
Learning Sequential Motor Tasks
Christian Daniel1, Gerhard Neumann1, Oliver Kroemer1 and Jan Peters1,2

Abstract—Many real robot applications require the sequential
use of multiple distinct motor primitives. This requirement
implies the need to learn the individual primitives as well as
a strategy to select the primitives sequentially. Such hierarchical
learning problems are commonly either treated as one complex
monolithic problem which is hard to learn, or as separate tasks
learned in isolation. However, there exists a strong link between
the robots strategy and its motor primitives. Consequently, a
consistent framework is needed that can learn jointly on the
level of the individual primitives and the robots strategy. We
present a hierarchical learning method which improves individual
motor primitives and, simultaneously, learns how to combine
these motor primitives sequentially to solve complex motor tasks.
We evaluate our method on the game of robot hockey, which is
both difficult to learn in terms of the required motor primitives
as well as its strategic elements.

I. INTRODUCTION

In recent years, policy search methods for robotics [1]–
[4] have yielded encouraging results on tasks which are
infeasible to encode by hand or to teach via demonstration.
For example, Ng and Coates [3] have used policy search to
develop autonomous stunt helicopters, Kober et al. [2] have
shown how to learn the game ‘ball in a cup’, and Kormushev
et al. [4] learned how to flip pancakes.

In this paper we focus on learning to sequence motor prim-
itives with policy search. A motor primitive encodes an ele-
mental movement and is typically represented as parametrized
policy. Policy search methods directly search for parameters of
the primitives that yield high rewards. While, the use of policy
search methods is in most cases limited to learning a single
motor primitive, many complex tasks require the sequential
combination of motor primitives. For example, playing a game
of tennis does not only require a single hitting movement but
a sequence of distinct hitting movements that finally result in
scoring a point. Such a behavior requires strategic decisions
on what type of motor primitive to use according to the current
situation. Such primitives can also be sequenced in multiple
ways to achieve a given task. Simultaneously representing
a versatile strategic solution in the learned policy of the
agent is desirable, as such knowledge typically improves the
adaptability of the learned policy [5]. We present a policy
search method that efficiently learns both the individual motor
primitives and a versatile strategy to combine these primitives
to achieve the long-term objective of the task.

Most policy search approaches are tailored for episodic
policy search—the robot searches for a single parameter vector

1Technische Universität Darmstadt, Germany
2Max Planck Institute for Intelligent Systems, Tübingen, Germany
{daniel, neumann, kroemer, peters}@ias.tu-darmstadt.de
The authors acknowledge the support of the European Union projects #
FP7-ICT-270327 (Complacs) and # 248 273 (GeRT).

Fig. 1: The robot hockey task. The robot has to hit a puck into one of
three target zones which yield different rewards. The puck can only
be moved by shooting another puck at it. The robot has three shots
to move the puck—overshooting the third zone yields zero reward.

of the policy which is used throughout the whole episode.
Hence, this setup allows the abstraction of a whole episode
as a single decision: choosing the parameter vector of the
policy at the start of the episode. Subsequently, the policy
is executed with the specified parameters and the accumulated
reward is observed by the agent. However, in order to multiple
primitives sequentially, we need to use multiple parameter
vectors sequentially throughout the episode. Learning such
sequencing of motor primitives is mostly unsolved due to the
high dimensionality of the problem.

In some approaches, the two problems of learning the
motor primitives and sequencing the primitives are learned
in isolation [6], [7]. However, such a strategy does not allow
interaction between the two learning problems which might
slow down learning or lead to an interference of both learning
processes. Other approaches sequence primitives by using a
combined policy parameter vector that contains the parameters
of all primitives in sequence [8], [9]. Such strategy slows down
learning as the parameter vector becomes unnecessarily high-
dimensional. One approach for learning to sequence motor
primitives in a single framework is given by Neumann et. al.
[10]. However, this approach requires too many evaluations to
be applied on a real robot.

