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Abstract
We consider the problem of learning high-performance Exploration/Exploitation (E/E)
strategies for finite Markov Decision Processes (MDPs) when the MDP to be controlled
is supposed to be drawn from a known probability distribution pM(·). The performance
criterion is the sum of discounted rewards collected by the E/E strategy over an infi-
nite length trajectory. We propose an approach for solving this problem that works by
considering a rich set of candidate E/E strategies and by looking for the one that gives
the best average performances on MDPs drawn according to pM(·). As candidate E/E
strategies, we consider index-based strategies parametrized by small formulas combining
variables that include the estimated reward function, the number of times each transition
has occurred and the optimal value functions V̂ and Q̂ of the estimated MDP (obtained
through value iteration). The search for the best formula is formalized as a multi-armed
bandit problem, each arm being associated with a formula. We experimentally compare
the performances of the approach with R-max as well as with ε-Greedy strategies and
the results are promising.
Keywords: Reinforcement Learning, Exploration/Exploitation dilemma, Formula discov-
ery

1. Introduction

Most Reinforcement Learning (RL) techniques focus on determining high-performance poli-
cies maximizing the expected discounted sum of rewards to come using several episodes.
The quality of such a learning process is often evaluated through the performances of the
final policy regardless of rewards that have been gathered during learning. Some approaches
have been proposed to take these rewards into account by minimizing the undiscounted re-
gret (Kearns and Singh (2002); Brafman and Tennenholtz (2002); Auer and Ortner (2007);
Jaksch et al. (2010)), but RL algorithms have troubles solving the original RL problem
of maximizing the expected discounted return over a single trajectory. This problem is
almost intractable in the general case because the discounted nature of the regret makes
early mistakes - often due to hazardous exploration - almost impossible to recover from.
Roughly speaking, the agent needs to learn very fast in one pass. One of the best solutions
to face this Exploration/Exploitation (E/E) dilemma is the R-max algorithm (Brafman
and Tennenholtz (2002)) which combines model learning and dynamic programming with

c© 2012 M. Castronovo, F. Maes, R. Fonteneau & D. Ernst.
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the “optimism in the face of uncertainty” principle. However, except in the case where the
underlying Markov Decision Problem (MDP) comes with a small number of states and a
discount factor very close to 1 (which corresponds to giving more chance to recover from
bad initial decisions), the performance of R-max is still very far from the optimal (more
details in Section 5).

In this paper, we assume some prior knowledge about the targeted class of MDPs, ex-
pressed in the form of a probability distribution over a set of MDPs. We propose a scheme
for learning E/E strategies that makes use of this probability distribution to sample training
MDPs. Note that this assumption is quite realistic, since before truly interacting with the
MDP, it is often possible to have some prior knowledge concerning the number of states and
actions of the MDP and/or the way rewards and transitions are distributed.

To instantiate our learning approach, we consider a rich set of candidate E/E strategies
built around parametrized index-functions. Given the current state, such index-functions
rely on all transitions observed so far to compute E/E scores associated to each possible
action. The corresponding E/E strategies work by selecting actions that maximize these
scores. Since most previous RL algorithms make use of small formulas to solve the E/E
dilemma, we focus on the class of index-functions that can be described by a large set of
such small formulas. We construct our E/E formulas with variables including the estimated
reward function of the MDP (obtained from observations), the number of times each tran-
sition has occurred and the estimated optimal value functions V̂ and Q̂ (computed through
off-line value iteration) associated with the estimated MDP. We then formalize the search
for an optimal formula within that space as a multi-armed bandit problem, each formula
being associated to an arm.

Since it assumes some prior knowledge given in the form of a probability distribution
over possible underlying MDPs, our approach is related to Bayesian RL (BRL) approaches
(Poupart et al. (2006); Asmuth et al. (2009)) that address the E/E trade-off by (i) assuming
a prior over possible MDP models and (ii) maintaining - from observations - a posterior
probability distribution (i.e., “refining the prior”). In other words, the prior is used to
reduce the number of samples required to construct a good estimate of the underlying MDP
and the E/E strategy itself is chosen a priori following Bayesian principles and does not
depend on the targeted class of MDPs. Our approach is specific in the sense that the prior
is not used for better estimating the underlying MDP but rather for identifying the best
E/E strategy for a given class of targeted MDPs, among a large class of diverse strategies.
We therefore follow the work of Maes et al. (2012), which already proposed to learn E/E
strategies in the context of multi-armed bandit problems, which can be seen as state-less
MDPs.

