
Learning Concurrent Motor Skills in Versatile Solution Spaces

Christian Daniel1 and Gerhard Neumann1 and Jan Peters1,2

Abstract— Future robots need to autonomously acquire mo-
tor skills in order to reduce their reliance on human pro-
gramming. Many motor skill learning methods concentrate
on learning a single solution for a given task. However, dis-
carding information about additional solutions during learning
unnecessarily limits autonomy. Such favoring of single solutions
often requires re-learning of motor skills when the task, the
environment or the robot’s body changes in a way that renders
the learned solution infeasible. Future robots need to be able to
adapt to such changes and, ideally, have a large repertoire of
movements to cope with such problems. In contrast to current
methods, our approach simultaneously learns multiple distinct
solutions for the same task, such that a partial degeneration of
this solution space does not prevent the successful completion
of the task. In this paper, we present a complete framework
that is capable of learning different solution strategies for a
real robot Tetherball task.

I. INTRODUCTION

Robot learning of dynamic motor tasks has been an active
field of research in recent years and many impressive appli-
cations have been demonstrated [1], [2], [3], [4], [5]. A large
number of skills have been learned by reinforcement learning
(RL), including the game ‘Ball-in-the-Cup’ [1], the Peg-in-
Hole task [2], robot soccer [6], walking [3] and jumping [4].
In RL, the robot explores actions to learn motor skills and
gets rewards as evaluative feedback on the quality of the
performed movement.

The most prominent motor skill learning algorithms are
Policy Search (PS) methods [7], [8], [4], [9], including Pol-
icy Gradient methods [2], [10], Expectation-Maximization
(EM)-like approaches such as [1], [11] and policy improve-
ments based on path integrals [4]. Policy search is a sub-field
of reinforcement learning which directly tries to optimize
the parameters of the policy. PS has been successful in
learning single solutions for many different tasks. However,
most interesting motor tasks can be accomplished in several
distinct ways. For example, there are many different pos-
sibilities to return a ball in table tennis, such as forehand
or backhand swings, volleys, loops, or drops. Similarly,
multi-legged animals, e.g. horses, can have several gaits
for the same walking speed, such as tolt, amble and trot.
Having multiple solutions to accomplish a motor task may
considerably improve the robustness of robot applications,
rendering their movement-repertoire more human-like as
well as increasing the autonomy of the robot.

1Technische Universitaet Darmstadt, Hochschulstrasse 10,
64289 Darmstadt Germany, FG Informatik, FB Institute for
Intelligent Autonomous Systems. {daniel, neumann,
peters}@ias.tu-darmstadt.de

2Max-Planck-Institut fuer Intelligente Systeme

Fig. 1: The Robot-Tetherball task. We adapt the children’s
game Tetherball for a robot application. A ball is fixed to
a string which is fixed to the ceiling. The robot has to hit
the ball such that it winds around the pole. This requires
two dynamic movements, one for pushing the ball out of his
resting position and a second hitting movement.

For example, in uncontrolled environments such as house-
holds, hospitals or nursing homes, we cannot expect the
environment to be static. We will frequently encounter sit-
uations where the task itself changes, e.g., we might be
presented with a different racket in a tennis playing task. The
environment or our robot itself might even change, e.g., if the
robot is carrying a tray with different objects. In any of the
above cases, representing just one motor skill for a given task
would drastically limit the autonomy of the robot as it would
require re-learning of the motor skill. However, if the robot
is aware of multiple solutions and has multiple skills, it can
employ alternative policies in situations where the standard
policy may be inadequate. Many current methods can only
represent a single solution [1], [4] since they model the
policy as a uni-modal distribution such as a single Gaussian.
Additionally, as Neumann [12] has shown, representing the
policy by a single Gaussian can affect the performance of
policy search methods due to averaging over several modes.

