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Abstract

We use a graphical model for representing policies in Markov Decision Processes.
This new representation can easily incorporate domain knowledge in the form of
a state similarity graph that loosely indicates which states are supposed to have
similar optimal actions. A bias is then introduced into the policy search process
by sampling policies from a distribution that assigns high probabilities to policies
that agree with the provided state similarity graph, i.e. smoother policies. This
distribution corresponds to a Markov Random Field. We also present forward
and inverse reinforcement learning algorithms for learning such policy distribu-
tions. We illustrate the advantage of the proposed approach on two problems:
cart-balancing with swing-up, and teaching a robot to grasp unknown objects.

1 Introduction

Markov Decision Processes (MDP) provide a rich and elegant mathematical framework for solving
sequential decision-making problems. In practice, significant domain knowledge is often necessary
for finding a near-optimal policy in a reasonable amount of time. For example, one needs a suitable
set of basis functions, or features, to approximate the value functions in reinforcement learning and
the reward functions in inverse reinforcement learning. Designing value or reward features can itself
be a challenging problem. The features can be noisy, misspecified or insufficient, particularly in
certain complex robotic tasks such as grasping and manipulating objects. In this type of applications,
the features are mainly acquired through vision, which is inherently noisy. Many features are also
nontrivial, such as the features related to the shape of an object, used for calculating grasp stability.

In this paper, we show how to overcome the difficult problem of designing precise value or reward
features. We draw our inspiration from computer vision wherein similar problems have been effi-
ciently solved using a family of graphical models known as Markov Random Fields (MRFs) (Kohli
et al., 2007; Munoz et al., 2009). We start by specifying a graph that loosely indicates which pairs of
states are supposed to have similar actions under an optimal policy. In an object manipulation task
for example, the states correspond to the points of contact between the robot hand and the object
surface. A state similarity graph can be created by sampling points on the surface of the object and
connecting each point to its k nearest neighbors using the geodesic or the Euclidean distance. The
adjacency matrix of this graph can be interpreted as the Gram matrix of a kernel that can be used
to approximate the optimal value function. Kernels have been widely used before in reinforcement
learning (Ormoneit & Sen, 1999), however, they were used for approximating the values of different
policies in a search for an optimal policy. Therefore, the kernels should span not only the optimal
value function, but also the values of intermediate policies.

In this paper, kernels will be used for a different purpose. We only require that the kernel spans the
value function of an optimal policy. Therefore, the value function of an optimal policy is assumed to
have a low approximation error, measured by the Bellman error, using that kernel. Subsequently, we
derive a distribution on policies, wherein the probability of a policy is proportional to its estimated
value, and inversely proportional to its Bellman error. In other terms, the Bellman error is used
as a surrogate function for measuring how close a policy is to an optimal one. We show that this
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probability distribution is an MRF, and use a Markov chain Monte Carlo algorithm for sampling
policies from it. We also describe an apprenticeship learning algorithm based on the same principal.
A preliminary version of some parts of this work was presented in (Boularias et al., 2012).

2 Notations

Formally, a finite-horizon Markov Decision Process (MDP) is a tuple (S,A, T,R,H, γ), where S
is a set of states and A is a set of actions, T is a transition function with T (s, a, s′) = P (st+1 =
s′|st = s, at = a) for s, s′ ∈ S, a ∈ A, andR is a reward function whereR(s, a) is the reward given
for action a in state s. To ease notation and without loss of generality, we restrict our theoretical
analysis to the case where rewards depend only on states, and denote by R an |S| × 1 vector. H is
the planning horizon and γ ∈ [0, 1] is a discount factor. A deterministic policy π is a function that
returns an action a = π(s) for each state s. Tπ is defined as Tπ(s, s′) = T (s, π(s), s′). We denote
by πt:H a non-stationary policy (πt, πt+1, . . . , πH), where πi is a policy at time-step i. The value
of policy πt:H is the expected sum of rewards received by following πt:H , starting from a state s
at time t, Vπt:H

(s) =
∑H
i=t γ

i−tEsi [R(si)|st = s, Tπt:i
]. An optimal policy π∗t:H is one satisfying

π∗t:H ∈ arg maxπt:H
Vπt:H

(s),∀s ∈ S . Searching for an optimal policy is generally an iterative
process with two phases: policy evaluation, and policy improvement.