This paper is organized as follows. Section 2 formalizes the E/E strategy learning prob-
lem. Section 3 describes the space of formula-based E/E strategies that we consider in this
paper. Section 4 details our algorithm for efficiently learning formula-based E/E strategies.
Our approach is illustrated and empirically compared with R-max as well as with ε-Greedy
strategies in Section 5. Finally, Section 6 concludes.
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2. Background

LetM = (S,A, pM,f (·), ρM , pM,0(·), γ) be a MDP. S =
{
s(1), . . . , s(nS)

}
is its state space and

A =
{
a(1), . . . , a(nA)

}
its action space. When the MDP is in state st at time t and action

at is selected, the MDP moves to a next state st+1 drawn according to the probability
distribution pM,f (·|st, at). A deterministic instantaneous scalar reward rt = ρM (st, at, st+1)
is associated with the stochastic transition (st, at, st+1).

Ht = [s0, a0, r0, . . . , st, at, rt] is a vector that gathers the history over the first t steps and
we denote by H the set of all possible histories of any length. An exploration / exploitation
(E/E) strategy is a stochastic algorithm π that, given the current state st, processes at
time t the vector Ht−1 to select an action at ∈ A: at ∼ π(Ht−1, st). Given the probability
distribution over initial states pM,0(·), the performance/return of a given E/E strategy π
with respect to the MDP M can be defined as: JπM = E

pM,0(·),pM,f (·)
[RπM (s0)] where RπM (s0)

is the stochastic discounted return of the E/E strategy π when starting from the state s0.
This return is defined as:

RπM (s0) =
∞∑
t=0

γtrt ,

where rt = ρM (st, π(Ht−1, st), st+1) and st+1 ∼ pM,f (.|st, π(Ht−1, st)) ∀t ∈ N and where
the discount factor γ belongs to [0, 1). Let pM(·) be a probability distribution over MDPs,
from which we assume that the actual underlying MDP M is drawn. Our goal is to learn
a high performance finite E/E strategy π given the prior pM(·), i.e. an E/E strategy that
maximizes the following criterion:

Jπ = E
M ′∼pM(·)

[JπM ′ ] . (1)

3. Formula-based E/E strategies

In this section, we describe the set of E/E strategies that are considered in this paper.

3.1. Index-based E/E strategies

Index-based E/E strategies are implicitly defined by maximizing history-dependent state-
action index functions. Formally, we call a history-dependent state-action index function
any mapping I : H × S × A → R. Given such an index function I, a decision can
be taken at time t in the state st ∈ S by drawing an optimal action according to I:
π(Ht−1, st) ∈ arg max

a∈A
I(Ht−1, st, a)1. Such a procedure has already been vastly used

in the particular case where the index function is an estimate of the action-value func-
tion, eventually randomized using ε−greedy or Boltzmann exploration, as in Q-Learning
(Watkins and Dayan (1992)).

1. Ties are broken randomly in our experiments.

3



Castronovo Maes Fonteneau Ernst

3.2. Formula-based E/E strategies

We consider in this paper index functions that are given in the form of small, closed-form
formulas. This leads to a very rich set of candidate E/E strategies that have the advantage
of being easily interpretable by humans. Formally, a formula F ∈ F is:
• either a binary expression F = B(F ′, F ′′), where B belongs to a set of binary operators

B and F ′ and F ′′ are also formulas from F,
• or a unary expression F = U(F ′) where U belongs to a set of unary operators U and

F ′ ∈ F,
• or an atomic variable F = V , where V belongs to a set of variables V depending on

the history Ht−1, the state st and the action a,
• or a constant F = C, where C belongs to a set of constants C.
Since it is high dimensional data of variable length, the history Ht−1 is non-trivial to

use directly inside E/E index-functions. We proceed as follows to transform the information
contained in Ht−1 into a small set of relevant variables. We first compute an estimated
model of the MDP M̂ that differs from the original M due to the fact that the transition
probabilities and the reward function are not known and need to be learned from the history
Ht−1. Let P̂ (s, a, s′) and ρ̂(s, a) be the transition probabilities and the reward function of
this estimated model. P̂ (s, a, s′) is learned by computing the empirical frequency of jumping
to state s′ when taking action a in state s and ρ̂(s, a) is learned by computing the empirical
mean reward associated to all transitions originating from (s, a)2. Given the estimated MDP,
we run a value iteration algorithm to compute the estimated optimal value functions V̂ (·) and
Q̂(·, ·). Our set of variables is then defined as: V =

{
ρ̂(st, a), N(st, a), Q̂(st, a), V̂ (st), t, γ

t
}

where N(s, a) is the number of times a transition starting from (s, a) has been observed in
Ht−1.

We consider a set of operators and constants that provides a good compromise be-
tween high expressiveness and low cardinality of F. The set of binary operators B in-
cludes the four elementary mathematical operations and the min and max operators: B =
{+,−,×,÷,min,max}. The set of unary operators U contains the square root, the logarithm
and the absolute value: U =

{√
·, ln(·), | · |

}
. The set of constants is: C = {1, 2, 3, 5, 7}.

