] who introduced an algorithm
for learning multivalued functions and applied it for inverse
kinematics. They used a neural network to learn the forward
kinematics model of a robot and trained another neural
network for the inverse kinematics, as the composition of

the two networks to yield the identity. However, training the
inverse model in this indirect way is difficult due to local
minima, instability, and problems in selecting the network
structure.

A more specific application of inverse kinematics is
examined in Neumann et al. [6] where focus has been
put on learning the inverse kinematics for bi-manual use
of tools for a humanoid ASIMO robot. A special neural
networks structure, known as reservoir computing, was used
to model the function. They investigated how the restriction
of the motion improves inverse kinematics modeling. Neural
networks also have been used by de Angulo and Torras
[5]. The focus of their research was to reduce the number
of samples needed by the learning algorithm, achieved by
decomposing the robotic arm into virtual robots.

In this paper, we focus on learning the direct inverse
kinematics function on the position level, i.e., directly ap-
proximating the multivalued function given in Equation (1).
We use structured output learning to model the multivalued
inverse kinematic relationship. In particular, we learn a
probabilistic model in the joint input-output space and obtain
prediction for target outputs by maximizing this model for
a given input point. Within the same approach, we address
the problem of non-uniqueness of g−1(·) in Equation (1). In
contrast to the local approaches [4], [8], [9], a global inverse
kinematics relationship is being modeled here, without par-
titioning it into individual models. For the structured output
learning, we employ the joint kernel support estimation [12].

II. STRUCTURED OUTPUT LEARNING

In structured output learning we aim to find a function
f : X →Y but unlike the usual setup, here Y has a structure,
e.g., natural language parsing where Y is a set of parse
trees [11]. Structured output learning methods [13] have
been used with success in a variety of topics: classification
with taxonomies [11], label sequence learning [11] [12],
sequence alignment [11], natural language parsing [14] [11],
handwritten character recognition [15], collective hypertext
classification [15], object localization in images [12]. In this
paper, we present an application of structured output learning
in learning robot’s inverse kinematics.

The distinctive feature of the structured learning methods
is the consideration of the structure present in the output
space that is not taken into account in standard learning
methods. Taking into account the structure of this space may
improve the learning process. This improvement is achieved
by modeling a function F (x, y) that measures the quality of a
given (x, y) pair with x ∈ X and y ∈ Y , and finding the most
fit y for a given x as prediction. The measure of the fitness
allows distinguishing between discriminative and generative
methods. In the discriminative approach, the conditional
probability of the output given the input is modeled using
a function F (x, y) = p(y|x). In contrast, the generative case
considers the joint probability distribution F (x, y) = p(x, y).
Given F (x, y), the prediction function f(x) is defined as

f(x) = arg max
y∈Y

F (x, y). (2)

A key difference between the two approaches is that given an
(x, y) pair discriminative methods attempt to increase p(y|x)
and for every ŷ ∈ Y \ {y} decrease p(ŷ|x) 1 . In contrast,
generative methods only increase p(x, y) which has almost
no effect on the other regions of the state-space. Generative
models, such as joint kernel support estimation [12], are less
used as it appears easier to model the conditional than the
joint probability distribution [16]. Nevertheless, the benefit
of simpler distribution shape does not come for free. The
use of discriminative methods has a higher computational
complexity and does not handle well noisy data sets [12].

Discriminative methods do not appear to be a natural
choice for modeling multivalued functions since all correct
labels compete with each other during the training procedure.
On the other hand, generative methods have the disadvantage
of a limited extrapolation capability as p(x, y) ≈ 0 in the
regions of the state-space where was no training data.

It should be noted that there are no restrictions on the input
x and the output y. The inputs and outputs can have arbitrary
relationships, including a multivalued relation. Thus, learning
the function F (x, y) will incorporate the potentially multi-
valued input-output mapping. Prediction for a query point x
can be obtain by finding the output values maximizing the
probabilistic model F (x, y) as shown in Equation (2). In this
paper, we employ the generative method (in particular, the
joint kernel support estimation [13]) to learn the multivalued
inverse kinematic relationship. In the following sections, we
describe the employed structured output learning in detail.
In Section III, we show how structured output learning can
be applied to learn inverse kinematics models.