In this paper, we propose to concurrently model and learn
multiple skills of versatile solution spaces for motor tasks
by employing the Relative Entropy Policy Search (REPS)
approach [8], [13]. We present a unifying framework for
learning multiple solutions for one task, and show how
to choose from these solutions in a given situation. Our
approach learns on two levels of a hierarchy. The high-level
gating policy selects the specific solution, which we will also
call option [14], and the action-policy subsequently defines

the action or movement plan which is executed by the robot.
Using hierarchical policy representations, also called hi-

erarchical RL, is a promising idea and has already been
shown to accelerate learning in many situations [15], [16],
[14]. However, most of these algorithms [15], [16] are
formulated only for discrete domains and are, therefore, not
task-appropriate for robotics.

Due to the hierarchical policy representation, we are able
to learn several solutions at once. Our approach extends
the Relative Entropy Policy Search [8] algorithm to the
hierarchical policy case. In this paper, we apply our algorithm
in combination with the commonly used dynamic movement
primitives (DMP) [17]. We simultaneously learn a gating
network, which selects between primitives given the current
context, and the policies of the primitives, which specify the
robot’s actual actions.

We apply our method to a robot version of the children’s
game Tetherball. In robot Tetherball, a ball is hung from the
ceiling by an elastic string and the robot has to hit the ball
such that it winds around a pole. We are able to concurrently
learn multiple solutions for this task, i.e., hitting the ball to
the right side or to the left side of the pole.

II. LEARNING VERSATILE MOTOR SKILLS

We start our discussion with the formal problem statement,
and continue by briefly describing the learning setup. After
reviewing information-theoretic policy search approaches
we show an extension of one of this approaches, called
Relative Entropy Policy Search (REPS) [8] to be applicable
to hierarchical policy representations.

For our formal problem statement, we will use the standard
Markov decision process (MDP) setup [18]. An agent in state
s ∈ S takes action a ∈ A according to a policy π(a|s) and
receives a reward r(s,a). After executing action a in state s,
the agent ends up in a next state s� according to the transition
probability Pa

ss� .
In addition to the standard MDP formulation, we use

options o ∈ O [14] to represent our hierarchical policy by

π(a|s) =
�

o

π(a|s, o)π(o|s).

Hence, our action selection policy π(a|s) consists of a gating
network π(o|s) to select a specific option and the option
policies π(a|s, o) for selecting the action.

A. Episodic Reinforcement Learning with Motor Primitives
We concentrate on the episodic learning case for motor

skills as this applies for many single-stroke motor skills
such as hitting movements [1]. We represent each option
by a dynamic movement primitive (DMP) [17]. A single
DMP represents a movement plan for the whole episode.
The gating network π(o|s) only initiates sub-policies at the
beginning of each episode. Subsequently, the policy of the
movement primitive takes over and generates the movement.
The action a denotes the parameters of the DMP in this case.
As each option defines a different distribution π(a|s, o) over
the parameter-space of the DMPs, it also represents a distinct
family of solutions which are applicable to the task.

B. Information-Theoretic Policy Search

Our policy search approach extends an existing policy
search method, the Relative Entropy Policy Search (REPS)
algorithm, in such a way that it can be applied to hierarchical
policy representations [13]. REPS is an information theoretic
policy search approach which is based on the insight that the
information loss between two policy steps should be bounded
[19], [20], [8]. If the policy update step is too greedy w.r.t
to the reward function, the update might jump into a local
minimum or even result in policies which are potentially
dangerous to the real robot. This potential damage to the
policy is avoided by bounding the Kullback-Leibler diver-
gence, also called relative entropy, between the old state-
action distribution q(s,a) and the state-action distribution
p(s,a) resulting from the new policy.

In the episodic case of REPS, we only consider one action
a per episode and the states are only used to describe
the initial state of the episode. As the action defines the
parameters of the DMP, the action already determines the
whole movement plan for the episode. The states s are given
by the initial state of the episode and the reward Rsa is given
by the reward of the whole episode.