In the following, we denote by πF the E/E strategy induced by formula F :

πF (Ht−1, st) ∈ arg max
a∈A

F

(
ρ̂(st, a), N(st, a), Q̂(st, a), V̂ (st), t, γ

t

)
We denote by |F | the description length of the formula F , i.e. the total number of operators,
constants and variables occurring in F . Let K be a maximal formula length. We denote by
FK the set of formulas whose length is not greater than K. This defines our so-called set of
small formulas.

2. If a pair (s, a) has not been visited, we consider the following default values: ρ̂(s, a) = 0, P̂ (s, a, s) = 1
and P̂ (s, a, s′) = 0, ∀s′ 6= s.
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4. Finding a high-performance formula-based E/E strategy for a given
class of MDPs

We look for a formula F ∗ whose corresponding E/E strategy is specifically efficient for the
subclass of MDPs implicitly defined by the probability distribution pM(·). We first describe
a procedure for accelerating the search in the space FK by eliminating equivalent formulas
in Section 4.1. We then describe our optimization scheme for finding a high-performance
E/E strategy in Section 4.2.

4.1. Reducing FK

Notice first that several formulas FK can lead to the same policy. All formulas that rank all
state-action pairs (s, a) ∈ S ×A in the same order define the same policy. We partition the
set FK into equivalence classes, two formulas being equivalent if and only if they lead to the
same policy. For each equivalence class, we then consider one member of minimal length,
and we gather all those minimal members into a set F̄K .

Computing the set F̄K is not trivial: given a formula, equivalent formulas can be ob-
tained through commutativity, associativity, operator-specific rules and through any increas-
ing transformation. We thus propose to approximately discriminate between formulas by
comparing how they rank (in terms of values returned by the formula) a set of d random
samples of the variables ρ̂(·, ·), N(·, ·), Q̂(·, ·), V̂ (·), t, γt. More formally, the procedure is the
following:
• we first build FK , the space of all formulas such that |F | ≤ K;
• for i = 1 . . . d, we uniformly draw (within their respective domains) some random

realizations of the variables ρ̂(·, ·), N(·, ·), Q̂(·, ·), V̂ (·), t, γt that we concatenate into a vector
Θi;
• we cluster all formulas from FK according to the following rule: two formulas F and

F ′ belong to the same cluster if and only if they rank all the Θi points in the same order,
i.e.: ∀i, j ∈ {1, . . . , d}, i 6= j, F (Θi) ≥ F (Θj) ⇐⇒ F ′(Θi) ≥ F ′(Θj). Formulas leading
to invalid index functions (caused for instance by division by zero or logarithm of negative
values) are discarded;
• among each cluster, we select one formula of minimal length;
• we gather all the selected minimal length formulas into an approximated reduced set

of formulas F̃K .
In the following, we denote by N the cardinality of the approximate set of formulas

F̃K = {F1, . . . , FN}.

4.2. Finding a high-performance formula

A naive approach for determining a high-performance formula F ∗ ∈ F̃K would be to perform
Monte-Carlo simulations for all candidate formulas in F̃K . Such an approach could reveal
itself to be time-inefficient in case of spaces F̃K of large cardinality.

We propose instead to formalize the problem of finding a high-performance formula-
based E/E strategy in F̃K as a N−armed bandit problem. To each formula Fn ∈ F̃K

(n ∈ {1, . . . , N}), we associate an arm. Pulling the arm n consists first in randomly drawing
a MDP M according to pM(·) and an initial state s0 for this MDP according to pM,0(·).

5
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Afterwards, an episode starting from this initial state is generated with the E/E strategy πFn
until a truncated time horizon T . This leads to a reward associated to arm n whose value
is the discounted return RπM (s0) observed during the episode. The purpose of multi-armed
bandit algorithms is here to process the sequence of such observed rewards to select in a
smart way the next arm to be played so that when the budget of pulls has been exhausted,
one (or several) high-quality formula(s) can be identified.

Multi-armed bandit problems have been vastly studied, and several algorithms have been
proposed, such as for instance all UCB-type algorithms (Auer et al. (2002); Audibert et al.
(2007)). New approaches have also recently been proposed for identifying automatically
empirically efficient algorithms for playing multi-armed bandit problems (Maes et al. (2011)).

5. Experimental results
In this section, we empirically analyze our approach on a specific class of random MDPs
defined hereafter.

