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Abstract— Tactile sensing is a fundamental component of ob-
ject manipulation and tool handling skills. With robots entering
unstructured environments, tactile feedback also becomes an
important ability for robot manipulation.

In this work, we explore how a robot can learn to use
tactile sensing in object manipulation tasks. We first address
the problem of in-hand object localization and adapt three pose
estimation algorithms from computer vision. Second, we employ
dynamic motor primitives to learn robot movements from
human demonstrations and record desired tactile signal tra-
jectories. Then, we add tactile feedback to the control loop and
apply relative entropy policy search to learn the parameters of
the tactile coupling. Additionally, we show how the learning of
tactile feedback can be performed more efficiently by reducing
the dimensionality of the tactile information through spectral
clustering and principal component analysis. Our approach
is implemented on a real robot, which learns to perform a
scraping task with a spatula in an altered environment.

I. INTRODUCTION

Manipulation of objects and use of tools are among the
most impressive abilities of humans. The sense of touch plays
a crucial role in these tasks. Moreover, impairment of the
tactile sensibility leads to a significant loss of manipulation
skills as tactile information is needed for performing the
sensorimotor control [1]. Thus, in order to be able to use
tools and assist humans in unstructured environments, it is
important for robots to make use of tactile feedback. When
visual information is unavailable, especially due to the in-
hand occlusion, tactile information also provides additional
cues about the object state, such as its position and orien-
tation. Some of the object properties, e.g. its material or
internal physical state, are often only accessible through the
use of tactile perception [2].

Human manipulation control is based on the prediction
of sensory information and reactions to deviations from
these predictions [1]. Human hands contain four types of
tactile afferent neurons: fast-adapting (FA-I, FA-II) and slow-
adapting (SA-I, SA-II). The fast-adapting afferents react to
the high-frequency changes of skin deformation, e.g. during
an initial contact of an object with the hand or contact of
an object inside the hand with another object. During a
manipulation task, the fast-adapting afferents convey changes
of the task phase. The slow-adapting afferents are sensitive
to low-frequency stimuli and provide cues about the object
position and static forces acting on it.

In this work, we use two tactile matrix arrays attached
to a parallel gripper in order to acquire tactile information
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Fig. 1. Robot performing a gentle scraping task using tactile feedback.

of grasped objects. We divide the process of using this
information for manipulation into several steps. First, we
localize the object inside the hand, which is important
for a correct interpretation of the tactile signal during a
manipulation task. Second, we learn a robot movement and
collect tactile information associated with this movement.
In particular, we employ dynamic motor primitives (DMPs)
[3] for learning a movement from human demonstration by
kinesthetic teach-in. The tactile information is encoded as a
desired tactile trajectory and tactile feedback is added to the
system through perceptual coupling [4]. Third, the parame-
ters of tactile feedback are learned with the relative entropy
policy search (REPS) reinforcement learning algorithm [5].
We face the problem of high dimensionality of the tactile
data and therefore perform dimensionality reduction with
spectral clustering [6] and principal component analysis [7].
We evaluate our method by performing a gentle scraping task
using a spatula as shown in Fig. 1. Tactile feedback is used
to adapt to the changes of task conditions.

The paper is organized as follows. In Section II, we
describe three localization algorithms for the in-hand pose
estimation. In Section III, we introduce our approach for
adding tactile feedback to DMPs, dimensionality reduction
of tactile data and optimization of feedback parameters.
In Section IV, we present results collected during robot
experiments.

A. Related work

Although tactile sensing has been an object of study
for a long time, there has been little work on its use
for manipulation tasks. A range of works has focused on
recognizing various object properties. Object materials could



be classified more accurately in [8] by learning a lower-
dimensional representation of the tactile data with the help of
visual information. Additionally to material properties, Chitta
et al. [2] used tactile matrix arrays attached to robot fingers
to derive high-frequency tactile features for determining
internal states of an object, such as detection of movements
and presence of a liquid inside a container.