REPS maximizes the episodic reward while bounding the
Kullback-Leibler divergence between the old model distri-
bution q(s,a) and the new state action distribution p(s,a).
In addition, as the initial state distribution µ0(s) is given,
the state distribution µπ(s) =

�
a p(s,a) of the model has

to match µ0(s) in order to avoid inconsistencies. We use
a relaxed version of this constraint, where we require that
the feature averages of p(s,a) match the observed feature
averages φ̂0(s), i.e.,

�

s,a

p(s,a)φ(s) = φ̂0(s). (1)

The optimization problem solved by REPS is defined as

max
p

J(p) =
�

s,a

p(s,a)Rsa,

s. t. � ≥

�

s,a

p(s,a) log
p(s,a)

q(s,a)
, (2)

where we omitted the normalization constraint, i.e.�
s,a p(s,a) = 1, and the initial state constraint given in

Equation (1). This constrained optimization problem can be
solved by maximizing the corresponding Lagrangian L. The
relative entropy formulation allows for a closed form solution
of p(s,a), which can be used to determine the dual-function
g of the original optimization problem. As the dual-function
g is convex, it can be optimized efficiently.

C. Hierarchical Policy Search

We reformulate the problem of estimating a hierarchical
policy as latent variable estimation problem. Thus, we treat
the options o as unobserved variables. As in REPS, we
bound the Kullback-Leibler divergence between q(s,a) and
p(s,a) =

�
o
π(a|s, o)π(o|s)µπ(s). However, using the

marginal p(s,a) in the bound no longer allows for a closed
form solution of p(s,a, o) any more. Thus, we need to
use an iterative update rule, which is strongly inspired by
the Expectation-Maximization algorithm [21]. This update
results from the bound

�

s,a

�

o

p(s,a, o) log
p(s,a, o)

q(s,a)p̃(o|s,a)
≤ �, (3)

where p̃ is a proposal distribution, often called responsibility
in EM-based algorithms. In the E-step of our algorithm, the
responsibilities are determined by

p̃(o|s,a) =
p(s,a, o)�
o
p(s,a, o)

. (4)

In the M-step, the responsibilities are kept fixed and we
directly optimize for p(s,a, o). Both iterations, the E- and
the M-step, can be proven to increase a lower bound of
the original optimization problem [13]. Thus, REPS with
the additional latent variable estimation always converges
to a local optimum of the optimization problem defined in
Equation (2).

Since we are interested in versatile solutions, we want
to avoid that several options are concentrating on the same
solution. In order to do so, we additionally bound the
expected entropy of the responsibilities π(o|s,a), i.e.,

−

�

s,a

p(s,a)
�

o

π(o|s,a) log π(o|s,a) ≤ κ. (5)

Low entropies of π(o|s,a) ensures that our options do
not overlap and instead represent individual and clearly
distinct solutions. We can again replace π(o|s,a) with the
responsibilities p̃(o|s,a) in the term log π(o|s,a).

By combining the constraints given in Equations (3) and
(5) with the original optimization problem of REPS, given
in Equation (2), we can determine a hierarchical version of
REPS. By derivating the Lagrangian L w.r.t. to p(s,a, o),
we can determine a closed form solution for p, i.e.,

p(s,a, o) ∝ q(s,a)p̃(o|s,a)1+ξ/η exp

�
Rsa − V (s)

η

�
.

(6)
The parameter η denotes the Lagrange multiplier for the
relative entropy bound from Equation (3) and ξ the Lagrange
multiplier for the entropy bound of the responsibilities given
in Equation (5). The function V (s) = θTφ(s) can be seen
as a value function like term [8]. The parameters θ are again
Lagrange multipliers of the initial distribution constraint
which is given in Equation (1). All Lagrange parameters can
be acquired by minimizing the dual function g(η, ξ,θ) of
the optimization problem. Note that our approach reduces to
REPS if we only use one option.

In the original formulation of REPS [8], we are not
required to know the distribution q(s,a) in its parametric
form. Instead, it is sufficient to have access to samples of
q(s,a). Hence, q(s,a) does not necessarily need to be the
old-model distribution.