When the state space S is large or continuous, the value function Vπt:H
is approximated by a linear

combination of n basis functions, or features. Let fi be a |S||A| × 1 vector corresponding to the ith
basis function, and let F be the |S||A|×n matrix of columns fi. Let Ππt

be an |S|× |S||A| action-
selection matrix defined as Ππt

(s, (s, πt(s))) = 1 and 0 otherwise. Then Vπt:H
= Fπt

w, where w
is a n×1 weights vector and Fπt

= Ππt
F . We define the Bellman error of two consecutive policies

πt and πt+1 using the feature matrix F and the weights wt, wt+1 ∈ Rn as BE(F,wt:t+1, πt:t+1) =
‖Fπt

wt − γTπt
Fπt+1

wt+1 − R‖1. Similarly, we define the Bellman error of a distribution P on
policies πt and πt+1 as BE(F,wt:t+1, P ) = ‖Eπt:t+1∼P [Fπt

wt−γTπt
Fπt+1

wt+1]−R‖1. We also
define the minimum Bellman error as BE∗(F, πt:t+1) = minwt:t+1 BE(F,wt:t+1, πt:t+1) and the
total Bellman error as BE(F,w0:H , π0:H) =

∑H−1
t=0 BE(F,wt:t+1, πt:t+1).

3 Markov Random Field Policies for Reinforcement Learning

We now present the reinforcement learning approach using the Bellman error as a structure penalty.

3.1 Structure penalty

Optimal policies of many real-world problems are structured and change smoothly over the state
space. Therefore, the optimal value function can often be approximated by simple features, com-
pared to the value functions of arbitrary policies. We exploit this property and propose to indirectly
use these features, provided as domain knowledge, for accelerating the search for an optimal policy.
Specifically, we restrain the policy search to a set of policies that have a low estimated Bellman error
when their values are approximated using the provided features, knowing that the optimal policy has
a low Bellman error. Note that our approach is complementary to function approximation methods.
We only use the features for calculating Bellman errors, the value functions can be approximated by
using other methods, such as LSTD (Boyan, 2002).

LetKπ be the Gram matrix defined asKπ = ΠπKΠT
π , whereK = FFT . MatrixK is the adjacency

matrix of a graph that indicates which states and actions are similar under an optimal policy. Feature
matrix F is not explicitly required, as only the matrixK will be used later. Therefore, the user needs
only to provide a similarity measure between states, such as the Euclidean distance.

Let wt, wt+1 ∈ R|S|, ε ∈ R, if ‖Eπt:t+1∼P [Kπt
wt − γTπt

Kπt+1
wt+1] − R‖1 ≤ ε then

BE∗(F, P ) ≤ ε. This result is obtained by setting FTΠT
πwt and FTΠT

πwt+1 as the weight vec-
tors of the values of policies πt and πt+1. The condition above implies that the policy distribution
P has a value function that can be approximated by using F . Enforcing this condition results in a
bias favoring policies with a low Bellman error. Thus, we are interested in learning a distribution
P (π0:H) that satisfies this condition, while maximizing its expected value.
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Distribution P can be decomposed using the chain rule as P (π0:H) = P (πH)
∏H−1
t=0 P (πt|πt+1:H).

We start by calculating a distribution over deterministic policies πH that will be executed at the last
time-step H . Then, for each step t ∈ {H−1, . . . , 0}, we calculate a distribution P (πt|πt+1:H) over
deterministic policies πt given policies πt+1:H that we sample from P (πt+1:H). In the following,
we show how to calculate P (πt|πt+1:H).