In this paper, we extend an existing episodic policy search
method to learn the sequencing of multiple motor primitives
while simultaneously improving the individual primitives. We
base our algorithm on the Hierarchical Relative Entropy Policy
Search (HiREPS) method [5]. HiREPS has two desirable
properties which we can utilize for learning sequential motor
primitives: it can adapt the movement primitives to the current

situation and it allows the robot to learn versatile solutions
for a single motor task. In order to use HiREPS for learning
a sequence of motor primitives, we extend the optimization
problem defined by HiREPS to the finite-horizon case where
each episode is composed of K motor primitives. The fi-
nite horizon formulation results in a time-indexed version
of HiREPS, which allows us to learn individual policies for
each decision time point. As we will show, we are able to
efficiently solve the temporal credit assignment problem by
the use of additional constraints imposed by our finite horizon
formulation. The policies at the single decision time points
are connected by these constraints such that they jointly try to
maximize the accumulated reward of the whole episode.

We evaluate our algorithm on a new robot skill, robot
hockey. This game requires the robot to learn both a good
strategy as well as the individual motor primitives needed
to execute the strategy. Our integrated method can efficiently
learn both elements of the problem simultaneously and out-
performs the episodic counterpart of the algorithm.

II. EPISODIC POLICY LEARNING

Most policy-search algorithms are formulated in the
episodic learning scenario. In the episodic case, a parametrized
policy or movement primitive π with a given parameter vector
ω is executed for a whole episode to collect the accumulated
rewards Rω during the execution of the motor primitive.
The parameter vector ω of the policy can be chosen at the
beginning of the episode [8], [11], [12], or, also, a noisy variant
of ω at each time step [2], [13]. All of the above algorithms
assume that the policy parameter vector ω is fixed for the
whole episode — they cannot learn to execute several policies
πi, representing individual motor primitives, with different
parameter vectors ωi in sequence. We can abstract the episodic
learning scenario as a single decision task, such that the
goal is to learn a high-level policy π(ω) which selects the
parameters ω of a motor primitive. This policy π can also
be conditioned on the initial state s0 of the episode which
allows the algorithm to adapt the motor primitive to the initial
state of an episode. We will denote the accumulated reward
of executing a movement primitive with parameters ω and
starting from state s0 as Rsω .

A. Episodic Relative-Entropy Policy Search

We now briefly discuss the Relative Entropy Policy Search
(REPS) algorithm [14] on which we base our learning frame-
work. An episode consists of one action of the agent, e.g.,
one stroke of the robot arm. The main insight of REPS is that
the difference between two subsequent policies during policy
search should be bounded in order to avoid ‘damaging’ the
policy by losing too much information about the old policy.
This information loss can result in premature convergence or
jumps in the policy parameter-space which can harm the robot.

REPS is formulated as a constrained optimization problem.
The most important constraint results from limiting the change
of the policy, which is achieved by bounding the Kullback-
Leibler divergence (KL), or relative entropy, between two

policies and their resulting state distributions

ε ≥
∑

s,ω
µπ(s)π(ω|s) log µ

π(s)π(ω|s)
q(s,ω)

, (1)

where µπ(s) denotes the state distribution of policy π and
q(s,ω) the state-action distribution of the old policy. At the
same time, REPS tries to optimize the expected reward

max
µ,π

∑
s,ω

µπ(s)π(ω|s)Rsω.

In the episodic case, the parameter vector ω only gets chosen
in the beginning of the episode. Consequently, the state
distribution µπ(s) is defined to be the initial state distribution
µ0(s) of the episodes. Hence, the state distribution µπ(s) is
constrained by

∀s : µπ(s) = µ0(s). (2)

Even though µπ(s) is already specified, REPS still opti-
mizes over µπ(s) as the optimization is done over the joint
state-action distribution p(s,ω) = µπ(s)π(ω|s).

In order to satisfy this constraint for continuous state-spaces,
REPS introduces feature averages — only the feature averages
of µπ(s) have to match the observed feature averages φ̂0 of
the initial state distribution µ0(s), i.e.,∑

s
µπ(s)φ(s) = φ̂0. (3)

For example, if we define the features φ to be all first
and second order terms of the state s, this formulation is
equivalent to matching the first and second moments of both
state distributions.

The resulting constrained optimization problem can be
solved by using the method of Lagrangian multipliers and
optimizing the resulting dual function g of the optimization
problem. This dual function is known to be convex and easy
to optimize [14]. Additionally, the REPS formulation can be
used to derive a closed form solution for the joint state-action
probabilities

p(s,ω) ∝ q(s,ω) exp
(
Rsω − V (s)

η

)
, (4)

where V (s) is given by θTφ(s). The vector θ and the scaling
parameter η are Lagrangian parameters which are obtained
by optimizing the dual-function g(η,θ). The function V (s)
serves as a baseline. The scaling parameter η is computed by
the algorithm such that the KL-bound in Eq. (1) is fulfilled.

