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Abstract—Robot control through contact is challenging as it
requires reasoning over long horizons and discontinuous system
dynamics. Highly dynamic tasks such as Air Hockey addition-
ally require agile behavior, making the corresponding optimal
control problems intractable for planning in realtime. Learning-
based approaches address this issue by shifting computationally
expensive reasoning through contacts to an offline learning phase.
However, learning low-level motor policies subject to kinematic
and dynamic constraints can be challenging if operating in
proximity to such constraints is desired. This paper explores the
combination of distilling a stochastic optimal control policy for
high-level contact planning and online model-predictive control
for low-level constrained motion planning. Our system learns to
balance shooting accuracy and resulting puck speed by leveraging
bank shots and the robot’s kinematic structure. We show that
the proposed framework outperforms purely control-based and
purely learning-based techniques in both simulated and real-
world games of Robot Air Hockey.

I. INTRODUCTION

Planning and control through non-prehensile contacts is
an essential skill for robots to interact with their environ-
ment. Model-based approaches enable robots to anticipate
the outcome of contact interactions given a candidate action,
allowing them to find an action with the desired outcome.
Although model-based planning approaches have been shown
to be successful in generating contact-rich plans for slow
tasks [24, 13], highly dynamic tasks require the agent to
regenerate contact plans at a sufficiently high rate to react
to inherent perturbations. These tasks have historically been
used as a testbed for hardware and algorithms in robotics,
with different types of games and sports, such as ball-in-a-
cup [14, 17], juggling [26, 25], and diabolo [31]. Dynamic
tasks that involve contact, such as soccer [9], tennis [32],
table tennis [22, 5], and air hockey [19, 20], are typically
approached with reinforcement learning methods to off-load
computationally expensive reasoning through contacts to an
offline exploration phase. Yet, these tasks have in common that
contact with the ball or puck is instantaneous, resulting in a
jump in the object state. Reasoning about the contact between
the robot and the object of interest can therefore be divided
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Fig. 1. The proposed control framework enables our robot to autonomously
play matches of air hockey. The dynamic game requires the robot to predict
puck trajectories, plan the best contact, and coordinate its joints to generate
high velocities without hitting a wall or lifting the mallet from the table.

into three segments of the planning horizon: i) Moving the
robot into contact, ii) the contact itself at a single time instance,
and iii) the passive trajectory of the object after contact.

This paper exploits such separability in the highly dynamic
game of air hockey (Fig. 1) by combining a learning-based
approach for contact planning with model-based control for
moving the robot into contact. We show that distilling a
stochastic optimal control policy enables us to effectively
reduce the planning horizon required to generate desired
behaviors, allowing our agent to operate in real-time. Fur-
thermore, we highlight the interpretability of our approach
by producing various shooting behaviors through different
formulations of the optimal control cost, while exploiting the
kinematic structure of the robot.

Fig. 2 illustrates the online control framework that consists
of state estimation, a learning-based contact planner (shooting
policy), and a subsequent model-based robot controller (MPC).
For state estimation and prediction, we learn a stochastic
model of contact between the robot and the puck from data
as a mixture of linear-Gaussian modes. Based on the learned
model, we generate a dataset of example contacts that are
optimal w.r.t. a stochastic optimal control objective, and distill
the resulting policy through behavioral cloning. During the
online phase, we retrieve optimal contact plans from the



Fig. 2. Overview of the interplay between puck state estimation • and robot
control • for closed-loop agile robot air hockey. The contact planner uses
the estimated puck state to predict the puck trajectory based on the learned
model. It subsequently plans a shooting angle that is used to construct an
optimal control objective solved within a model-predictive controller. Robot
trajectories are computed at a control rate of 50 Hz.

distilled policy using derivative-free inference in realtime.
Finally, for the robot controller, we use a sampling-based
model-predictive controller [12] that enforces the execution
of the contact plan while respecting safety constraints such
as collision avoidance with the walls. We summarize our key
contributions as follows:

• We present an approach for learning the parameters of a
stochastic model for discontinuous contact dynamics in
robot air hockey as a mixture of linear-Gaussian modes.