Low-resolution tactile matrix arrays have been used for
object identification by Schneider et al. [9]. A histogram
codebook of appearances of different object parts was created
for identifying objects based on similar part appearances. In
this work, we use local features of object parts, such as in-
tensity patches of tactile images, for the in-hand localization.
Touch based perception has been studied by Petrovskaya et
al. [10]. The authors created 3D object models and used
readings of a touch sensor for Bayesian estimation of the
object pose. They used the pose information for manipulating
a box and operating a door handle. In our work, besides
localization we focus on the actual dynamic tactile feedback
during the task execution.

Corcoran and Platt [11] use particle filtering to model
objects based on contacts with a robot hand. The object
state is estimated during manipulation by integrating the
likelihood of contact measurements over possible contact
positions. Apart from using positive contact information, the
authors also employ the information about negative contacts,
i.e. where the robot hand does not touch the object, to
improve localization performance. Li et al. [12] use high-
resolution GelSight tactile sensor to localize objects in the
hand by matching key points between object height maps
with RANSAC. The localization is used to perform insertion
of a USB cable dependent on the object pose.

Hsiao et al. [13] employ trajectories in the task space
that depend on the pose of the manipulated object. Decision
theory approach is used to choose trajectories based on the
current belief of the object pose and to reduce uncertainty
about the success of the manipulation. Contrary to the pose
estimation in the task space, in this work we perform object
localization inside the robot hand.

In contrast to the works that use tactile data for controlling
a robot, Bekiroglu et al. [14] use it for assessing the stability
of a grasp. The authors take into account uncertainty and
study learning from single measurements and time series
of measurements. Dang and Allen [15] also explore the
evaluation of the grasp stability connected with the pose of
the object inside the hand. After creating a database of tactile
experiences with corresponding grasp stability assessments,
the robot adjusts the pose of the hand such that the grasp
becomes stable.

Before incorporating tactile feedback, we employ imitation
learning for initializing robot movements. Imitation learning
and DMPs have been extensively used in the past for per-
forming complex movement tasks such as table tennis [16],
T-ball batting [17], grasping [18], etc. The introduction of
perceptual feedback by coupling of external sensor variables
to control has led to improved task performance in difficult
setups, e.g. in a ball-in-a-cup task [4]. In contrast to defining

Fig. 2. Tactile image of a screwdriver handle (left) acquired from a tactile
matrix array (right).

reward as a deviation from a static goal, such as the distance
between a ball and a cup, we look at the deviation from
a desired sensory trajectory. Matching of demonstrated and
robot movement trajectories through reinforcement learning
has shown robustness to changes of task conditions [19]. In
our work, we perform matching to the desired tactile trajec-
tory and use deviations from it to correct robot movements.
The idea is also reflected in associative skill memories [20]
that proposed to record stereotypical sensor signals along
with the movements and use them to compute deviations
from the desired behavior. However, in contrast to predefined
feedback parameters, we learn optimal parameters through
trial and error by applying reinforcement learning.

II. IN-HAND LOCALIZATION

In this section we describe three pose estimation algo-
rithms for localizing objects inside the robot hand: prob-
abilistic hierarchical object representation, iterative closest
point and voting scheme. Pose estimation consists of two
phases. In the first phase, a model of an object is learned
from the collected tactile data. In the second phase, pose
inference is performed with the help of the learned model to
estimate the object pose from the new observations. Although
originally developed for visual data, the presented algorithms
can be used for tactile images acquired from tactile matrix
arrays by performing grasps of an object. In this work, we use
low-resolution tactile sensors, which imposes an additional
challenge for the localization. Fig. 2 shows an example of
a tactile image of a screwdriver handle (left) and a tactile
matrix array (right). In all localization algorithms, we use
intensity value vectors of tactile image patches as features
of the object appearance.

A. Probabilistic Hierarchical Object Representation

Probabilistic hierarchical object representation (PHOR) is
an approach developed by Detry et al. [21] for creating a
part-based hierarchical model of an object.