The probabilities p(s,ω) are only calculated for a finite
set of samples si and ωi and, subsequently, used to obtain a
new policy π by performing a weighted maximum likelihood
estimate on these data-points [5]. As these samples have
been generated from the distribution q(s,ω), the term q(s,ω)
can be cancelled out in Eq. (4) by the resulting importance
weights. For this reason, the term q(s,ω) will be omitted in
the discussion of the remaining algorithms.

Input: Information loss tolerance ε, Entropy tolerance κ, Number of
options n, Number of time steps K, number of Iterations L.
Initialize πk using n Gaussians with random mean for k = 1, ..,K.
for l = 1 to L . . . # iterations

Collect samples
for i = 1, . . . ,M . . . # episodes

Sample initial state s1,i from environment.
for k = 1, . . . ,K . . . # motor primitives

Sample action: ωk,i ∼ qk(ω|sk,i)
=
∑
o πk,old(o|sk,i)πk,old(ω|sk,i, o).

Execute action ωk,i, observe next state sk+1,i

and reward r(ωk,i, sk,i).
Observe Final Reward: r(sK+1,i).

Compute Responsibilities:
p̃k(o|sk,i,ωk,i) = pk,old(o|sk,i,ωk,i) for all k and i.

Minimize the dual function
[θ1:K+1,η, ξ] = argmin[θ1:K+1,η,ξ]

g (θ1:K+1,η, ξ).

Policy update:
for k = 1, . . . ,K

Compute model distribution
pk(sk,i,ωk,i, o) ∝ p̃k(o|sk,i,ωk,i)1+ξk/ηk

exp

(
Rk,i+E[Vk+1(s

′)]−Vk(sk,i)

ηk

)
.

Estimate policies
πk(o|s) and πk(ω|s, o) by weighted ML estimates.

Output: Policies πk(ω, o|s) for all k = 1, . . . ,K

TABLE I: Time indexed HiREPS. In each iteration the algorithm
starts by sampling from the policy π1 given the initial state s1 and
executes the sampled action to generate the next state s2. From this
state, the next action is sampled with policy π2. This procedure is
repeated until the final time-step is reached. The algorithm observes
state transitions and rewards for each step k and the final reward
signal r(s). The parameters η, ξ and θ1:K+1 are determined by
minimizing the dual-function g, where η and ξ are vectors containing
the Lagrangian parameters ηk and ξk for each decision step.

B. Hierarchical Relative Entropy Policy Search

HiREPS [5] extends the REPS framework by introducing a
hierarchical version of the policy

π(ω|s) =
∑

o
π(o|s)π(ω|s, o).

The policy can now choose from multiple motor primitives
which we will also refer to as options [15]. The gating-policy
π(o|s) selects the motor primitive in a given state s and
π(ω|s, o) is the parameter selection policy for the individual
primitives.

This basic hierarchy allows the algorithm to represent
multiple solutions of a motor task in one policy. In order to
simplify the problem of learning such a hierarchical policy,
the estimation of the policy is formulated as a latent variable
estimation problem [5]. First, the responsibilities p̃(o|s,ω)
(see Table I) for each option and each sample si, ωi are
calculated. Subsequently, these responsibilities are used to
update the probabilities p(s,ω, o) for each sample. These
probabilities can then be used to estimate the new gating policy
π(o|s) and the parameter-selection policies π(ω|s, o).

In addition to the standard episodic REPS constraints,
HiREPS uses an additional constraint to avoid overlapping of

the learned options in the action space. This constraint forces
HiREPS to concentrate its options on different modes of the
reward-function and, hence, enables HiREPS to learn multiple
solutions of a motor task in parallel. The non-overlapping con-
straint can be formulated efficiently by bounding the expected
entropy of the responsibilities p̃(o|s,ω) of the options

κ ≥ Eω,s

[
−
∑

o
p̃(o|s,ω) log p̃(o|s,ω)

]
. (5)

The bound in Eq. (5) results in the following closed-form
solution for p(s,ω, o)

p(s,ω, o) ∝ p̃(o|s,ω)1+ξ/η exp
(
Rsω − V (s)

η

)
, (6)

where ξ defines a Lagrangian parameter. For the exact deriva-
tions of the dual-functions of the episodic REPS and HiREPS
we refer to [5].