Input: Information loss tolerance �, Entropy tolerance κ, Number of
options n
Initialize π using n Gaussians with random mean
for k = 1 . . . L

Set sample policy:
q(a|s) =

�
o πold(o|s)πold(a|s, o)

Sample: collect new samples from the sample policy and add to
dataset

{sj ∼ p(s0),aj ∼ q(a|sj), Rj}j ∈ {1, .., N}
Calculate importance weights

vki = qk(si,ai)�
k

h=k−H
qh(si,ai)

. for all i

Proposal distribution:
p̃(o|si,ai) = pold(o|si,ai) for all i

Minimize the dual function
[θ, η, ξ] = argmin[θ,η,ξ] g (θ, η, ξ)

Policy update:
Calculate model distribution
p(si,ai, o) ∝

vki p̃(o|si,ai)1+ξ/η exp
�

Ri−θT φ(si)
η

�

Estimate distributions π(o|s) and π(a|s, o) by
weighted ML estimates

Output: Policy π(a, o|s)

TABLE I: Hierarchical REPS. The algorithm collects new
samples in each policy iteration. Due to the use of impor-
tance sampling, we can re-use old samples. The importance
weights v

k

i
are used for the calculation of the dual-function

g as well as the model distribution p. The parameters η, ξ
and θ are determined by minimizing the dual-function g.

As a consequence of using samples, we can evaluate our
model distribution p(si,ai, o) only at our sampled state-
action pairs si and ai. Hence, we still need to fit a para-
metric model to π(a|s, o)π(o|s)µπ(s) in order to draw new
samples from this distribution. We estimate the paramet-
ric model by minimizing the Kullback-Leibler divergence
KL (p(s,a, o)||π(a|s, o)π(o|s)µπ(s)), which is given by

�

s,a

p(s,a, o) log π(a|s, o)π(o|s)µπ(s) + const

=
�

si,ai∼q(si,ai)

w(si,ai, o) log π(ai|si, o)π(o|si)µ
π(si), (7)

where

w(si,ai, o) = π̃(o|si,ai)
1+ξ/η exp

�
Ri − V (si)

η

�
.

This minimization defines a weighted maximum-likelihood
estimation problem. For simplicity, we use a Gaussian gating
network for π(o|s) and a linear Gaussian model as action
selection policy π(a|s, o).

D. Sample Re-use by Importance Sampling

As we usually have knowledge of the sampling distribution
qk(s,a) at each policy iteration k, we can extend the hierar-
chical REPS framework by re-using samples from previous
iterations using importance sampling [22]. At each iteration
k of the policy search, we assume that our samples have been
generated by a mixture of the last H sampling distributions

30 50 100 200
New Samples per Iteration

R
ew

ar
d

A
fte

r 6
20

0
S

am
pl

es
Influence of # of new Samples

-13000

-11000

-9000

-7000

-5000

-3000

Fig. 2: Evaluation of the number of new samples per itera-
tion. Collecting more than 30 samples per iteration requires
a higher total number of samples to achieve similar reward.
Averaged over 10 cross validations.

Fig. 3: Average rewards of our approach with different κ

values and the standard REPS. Our approach learns faster
and converges to a better solution. Averaged over 20 cross
validations.

qh(s,a), h = k−H . . . k. Thus, the importance weights for
the sample si and ai is given by

v
k

i
=

qk(si,ai)�
k

h=k−H
qh(si,ai)

.

Such importance weights are used in the calculation of
the dual function (see appendix) as well as well as for
the weighted maximum likelihood estimation, as defined
in Equation (7). The algorithmic form of our approach is
summarized in Table I.

We typically start the algorithm with too many options
and delete options if an option has a very low prior p(o) =�

s,a p(s,a, o). To prevent options from prematurely getting
deleted in the beginning of the learning process, we ensure
that each option gets a minimum amount of samples at each
policy search iteration and always keep at least four options.

III. EXPERIMENTS

We evaluate the proposed method within the episodic
motor skill learning setup with movement primitives. We
will first describe the employed movement primitives. Sub-
sequently, we demonstrate the basic characteristics of our

Fig. 5: Trajectories found by two distinct options (magenta
and blue colors) for the via-point task. The red circles show
the positions of the via points that have to be reached
during the motion. Our approach simultaneously finds both
solutions.

algorithm on a toy task wherein the agent has to learn a
movement through several via-points.