An object model is a Markov tree, in which each node
corresponds to a specific part of an object. The edges of the
tree encode relative transformations between parent nodes
and their children. They are represented as non-parametric
probability distributions of possible transformation values
and are denoted as compatibility potentials. The bottom of
the tree consists of primitive features that correspond to



local appearances of the smallest object parts. The higher-
level nodes in the hierarchy represent meta-features, i.e.
object parts that are created by grouping the lower-level
features. The root of the tree represents the whole object.
All probability densities are encoded with kernel density
estimation (KDE) [22].

The model is created iteratively in a bottom-up approach.
Given a set of tactile observations, they are grouped to form
bigger object parts. Spatial relationships between individual
parts are preserved by encoding relative transformations in
compatibility potentials on the edges of the hierarchy.

Pose inference is performed by using non-parametric be-
lief propagation [23]. In particular, given a set of new tactile
observations, the pose information is propagated from the
bottom to the top of the hierarchy. Compatibility potentials
are used to compute poses of the parents based on the poses
of their children. Interestingly, the information can not only
be propagated upwards but also downwards from parents
to the children. Hence, this approach estimates poses of
occluded parts of the object if we have an estimate of the
pose of their parents.

B. Iterative Closest Point

Iterative closest point (ICP) is a general purpose algorithm
for finding a transformation that minimizes the total distance
between two point clouds [24]. Pose estimation is performed
by minimizing the distance between the point cloud created
from tactile observations during the model building phase
to a cloud built from observations during the pose inference
phase.

In the model building phase, tactile observations are
transformed to a point cloud by placing a point whenever
there is a tactile value greater than a specified threshold.
In addition to the point coordinates, we save an appearance
vector, i.e. the intensity values, of the local patch that is
centered around this point. The final model consists of the
points with associated appearance vectors.

Given a previously created model and a set of new tactile
observations converted to a point cloud, we can run ICP for
estimating the object pose. In particular, for each point in the
new cloud we search for the closest point in the model cloud.
Our distance measure combines the distance between point
coordinates in the Cartesian space and Euclidean distance
between appearance vectors associated with these points.
The algorithm is repeated until the total distance between
all points of both clouds falls below a specified threshold.

A disadvantage of the ICP method is that it often con-
verges to a local optimum. In contrast, the inference in the
two other algorithms is probabilistic and global convergence
reduces to finding the highest mode of a distribution.

C. Voting Scheme

The approach of detecting objects and estimating their
parameters in images by using voting schemes originates
in the Hough transform [25]. It was first developed for
identifying lines in images by transforming candidate line
points in Hough space and then voting for possible slope

and intercept values that could go through the single points.
In this work, we take an approach similar to Glasner et al.
[26]. In particular, we employ an appearance-based voting
scheme where similar appearances of tactile image patches
are used for collecting weighted votes for probable poses of
an object.

The model of an object consists of an appearance set
of tactile image patches and a pose set of relative trans-
formations between these patches and the object frame. The
relative position prel of a patch is the difference between
the object position pobj and the position of the patch ppatch
in the hand plane. The relative angle θrel of a patch is the
difference between the strongest gradient orientation of the
patch θpatch and the object angle θobj in the hand plane.

For estimating the object pose from a new set of tactile ob-
servations, we calculate appearance descriptors of each patch
in the tactile image and search for its K nearest neighbors in
the appearance set. Then, for each found patch, we compute
a vote for the object pose based on the relative transformation
prel and θrel in the pose set. Each vote is inversely weighted
by the distance between appearance descriptors. Finally, we
construct a non-parametric distribution of the votes with
KDE. We use the mean-shift algorithm for finding all modes
of the distribution [27]. The highest mode corresponds to the
most probable pose of the object.

III. TACTILE-BASED MANIPULATION

After localizing an object inside the hand, we can redefine
the tool center point according to the estimated object pose.
In this section, we explain our method for incorporating
tactile feedback into robot manipulation tasks. First, we
describe dynamic motor primitives (DMPs) for encoding
robot movements from human demonstration. Then, we
show how tactile feedback is added to the system through
perceptual coupling and how the dimensionality of the tactile
information can be reduced. Finally, we explain how policy
search can be used to learn parameters of the tactile coupling
through trial and error.