• We formulate contact planning for robot air hockey as a
chance-constrained stochastic optimal control problem.

• We propose an approach for distilling an optimal contact
policy by training an implicit model to allow for planning
in real-time.

After presenting our technical contributions, we provide exper-
imental comparisons to control-based and reinforcement learn-
ing baselines. Our approach has furthermore outperformed all
other approaches tested in a competitive setting [21].

II. RELATED WORK

The air hockey task has been part of the robotics literature
for a long time [4]. One of the first works using the air
hockey task as a benchmark focused on skill learning of a
humanoid robot [2, 3]. In more recent years, this benchmark
has been used in combination with planar robots due to high-
speed motion requirements [23, 27, 11, 28], and the possibility
of adapting the playing style against the opponent [10]. This
benchmark has been recently extended to the cobot setting,
where a 7-DoF robotic arm controls the mallet and maintains
the table surface while striking [1, 18, 7].

Another use of the robot air hockey setting is as a testbed
for learning algorithms. In [29], deep reinforcement learning
techniques are used to learn on planar robots, while in [19],
both the planar 3-DoF and the 7-DoF cobot air hockey tasks
are used to learn control policies in simulation. More recent
techniques directly use the real 7-DoF air hockey setting
as a testbed for learning algorithms: in [15], the authors
use learning-to-plan techniques to generate air hockey hitting
trajectories in a real-world setting, while in [20], this task is
used to perform real-world reinforcement learning.

In general, existing solutions to the robot air hockey prob-
lem can be categorized in two main directions: learning-

based approaches [3, 29, 20], and control-based approaches
[28, 1, 18]. Generally speaking, pure control-based approaches
lead to better and faster solutions than learning-based methods
but require considerable efforts in engineering and model
identification, and are particularly challenging to implement
and run at realtime control rates. Instead, pure learning-
based approaches obtain a lower-quality solution but make
it possible to obtain more robust behaviors by relying on
domain randomization and fine-tuning on the real platform.
We aim to combine the advantages of learning-based and
control-based approaches. We exploit both the optimality of
control-based approaches for controlling the robot without
considering the puck and the robustness and flexibility of
learning-based approaches to efficiently generate plans for
the contact between the robot and the puck to maximize the
scoring probability.

III. LEARNING A STOCHASTIC CONTACT MODEL

Planning and controlling the contacts of the robot with the
puck requires the anticipation of puck trajectories before and
after contact. To enable this, we learn a simplified stochastic
model of the puck dynamics for i) estimating the current state
of the puck online, ii) predicting the trajectory of the puck
online, and iii) solving a stochastic optimal control problem
to plan the next best contact between the robot and the puck.

A. Mixture of linear-Gaussian Contact Dynamics

Suppose that xp
k ∈ R2 is the position of the puck w.r.t.

the surface of the air hockey table at time step k. The robot
interacts with the puck by making contact with its mallet,
i.e. the circular part of the robot’s end-effector. The position
of the mallet is denoted with xm

k ∈ R2 w.r.t. the surface
of the air hockey table. We assume that the robot arm is
controlled such that the mallet maintains contact with the table
at all times. In order to efficiently perform rollouts of the
puck dynamics, we impose a piecewise-linear structure on the
model. Fig. 3 illustrates the three modes that we present in the
following: 1) Floating, 2) Puck-Wall Collision, and 3) Puck-
Mallet Collision. To account for modeling errors introduced
through the piecewise-linear structure, we model each mode
as a conditional Gaussian distribution, resulting in a mixture of
linear-Gaussian contact dynamics. In the following, we present
the individual modes and their respective parameters that are
learned subsequently.

1) Floating: The first mode captures the dynamics of the
puck when it is freely floating on the table and is not in
collision with the wall or mallet. The prediction of the puck
velocity is modeled stochastically with

Pr1
(
ẋp
k+1|ẋ

p
k

)
= N (Θ1ẋ

p
k + θ1,Σ1) , (1)

where Θ1,θ1,Σ1 are parameters of the conditional Gaussian
distribution.