III. POLICY LEARNING FOR SEQUENTIAL MOTOR TASKS

In this section, we reformulate the HiREPS framework to be
applicable to learning a sequence of motor primitives. In order
to do so, we formulate sequential motor primitive learning as a
Markov Decision Process (MDP). We use parametrized motor
primitives, with parameters ω, as actions of the robot. Each
motor primitive oi is executed for di seconds. This duration
can also be parametrized by ω and, hence, be part of the
action of the agent. However, in this paper we will always use
a pre-specified duration of the motor primitives.

The execution of a motor primitive in state s results in
a transition into state s′ with probability Pω

ss′ = p(s′|s,ω)
and an expected reward of Rsω = r(s,ω) of the primitive.
Both quantities will be estimated by samples. We use this
adapted MDP notation to highlight the fact that we are not
learning individual control signals, but rather a sequence of
motor primitives.

We concentrate on the finite-horizon case, i.e., each episode
consists of K steps where each step is defined as the execution
of a whole motor primitive. In a finite horizon scenario
the optimal primitive selection policy πk(ω|sk) and its state
distribution µπk (s) depends on the decision time step k. Our
task is to learn a policy π(ω|s) which maximizes the expected
total reward

J = Eω1:K ,s1:K+1

[
r(sK+1) +

∑K

k=1
r(sk,ωk)

]
, (7)

where the expectation is performed over the states s1:K+1 and
the selected primitive parameters ωk ∼ πk(ω|sk). The term
r(sK+1) denotes the final reward for ending up in the state
sK+1 after executing the last motor skill.

A. Time-Indexed HiREPS

In order to optimize a sequence of motor primitives instead
of a single primitive, we will use a finite horizon formulation
of HiREPS. We have to find a policy which maximizes

J =
∑
s

µπK+1(s)r(s) +

K∑
k=1

∑
s,ω

µπk (s)πk(ω|s)Rsω, (8)

Fig. 2: One episode of the Hockey task, consisting of three strikes. Each picture shows the initial and final position of control and target
puck. The movement of the pucks is indicated by arrows. The robot can shoot the pink control puck to move the target puck and tries to
place the yellow target puck in one of the marked target zones while not overshooting. In the depicted episode the robot only needed two
strikes to place the target puck into the highest reward zone. With the last strike the robot taps the target puck only slightly without actually
moving it to avoid negative reward for missing it.

where K denotes the number of motor primitives to apply
in each episode and r(s) is the reward for the final state.
Analogous to the episodic HiREPS, we decompose the policy
πk(ω|s) = πk(ω|s, o)πk(o|s) into a gating and a parameter
selection policy for each time-step k. We also bound the
distance between pk(s,ω) and the observed distribution of the
old policy qk(s,ω), as well as the entropy of the responsibil-
ities p̃k(o|s,ω). Thus, the main principle remains unchanged
from the episodic case. However, these bounds are now applied
to each decision step k.

The most important difference to the episodic case lies
in the application of the state transition constraints to the
state distribution µπk (s). In our finite horizon MDP, the state-
distributions µπk (s) have to be consistent with the policy
πk(ω|s) and the transition model Pω

ss′ , i.e.,

∀s′, k : µπk (s
′) =

∑
s,ω

µπk−1(s)πk−1(ω|s)Pω
ss′ , (9)

for each step of the episode. These constraints connect the
policies for the individual time-steps and result in a policy
πk(ω|s) that optimizes the long-term reward instead of the
immediate ones. Following the REPS formulation, these con-
straints are implemented by matching feature averages, i.e.,∑

s′

µπk+1(s
′)φ(s′) =

∑
s′

∑
s,ω

µπk (s)πk(ω|s)Pω
ss′φ(s′), (10)

for all k. This formulation requires the use of a model Pω
ss′

which needs to be learned from data. However, for simplicity,
we will approximate this model by the single-sample outcome
s′ of executing the parameters ω in state s. This approximation
is valid as long as we deal with almost deterministic systems.
Learning the model Pω

ss′ is part of future work.
The complete optimization problem for the time-indexed

HiREPS algorithm and its corresponding dual-function
g (θ1:K+1,η, ξ) are given in the appendix. Due to our time-
indexed formulation, we now have one θk vector for each time
step. The resulting function Vk(s) = φ(s)Tθk is also time-
dependent. In addition, we have one scaling factor ηk and one
ξk factor for each time step.