3.2 Primal problem

Let ρ ∈ R be a lower bound on the entropy of a distribution P on deterministic policies πt, condi-
tioned on πt+1:H . ρ is used for tuning the exploration. Our problem can then be formulated as

max
P

(∑
s∈S

EP [V πt:H ](s)
)
, subject to

(
g1(P ) = 1, g2(P ) ≥ ρ, ‖g3(P )−R‖1 ≤ ε

)
, (1)

where
(
g1(P ) =

∑
πt∈A|S|

P (πt|πt+1:H)
)
,
(
g2(P ) = −

∑
πt∈A|S|

P (πt|πt+1:H) logP (πt|πt+1:H)
)
,

(
g3(P ) =

∑
πt∈A|S|

P (πt|πt+1:H)[Kπtwt − γTπtKπt+1wt+1]
)
,
(
EP [V πt:H ] =

∑
πt∈A|S|

P (πt|πt+1:H)V πt:H

)
.

The objective function in Equation 1 is linear and its constraints define a convex set. Therefore, the
optimal solution to Problem 1 can be found by solving its Lagrangian dual.

3.3 Dual problem

The Lagrangian dual is given by

L(P, τ, η, λ)=
(∑
s∈S

EP [V πt:H ](s)
)
− η
(
g1(P )−1

)
+ τ
(
g2(P )−ρ

)
+ λT

(
g3(P )−R

)
+ ε‖λ‖1,

where η, τ ∈ R and λ ∈ R|S|. We refer the reader to Dudik et al. (2004) for a detailed derivation.

∂L(P, τ, η, λ)

∂P (πt|πt+1:H)
=
∑
s∈S

V πt:H (s) + λT [Kπt
wt − γTπt

Kπt+1
wt+1]− τ logP (πt|πt+1:H))− η − 1.

By setting ∂L(P,τ,η,λ)
∂P (πt|πt+1:H) = 0 (Karush-Kuhn-Tucker condition), we get the solution

P (πt|πt+1:H) ∝ exp
( 1

τ︸︷︷︸
exploration factor

(expected sum of rewards︷ ︸︸ ︷∑
s∈S

V πt:H (s) +λT [Kπtwt − γTπtKπt+1wt+1]︸ ︷︷ ︸
smoothness term

))
.

This distribution on joint actions is a Markov Random Field. In fact, the kernel K = FFT

is the adjacency matrix of a graph (E ,S), where (si, sj) ∈ E if and only if ∃ai, aj ∈ A :
K((si, ai), (sj , aj)) 6= 0. Local Markov property is verified, ∀si ∈ S :
P (πt(si)|πt+1:H , {πt(sj) : sj ∈ S, sj 6= si})=P (πt(si)|πt+1:H , {πt(sj) : (si, sj) ∈ E , sj 6= si}).
In other terms, the probability of selecting an action in a given state depends on the expected long
term reward of the action, as well as on the selected actions in the neighboring states. Dependencies
between neighboring states are due to the smoothness term in the distribution.

3.4 Learning parameters

Our goal now is to learn the distribution P , which is parameterized by τ , λ, wt:t+1 and V πt:H . Given
that the transition function T is unknown, we use samples D = {(st, at, rt, st+1)} for approximat-
ing the gradients of the parameters and the value function V πt:H . We also restrain Kπt

to states and
actions that appear in the samples, and denote by T̂πt

the empirical transition matrix of the sampled
states. Since P (π0:H) = P (πH)

∏H−1
t=0 P (πt|πt+1:H), then

P (π0:H) ∝ exp
(

1
τ

∑H
t=0

(∑
s∈D V

πt:H (s) + λTt [Kπt
wt − γT̂πt

Kπt+1
wt+1]

))
. (2)
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The value function V πt:H is empirically calculated from the samples by using a standard value
function approximation algorithm, such as LSTD (Boyan, 2002). Temperature τ determines the
entropy of the distribution P , τ is initially set to a high value and gradually decreased over time as
more samples are collected. One can use the same temperature for all time-steps within the same
episode, or a different one for each step. Since the Lagrangian L is convex, parameters λt can be
learned by a simple gradient descent. Algorithm 1 summarizes the principal steps of the proposed
approach. The algorithm iterates between two main steps: (i) sampling and executing policies from
Equation 2, and (ii), updating the value functions and the parameters λt using the samples. The
weight vectors w0:H are the ones that minimize the empirical Bellman error in samples D, they are
also found by a gradient descent , wherein ∂w0:H

BE(K,w0:H , π0:H) is estimated from D.