2) Puck-Wall Collision: The second mode models the dy-
namics of the puck reflecting against the wall. The prediction
of the velocity is modeled in a coordinate system C that is



Fig. 3. Illustration of three modes of the puck dynamics that are parameter-
ized as linear-Gaussian modes. Mode 1) captures the dynamics of the puck •
when floating on the surface of the table. Mode 2) captures collisions between
puck and walls. Mode 3) models collisions between puck and the mallet • in
a contact-aligned frame C. The parameters for the nominal dynamics and the
corresponding uncertainty are learned from data.

aligned with the contact surface of the corresponding wall.
The one-step prediction of the puck velocity is modeled with

Pr2
(
cẋp

k+1|
cẋp

k

)
= N (Θ2

cẋp
k + θ2,Σ2) , (2)

where cẋp is the puck velocity in the contact-aligned coordi-
nate system. Θ2,θ2,Σ2 are parameters of this mode.

3) Puck-Mallet Collision: As a third mode, we model the
interaction between the puck and the mallet as a collision in
which the velocity of the puck changes instantaneously at the
time of contact. We also model this mode using a conditional
Gaussian distribution

Pr3
(
cẋp

k+ |cẋp
k− ,

cẋm
k

)
= N

(
Θp

3
cẋp

k−+Θm
3

cẋm
k +θ3,Σ3

)
.

(3)
The velocities of the puck cẋp and of the mallet cẋm,
respectively, are expressed in the contact-aligned coordinate
system C. The index k+ corresponds to time step k after
applying the collision model, while k− describes the instant
right before the collision. The model parameters for the third
mode are Θp

3,Θ
m
3 ,θ3,Σ3.

B. Learning Model Parameters from Data

Given recorded trajectories of the puck and the mallet,
the data is fragmented into consecutive puck velocity pairs
together with the mallet velocity, i.e. ẋp

k, ẋ
p
k+1, ẋ

m
k , and the

corresponding mode is assigned to each data sample. As a
result, we assume to obtain a dataset {yi,n, ξi,n}Ni

n=0 for each
mode i, where yi,n is the n-th velocity prediction sample for
mode i, e.g. y1 = ẋp

k+1, and ξi,n is the n-th prediction
condition sample for mode i, e.g. ξ1 = ẋp

k. To learn the
parameters of the model, we fit a Gaussian distribution to
the dataset for each mode modeling the joint probability
distribution of prediction and condition with

Pri(yi, ξi) = N
((

µyi

µξi

)
,

(
Σyi

Σyiξi

Σ⊤
yiξi

Σξi

))
. (4)

Given the parameters of the joint probability distribution, the
parameters of the linear-Gaussian models can be computed by
conditioning the probability distribution on the input ξ. Thus,

the parameters are given by

Θi = Σyiξi
Σ−1

ξi
,

θi = µyi
−Σyiξi

Σ−1
ξi

µξi
,

Σi = Σyi −ΣyiξiΣ
−1
ξi

Σ⊤
yiξi

.

(5)

C. Piecewise-linear Kalman Filtering

The learned linear-Gaussian models allow us to update
the estimated state of the puck using the Kalman filter. As
a result, an estimate of the puck state at time step k, i.e.
ŝk =

(
x̂p⊤

k , ˙̂xp⊤

k

)⊤

, is obtained based on a noisy mea-
surement of the puck position x̃p

k. For this, the mode of
the dynamics is detected at each time step such that the
corresponding parameters are used within the Kalman filter
update. The parameters are translated into linear-Gaussian
state-space dynamics, i.e.

Pri (sk+1|sk) = N (Aisk + bi,Qi) , (6)

with system parameters Ai, bi and process noise covariance
matrix Qi computed with

Ai =

(
Ai,xx Ai,xẋ

0 Θi

)
; bi =

(
0
θi

)
; Qi =

(
0 0
0 Σi

)
.