In order to illustrate the algorithm on a more complex,
real-robot task we present experiments of a robot learning
Tetherball. Here, we first evaluated our algorithm on a real-
physics simulation and, subsequently, learned the task on a
real Barrett WAM arm as can be seen in Figure 4.

A. Dynamic Motor Primitives

To describe the motion of the robot arm, we use a recent
adaption of dynamic motor primitives (DMPs) to hitting
movements as presented in [23]. A DMP uses a second
order linear dynamical system which is modulated by a
learnable non-linear function f(z;w), where z denotes a
phase variable of the movement. The function f(z;w) =
Φ(z)Tw is non-linear in the phase variable z but linear
in its parameters w. The parameters w define the shape
of the movement and can be learned efficiently from a
demonstrator’s trajectory in a imitation learning setup [17].
For each joint a different, learnable function f and, thus,
different parameters w are used. In addition to the shape
parameters w, we can adapt meta-parameters of the DMP
such as the desired goal position yg and the corresponding
desired velocity ẏg at the end of the movement. For a more
detailed description of the used DMP approach we refer to
[23].

In our simple via-point task, we learn the shape parameters
w of multiple DMPs while keeping the meta-parameters
fixed. For the robotic Tetherball experiments, we acquire w
from one teacher’s demonstration trajectories and adapt the
final position and velocities of the hitting movement. The
demonstration usually provides an adequate initialization for
the movement. However, simply replaying the demonstration
typically does not solve the motor skill task as the robot
is unable to exactly reproduce the teacher’s behavior, also
known as correspondence problem [24], [25], or because the
teacher himself could not optimally solve the task. Thus,
based on the demonstration, we need to learn an adapted
movement that can solve the task.

Fig. 4: Time series of a successful swing of the robot. The robot first has to swing the ball to the pole and can, subsequently,
when the ball has swung backwards, arc the ball around the pole.

B. Illustrative Toy Task

To demonstrate the characteristics of our hierarchical
learning framework, we choose a multi-modal via-point task
[26]. We use a one dimensional linear dynamic system, the
state s is given by both the position x and velocity ẋ of the
agent. The control variable is given by the acceleration ẍ.
The task is given by reaching a set of via-points, marked as
red circles in Figure 5. As we want to model a motor skill
task with multiple solutions, we use multiple via-points for
some of the time points.

The reward function for this task is defined as the negative
distance between the agent’s position at the specified time-
points and the closest via-point. In addition, we punish
the summed squared accelerations to prefer energy efficient
solutions1. Thus, this task has two optimal solutions, one
passing the via-points v1 = 0.5 and v3 = −0.2 and the
second solution with v1 = −0.5 and v3 = 0.2. The setup is
also visualized in Figure 5

The agent starts each episode in the initial position x0 = 0.
Subsequently, the hierarchical policy chooses which DMP
to execute and also chooses the exact parametrization of the
DMP. For this task, we assume that the goal state at t = 1.25s
is given, we use ten basis functions for the DMPs and learn
the corresponding parameters w.

We evaluate our approach with different bounding pa-
rameters κ for the responsibilities. We always use a value
for κ which is proportional to the current entropy of the
responsibilities. We also compare our approach to the stan-
dard unimodal REPS algorithm. At each iteration we use
200 samples. To illustrate the effect of different κ values
we did not use importance sampling in this experiment. The
resulting learning curves can be seen in Figure 3. As we
can see, κ = 1.0 results in the highest rewards as well as
fast learning in this setup. Using no bound for κ results in
worse results as most options will concentrate on the same

1For the distance to the via-points we used a factor of 104 and for the
squared accelerations a factor of 10−3 in the reward function.

solution space, which slows down learning. The standard
REPS approach needs more samples to find good solutions as
it often gets stuck between the two modes in the beginning
of the learning process. Two distinct options of the same
learning trial are depicted in Figure 5. We can see that our
approach is indeed able to discover both modes and, thus,
be fail-safe in changing environments.