A. Dynamic Motor Primitives

DMPs [3] are non-linear dynamical systems that consist of
two components: a canonical system z and states x1, x2 of
a spring-damper system with a forcing function f , which
is driven by the canonical system. We use the following
formulation of the DMPs:

ẋ2 = ταx(βx(g − x1)− x2) + τaf(z),

ẋ1 = τx2,

ż = −ταzz,

where αz, αx, βx are constant parameters, a is the amplitude
modifier of the forcing function, τ is a time parameter for
tuning speed of the movement execution and g is the goal, i.e.
the final position of the movement. The value of z starts with
one and approaches zero with exponential decay. The value
of the forcing function also approaches zero with decreasing



z and therefore, for z → 0 the spring-damper system drives
the position towards the goal g.

By introducing the function f(z), we add a force to the
spring-damper system. Hence, by choosing a correct f(z)
we can encode arbitrary movements. The forcing function
depends on the canonical system and is formulated as
follows:

f(z) =

∑m
i=1 ψi(z)wiz∑m
i=1 ψi(z)

,

ψi(z) = exp
(
−hi(z − ci)2

)
,

where m is the number of normalized weighted Gaussian
kernels with their centers distributed along the state axis z
of the canonical system. At various state values z different
Gaussians ψi(z) become active and their values are mul-
tiplied by the corresponding weights wi. The goal of the
imitation learning process is to find weights wi such that the
resulting motion closely resembles the demonstration, which
can be achieved with linear regression.

B. Perceptual coupling and tactile feedback

In order to react to different tactile stimuli, we have to
modify the robot movement. For this task, we adapt DMPs
with perceptual coupling as described by Kober et al. [4]. In
particular, we define the desired tactile trajectory ȳ(z) and
the current tactile signal y. The desired tactile trajectory is
recorded during the demonstration of the movement, where
we record the current tactile image at each time point. Tactile
feedback is based on the difference between ȳ(z) and y.
Prior to computing the feedback, tactile images have to be
aligned with the images from the demonstration using a pose
estimation method as described in Section II.

For encoding the desired tactile trajectory ȳ(z) and re-
producing it during the task execution, we take an approach
similar to Pastor et al. [20]. We model the sensory trajectory
as a non-linear dynamical system in the form of a DMP.
This system is driven by the same canonical system as the
motion system. In this way, both systems for the motion and
tactile trajectory are synchronized and we receive the correct
desired tactile signal at each time point.

To be able to differently react to the tactile information
at different stages of the task execution we need varying
weights of the tactile feedback that depend on the state
of the canonical system. We model these weights with
normalized Gaussians distributed along the state axis. The
tactile feedback term is added to the forcing function of the
DMP as

f̂(z)=

∑m
i=1 ψi(z)wiz∑m
i=1 ψi(z)

+

n∑
j=1

(∑k
i=1 ψ̂i(z)ŵijz∑k
i=1 ψ̂i(z)

(ȳj − yj)

)
,

where n is the length of the tactile feedback vector and
(ȳj − yj) is the difference of the j-th element of the current
tactile vector and the desired tactile vector, k is the number of
Gaussian kernel functions for the tactile feedback weights.
For a better synchronization, we use the same number of
kernels as in the original forcing function and the same
Gaussian functions, i.e. m = k and ψ̂i(z) = ψi(z).

C. Dimensionality reduction of tactile information

In the Section III-D, we will explain how to learn weights
of the tactile coupling with reinforcement learning. However,
by using each tactile element (tactel) individually, the number
of weights becomes very large. For example, the tactile
vector of a 8x8 tactile image has the length n = 64. With
the number of Gaussians in the model k = 50 the number
of weights that have to be learned for a single DMP is 3200.
Therefore, we perform dimensionality reduction of tactile
images. In particular, we apply principal component analysis
(PCA) [7] to the tactile image vectors collected from multiple
demonstrations of the same task. Consequently, we use only
the largest principal components of the tactile trajectory for
the feedback. Thus, only the parts of tactile images that vary
throughout the task execution influence the feedback term.
This significantly reduces the number of weights that have
to be learned.