(7)

Here, the model parameters Ai,xx,Ai,xẋ determine the pre-
diction of the puck position at the next time step given
the current puck position and velocity. These parameters are
derived using numerical integration and are constant.

D. Probability of Hitting the Goal

For the robot to anticipate whether a candidate shot may
lead to scoring a goal, we predict the probability of hitting
the goal based on the learned linear-Gaussian puck dynamics.
Note that the probability of hitting the goal does not account
for a defending opponent. Without loss of generality, suppose
that the collision between mallet and puck happens at k =
0. Given the puck state at the time of collision ŝ0− and the
corresponding mallet state xm

0 , ẋm
0 , the expected puck velocity

after the collision is computed as defined in (3), resulting in
the expected puck state ŝ0+ . By rolling out the discretized
stochastic model with

ŝk+1 = Aik ŝk + bik ,

Pk+1 = AikPkA
⊤
ik
+Qik ,

(8)

a Gaussian distribution of puck states, i.e. sk ∼ N (ŝk,Pk) is
obtained for each time step k > 0. The rollout is initialized
with ŝ0 = ŝ0+ and P0 = Q3, exploiting the separated
stochastic model of collisions between mallet and puck.

To evaluate the probability of scoring a goal, we perform
the stochastic rollout as defined in (8) until the expected puck
position x̂p

k crosses the goal line. We denote this time step
with kgoal. In the following, we denote the probability of
scoring a goal, i.e. G = 1, given a puck position as a Bernoulli
distribution with

Pr (G = 1|xp
k) =

{
1, if xp

k ∈ Xgoal

0, else.
(9)



Fig. 4. A qualitative comparison of the probability of hitting the goal Ĝ
for different shooting angles and shooting speeds. The shooting angles are
indicated by the mallet position • w.r.t. the puck position • at the time of
contact. The shooting speed, i.e. the speed of the mallet at the time of contact,
is 1.2 m

s
for a) and c), while the shooting speed is 2 m

s
for b).

The subset in puck position space Xgoal represents the goal re-
gion. Consequently, we can compute the probability of scoring
a goal given the initial conditions of a shot by marginalizing
over the puck position at time step kgoal with

Pr (G = 1|ŝ0− ,xm
0 , ẋm

0 ) =

∫
Xgoal

Pr
(
xp
kgoal

)
dxp

kgoal
. (10)

We compute the probability in (10) using Monte-Carlo approx-
imation by sampling NG puck positions from the Gaussian
distribution at prediction time step kgoal and counting the
number of samples that would hit the goal

Pr (G = 1|ŝ0− ,xm
0 , ẋm

0 ) ≈ 1

NG

NG∑
n=1

Pr
(
G = 1|xp

kgoal,n

)
,

(11)
with xp

kgoal,n
∼ Pr(xp

kgoal
). In the following, we denote the

approximated probability of hitting the goal, corresponding to
the right-hand side of (11), with Ĝ.

Fig. 4 illustrates stochastic rollouts for various initial con-
ditions of a shot. Evaluating Ĝ as defined in (11), we observe
that those initial conditions have a significant effect even if
the expected puck trajectory hits the center of the goal for all
conditions. Fast shots (Fig. 4-b) accumulate less uncertainty
compared to slow shots (Fig. 4-a) since the modeled process
noise is constant over time. Direct shots accumulate less
uncertainty during rollout than bank shots, as collisions with
a wall add significant process noise (Fig. 4-c).

IV. IMPLICIT CONTACT PLANNING UNDER UNCERTAINTY

The learned dynamics model enables the prediction of
uncertain puck trajectories for contact planning. In particular,
we search for contact states of the mallet that result in desired
puck trajectories after contact. The proposed contact planning
module is based on stochastic optimal control, optimizing the
mallet’s state at contact. We combine this optimization with a
model-based robot controller driving the robot to the desired
contact state at the desired time (cf. Fig. 2).