A. Joint Kernel Support Estimation

Joint kernel support estimation (JKSE) models the joint
probability distribution of inputs and outputs as a log-linear
model of a joint feature function [12] by

p(x, y) =
1
Z

exp (www>φ(x, y)), (3)

where www is a vector of weights, φ(·, ·) is a joint feature
function used to express task specific knowledge. An implicit
definition of φ(·, ·) is also available using kernels, discussed
later in this section. Z =

∫
X
∫
Y dxdy exp (www>φ(x, y)) is a

normalization constant. Note that Z does not depend on x
or y, therefore it does not have to be computed during the
training or the testing phase. Another beneficial consequence
of this independence is that the maximization of Equation (3)
with respect to y is equivalent to the following simpler
expression

f(x) = arg max
y∈Y

www>φ(x, y). (4)

We need to find the value of www which generates a p(x, y)
that explains the given training dataset {(xi, yi)}mi=1 with
m training points best. The high dimensionality prevents us
from representing the entire joint distribution. The number
of training data points m is very small compared to the

1Note that Y can be prohibitively large leading to very slow learning.

cardinality of X × Y , and, thus, we consider that it is
sufficient to determine the support of the distribution p(x, y).
Suitable algorithms to find this support are one-class support
vector machines (OC-SVM), briefly presented in Section II-
B. Using OC-SVMs leads to the following form of the
prediction function

f(x) = arg max
y∈Y

m∑
i=1

αik((x, y), (xi, yi)), (5)

where k : (X×Y)×(X×Y)→R is a kernel function defined
on joint input-output space. Given k((x1, y1), (x2, y2)) =
〈φ(x1, y1), φ(x2, y2)〉 it can be entirely defined by φ(·, ·) or
it can be an arbitrary Mercer kernel [17]. αi are weights
determined by the OC-SVM learning procedure (see Sec-
tion II-B for details). Only some of the αi are not 0 which
leads to a sparse representation of f(x). The training points
(xi, yi) for which αi 6= 0 are called support vectors. The
support vectors form the base of the inference since the rest
of the training set does not influence the prediction function.
Note that one can influence the number of the support vectors
since it depends on the parametrization of the OC-SVM.

B. One-Class SVM training

OC-SVMs are non-parametric machine learning methods
which aim to determine the underlying probability distribu-
tion from which the points of a training set were drawn.
Given a training set {(xi, yi)}mi=1, they search for a hy-
perplane parameterized by www and ρ, which separates the
points from the origin with the largest possible margin. It
is equivalent to the following optimization problem

min
www∈H,ξi∈R,ρ∈R

1
2
||www||2 +

1
vm

m∑
i=1

ξi − ρ (6)

subject to

〈www, φ(xi, yi)〉H ≥ ρ− ξi,
ξi ≥ 0, ∀i = 1,m

where H is a latent Hilbert space induced by the joint kernel
k – for details about OC-SVMs consult [17], [18]. The
parameter v ∈ (0, 1] plays an important role in the learning
process, since it provides a lower bound on the fraction
of support vectors, influencing the time complexity of both
the training and the testing phases [17], [18]. This property
becomes important when OC-SVMs are used in a real world
online application.

After solving the optimization problem, the prediction of
a new (x, y) data point has the form of Equation (5) without
taking the maximum over all possible y-s [17], [18].

Since Equation (6) is a quadratic optimization problem
with linear constrains, the training algorithm has time com-
plexity O(m3), the prediction O(m), see [17], [18].

Note that the training process of OC-SVMs needs to
evaluate the kernel function for m points but it does not
depend on the output space Y . Therefore, the complexity of
JKSE training is a function of the size of the training data
and do not dependent of the output space.

III. STRUCTURED LEARNING OF DIRECT INVERSE
KINEMATICS

In this section, we apply JKSE to learn direct inverse
kinematics. Neither the training nor the prediction phase of
the JKSE, when applied to inverse kinematics, is equivocal,
therefore we propose a potential model training setup and
present an efficient testing algorithm as well. We also discuss
how to make this method usable in online setting and on real
systems.

A. Training data collection

In order to perform the parameter learning of the model,
we require a set of training points. Constructing such a set
for inverse kinematics is not straightforward. A training set
D = {(xi,θi)}mi=1 must contain pairs of end-effector posi-
tions and the corresponding joint configurations. Providing
samples from the whole configuration space is unfeasible
due to the curse of dimensionality. To avoid oversampling,
we only sample trajectories with end-effector positions in
the area where the actual task will take place. For example,
consider the task of drawing a figure eight as shown in
Figure 3(a). For this task, the desired end-effector trajectory
lies in a plane. Hence, sampling in a volume around this
plane fully suffices. Generating task-appropriate training data
results not only in faster training and faster prediction but
also in higher precision. Task-dependent training sets are also
motivated by the weak extrapolation capabilities of the JKSE,
discussed in Section II.

We highlight that JKSE handles different input points with
the same label well. Hence, the training set can contain
ambiguous data, such as (xi,θi) ∈ D and (xj ,θj) ∈ D
where xi = xj but θi 6= θj . Such training data frequently
appears in inverse kinematics when the end-effector position
was reached with different joint configurations.