Algorithm 1 Episodic Policy Search with Markov Random Fields
Initialize the temperature τ with a large value, and λ0:H with 0.
repeat

1. Sample policies π0:H from P (Equation 2).
2. Discard policies π0:H that have an empirical Bellman error higher than ε.
3. Execute π0:H and collect D = {(st, at, rt, st+1)}.
4. Update the value functions V πt:H by using LSTD with D.
5. Find λ0:H that minimizes the dual L by a gradient descent, ∂λL is estimated from D.
6. Decrease the temperature τ .

until τ ≤ ετ

The main assumption behind this algorithm is that the kernel K approximates sufficiently well the
optimal value function, what happens when this is not the case? The introduced bias will favor
suboptimal policies. However, this problem can be solved by setting the threshold ε to a high value
when the user is uncertain about the domain knowledge provided by K. Our experiments confirm
that even a binary matrix K, corresponding to a k-NN graph, can yield an improved performance.

This approach is straightforward to extend to handle samples of continuous states and actions , in
which case, a policy is represented by a vector Θt ∈ RN of continuous parameters (for instance, the
center and the width of a gaussian). Therefore, Equation 2 defines a distribution P (Θ0:H). In our
experiments, we use the Metropolis-Hastings algorithm for sampling Θ0:H from P .

4 Markov Random Field Policies for Apprenticeship Learning

We now derive a policy shaping approach for apprenticeship learning using Markov Random Fields.

4.1 Apprenticeship learning

The aim of apprenticeship learning is to find a policy π that is nearly as good as a policy π̂ demon-
strated by an expert, i.e., Vπ(s) ≥ Vπ̂(s) − ε,∀s ∈ S. Abbeel & Ng (2004) proposed to learn a
reward function, assuming that the expert is optimal, and to use it to recover the expert’s general-
ized policy. The process of learning a reward function is known as inverse reinforcement learning.
The reward function is assumed to be a linear combination of m feature vectors φk with weights
θk, ∀s ∈ S : R(s) =

∑m
k=1 θkφk(s). The expected discounted sum of feature φk, given policy

πt:H and starting from s, is defined as φπt:H

k (s) =
∑H
i=t γ

i−tEst:H [φk(si)|st = s, Tπt:i
]. Using this

definition, the expected return of a policy π can be written as a linear function of the feature expecta-
tions, Vπt:H

(s) =
∑m
k=1 θkφ

πt:H

k (s). Since this problem is ill-posed, Ziebart et al. (2008) proposed
to use the maximum entropy regularization, while matching the expected return of the examples.
This latter constraint can be satisfied by ensuring that ∀k, s : φπk (s) = φ̂k, where φ̂k denotes the
empirical expectation of feature φk calculated from the demonstration.

4.2 Structure matching

The classical framework of apprenticeship learning is based on designing features φ of the reward
and learning corresponding weights θ. In practice, as we show in the experiments, it is often difficult
to find an appropriate set of reward features. Moreover, the values of the reward features are usually
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obtained from empirical data and are subject to measurement errors. However, most real-world
problems exhibit a structure wherein states that are close together tend to have the same optimal
action. This information about the structure of the expert’s policy can be used to partially overcome
the problem of finding reward features. The structure is given by a kernel that measures similarities
between states. Given an expert’s policy π̂0:H and feature matrix F , we are interested in finding a
distribution P on policies π0:H that has a Bellman error similar to that of the expert’s policy. The
following proposition states the sufficient conditions for solving this problem.
Proposition 1. Let F be a feature matrix, K = FFT , Kπt = ΠπtKΠT

πt
. Let P be a distribu-

tion on policies πt and πt+1 such that Eπt:t+1∼P [Kπt
] = Kπ̂t

, and Eπt:t+1∼P [γTπt
Kπt+1

TTπt
] =

γTπ̂t
Kπ̂t+1

TTπ̂t
, then BE∗(F, π̂t:t+1) = BE∗(F, P ).