In a second experiment, we evaluate the influence of
importance sampling. We evaluate our algorithm with N =
[30, 50, 100, 200] samples per iteration and re-evaluate pre-
viously collected samples with importance sampling, where
we always re-use the last 200 samples. Each learning trial
is performed until the algorithm has collected 6200 samples.
The results are shown in Figure 2 and show the benefits of
importance sampling. Just collecting 30 samples per iteration
and using importance sampling improved the average reward
from −10, 000 to −5000. Without importance sampling and
with N = 30 no good solution could be found.

C. Robot Tetherball

Tetherball is a common two player children’s game. Each
player tries to hit the ball such that it winds around the
pole in one direction while the second player is trying to
wind the ball in the opposing direction. Inspired by this
game, we introduce the robot Tetherball task. As we are
currently interested in learning to hit the ball, rather than
learning a competitive two-player strategy, we modify the
rules of the game to be suitable for a single player game.
Instead of having an opponent, the robot has to wind the
ball around the pole once and receives reward proportional
to the speed of the ball winding around the pole. We mount a
table-tennis paddle to the end-effector of the robot arm. The
real-robot setup is depicted in Figure 1 and two successful
hitting movements of the real robot are shown in Figure 4.

In the original Tetherball game, the ball is hung from the
upper end of the pole and the players start the game by
first moving the ball away from the pole and then hitting it
towards their opponent. Displacing the ball from its resting

Fig. 6: Time series overlay of two swings in simulation,
one left swing and one right swing. The two solutions are
different options of the same policy. HiREPS can also keep
more options representing additional solutions to a task.

Fig. 7: Top view of the setup of robot tetherball. The ball is
hung from the ceiling in front of the pole.

pose is necessary to achieve a circular motion of the ball,
enabling the ball to actually wrap around the pole. In order
to allow the robot to serve the ball using a single hand, we
attach the string to the ceiling, between the robot and the
pole, rather than to the pole directly. Hence, the robot can
hit the ball once to displace it from its resting pose and,
subsequently, hit it again to arc it around the pole.

Thus, we decompose our movement into a swing-in mo-
tion and a hitting motion. For both motions we extract the
shape parameters w by kinesthetic teach-in [27]. For learning
both motions in our episodic setup we represent the two
motions by a single set of parameters and jointly learn the
parameters for the two DMPs. For both movements, we learn
the final positions and velocities of all seven joints. Addi-
tionally, we learn the waiting time between both movements.
This task setup results in a 29-dimensional action space for
our robot Tetherball task.

The reward is determined by the speed of the ball when
the ball winds around the pole. We define winding around
the pole as the ball passing the pole on the opposite side
from the initial position.

In order to reliably test our algorithm, without harming
the robot, we implemented an accurate physics simulation of
the setup, as seen in Figure 7. We run our algorithm with 50
samples per iteration and always keep the last 400 samples.

Iteration

R
e

w
a

rd

Tetherball Simulated

0 10 20 30 40 50 60 70 80 90 100
-600

-500

-400

-300

-200

-100

0

REPS

HiREPS

Fig. 8: The average learning curve of our algorithm on the
simulated Robot Tetherball task. HiREPS converges faster
while additionally keeping a minimum of five solutions for
the presented task and can, thus, wind the ball around the
left side of the pole as well as the right side of the pole.
REPS will converge to similarly good results as HiREPS
after around 100 iterations but does not keep information
about more than one solution.

We initialize our algorithm with 30 options and stop deleting
options if only 5 options are left. The resulting learning curve
in the simulation can be seen in Figure 8.

The learning curve of our approach can be seen in Figure
8. After 200 iterations the robot has learned to wind the
ball around the pole in 5/5 trials. In all trials, we were able
to observe options for the left and for the right mode. The
resulting movements are shown in Figure 6 and illustrate
that the resulting movement of the two solutions are easily
differentiated. Subsequently, we tested our algorithm on the
real robot. We initialize our algorithm with 15 options and
sample 15 trajectories per iteration. The learning curve is
shown in Figure 9. The noisy reward signal is mostly due to
the vision system (Microsoft Kinect) and partly also due to
real world effects such as friction. Two resulting movements
of the robot are shown in Figures 4 and 6.