The joint distribution pk(s,ω, o) can be determined from
samples generated from the distribution qk(s,ω),

pk(si,ωi, o) ∝ p̃k(o|si,ωi)1+ξk/ηk exp
(
Ak,i
ηk

)
, (11)

Fig. 3: The robot hockey task. The robot has two pucks, the pink
control puck and the yellow target puck. The task is to shoot the
yellow target puck into one of the colored reward zones. Since the
best reward zone is too far away from the robot to be reached with
only one shot, each episode consists of three strikes. After each strike
the control puck is returned to the robot, but the target puck is only
reset after one episode is concluded. Concluding an episode with the
target puck in one of the reward zones yields rewards from one to
three as indicated in the picture. However, if the robot shoots the
target puck too far, the reward is zero.

where Ak,i is given by the term

Ak,i = Rk,i + E[Vk+1(s
′)]− Vk(si).

Similar to the episodic case, the reward Rk,i is transformed
into an advantage function. However, the advantage function
now also depends on the expected value of the next state. This
is not surprising as the advantage function has to solve the
temporal credit assignment problem. The advantage function
emerged naturally from the formulation of the constraint in
Eq. (10).

For the state features, we will use a squared feature repre-
sentation φ(s) consisting of all linear and squared terms of the
state in all our experiments. In order to increase the flexibility
of the feature representation, we will use one individual feature
representation for each option oi by multiplying the squared
feature representation with the responsibility p̃(oi|s) of the
option for the current state. The overall feature vector is then
defined as the concatenation of all option features. We use a
Gaussian gating for the gating policy πk(o|s) and a Gaussian
linear model for the parameter selection policy πk(ω|s, o). The
parameters of both models can be easily obtained by weighted
maximum likelihood estimates from the sample points.

IV. EVALUATIONS

We first illustrate our hierarchical learning method on a
basic via-point task, where the agent has to learn to sequence
two motor primitives. We evaluated our learning algorithm on
a variant of the game hockey. Here, a seven degree-of-freedom
robot arm has to move a puck into one of three different target
areas. The puck can only be moved by shooting another puck
at it with a hockey stick.

We compared the time-indexed version of HiREPS with
its episodic version, and show its superior performance on
this complex learning task. The experiments are done in a
physically-realistic robot simulator as well as with the real
robot. In all our experiments, we used a KL-bound of 0.5 and
a κ-value of 1.0. These values have proven to converge quickly
and reliably in a wide range of experiments, and did not need
to be adapted to individual tasks.

A. Policy Representation by Dynamical Motor Primitives

As parametrization of a single motor primitive we use
Dynamic Movement Primitives [16], where we employ the
refined version of the DMPs as presented by Kober et. al. [17].
A DMP describes a spring-damper system which is modulated
by a forcing function f(z;v) = ~ψ(z)Tv, where z is the phase
of the movement. The parameters v define the shape of the
movement and can be learned by imitation from a teacher’s
demonstration. In addition to the shape parameters v, the
trajectory can be influenced by setting the final position yf
as well as the final velocity ẏf of the trajectory. For the exact
description of the DMP framework we refer to [17].

After obtaining a desired trajectory through the DMPs, this
trajectory is followed by the internal feedback-controller of
the robot.

For our experiments, we record one demonstration of the
approximate movement by kinaesthetic teach-in and extract
the shape parameters v from that demonstration. In order to
learn the task, we adapt the final positions and velocities of
all joints, i.e., ω = {yf1, ..., yf7, ẏf1, ..., ẏf7}. In the presented
tasks, the motor primitive is always executed for a predefined
amount of time.