B. Online Application in Direct Inverse Kinematics

Next, we present how a trained JKSE model can be
used for converting an end-effector trajectory into joint-space
during its execution. At every time step, the prediction of the
joint-state θθθdesired matching a desired end-effector position
xxxdesired is expressed by Equation (5) where x = xxxdesired and
Y = Rn. The main difficulty in using Equation (5) is that
it involves a maximization over Rn. This step is intractable
when n is big. To ease this maximization, we assume that
the prediction function is smooth and we find a local maxima
close to the current joint configuration of the robot – θθθcurrent.
This assumption must hold in order to avoid sudden changes
in the joint-space configuration.

The previous assumption simplifies the optimization prob-
lem in Equation (5) since we can apply gradient descent
based optimization starting from the current joint position of
the robot. The gradient can either be determined analytically
or using a finite difference approximation [19]. In both cases
significant performance improvements are obtained.

Suppose we are looking for a joint configuration for
xdesired and during the training θ1 and θ2 had the same
xdesired end-effector position. Due to the gradient search,

θ

p(xdesired,θ) θ1 θ2

θcurrent

θ1 θ2
θcurrent

xdesired

Fig. 1. Illustration of the structured output inverse kinematics algorithm
prediction scheme. During the training process xdesired has been reached
by two different joint configurations θ1 and θ2 (solid arms), therefore,
p(xdesired,θ1) = p(xdesired,θ2). However, as the current joint configura-
tion θcurrent is closer to θ2, the algorithm chooses a prediction that is closer
to θ2.

the algorithm will choose the joint position that is closer
to the current joint configuration θcurrent, see the illustration
on Figure 1. However, note that Figure 1 is misleading as
the calculation of the exact joint probability is unfeasible
given that it requires the evaluation of the normalization
constant from Equation (3). Instead, we use the expression
from Equation (4) to obtain the desired joint configuration
since it avoids the determination of that constant. Note that
if θ1 and θ2 were close to each other, both of them would
be acceptable solutions of the maximization.

The pseudo-code of the proposed method is presented in
Algorithm 1. The training phase is straightforward: given
a data set D = {(xi,θi)}mi=1, we train a model M on the
joint data using OC-SVM (OC-SVM-training). The trajectory
tracking looks as follows. We generate the desired end-
effector position xdesired, and predict the corresponding joint
configuration θdesired. This joint configuration is the one that
maximizes the prediction function of the OC-SVM (OC-
SVM-prediction), since OC-SVM-prediction expresses the
joint probability p(xdesired,θdesired). To perform the maxi-
mization, we use gradient search starting from the current
joint position θcurrent. The algorithm ends when the tracking
task is finished.

As we aim at real-world applications, a low algorithm
complexity is important. The training phase is equivalent to
the OC-SVM training and thus has a complexity of O(m3).
This step can often be done offline, therefore it is not
always crucial and the development of online versions with

Algorithm 1 Structured output inverse kinematics learning
INPUT: D = {(xi,θi)}mi=1, v, k

M← OC-SVM-training (D, v, k)
while task is not over do
xdesired ← next-position ()
θdesired ← gradient-maximization (θcurrent,

OC-SVM-prediction (M, (xdesired, ·)))
end while

lower complexity appears possible. On the other hand, the
complexity of the prediction is O(ml) where l is the number
of function evaluations required by the gradient search. By
choosing an efficient gradient search, e.g., second order
gradient descent, we can keep l small and achieve better
performance.

The free parameter v regulates a lower bound on the
fraction of support vectors, see Section II-B. It allows us
controlling the trade-off between faster prediction and higher
precision. The choice of the kernel function k is also an
important aspect that affects the speed of the algorithm, e.g.,
linear kernels can be evaluated faster than Gaussian kernels
but have less expressive power. Often, hyper-parameters of
the kernel play an important role as well, e.g., for of a
Gaussian kernel, one can control the trade-off between better
generalization and higher precision with the parameters.

IV. EVALUATIONS

In this section, we present the evaluation of the proposed
method for task-space tracking. The algorithm is applied to
learn the inverse kinematics of a robotic arm, and track a
figure eight and a star-like figure, respectively. Both tasks are
defined in Cartesian space. The first experiment is conducted
on a simulated 3 degrees of freedom (DoF) robot where
one DoF is redundant. Here, we show how our algorithm
is capable of learning inverse kinematics of a redundant
robot system from an ambiguous data-set. We also test the
method in real world settings, on a 7-DoF Barrett whole arm
manipulator (WAM).