Proof. We prove that BE∗(F, P ) ≤ BE∗(F, π̂t:t+1). The same argument can be used for proving
that BE∗(F, π̂t:t+1) ≤ BE∗(F, P ). This proof borrows the orthogonality technique used for prov-
ing the Representer Theorem (Schölkopf et al., 2001). Let ŵt, ŵt+1 ∈ R|S| be the weight vectors
that minimize the Bellman error of the expert’s policy, i.e. ‖Ππ̂tFŵt − γTπ̂tΠπ̂t+1Fŵt+1 −R‖p =
BE∗(F, π̂t:t+1). Let us write ŵt = ŵt‖ + ŵt⊥, where ŵt‖ is the projection of ŵt on the rows
of Ππ̂t

F , i.e. ∃α̂t ∈ R|S| : ŵt‖ = FTΠT
π̂t
α̂t, and ŵt⊥ is orthogonal to the rows of Ππ̂t

F .
Thus, Ππ̂t

Fŵt = Ππ̂t
F (ŵt‖ + ŵt⊥) = Ππ̂t

Fŵt‖ = Kπ̂t
α̂t. Similarly, one can show that

γTπ̂t
Ππ̂t+1

Fŵt+1 = γTπ̂t
Kπ̂t+1

TTπ̂t
α̂t+1. Let wt = FTΠT

πt
α̂t and wt+1 = FTΠT

πt+1
TTπt

α̂t+1,
then we have BE∗(F, P ) ≤ ‖Eπt:t+1

[Ππt
Fwt − γTπt

Ππt+1
Fwt+1] − R‖1 = ‖Eπt:t+1

[Kπt
α̂t −

γTπt
Kπt+1

TTπt
α̂t+1]−R‖1 = ‖Kπ̂t

αTπ̂t
− γTπ̂t

Kπ̂t+1
TTπ̂t

αTπ̂t+1
−R‖1 = BE∗(F, π̂t:t+1). �

4.3 Problem statement

Our problem now is to find a distribution on deterministic policies P that satisfies the conditions
stated in Proposition 1 in addition to the feature matching conditions φπk (s) = φ̂k. The conditions
of Proposition 1 ensure that P assigns high probabilities to policies that have a structure similar to
the expert’s policy π̂. The feature matching constraints ensure that the expected value under P is the
same as the value of the expert’s policy. Given that there are infinite solutions to this problem, we
select a distribution P that has a maximal entropy (Ziebart et al., 2008).

max
P

( ∑
πt∈A|S|

−P (πt|πt+1:H) logP (πt|πt+1:H)
)
,

subject to
( ∑
πt∈A|S|

P (πt|πt+1:H) = 1
)
,
( ∑
πt∈A|S|

P (πt|πt+1:H)φπt:H = φ̂
)
,

( ∑
πt∈A|S|

P (πt|πt+1:H)Kπt
= Kπ̂t

)
,
(
γTπ̂t

Kπ̂t+1
TTπ̂t

=
∑

πt∈A|S|
P (πt|πt+1:H)γTπt

Kπt+1
TTπt

)
.

where φπt:H(s, k)
def
= φπt:H

k (s) (defined in subsection 4.1). The objective function of this problem
is concave and the constraints are linear. Note that the three last equalities are between matrices.

4.4 Solution

By setting the derivatives of the Lagrangian to zero (as in subsection 3.3), we derive the distribution

P (πt|πt+1:H)∝ exp
(∑

k

∑
s∈S

θskφ
πt:H

k (s)+
∑

(si,sj)∈S2

λi,jKπt(si, sj)+γ
∑

(si,sj)∈S2

ξi,j(TπtKπt+1T
T
πt

)(si, sj)
)
.