B. Feasibility Study on a Toy Task

Before testing on the real robot task, we evaluated the
time-indexed HiREPS algorithm on a via-point task in order
to illustrate the properties of our approach. In this task, we
modelled a second-order dynamical system. The state of the
agent is given by its position x and velocity ẋ. The actions u
control the accelerations ẍ. The task of the agent is to reach
specified via-points at four different points in time. For each
of these time points, different via-points exists. The reward at
the time points is given by the negative squared distance to the
closest via-point. In addition to the deviation to the via-points
at the four specified time points, the reward function contains a
squared punishment term for taking high accelerations. As we
defined multiple via-points for each of the four time-points,
this task has multiple solutions per construction. The exact

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time [s]

Po
si
ti
o
n
[m

]

Fig. 4: We use this via-point task to illustrate our algorithm.The
agent has to reach one of the via-points (denoted by red circles)
at each of four specified times [0.25, 0.5, 0.75, 1.0]s. The reward is
given by the negative squared distance to the closest via-point. The
last via-point has to be reached with zero velocity. The initial position
and velocity is sampled from a Gaussian distribution with zero mean
and a standard deviation of 0.25 for the position and 0.1 for the
velocity. In this task we learn to sequence two motor primitives, with
the second primitve starting at t = 0.5s (shaded region in which
the line colors change). This task is per construction multi-modal
and illustrates how our algorithm learns distinct motor primitives.
The mean and variance are indicate by shared error bars. The agent
learned several, but not all possible solutions to solve the task.

setting of the task including its via-points is depicted in Figure
4.

In order to demonstrate the sequencing of motor primitives
we decomposed the task into two DMPs which were executed
sequentially. We used 5 shape parameters for both DMPs.
In addition, we also learn the goal-parameter of the DMP,
resulting in 6 parameters per movement primitive. To compare
our sequencing method to the commonly used episodic policy
search setup we also solve this task with the episodic version
of HiREPS. In this case, we only used one DMP with ten
shape parameters and the additional goal-parameter. For both
scenarios the agent could choose between four distinct options
oi at each decision time-point. As we can see from Figure
4, the agent learned to select these primitives according to
the state at the decision time-points as well as to adapt the
primitives such the task can be solved. Our approach was able
to learn multiple solutions for the task as can be seen from
Figure 4. However, only a subset of all possible solutions was
found.

The comparison of the episodic and the sequential learning
methods can be seen in Figure 5 and clearly shows the
advantage of our approach in learning speed as well as in
the quality of the learned solution.

C. Evaluation on the Robot Hockey Task

In the robot hockey task, the robot has to move a target
puck into one of three target areas. This target puck can only
be moved by shooting a control puck at it. The target areas

Episodes

A
ve

ra
ge

 R
ew

ar
d

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-10000

-9000

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

Episodic
Sequential

Fig. 5: The multi-modal via-point task learned with episodic
and sequential motor primitive learning where the movement was
decomposed into two primitives, see Figure 4 for a more detailed
description. As we can see, our algorithm could exploit this de-
composition resulting in increased learning speed and higher quality
policies.

are defined by a specified distance to the robot. The first zone
is defined as distance from 1.4 to 1.8m, the second zone from
1.8 to 2.2m and the last zone from 2.2 to 2.6m. The robot
gets rewards of 1, 2, and 3 for reaching zone 1, 2 or 3,
respectively, with the target puck. The reward is only given
after each episode which consists of three shots of the control
puck. After each shot, the control puck is returned to the robot.
The target puck, however, is only reset after each episode. The
setup of the robot hockey task is shown in Figure 3.

The 2-dimensional position of the target puck defines the
state of the agent. After performing one shot, the agent
observes the new position of the target puck to plan the
subsequent shot. In order to give the agent an incentive to shoot
at the target puck, we punished the agent with the negative
minimum distance of the control puck to the target puck after
each shot. While this reward was given after every step, the
zone reward was only given at the end of the episode (every
third step) as r(sK+1).

We used a DLR-Kuka lightweight arm with 7 degrees of
freedom as depicted in Figure 1. We used DMPs to represent
single motor primitives where we only adapted the goal
positions and velocities of the primitives. This resulted in 14
parameters per primitive per shot. Thus, the episodic HiREPS
has to optimize one 42-dimensional parameter vector while the
time indexed HiREPS has to optimize three policies with one
14-dimensional parameter space each. The shape parameters
v of the single primitives were learned from imitation by
collecting trajectory data via kinaesthetic teach-in.