A. Stochastic Optimal Control for Shooting

Given the desired time of contact and the corresponding
estimate of the puck state s0− at that time, we pose contact
planning for shooting as a stochastic optimal control problem
searching for the mallet state xm

0 , ẋm
0 at the time of contact.

For this, we aim to maximize a tradeoff between the prob-
ability of hitting the goal Ĝ and the expected puck speed
vpuck at the goal line. The expected puck speed is computed
as the norm of the mean puck velocity at kgoal according to
Sec. III-D. While the probability of hitting the goal Ĝ does
not account for a defending opponent, we use the speed of the
puck as a measure of the difficulty of defending against the
shot. The stochastic optimal control problem is given as

max
xm

0 ,ẋm
0

λ1Ĝ + λ2vpuck

s.t. Ĝ > β,
(12)

where we deploy an additional chance constraint to enforce the
probability of hitting the goal to be higher than a threshold β
based on the learned stochastic model. The weights λ1 and
λ2 are used for tuning for the desired behavior. Based on the
qualitative comparison illustrated in Fig. 4, we expect that
solely optimizing for the probability of hitting the goal results
only in direct shots, as bank shots induce uncertainty. Yet,
due to the kinematics of the robot, the puck speed may be
increased with bank shots. Thus, depending on the puck state,
the tuned objective can produce both straight shots and bank
shots, increasing the chances of scoring.

B. Shooting Angle as Reduced Action Space

The goal of the shooting policy is to find the optimal mallet
state at the time of contact, i.e. xm

0 and ẋm
0 , respectively.

Due to the underlying contact geometry and constraints, for
a given puck position x̂p

0 we parameterize the mallet position
as a shooting angle u ∈ U between the mallet and puck. Note
that a shooting angle of u = 0 corresponds to a straight shot
that is parallel to the side walls of the table. We reduce the
dimensionality of the action space further by imposing two
heuristic constraints on the mallet velocity ẋm

0 : i) The mallet
velocity at the time of contact aligns with the shooting angle,
such that ẋm

0 = v(cosu, sinu)⊤ with scalar velocity v > 0
encoding the norm of the mallet velocity. While this constraint
excludes shooting angles that are not aligned with the mallet
velocity, it enforces maximum transmission of kinetic energy
from the robot to the puck. ii) We impose that the norm of the
mallet velocity is maximal given a shooting configuration q0
of the robot and velocity limits Q̇ of the joints of the robot,
such that

v∗ =max v

s.t. veu = J(q0)q̇0,

q̇0 ∈ Q̇.
(13)

Note that the unit vector eu ∈ R3 encodes the shooting
direction including zero contribution in the z-direction. Ac-
cordingly, J(q0) ∈ R3×ndof corresponds to the Jacobian w.r.t.
the Cartesian position of the mallet.



Fig. 5. Examples of differently tuned shooting plans and corresponding energy landscapes. Shooting direction and mallet speed are displayed for varying
initial puck positions. Instance a) evaluates only scoring probability (λ1 = 1, λ2 = 0, β = 0.5); b) adds additional weight on expected puck speed at the
goal line (λ1 = 1, λ2 = 0.2, β = 0.5); c) evaluates only the expected puck speed at the goal line (λ1 = 0, λ2 = 1, β = 0.5). The energy landscape and
sampling process at timesteps j ∈ {1, 12, 25} are visualized for an example shot denoted in red. All pucks are static at j = 0.

As a result, the shooting angle u is the action that we
optimize for. With the imposed constraints, a shooting angle
uniquely maps to a mallet state at the time of contact. Thus,
in the following, we denote the probability of scoring a goal
as a function of the shooting angle with Pr (G = 1|ŝ0− , u).