Again, this distribution is a Markov Random Field. The parameters θ, λ and ξ are learned by
maximizing the likelihood P (π̂t:H) of the expert’s policy π̂t:H . The learned parameters can then
be used for sampling policies that have the same expected value (from the second constraint), and
the same Bellman error (from the last two constraints and Proposition 1) as the expert’s policy. If
kernel K is inaccurate, then the learned λ and ξ will take low values to maximize the likelihood of
the expert’s policy. Hence, our approach will be reduced to MaxEnt IRL (Ziebart et al., 2008).

For simplicity, we consider an approximate solution with fewer parameters in our experiments,
where each θsk is replaced by θk ∈ R. This simplification is based on the fact that the reward
function is independent of the initial state. We also replace λi,j by λ ∈ R, and ξi,j by ξ ∈ R.
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For a sparse matrixK, one can create a corresponding graph (E ,S), where (si, sj) ∈ E if and only if
∃ai, aj ∈ A : K((si, ai), (sj , aj)) 6= 0 or ∃ai, aj ∈ A, (s′i, s′j) ∈ E : γT (si, ai, s

′
i)T (sj , aj , s

′
j) 6=

0. Finally, the policy distribution can be rewritten as

P (πt|πt+1:H) ∝ exp
(∑
s∈S

V πt:H

θ (s) + λ
(∑
(si,sj)∈E

Kπt
(si, sj) + γξ

∑
(si,sj)∈E

(Tπt
Kπt+1

TTπt
)(si, sj)

))
, (3)

where V πt:H

θ (s) =
∑
k θkφk(s) + γ

∑
s′∈S Tπt

(s, s′)V
πt+1:H

θ (s′).

The distribution given by Equation 3 is a Markov Random Field. The probability of choosing action
a in a given state s depends on the expected value of (s, a) and the actions chosen in neighboring
states. There is a clear similarity between this distribution of joint actions and the distribution of joint
labels in Associative Markov Networks (AMN) (Taskar, 2004). In fact, the proposed framework
generalizes AMN to sequential decision making problems. Also, the MaxEnt method (Ziebart et al.,
2008) can be derived from Equation 3 by setting λ = 0.

λ = 0 λ 6= 0
γ = 0 Logistic regression AMN (Taskar, 2004)
γ 6= 0 MaxEnt IRL (Ziebart et al., 2008) AL-MRF

Table 1: Relation between Apprenticeship Learning with MRFs (AL-MRF) and other methods.

4.5 Learning procedure

In the learning phase, Equation 3 is used for finding parameters θ, λ and ξ that maximize the like-
lihood of the expert’s policy π̂. Since this likelihood function is concave, a global optimal can
be found by using standard optimization methods, such as BFGS. A main drawback of our ap-
proach is the high computational cost of calculating the partition function of Equation 3, which is
O(|A||S||S|2). In practice, this problem can be addressed by using several possible tricks. For in-
stance, we reuse the values calculated for a given policy π as the initial values of all the policies that
differ from π in one state only. We also decompose the state space into a set of weakly connected
components, and separately calculate the partition of each component. One can also use recent
efficient learning techniques for MRFs, such as (Krähenbühl & Koltun, 2011).

4.6 Planning procedure

Algorithm 2 describes a dynamic programming procedure for finding a policy (π∗0 , π
∗
1 , . . . , π

∗
H) that

satisfies ∀t ∈ [0, H] : π∗t ∈ arg maxπt∈A|S| P (πt|π∗t+1:H). The planning problem is reduced to a
sequence of inference problems in Markov Random Fields. The inference problem itself can also be
efficiently solved using techniques such as graph min-cut (Boykov et al., 1999), α-expansions and
linear programming relaxation (Taskar, 2004). We use the α-expansions for our experiments.

Algorithm 2 Dynamic Programming for Markov Random Field Policies
∀(s, a) ∈ S ×A : QH+1(s, a) = 0.
for t = H : 0 do

1. ∀(s, a) ∈ S ×A : Qt(s, a) =
∑
k θkφk(s) + γ

∑
s′ T (s, a, s′)Qt+1(s′, π∗t+1(s′))

2. Use an inference algorithm (such as the α-expansions) in the MRF defined on the graph
(S, E) to label states with actions: the cost of labeling swith a is−Qt(s, a) and the potential of
(si, ai, sj , aj) is λ

(
K(si, ai, sj , aj) + γξ

∑
(s′i,s

′
j)∈E

T (si, ai, s
′
i)T (sj , aj , s

′
j)Kπ∗t+1

(s′i, s
′
j)
)
.