Further reduction of the number of tactile feedback
weights can be achieved by dividing the action into phases
and learning only a single weight for each phase [28]. Recog-
nition of the action phases can be accomplished by clustering
tactile images based on their similarity. Each action phase
will have similar tactile images belonging to a specific
cluster. As our localization is not perfect, we often do not
have exact pixel-to-pixel correspondences through the image
alignment. Therefore, we employ a kernel similarity measure
that takes into account and tolerates these inaccuracies.

Kernel descriptors, introduced by Bo et al. [29] provide a
way to compute low-level image patch features based on
various pixel attributes, such as gradient, color etc. The
authors use attribute and position kernels to compute the
similarity between two image patches. In our work, we use
the similarity of intensity values of the tactile images. The
corresponding measure is computed as

K(P,Q) =
∑
z∈P

∑
z′∈Q

kc(c(z), c(z
′))kp(z, z

′),

where kc(c(z), c(z
′)) = exp(−γc‖c(z) − c(z′)‖2) is an

intensity kernel, kp(z, z′) = exp(−γp‖z−z′‖2) is a position
kernel, P and Q are two tactile images. Gaussian kernels
result in smooth transitions between similar tactile images.
By changing γc and γp we can adjust the width of the
Gaussians and hence, how much similarity tolerance we
allow for the intensity values and pixel positions accordingly.
In our experiments, we set γc = 1 and γp = 2.

Clustering of tactile images based on their kernel similarity
can be performed with spectral clustering [6]. We apply the
normalized spectral clustering algorithm by Shi and Malik
[30]. We assume a fully connected similarity graph where
the weight of an edge between two images Xi and Xj is
their similarity value. Subsequently, clustering is performed
in a lower-dimensional space based on the eigenvalues of the
similarity matrix S where Sij = K(Xi, Xj).

Fig. 3 shows on the left a heat-map visualization of the
kernel similarity matrix of the temporarily sorted tactile
images acquired while performing the scraping action. We



Fig. 3. Similarity matrix heat-map (left) and spectral clustering (right) of
tactile images of the scraping task. Clusters: red (top left) - moving towards
the table, yellow (center) - scraping along the table surface, green (bottom
right) - moving back to the initial position

can recognize three parts of the action in the heat-map, as
during these parts the tactile images are similar and therefore
these portions are painted in high-temperature colors. We
also notice that the first and third motion parts have high
similarity values as well. They correspond to moving the
hand in the air: in the first case towards the table and in the
second case towards the initial position. In both cases, the
tactile images are analogous. We apply spectral clustering to
the similarity matrix with the number of clusters equal to
three. The cluster assignments of tactile images are depicted
in Fig. 3 on the right, where clusters are painted in different
colors. Hence, we are able to correctly divide the action into
three segments.

After applying spectral clustering, we learn only a single
effective weight θjs for each action phase. The weight of
each Gaussian inside a phase is then computed as follows:

ŵij =
θjs
ci

where j is the tactile vector index, s is the index of the action
phase, i is the index of the Gaussian and ci is the center of
the Gaussian.

D. Policy search for learning tactile feedback weights

In this section, we explain how the tactile feedback pa-
rameters can be optimized with reinforcement learning. The
main idea of reinforcement learning is to learn a controller,
i.e. a policy of a robot, that maximizes a given reward. In
this work, we employ policy search to learn weights of the
tactile feedback controller. We define the policy π(θ) as a
Gaussian distribution of the feedback weights with a mean
µ and a covariance matrix Σ. At the beginning of a single
task execution, i.e. an episode, the feedback weight vector
θ is sampled from this distribution. We compute the reward
R(θ) by integrating the total deviation of the tactile signal
from the desired tactile trajectory during the episode.