C. Distilling an Optimal Contact Policy

The long-horizon predictions required to plan shooting
actions make it difficult to operate at a rate that is sufficient
for agile behavior. We address this challenge by training an
implicit model to generate solutions to the stochastic optimal
shooting problem (12) in realtime. Since the stochastic policy
we aim to capture is multimodal, we opt for an implicit policy
representation due to its ability to learn multimodal action
distributions [8, 6]. In the case of air hockey, example modes
correspond to the number of reflections against the bank of the
table, ranging from straight shots without reflections to bank
shots with multiple reflections. To learn the implicit policy,
we use an energy-based model (EBM) [8]. Access to the
learned energy1 landscape allows us to accommodate various
sampling strategies without retraining, enabling a balance
between optimality and computational efficiency.

We train the EBM by solving the computationally expensive
shooting angle optimization offline and using the results as
training data. Namely, we first generate a dataset of shooting
angles for N different puck states at time of contact {si}Ni=1.
Due to the one-dimensional parametrization of the action space
introduced in Sec. IV-B, we efficiently explore the space of
shooting angles for each initial puck state by sampling M
candidate shooting angles {uj

i}Mj=1. Subsequently, we compute
the stochastic rollout of the puck trajectory as presented in

1In this paper, the term energy refers to the negative logarithm of the
unnormalized probability density function that we want to model.

Sec. III-D and evaluate the objective and chance constraint
from (12). The best-performing sample ûi is then used as a
positive example for training the implicit behavioral cloning
model, with the remaining M−1 samples as negative counter-
examples. This results in a dataset of M × N state-action
pairs {si, ûi, {uj

i}
M−1
j=1 }Ni=1, which we use to train the EBM

Eθ(s, u) using an InfoNCE-style [30] loss

LInfoNCE =

N∑
i=1

− log
(
p̃θ
(
ûi|si, {uj

i}
M−1
j=1

))
. (14)

In the above, counter-examples {uj
i}

M−1
j=1 are used to compute

the likelihood p̃θ as follows:

p̃θ
(
ûi|si, {ui

j}M−1
j=1

)
=

e−Eθ(si,ûi)

e−Eθ(si,ûi) +
∑M−1

j=1 e−Eθ(si,ui
j)
.

(15)

The described loss function reduces energy Eθ(s, u) for shoot-
ing angles that solve the optimization problem in (12), while
increasing the energy of non-optimal shooting angles. Once
the model is trained, this allows us to infer optimal shooting
angles using sampling-based optimization.

D. Online Inference with Warm-Starting

To solve (12) given the estimated puck state ŝ0− , we search
for a state-action pair that minimizes the learned energy, i.e.

û = argmin
u∈U

Eθ(ŝ0− , u). (16)

For realtime optimization, we leverage direct access to the
learned energy landscape of the EBM by executing sampling
iterations concurrently with other components of the control
loop. This allows us to refine contact plans as the robot
executes trajectories, while considering only the shrinking



Algorithm 1: Shooting policy (EBM inference)

Input: Puck state ŝ0− , variance σ, samples {p̃i, ũi}Ni=1

Output: Shooting angle û, new samples {p̃i, ũi}Ni=1

{ũi}Ni=1 ←∼ Multinomial(N, {p̃i}Ni=1, {ũi}Ni=1)
{ũi}Ni=1 ← {ũi}Ni=1+ ∼ N (0, σ)
{ũi}Ni=1 ← clip {ũi}Ni=1 to U
{Ei}Ni=1 ← {Eθ(ŝ0− , ũi)}Ni=1

{p̃i}Ni=1 ← softmax(−{Ei}Ni=1)
û← argmax({p̃i}, {ũi})

horizon from the current timestep to the time of contact.
We base the online retrieval of optimal shooting angles
on derivative-free optimization procedures from [8]. As in
the offline scenario, shooting actions are generated online
by uniformly sampling N candidate actions, inferring their
energy values, and resampling with replacement to warm-
start optimization in each subsequent timestep. To converge
towards a solution with minimum implicit energy, reductions
to the sampling variance are applied at each timestep, while
keeping the optimal contact angle û as a reference for the
mid-level trajectory planner. A full iteration of EBM inference
is outlined in Alg. 1. We observe that the learned energy
models and utilized optimization procedure efficiently retrieve
multimodal contact plans to produce desired behaviors, as
shown in Fig. 5.