3. Denote by π∗t the labeling policy returned by the inference algorithm;
end for
Return the policy π∗ = (π∗0 , π

∗
1 , . . . , π

∗
H);

5 Experimental Results
We present experiments on two problems: learning to swing-up and balance an inverted pendulum
on a cart, and learning to grasp unknown objects.

6



5.1 Swing-up cart-balancing

The simulated swing-up cart-balancing system (Figure 1) consists of a 6 kg cart running on a 2 m
track and a freely-swinging 1 kg pendulum with mass attached to the cart with a 50 cm rod. The
state of the system is the position and velocity of the cart (x, ẋ), as well as the angle and angular
velocity of the pendulum (θ, θ̇). An action a ∈ R is a horizontal force applied to the cart. The
dynamics of the system are nonlinear. States and actions are continuous, but time is discretized to
steps of 0.1 s. The objective is to learn, in a series of 5s episodes, a policy that swings the pendulum
up and balances it in the inverted position. Since the pendulum falls down after hitting one of the two
track limits, the policy should also learn to maintain the cart in the middle of the track. Moreover,
the track has a nonuniform friction modeled as a force slowing down the cart. Part of the track has
a friction of 30 N, while the remaining part has no friction. This variant is more difficult than the
standard ones (Deisenroth & Rasmussen, 2011).

We consider parametric policies of the form π(x, ẋ, θ, θ̇) =
∑
i piqi(x, ẋ, θ, θ̇), where pi are real

weights and qi are basis functions corresponding to the signs of the angle and the angular velocity
and an exponential function centered at the middle of the track. Moreover, we discretize the track
into 10 segments, and use 10 binary basis functions for friction compensation, each one is nonzero
only in a particular segment. A reward of 1 is given for each step the pendulum is above the horizon.
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Figure 1: Swing-up cart-balancing. The
friction is nonuniform, the red area has a
higher friction than the blue one. However,
the friction changes only at one point of the
track. Consequently, restraining the search to
smooth policies yield faster convergence.

Since the friction changes smoothly along the
track (domain knowledge), we use the adjacency
matrix of a nearest-neighbor graph as the MRF
kernel K in Equation 2. Specifically, we set
K
(
〈xi, ẋi, θi, θ̇i, ui〉, 〈xj , ẋj , θj , θ̇j , uj〉

)
= 1 iff

|xi − xj | ≤ 0.2m, θiθj ≥ 0, θ̇iθ̇j ≥ 0, and
|ui − uj | ≤ 5N , otherwise K is set to 0. Fig-
ure 1 shows the average reward per time-step of
the learned policies as a function of the learning
time. Our attempts to solve this variant using differ-
ent policy gradient methods, e.g. (Kober & Peters,
2008), mainly resulted in poor policies. We report
the values of the policies sampled with Metropolis-
Hastings using Equation 2, and compare to the case
where the policies are sampled solely according to
their expected values, i.e. λt = 0. The expected
values are estimated from the samples. The results,
averaged over 50 independent trials, show that the
convergence is faster when the MRF is used. More-
over, the performance increases as the threshold set
on the maximum Bellman error (ε) in Algorithm 1
is decreased. In fact, policies that change smoothly
have a lower Bellman error as their values can be
better approximated with kernel K.

5.2 Precision grasps of unknown objects
From a high-level point of view, grasping an object can be seen as an MDP with three steps: reach-
ing, preshaping, and grasping. At any step, the robot can either proceed to the next step or restart
from the beginning and get a reward of 0. At t = 0, the robot always starts from the same initial
state s0, and the set of actions corresponds to the set of points on the surface of the object. Given
a grasping point, we set the approach direction to the surface normal vector. At t = 1, the state is
given by a surface point and an approach direction, and the set of actions corresponds to the set of
all possible hand orientations. At t = 2, the state is given by a surface point, an approach direction
and a hand orientation. There are two possible last actions, closing the fingers or restarting.