We perform optimization of the policy with episodic
relative entropy policy search (REPS) [5]. The advantage of
this method is that, in the process of reward maximization,
the loss of information during a policy update is bounded,
which leads to a better convergence behavior.

The goal of REPS is to maximize expected reward J(π) of
a policy π subject to bounded information loss. Information

loss is defined as the Kullback-Leibler (KL) divergence be-
tween the old and new policies. By bounding the information
loss, we limit the change of the policy and hence, avoid
premature convergence.

Let q(θ) be the old policy and π(θ) be the new policy
after the policy update. Then, we can formulate a constrained
optimization problem:

max
π

J(π) =

∫
π(θ)R(θ) dθ s. t.

∫
π(θ) log

π(θ)

q(θ)
dθ ≤ ε,

∫
π(θ) dθ = 1,

where J(π) is the total expected reward of using policy π(θ).
The first constraint bounds the KL-divergence between the
policies with the maximum information lost set to ε. The
second constraint ensures that π(θ) is a proper probability
distribution.

Solving the optimization problem with Lagrange multipli-
ers results in a dual function:

g(η) = ηε+ η log

∫
q(θ) exp

(
R(θ)

η

)
dθ,

where the integral term can be approximated from samples
with a maximum-likelihood estimate of the expected value.
Furthermore, from the Lagrangian it can be derived that

π(θ) ∝ q(θ) exp

(
R(θ)

η

)
.

Therefore, we can compute the new policy parameters with
a weighted maximum-likelihood solution. The weights are
exp (R(θ)/η), where rewards are scaled by η, which can
be interpreted as the temperature of a soft-max distribution.
By decreasing η we give larger weights to the high-reward
samples. Increasing of η results in more uniform weights.
The parameter η is computed according to the optimization
constraints by solving the dual problem.

Given a set of feedback weight vectors {θ1, . . . ,θN} and
corresponding episode rewards, the policy update rules for
µ and Σ can be formulated as follows [31]:

µ =

∑N
i=1 diθi∑N
i=1 di

, Σ =

∑N
i=1 di (θi − µ) (θi − µ)

>∑N
i=1 di

,

with weights di = exp (R(θ)/η)

IV. EXPERIMENTS

In this section, we first describe the hardware used in
our robot experiments. Afterwards, we present experimental
results of the in-hand object localization and tactile-based
manipulation.



A. Hardware

In this work, we aimed at building a low-cost robot gripper
equipped with tactile sensors. We used two dynamical matrix
analog pressure sensors by PlugAndWear.com. One of the
sensors can be seen in Fig. 2. The matrix has a sensitive area
of 16cm x 16cm and contains 64 sensor cells in 8 rows and
8 columns. Hence, the size of a single cell and consequently
the spatial resolution is 20mm.

We attached two tactile matrix arrays to a parallel gripper.
In order to improve compliance and involve more sensor
elements during an object contact we put a 5mm foam layer
underneath the sensor array such that the fabric of the sensor
stretches by pressing on it. Furthermore, to increase the
effective resolution of sensing we placed both sensors with
a 10mm shift to each other, which is a half of the size of a
single tactile element.

With the given setup, the tactile data could be captured
with a frequency of about 50Hz. We attached the gripper
to a light-weight KUKA arm with 7 degrees of freedom. In
order to be able to map single tactels to coordinates inside
the robot hand, we calibrated positions of each element of
the matrix array.

B. In-hand localization experiments

We evaluated the performance of the pose estimation
algorithms on the tactile data acquired by performing grasps
of several objects: a hammer, a screwdriver, a roll of tape, a
saw and a spatula. Appearance features were extracted from
intensity values of 3x3 tactile image patches.

Before collecting the tactile data, the object was placed at
a known position. Subsequently, we performed 40 grasps of
each object from random angles and positions. The tactile
images were recorded along with the corresponding poses
of the object inside the hand. We applied the same gripping
force in all experiments.