As discussed in Section III, a well chosen parametrization
of the learning method has high impact on the tracking
performance. Hence, the kernel function of the OC-SVM
has to be chosen, as to incorporate as many prior knowledge
about inverse kinematics as possible. This is a joint kernel
of the end-effector position x and joint coordinates θ. A
natural choice for the variable of the joint kernel would be to
simple concatenate x and θ into one vector. However, adding
the sines and cosines of the joint angles, i.e., φ(x,θ) =
[x θ sin(θ) cos(θ)]> , improves the prediction, since for-
ward kinematics highly depends on these values. In this
way, we include prior knowledge of inverse kinematics into
the kernel function. During the experiments we employ a
Gaussian kernel with different parameters for each task.

The gradient search of Algorithm 1 has an important role
in the tracking performance as well. In the 3-DoF simulation
we use a BFGS method [19] with finite difference approxi-
mation of the gradient, whereas, Nelder-Mead method [19]
is employed in the Barrett experiment. Once the desired joint
coordinates are known, joint velocities and joint accelerations
are obtained by numerical differentiation.

A. Evaluation on a Simulated 3-DoF Robot

In this experiment, we present how the proposed method
handles ambiguous data-sets. The training data-set is con-
structed as follows: using a joint-space controller, we sample
data uniformly from the volume around the plane where
the figure eight task will take place. The sampling process

0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

Time (sec)

Y
 a

xi
s

(m
)

Desired
Structured learning
SVR learning

Fig. 2. Tracking precision of the figure eight along the y axis. Simple
support vector regression (SVR) completely fails to learn the inverse
kinematics function when the training data contains ambiguous points,
whereas structured output inverse kinematics achieves high accuracy.

is repeated with two different initial joint configurations,
see Figure 1. Then, the two data-sets are merged. The
final training set contains points with the same end-effector
position but with different join configuration. The training set
contains 34996 samples, 17498 from each collection process.
We use libSVM [20] to train the OC-SVM with parameters
v = 0.1 and g = 500. Here, g is the parameter of the
Gaussian kernel.

To substantiate that learning inverse kinematics is not
trivial for ambiguous training data, we train a simple support
vector regression (SVR) model using the ambiguous data-
set. SVR completely fails to learn the inverse kinematics
function. The same failure happens when the take out the
95% of the data, originated from the experiment with the
second initial posture, as making the task significantly easier.
The comparison of the two methods is presented on Figure 2,
revealing that ordinary regression methods do not have the
expressive power to model multivalued functions, like inverse
kinematics.

B. Evaluation on a 7-DoF Barrett WAM Robot

We apply our method on a 7-DoF Barrett whole arm
manipulator for figure eight and star-like figure tracking
experiments. We highlight that the tracking experiment is
conducted in real time, proving that the computational re-
quirements of the algorithm are feasible in real time settings.
Training data collection is similar to the previous experiment,
we sample random data points from the plane where the
figure eight and the star-like tracking will take place. We
use the same training data for both experiments. The training
set contains 57142 points. To train the OC-SVM algorithm
and preform the prediction, we use a modified version of
libSVM [20] with parameters v = 0.1 and g = 1000.
The tracking performance of the structured output inverse
kinematics method is shown on Figure 3(a) for the figure
eight task, and on Figure 3(b) for the star-like task with an
average tracking error of 3 and 2 centimeters, respectively.
Figures were made of 500 control points and for the rest
of the points we used linear interpolation in the joint space.
Thus, the computations for each desired joint angle took 20
milliseconds. Both figures show the results for the first 10
seconds of tracking.

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

−0.8

−0.75

−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

−0.4

X axis (m)

Y
 a

xi
s

(m
)

Desired
Learned

(a) Figure eight tracking of the 7-DoF Barrett
WAM.

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

−0.8

−0.75

−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

−0.4

X axis (m)

Y
 a

xi
s

(m
)

Desired
Learned

(b) Star-like figure tracking of the 7-DoF Barrett
WAM.

(c) Barrett Whole-Arm-Manipulator (WAM)

Fig. 3. Task-space tracking control for the figure eight task. The real world application results in good tracking accuracy for the (a) figure eight task
and the (b) star-like figure. The tracking error is due to the imperfectness of our approach and the inaccurate dynamical model of the robot, unmodeled
friction, and the noisy measurements. (c) 7-DoF Barrett whole arm manipulator used for the task-space tracking.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an algorithm to learn the
inverse kinematics function of robots with redundant manip-
ulators using structured output machine learning methods.
The method learns the direct inverse kinematics function
on position level. We also addressed the problem of non-
uniqueness of inverse kinematics, highlighting that regular
regression algorithms are not capable of modeling it. The
key idea is that instead of finding a direct approximation
of inverse kinematics, we modeled the joint probability
distribution of the end-effector positions and joint angles.
Joint kernel support estimation has been employed to model
the joint probability distribution. The proposed method is
supported by real world experiments on a 7-DoF Barrett
WAM. Results show that high performance of task-space
tracking can be achieved.