Simulation Results: We first implemented a realistic simu-
lation of the robot hockey task. In simulation, we varied the
initial position of the puck by sampling the position from
a normal distribution with standard deviation of 10cm. We
compared our sequential motor primitive learning method with
its episodic variant. For the episodic variant, we encoded the
policy-parameters of all three shots into one policy, resulting
in 42 parameters. The episodic variant cannot use state-
feedback except for the information of the initial position of
the puck. Using this feedback is not straightforward. To make
the comparison as fair as possible we did not use any noise

Episodes

A
ve

ra
ge

 R
ew

ar
d

0 500 1000 1500

0

0.5

1

1.5

2

2.5

3

Episodic
Sequential

Fig. 6: Comparison of sequential motor primitive learning to the
episodic learning setup on the simulated robot hockey task. The
sequential motor primitive learning framework was able to find a
good strategy to place the puck in the third reward zone in most of
the cases while the episodic learning scenario failed to learn such a
strategy.

in our simulation, and hence, in theory, the initial position of
the puck is sufficient to solve the task. The comparison of
both methods can be seen in Figure 6. The episodic learning
setup failed to learn a proper policy while our sequential
motor primitive learning framework could steadily increase
the average reward. Our method reached an average reward
of 2.3 after learning for 1500 episodes. Note that an optimal
strategy would have reached a reward value of 3, however,
this is still a clear improvement in comparison to the episodic
setup, which reached a final reward value of 1.4.

Real Robot Results: We used a Kinect RGB-D camera to
observe the state of target puck . For the real robot hockey
task, the initial position was not varied. On the real robot,
we could reproduce the simulation results. The robot learned
a strategy which could move the target puck to the highest
reward zone in most of the cases after 300 episodes. Due to
time constraints, the learning process had to be stopped before
it converged to a final policy. In the final version of the paper,
we will show more validation runs until convergence. One
episode of robot hockey is depicted in Figure 2.

In the final trials, the robot tended to prefer using a soft hit
in the first shot and to shoot the target puck to the last reward
zone with the remaining two shots. This behaviour yielded
higher average reward, since it is easier to only tap the target
puck without moving it too much while it is still closer to the
robot. During learning the robot steadily adapted his strategy
when it mastered the necessary motor skills to achieve higher
rewards by placing the target puck in the highest reward zones.

V. CONCLUSION & FUTURE WORK

In this paper, we introduced a new framework for learning
sequential motor tasks. The algorithm learns how to sequence
multiple movement primitives while simultaneously improv-
ing the individual primitives. Such learning capabilities are
essential for learning many complex motor tasks.

We extended the HiREPS algorithm from the episodic to the
finite horizon case which allows us to sequentially use K prim-
itives in an episode. Such a sequence of primitives provides
the agent with more flexibility and speeds up learning as the

Episodes

R
ew

ar
d

0 50 100 150 200 250 300
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3 Real Robot Hockey

Fig. 7: One trial of of the real robot hockey tasks. The robot starts
with a negative initial reward and learns to achieve an average reward
of 2.5 after 300 episodes. The optimal theoretical reward of the
presented task is 3.0. However, learning has not yet converged and
had to be stopped prematurely due to time constraints.

overall task is divided into more natural and simpler learning
problems. An important problem for learning sequential motor
primitives, which is solved by our algorithm, is the temporal
credit assignment problem. Our algorithm can evaluate the
quality of each executed motor primitive individually instead
of evaluating the outcome of an episode. As a consequence,
our algorithm can use the collected data more efficiently which
also results in an improved learning speed.

In future work we will investigate how to create new
options, merge options if possible, and delete options if they
are not needed any more. We will also investigate learning
the transition models for the primitives in order to speed up
learning.

APPENDIX

A. Time-Indexed HiREPS Optimization problem

The time-indexed HiREPS optimization problem is given
by maximizing Eq. (8) under the constraints

s. t. : ε ≥
∑
s

µπK+1(s) log
µπK+1(s)

qK+1(s)
,

φ̂0 =
∑
s′

φ(s′)µπ1 (s
′),

∀k ≤ K : ε ≥
∑
s,ω,o

pk(s,ω, o) log
pk(s,ω, o)

qk(s,ω)p̃k(o|s,ω)
,

κ ≥
∑
s,ω,o

pk(s,ω)p̃k(o|s,ω) log p̃k(o|s,ω),∑
s′

φ(s′)µπk+1(s
′) =

∑
s′

∑
s,ω,o

Pω
ss′pk(s,ω, o)φ(s

′),

(12)

where we skipped the normalization constraint for p and
pk(s,ω, o) is defined as

pk(s,ω, o) = µπk (s)πk(o|s)πk(ω|s, o).