The localization performance was evaluated by running
leave-one-out cross-validation. That is, before performing
pose inference on the hold-out grasp, we instantiated the
model with the 39 other grasps. The threshold of the ICP
points was chosen experimentally to discard small values of
the sensor cells that are not currently in contact with the
object. Furthermore, we used 10 nearest neighbors in the
voting scheme experiments.

Table I shows the mean absolute errors of position and
angle estimation for all methods and all objects. We could
achieve the best results on leave-one-out cross-validation
with the voting scheme. The main reason for that is that the
other two methods required a larger number of observation in
order to make reliable pose predictions. In fact, the number
of tactile observations from a single grip was in the range
from 11 to 32. When using PHOR, the data was distributed
among the primitive features and the resulting amount of
observations was too low for building reliable KDEs. The
generated KDEs had much noise, which was propagated to
the top of the hierarchy. The voting scheme, on contrary,
used only a single KDE for all observations, which had
enough data for a reliable pose inference. The convergence

PHOR Voting Scheme ICP
Object Pos. Angle Pos. Angle Pos. Angle
Hammer 4.09 22.54 1.37 11.83 2.19 21.89
Screwdriver 4.55 23.13 1.56 10.27 3.21 30.76
Roll of tape 3.52 16.79 2.12 12.91 2.25 26.27
Saw 3.94 22.44 2.19 6.65 2.99 26.81
Spatula 4.74 29.96 2.96 22.67 3.11 28.51
Average 4.17 22.97 2.04 12.87 2.75 26.85

TABLE I
MEAN ABSOLUTE ERRORS OF POSE ESTIMATION WITH LEAVE-ONE-OUT

CROSS-VALIDATION OF 40 GRASPS. POSITION: cm, ANGLE: degree.

PHOR Voting Scheme ICP
Object Pos. Angle Pos. Angle Pos. Angle
Hammer 1.55 9.24 0.66 9.15 1.80 9.89
Screwdriver 1.54 9.63 0.55 10.20 2.44 14.25
Roll of tape 1.49 6.97 0.60 8.71 1.49 10.08
Saw 1.91 16.78 1.55 2.94 1.51 12.89
Spatula 2.09 17.61 1.80 21.69 2.35 16.64
Average 1.72 12.05 0.90 10.54 1.92 12.75

TABLE II
MEAN ABSOLUTE ERRORS OF POSE ESTIMATION WITH LEAVE-TEN-OUT

CROSS-VALIDATION OF 40 GRASPS. POSITION: cm, ANGLE: degree.

of the ICP method also heavily depends on the amount
of observations, i.e. the number of points to be aligned.
Due to the low amount of points, the number of possible
alignments increases. Therefore, although we could improve
the alignment with appearance features, in many cases ICP
did not converge to a correct alignment and terminated in a
local optimum.

Using more observations leads to a significant improve-
ment of localization performance. Table II shows pose es-
timation results after combining tactile observations of 10
grasps for pose inference and creating models from the other
30 grasps. The increased number of grasps simulates a higher
resolution of the tactile matrix. Improvement of results of
PHOR and ICP methods confirms that they perform better
with a bigger amount of observations. Here, all algorithms
had an average positional error under 2cm, the voting scheme
even under 1cm. The angular error was in the 10-13 degree
range.

The lowest performance was observed for the spatula.
It was the thinnest object, which led to a situation where
the tactile sensors of both hands could touch each other
during the grip and generate noise. The problem of detecting
contacts between different parts of the robot hand, i.e. self-
collisions of the robot, should be addressed in the future. Fur-
thermore, localization of objects that are much bigger than
the hand remains an open problem, as only a small object
part can be observed at a time. In our experiments, a frequent
kind of a localization error was a 180-degree flipping of
objects with long straight handles, such as a hammer or
spatula, due to the high similarity of the corresponding tactile
images. This problem can be addressed by using vision to
determine the coarse alignment of the object before grasping.
The localization can then be refined by using the tactile data,
once the object is grasped.
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Fig. 4. Mean reward values and standard errors after each policy update.
Top: scraping task on an elevated surface. Bottom: scraping task on a ramp.