IV. CONCLUSION AND FUTURE WORK

Learning versatile motor skills is an important step towards
autonomous robotic agents. In this paper, we presented the
first real robot results of our hierarchical policy search
method, which can learn concurrent solutions to a motor skill
task. Many motor skill tasks can be realized by distinct so-
lutions. Learning such distinct solutions is likely to simplify
the generalization of motor skills, increase the adaptability
of robots and render the movements more human-like.

In the presented hierarchical relative entropy policy search
framework, we formulate the problem of learning a hierarchi-
cal policy as latent variable estimation problem. In this paper,
we applied this approach to learn a hierarchical DMP policy,
where the option selection policy chooses a single DMP
and the action selection policy, subsequently, determines the
exact parameters of the DMP. We evaluated our algorithm on
a simulated robot tetherball setup and, subsequently, learned
to play robot tetherball on a real robot. In the future, we also

Iteration

R
e

w
a

rd
Real Robot Learning Curve

0 5 10 15 20 25 30 35 40 45 50
-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

200

HiREPS

Fig. 9: Average rewards of our approach on the real robot
setup. Mean and standard deviation of three cross validations.
In all of the three trials, after 50 iterations the robot has found
solutions to wind the ball around the pole on either side.

plan to use our approach to learn to select multiple DMPs
in a sequence.

We also presented an extension of our policy search
approach, that reuses old samples by importance sampling.
Due to the increased sample efficiency of the algorithm, the
approach is more suitable for real robots. We also plan to
extend our task to the case of a two-player game as well as
using our approach on a two-player table tennis setup.

APPENDIX
A. The Dual Function

The dual function for the our algorithm, with importance
sampling, is given by

g(θ, η, ξ) = �η + κξ + θT φ̂0 + η log

��
i
v
k

i
Zi�

i
v
k

i

�
,

Zi =
�

o

p̃(o|si,ai)
1+ξ/η exp

�
Ri − θTφ(si)

η

�
.

As the dual-function consists of the log of summed expo-
nential terms it is convex in its parameters. The factors v

k

i

denote the importance weights.

ACKNOWLEDGMENT
The authors want to thank for the support of the European

Union projects # FP7-ICT-270327 (Complacs) and # 248 273
(GeRT).

REFERENCES

[1] J. Kober and J. Peters, “Policy Search for Motor Primitives in
Robotics,” Machine Learning, pp. 1–33, 2010.

[2] V. Gullapalli, F. J, and H. Benbrahim, “Acquiring Robot Skills via
Reinforcement Learning,” in IEEE Control Systems Special Issue on
Robotics: Capturing Natural Motion, 1994.

[3] T. Matsubara, J. Morimoto, J. Nakanishi, M.-a. Sato, and K. Doya,
“Learning Sensory Feedback to CPG with Policy Gradient for Biped
Locomotion,” in Proceedings of the 2005 IEEEE International Con-
ference on Robotics and Automation ICRA, Barcelona, April 2005, pp.
4175–4180.

[4] E. Theodorou, J. Buchli, and S. Schaal, “Reinforcement Learning
of Motor Skills in High Dimensions: a Path Integral Approach,” in
Robotics and Automation (ICRA), 2010 IEEE International Conference
on, 2010, pp. 2397–2403.

[5] M. Rosenstein, “Robot Weightlifting by Direct Policy Search,” Inter-
national Joint Conference on Artificial Intelligence (ICJAI), 2001.

[6] M. Riedmiller, T. Gabel, R. Hafner, and S. Lange,
“Reinforcement Learning for Robot Soccer,” Auton. Robots,
vol. 27, pp. 55–73, July 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1569248.1569254

[7] J. Peters and S. Schaal, “Reinforcement Learning of Motor Skills with
Policy Gradients,” Neural Networks, no. 4, pp. 682–97, 2008.

[8] J. Peters, K. Mülling, and Y. Altun, “Relative Entropy Policy Search,”
in Proceedings of the 24th National Conference on Artificial Intelli-
gence (AAAI2010). AAAI Press, 2010.