We consider that the approximation of inverse kinematics
can be improved in several ways. Applying more efficient
gradient search algorithms might speed-up the prediction
function. We want to analyze how discriminative structured
output methods can be used to model the dependencies
between end-effector positions and joint angles. To succeed,
we have to overcome the disadvantages of discriminative
approaches presented in Section II.

VI. ACKNOWLEDGMENTS

The authors wish to thank for the financial support pro-
vided from program: Investing in people! PhD scholarship,
project co-financed by the European Social Fund, sectoral
operational program, human resources development 2007
- 2013. Contract POSDRU 88/1.5/S/60185 – ”Innovative
doctoral studies in a knowledge based society”.

REFERENCES

[1] B. Siciliano, “Kinematic control of redundant robot manipulators: A
tutorial,” Journal of Intelligent and Robotic Systems, vol. 3, no. 3, pp.
201–212, 1990.

[2] L. Sciavicco and B. Siciliano, Modelling and Control of Robot
Manipulators (Advanced Textbooks in Control and Signal Processing),
2nd ed., ser. Advanced textbooks in control and signal processing.
Springer, January 2005.

[3] C. Salaün, V. Padois, and O. Sigaud, “Learning forward models for
the operational space control of redundant robots,” in From Motor
Learning to Interaction Learning in Robots, 2010, pp. 169–192.

[4] A. D’Souza, S. Vijayakumar, and S. Schaal, “Learning inverse kine-
matics,” in IEEE International Conference on Intelligent Robots and
Systems (IROS 2001). Piscataway, NJ: IEEE, 2001.

[5] V. R. de Angulo and C. Torras, “Learning inverse kinematics: Reduced
sampling through decomposition into virtual robots,” IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B, vol. 38, no. 6, pp.
1571–1577, 2008.

[6] K. Neumann, M. Rolf, J. J. Steil, and M. Gienger, “Learning inverse
kinematics for pose-constraint bi-manual movements,” in SAB, 2010,
pp. 478–488.

[7] M. I. Jordan and D. E. Rumelhart, “Forward models: Supervised
learning with a distal teacher,” Cognitive Science, vol. 16, pp. 307–
354, 1992.

[8] G. Tevatia and S. Schaal, “Inverse kinematics for humanoid robots,” in
International Conference on Robotics and Automation (IRCA 2000),
2000, pp. 294–299.

[9] E. O. Susumu and S. Tachi, “Inverse kinematics learning by modular
architecture neural networks,” in in Proc. IEEE International Confer-
ence on Robotics and Automation, 2001, 2001, pp. 1006–1012.

[10] D. Demers and K. Kreutz-Delgado, “Learning global direct inverse
kinematics,” in Advances in Neural Information Processing Systems.
Morgan Kaufmann, 1992, pp. 589–595.

[11] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large
margin methods for structured and interdependent output variables.”
Journal of Machine Learning Research, vol. 6, pp. 1453–1484, 2005.

[12] C. H. Lampert and M. B. Blaschko, “Structured prediction by joint
kernel support estimation,” Machine Learning, vol. 77, pp. 249–269,
December 2009.

[13] G. H. Bakir, T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, and
S. V. N. Vishwanathan, Eds., Predicting Structured Data, ser. Neural
Information Processing. The MIT Press, September 2007.

[14] A. McCallum and C. Sutton, “An introduction to conditional random
fields for relational learning,” in Introduction to Statistical Relational
Learning, L. Getoor and B. Taskar, Eds. MIT Press, 2006.

[15] B. Taskar, C. Guestrin, and D. Koller, “Max-margin Markov net-
works,” in Advances in Neural Information Processing Systems 16,
S. Thrun, L. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT
Press, 2004.

[16] C. M. Bishop, Pattern Recognition and Machine Learning, 1st ed.
Springer, October 2007.

[17] B. Schölkopf and A. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization and Beyond. Cambridge,
MA: MIT-Press, 2002.

[18] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and
R. C. Williamson, “Estimating the support of a high-dimensional
distribution,” Neural Computation, vol. 13, pp. 1443–1471, July 2001.

[19] M. Avriel, Nonlinear Programming: Analysis and Methods. Dover
Publishing, 2003.

[20] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector
machines, 2001, software http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