Due to the low resolution of the tactile sensor, the tactile
images of objects with a similar form do not show a large
variation. Therefore, in many cases, we can generalize object
models, e.g. for elongated or circular objects.

For the object manipulation task, we need a good local-
ization performance with tactile data from a single grasp. As
the voting scheme was the only method that could provide
reliable pose estimation from a small amount of data, we
used this method for our manipulation experiments.

C. Tactile-based manipulation experiments

To evaluate the proposed approach of learning manipula-
tion skills with tactile feedback, the robot was given the task
of gently scraping a surface with a spatula. After learning the
movement from demonstration, we introduced two kinds of
variations from the original setup. In the first task, we used
a higher surface than the robot had expected by adding an
elevation of 5cm. The goal of the robot was to adapt to the
new height and stay close to the desired tactile trajectory by
correcting the pressure of the spatula on the surface. In the
second task, we placed a ramp on the table. Similarly, the
goal of the robot was to learn to adjust its tactile feedback
to the dynamically changing height of the surface.

In both tasks, we used the first two principal components
of the desired tactile trajectory. For each principal compo-
nent, we learned three weights for the three phases of the
scraping action. The robot movements were encoded in a
three dimensional Cartesian space with a separate DMP for
each dimension. Thus, the total number of tactile feedback
weights to optimize with REPS was 18. We conducted the
complete policy learning experiments three times for both

Fig. 5. Scraping task on an elevated surface before any policy updates.
The robot goes too far down, resulting in a larger force and a smaller angle
to the surface.

Fig. 6. Scraping task on an elevated surface after five policy updates. The
robot controls the height such that the spatula gently touches the surface.

Fig. 7. Scraping task on a surface elevated to 7.5 cm and using a policy
learned on a 5cm elevation. The robot still controls its height correctly.

tasks. Each experiment included 6 sets of 20 episodes with
resulting policy updates between the sets.

Fig. 4 shows development of the mean reward after each
policy update of all experiments on an elevated surface and
a ramp. Additionally, the figures show the standard error
of the reward values. Although we have some high reward
episodes in the first iteration, they are not consistent. As the
mean reward increases, the variance of rewards and therefore
the standard error becomes smaller. This indicates, that the
exploration rate decreases with each policy update and the
policy converges to the tactile feedback weights with high
rewards.



In the elevated surface task, the biggest weights were
learned for the first phase of the task. By hitting the table
sooner than expected, there was a big deviation from the
desired tactile trajectory in the phase when the robot should
still have been in the air, which led to a large correction. In
the ramp task, substantial weights were also learned for the
second action phase as the deviation from the desired signal
increased during scraping along the surface of the ramp.

In both tasks, the robot could adapt to the change in the
environment by learning the tactile feedback weights. Fig.
5 shows the task execution on an elevated surface before
any policy updates were performed. The robot goes too far
towards the surface, as it tries to reproduce the demonstra-
tion. After five policy updates, in Fig. 6 the robot learns
to control its height using tactile feedback and performs the
task correctly with a suitable angle and a force. By using the
same policy learned on the 5cm elevation, the robot could
also perform the task on the surface elevated to 7.5cm (Fig.
7). This result shows that the robot learned a policy that
generalizes to different surface heights.

V. CONCLUSION

In this work, we explored tactile sensing for in-hand object
localization and object manipulation with tactile feedback.
Three pose estimation algorithms were adapted for the tactile
images acquired from tactile matrix arrays. We showed
that the number of tactile observations and in general the
resolution of the tactile data have a big influence on their
performance. The probabilistic voting scheme showed the
best results for localizing objects from single grasps.

We employed dynamic motor primitives for learning a
manipulation action from human demonstration and incor-
porated tactile feedback by computing the deviations from
the desired tactile trajectory. The number of tactile feedback
parameters was reduced by performing dimensionality re-
duction of tactile images and action phase recognition. We
optimized the feedback parameters with the REPS algorithm.
In real robot experiments, we showed that the tactile feed-
back significantly improves the movement execution in an
altered task environment.
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