V. EXPERIMENTAL EVALUATION

This section details the simulated and real-world experi-
ments used to validate our approach in an online contact
planning setting. We evaluate the shooting performance of a
robot arm controlled by our framework and compare it against
state-of-the-art approaches for robot air hockey.

A. Implementation Details

1) Data Collection for Puck Dynamics: We use data col-
lected in a physics-based simulator to learn model parameters
of puck dynamics as presented in Sec. III. One set of data
is collected by randomly moving the robot’s end-effector into
contact with the puck and the other set of data is collected
without moving the robot and by initializing the puck with a
high random velocity. In total, the training set consists of 100
episodes with 50 time steps each, which corresponds to a total
of 100 seconds of observations of the puck dynamics.

2) EBM Architecture and Training: The energy-based
shooting model consists of a multilayer perceptron with 2
hidden, fully connected layers of 128 neurons each. The model
is trained on N=3000 initial puck states, with M=100 action
samples. For each action sample, the corresponding state
action pair is evaluated using the stochastic dynamics model
learned from simulated data (Sec. III), and the optimal control
cost (Sec. IV). Training required 500 epochs to converge for
satisfactory performance using the Adam [16] optimizer with
a decaying learning rate.

Fig. 6. The automated experimental setup consists of a robot placing the
puck at a pre-defined grid of positions (left image). After releasing the puck,
the KUKA robot executes the shooting policy (right image). We measure the
speed of the puck at the goal line and whether the puck hit the goal as quality
metrics.

B. Experimental Setup

The experiment is conducted with a KUKA iiwa14 LBR
manipulator equipped with a mallet end-effector that is at-
tached to a passive joint for seamless contact with the table
surface. Experiments are carried out in a simulated MuJoCo
environment and on a real-world setup (cf. Fig. 6) for eval-
uation of sim2real transfer. We evaluate three instances of
the proposed approach by using different parameters for the
chance-constrained optimization problem in (12). Ours #1:
a conservative policy that prioritizes accuracy (λ1 = 1, λ2 =
0, β = 0.5); Ours #2: a balanced policy that compromises
between accuracy and puck speed (λ1=1, λ2=0.2, β=0.5);
and Ours #3: an aggressive policy that prioritizes puck speed
(λ1=0, λ2=1, β=0.5). Simulated results are also illustrated
in Fig. 5 for initial puck velocities of zero. We compare the
three instances of our contact planner with: CB, a baseline
that utilizes conventional planning and control methods [18];
and ATACOM, a safe reinforcement learning approach for
learning a robot policy [19]. Note that the ATACOM policy is
trained in simulation and deployed in the physical experiment
without additional tuning or retraining.

We perform 100 shots with each policy and report the
accuracy score, puck speed at the goal line, and the number of
bank reflections for successful shots. Each shot is initialized
by placing the puck within a grid in front of the robot. Due
to imperfect air flow on the air hockey table, the puck moves
after release, requiring the robot to adapt for a good shot.

C. Results

Recorded metrics are reported in Table III for the simulated
environment and in Table II for the real-world environment.
Compared to CB and ATACOM, we observe that our frame-
work is capable of achieving higher scoring accuracy and
significantly higher puck speeds in both environments. It can
be seen that different instances of our policy obtain either a
high score or high puck speeds according to the corresponding
parameters of the stochastic optimal control problem. For
example, when compared to Ours #1, it can be seen that Ours
#3 compromises scoring accuracy for faster puck speeds and a
high number of bank reflections, potentially making the shots
more difficult to defend against. The higher number of bank



TABLE I
RESULTS OF THE SIMULATED EXPERIMENTS.