[9] J. A. Bagnell and J. C. Schneider, “Covariant Policy Search,” in
Proceedings of the International Joint Conference on Artificial In-
telligence (IJCAI), 2003.

[10] M. P. Deisenroth, C. E. Rasmussen, and D. Fox, “Learning to Control a
Low-Cost Manipulator using Data-Efficient Reinforcement Learning,”
in Proceedings of R:SS, 2011.

[11] N. Vlassis and M. Toussaint, “Model-Free Reinforcement Learning as
Mixture Learning,” in International Conference on Machine Learning
(ICML 2009), 2009, p. 136.

[12] G. Neumann, “Variational Inference for Policy Search in Changing
Situations,” in Proceedings of the 28th International Conference on
Machine Learning, ser. (ICML 2011). New York, NY, USA: ACM,
June 2011, pp. 817–824.

[13] C. Daniel, G. Neumann, and J. Peters, “Hierarchical Relative Entropy
Policy Search,” in International Conference on Artificial Intelligence
and Statistics (AISTATS 2012), 2012.

[14] R. Sutton, D. Precup, and S. Singh, “Between MDPs and Semi-MDPs:
A Framework for Temporal Abstraction in Reinforcement Learning,”
Artificial Intelligence, vol. 112, pp. 181–211, 1999.

[15] M. Ghavamzadeh and S. Mahadevan, “Hierarchical Policy Gradi-
ent Algorithms,” in International Conference for Machine Learning
(ICML). AAAI Press, 2003, pp. 226–233.

[16] T. G. Dietterich, “State abstraction in maxq hierarchical reinforcement
learning,” in NIPS, 1999, pp. 994–1000.

[17] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Learning Movement
Primitives,” in International Symposium on Robotics Research, ser.
(ISRR 2003), 2003, pp. 561–572.

[18] R. S. Sutton and A. G. Barto, Reinforcement Learning. Boston, MA:
MIT Press, 1998.

[19] J. A. Bagnell and J. G. Schneider, “Autonomous Helicopter Control us-
ing Reinforcement Learning Policy Search Methods,” in Proceedings
of the International Conference for Robotics and Automation (ICRA),
2001, pp. 1615–1620.

[20] S. Still and D. Precup, “An Information-theoretic Approach to
Curiosity-driven Reinforcement Learning,” International Conference
on Humanoid Robotics, 2011.

[21] R. Neal and G. E. Hinton, “A View Of The EM Algorithm That
Justifies Incremental, Sparse, And Other Variants,” in Learning in
Graphical Models. Kluwer Academic Publishers, 1998, pp. 355–
368.

[22] C. M. Bishop, Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Springer-Verlag New York, 2006.

[23] J. Kober, K. Mülling, O. Kroemer, C. H. Lampert, B. Schölkopf,
and J. Peters, “Movement Templates for Learning of Hitting and
Batting,” in International Conference on Robotics and Automation
(ICRA), 2010, pp. 853–858.

[24] C. L. Nehaniv and K. Dautenhahn, “The Correspondence Problem,”
in Imitation in animals and artifacts, K. Dautenhahn and C. L.
Nehaniv, Eds. Cambridge, MA, USA: MIT Press, 2002, pp. 41–61.
[Online]. Available: http://dl.acm.org/citation.cfm?id=762896.762899

[25] S. Schaal, “Is Imitation Learning the Route to Hu-
manoid Robots?” Trends in Cognitive Sciences, vol. 3,
no. 6, pp. 233–242, 1999. [Online]. Available:
http://courses.media.mit.edu/2003spring/mas963/schaal-TICS1999.pdf

[26] J. Peters and S. Schaal, “Policy Gradient methods for Robotics,”
in Proceedings of the IEEE International Conference on Intelligent
Robotics Systems (IROS), Beijing, China, 2006.

[27] H. Ben Amor, E. Berger, D. Vogt, and B. Jung, “Kinesthetic boot-
strapping: Teaching motor skills to humanoid robots through physical
interaction,” KI 2009: Advances in Artificial Intelligence, pp. 492–499,
2009.