In this experiment, we are interested in learning to grasp objects from their handles. The reward of
each step depends on the current state. There is no reward at t = 0. The reward R1 defined at t = 1
is a function of the first three eigenvalues of the scatter matrix defined by the 3D coordinates of the
points inside a small ball centered on the selected point (Boularias et al., 2011). The reward R2,
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Table 2: Learned Q-values at t = 0. Each point on an object corresponds to a reaching action. Blue
indicates low values and red indicates high values. The black arrow indicates the approach direction in the
optimal policy according to the learned reward function.

defined at t = 2, is a function of collision features. We simulate the trajectories of 10 equidistant
points on each finger of a Barrett hand (a three-fingered gripper). The collision features are binary
variables indicating whether or not the corresponding finger points will make contact with the object.

Based on the domain knowledge that points that are close to each other should have the same action
(i.e. same approach direction and hand orientation), the kernelK is given by the k-nearest neighbors
graph, using the Euclidean distance and k = 6 in the state space of positions (or surface points), and
the angular distance, with k = 2 in the discretized state space of hand orientations. We also use a
quadratic kernel for learning R1, and the Hamming distance between the feature vectors as a kernel
for learning R2. We also use a single constant feature for all the edges.
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Figure 2: Percentage of
grasps located on a handle
with a correct approach direc-
tion and hand orientation.

We used one object for training and provided six trajectories leading
to a successful grasp from its handle. For testing, we compared our
approach (Apprenticeship Learning with MRF) with MaxEnt IRL,
AMN and Logistic Regression, which is equivalent to AMN with-
out the graph structure. For AMN and Logistic Regression, only
the reward R1 at time-step 1 is learned, since these are classifica-
tion methods and do not consider subsequent rewards.

Table 2 shows the Q-values at t = 0 and the approach directions at
optimal grasping points. AL-MRF improves over the other methods
by generally giving high values to handle points only. The values of
the other points are zeros because the optimal action at these points
is to restart rather than to grasp. The confusion in the other meth-
ods comes from noised point coordinates and self-occlusions. More
importantly, AL-MRF improves over AMN, a structured supervised
learning technique, by considering the reward at t = 2 while mak-
ing a decision at t = 1. This can be seen as a type of object recognition by functionality. Figure 2
shows the percentage of successful grasps using the objects in Table 2. A grasp is successful if it is
located on a handle and the hand orientation is orthogonal to the handle and the approach direction.

6 Conclusion
Based on the observation that the value function of an optimal policy is often smooth and can be
approximated with a simple kernel, we introduced a general framework for incorporating this type
of domain knowledge in forward and inverse reinforcement learning. Our approach uses Markov
Random Fields for defining distributions on deterministic policies, and assigns high probabilities to
smooth policies. We also provided strong empirical evidence of the advantage of this approach.
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Krähenbühl, Philipp and Koltun, Vladlen. Efficient Inference in Fully Connected CRFs with Gaus-
sian Edge Potentials. In Advances in Neural Information Processing Systems 24, pp. 109–117.
2011.

Munoz, Daniel, Vandapel, Nicolas, and Hebert, Martial. Onboard contextual classification of 3-D
point clouds with learned high-order Markov random fields. In Proceedings of IEEE International
Conference on Robotics and Automation (ICRA’09), 2009.

Ormoneit, Dirk and Sen, Saunak. Kernel-based reinforcement learning. In Machine Learning, pp.
161–178, 1999.

Schölkopf, Bernhard, Herbrich, Ralf, and Smola, Alex. A Generalized Representer Theorem .
Computational Learning Theory, 2111:416–426, 2001.

Taskar, Ben. Learning Structured Prediction Models: A Large Margin Approach. PhD thesis,
Stanford University, CA, USA, 2004.

Ziebart, B., Maas, A., Bagnell, A., and Dey, A. Maximum Entropy Inverse Reinforcement Learning.
In Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence (AAAI’08), pp.
1433–1438, 2008.

9