B. Resulting Dual Function

The dual function of the time indexed HiREPS problem
is obtained by deriving the Lagrangian of the optimization

defined in 12 with respect to p and setting this derivative to
zero. Substituting this solution back into the Lagrangian results
in the dual.

g(θ1:K+1,η, ξ) = θT1 φ̂0 +
∑

k
εηk + κξk

+

K+1∑
k=1

ηk log

(∑
i

Zk,i

)
,

where Zk,i is defined as

Zk,i =
∑
o

p̃(o|si,ωi)1+ξk/ηk

exp

(
Rk,i + θk+1E[φ(s′)]− θTkφ(sk,i)

ηk

)
.

REFERENCES

[1] J. Peters and S. Schaal, “Natural Actor-Critic,” Neurocomputation,
vol. 71, no. 7-9, pp. 1180–1190, 2008.

[2] J. Kober, B. J. Mohler, and J. Peters, “Learning Perceptual Coupling for
Motor Primitives,” in Intelligent Robots and Systems (IROS), 2008, pp.
834–839.

[3] A. Ng and A. Coates, “Autonomous Inverted Helicopter Flight via
Reinforcement Learning,” Experimental Robotics IX, 1998.

[4] P. Kormushev, S. Calinon, and D. G. Caldwell, “IEEE/RSJ International
Conference on Intelligent Robots and Systems,” in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2010.

[5] C. Daniel, G. Neumann, and J. Peters, “Hierarchical Relative Entropy
Policy Search,” in International Conference on Artificial Intelligence and
Statistics (AISTATS 2012), 2012.

[6] J. Morimoto and K. Doya, “Reinforcement Learning of a Dynamic
Motor Sequence: Learning to Stand-Up,” in International Conference
on Intelligent Robots and Systems (IROS), 1998.

[7] J. Kober and J. Peters, “Learning Elementary Movements jointly with
a Higher Level Task,” in Intelligent Robots and Systems (IROS), 2011,
pp. 338–343.

[8] C. Daniel, G. Neumann, and J. Peters, “Learning Concurrent Motor
Skills in Versatile Solution Spaces,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2012.

[9] F. Stulp and S. Schaal, “Hierarchical Reinforcement Learning with
Movement Primitives,” in 2012 IEEE-RAS International Conference on
Humanoid Robots (Humanoids), 2011, pp. 231–238.

[10] G. Neumann, W. Maass, and J. Peters, “Learning Complex Motions
by Sequencing Simpler Motion Templates,” in Proceedings of the 26th
International Conference on Machine Learning, ser. (ICML 2009),
Montreal, Canada, 2009, pp. 753–760.

[11] F. Sehnke, C. Osendorfer, T. Rückstieß, A. Graves, J. Peters, and
J. Schmidhuber, “Parameter-Exploring Policy Gradients,” Neural Net-
works, vol. 23, no. 4, pp. 551–559, 2010.

[12] V. Heidrich-Meisner and C. Igel, “Neuroevolution Strategies for
Episodic Reinforcement Learning,” Journal of Algorithms, vol. 64, no. 4,
pp. 152–168, oct 2009.

[13] E. Theodorou, J. Buchli, and S. Schaal, “Reinforcement Learning of
Motor Skills in High Dimensions: a Path Integral Approach,” in Robotics
and Automation (ICRA), 2010 IEEE International Conference on, 2010,
pp. 2397–2403.

[14] J. Peters, K. Mülling, and Y. Altun, “Relative Entropy Policy Search,” in
Proceedings of the 24th National Conference on Artificial Intelligence
(AAAI). AAAI Press, 2010.

[15] R. Sutton, D. Precup, and S. Singh, “Between MDPs and Semi-MDPs:
A Framework for Temporal Abstraction in Reinforcement Learning,”
Artificial Intelligence, vol. 112, pp. 181–211, 1999.

[16] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Learning Movement
Primitives,” in International Symposium on Robotics Research, ser.
(ISRR 2003), 2003, pp. 561–572.

[17] J. Kober, K. Mülling, O. Kroemer, C. H. Lampert, B. Schölkopf, and
J. Peters, “Movement Templates for Learning of Hitting and Batting,”
in International Conference on Robotics and Automation (ICRA), 2010,
pp. 853–858.