Score Puck Speed
[m

s

]
(mean ± std.) Num. Banks (mean)

CB 0.51 0.52 ± 0.24 0.00
Atacom 0.90 0.55 ± 0.05 0.00
Ours #1 0.93 1.00 ± 0.20 0.00
Ours #2 0.80 1.44 ± 0.63 0.53
Ours #3 0.61 1.97 ± 0.49 1.13

reflections produced by Ours #3 indicates that the robot kine-
matics allow for higher shooting speeds when hitting laterally,
at the risk of missing the goal due to uncertainty gained with
every bank reflection. Note that the score of Ours #3 is lower
than the score chance threshold β = 0.5 for this instance.
This indicates that the learned model either has an error in the
nominal dynamics or expects too little uncertainty gain due to
bank reflections. We further note a decrease in performance for
all agents due to the sim2real gap, with ATACOM showing the
highest sensitivity to transfer as it requires fine-tuning on the
real environment. CB shows the least decrease in performance,
as it is parameterized for the real system. However, note that
the shooting trajectory optimization loop of CB is slower than
required to run at 50 Hz, making it prone to errors due to the
puck moving unpredictably during the shooting motion. Since
we combine closed-loop model-based control with distilled
contact planning, our agents display robustness to sim2real
transfer. Additionally, we note higher puck speeds in the real
setting for all agents as a result of differences in real and
simulated contact dynamics. Example physical shots of all
approaches can be found in the supplementary video.

D. Ablation Studies

Ablation study on reduced action space. We conduct an
ablation study on the impact of learning reduced actions, i.e.
learning shooting angles (1 DoF) as described in Sec. IV-B,
compared to learning full actions, i.e. the mallet state at impact
(4 DoF). Table III reports numerical results on the shooting
performance using the same number of demonstrations for
both modes. It shows that our online inference algorithm
with warm-starting also works with higher-dimensional action
spaces. However, a higher-dimensional action space requires
more data to achieve similar performance.

Ablation study on chance constraint. We furthermore
conduct a study on the impact of the threshold β, which
constrains the likelihood of hitting the goal as described
in Sec. IV-A. Fig. 7 illustrates how the shooting behavior
changes for various β when optimizing for puck speed (λ1=0,
λ2=1). The score increases with β, while the main sources of
uncertainty, puck speed and number of banks, are reduced with
an increasing β.

VI. LIMITATIONS

Several contributing factors enable the highly performative
behavior displayed by our robot air hockey agent. Firstly, the
dimension of the task space is low, as the puck is constrained
to a plane. While this makes our results relevant for many

TABLE II
RESULTS OF THE REAL-WORLD EXPERIMENTS.

Score Puck Speed
[m

s

]
(mean ± std.) Num. Banks (mean)

CB 0.49 1.09 ± 0.24 0.00
Atacom 0.13 0.66 ± 0.15 0.31
Ours #1 0.78 1.72 ± 0.20 0.00
Ours #2 0.60 2.02 ± 0.35 0.37
Ours #3 0.31 2.37 ± 0.50 0.90

pushing tasks, most real-world manipulation tasks involve
higher-dimensional task spaces. Along the same line, we were
able to leverage existing physical models as a strong prior on
contact dynamics. Such models are not available for tasks that
involve more complex contact dynamics. While our approach
enables learning on real-world data, we exploited a physics
engine to collect data for learning a compact contact model.

VII. CONCLUSION

This paper investigated the combination of learning-based
contact planning with model-predictive robot control to pro-
duce agile behavior in Robot Air Hockey. We show that
distilling an optimal contact planning policy through behavior
cloning effectively reduces the horizon required for lower-
level trajectory optimization, enabling real-time operation. We
show that the proposed approach is capable of accommodating
different desired behaviors and sampling-based optimization
schemes. Our results show that the proposed framework
outperforms a purely control-based approach and a purely
learning-based approach in simulated and real-world games
of robot air hockey. Future work will seek to further lever-
age the sample efficiency of structured dynamics models to
capture the underlying contact dynamics of physical systems
from real data. Additionally, integrating physically-informed
priors into the implicit model is an interesting direction for
increasing the data efficiency of our approach. Lastly, we are
interested in investigating the applicability of our approach
to higher-dimensional task spaces with more complex contact
interactions.
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