Random MDPs. MDPs generated by our prior pM(·) have nS = 20 states and nA = 5
actions. When drawing a MDP according to this prior, the following procedure is called for
generating pM,f (·) and ρM (·, ·, ·). For every state-action pair (s, a) : (i) it randomly selects
10% of the states to form a set of successor states Succ(s, a) ⊂ S (ii) it sets pM,f (s′|s, a) = 0
for each s′ ∈ S \ Succ(s, a) (iii) for each s′ ∈ Succ(s, a), it draws a number N(s′) at
random in [0, 1] and sets pM,f (s′|s, a) = N(s′)∑

s′′∈Succ(s,a)N(s′′) (iv) for each s′ ∈ Succ(s, a), it

sets ρM (s, a, s′) equal to a number chosen at random in [0, 1] with a 0.1 probability and to
zero otherwise. The distribution pM,0(·) of initial states is chosen uniform over S. The value
of γ is equal to 0.995.

Learning protocol. In our experiments, we consider a maximal formula length of K = 5
and use d = 1000 samples to discriminate between formulas, which leads to a total number of
candidate E/E strategies N = 3834. For solving the multi-armed bandit problem described
in Section 4.2, we use an Upper Confidence Bound (UCB) algorithm (Auer et al. (2002)).
The total budget allocated to the search of a high-performance policy is set to Tb = 106.
We use a truncated optimization horizon T = logγ ((1− γ)δ) for estimating the stochastic
discounted return of an E/E strategy where δ = 0.001 is the chosen precision (which is also
used as stopping condition in the off-line value iteration algorithm for computing Q̂ and V̂ ).
At the end of the Tb plays, the five E/E strategies that have the highest empirical return
mean are returned.

Baselines. Our first baseline, the Optimal strategy, consists in using for each test MDP,
a corresponding optimal policy. The next baselines, the Random and Greedy strate-
gies perform pure exploration and pure exploitation, respectively. The Greedy strategy
is equivalent to an index-based E/E strategy with formula Q̂(s, a). The last two baselines
are classical E/E strategies whose parameters have been tuned so as to give the best per-
formances on MDPs drawn from pM(·): ε-Greedy and R-max. For ε-Greedy, the best
value we found was ε = 0 in which case it behaves as the Greedy strategy. This confirms
that hazardous exploration is particularly harmful in the context of single trajectory RL
with discounted return. Consistently with this result, we observed that R-max works at its
best when it performs the least exploration (m = 1).
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Baselines Learned strategies
Name Jπ Formula Jπ

Optimal 65.3 (N(s, a) × Q̂(s, a)) − N(s, a) 30.3
Random 10.1 max(1, (N(s, a) × Q̂(s, a))) 22.6
Greedy 20.0 Q̂(s, a) (= Greedy) 20.0

ε-Greedy(ε = 0) 20.0 min(γt, (Q̂(s, a) − V̂ (s))) 19.4
R-max (m = 1) 27.7 min(ρ̂(s, a), (Q̂(s, a) − V̂ (s))) 19.4

Table 1: Performance of the top-5 learned strategies with respect to baseline strategies.
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Figure 1: Performances of the learned and the baseline strategies for different distributions
of MDPs that differ by the size of the MDPs belonging to their support.

Results. Table 1 reports the mean empirical returns obtained by the E/E strategies on
a set of 2000 test MDPs drawn from pM(·). Note that these MDPs are different from
those used during learning and tuning. As we can see, the best E/E strategy that has been
learned performs better than all baselines (except the Optimal), including the state-of-the-
art approach R-max.

We may wonder to what extent the E/E strategies found by our learning procedure
would perform well on MDPs which are not generated by pM(·). As a preliminary step
to answer this question, we have evaluated the mean return of our policies on sets of 2000
MDPs drawn from slightly different distributions as the one used for learning: we changed
the number of states nS to different values in {10, 20, . . . , 50}. The results are reported in
Figure 1. We observe that, except in the case nS = 10, our best E/E strategy still performs
better than the R-max and the ε-Greedy strategies tuned on the original distribution
pM(·) that generates MDPs with 20 states. We also observe that for larger values of nS , the
performances of R-max become very close to those of Greedy, whereas the performances
of our best E/E strategy remain clearly above. Investigating why this formula performs
well is left for future work, but we notice that it is analog to the formula tk(rk − C) that
was automatically discovered as being well-performing in the context of multi-armed bandit
problems (Maes et al. (2011)).
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6. Conclusions
In this paper, we have proposed an approach for learning E/E strategies for MDPs when
the MDP to be controlled is supposed to be drawn from a known probability distribution
pM(·). The strategies are learned from a set of training MDPs (drawn from pM(·)) whose
size depends on the computational budget allocated to the learning phase. Our results
show that the learned strategies perform very well on test problems generated from the
same distribution. In particular, they outperform on these problems R-max and ε-Greedy
policies. Interestingly, the strategies also generalize well to MDPs that do not belong to the
support of pM(·). This is demonstrated by the good results obtained on MDPs having a
larger number of states than those belonging to pM(·)’s support.

These encouraging results suggest several future research direction. First, it would be
interesting to better study the generalization performances of our approach either theo-
retically or empirically. Second, we believe that our approach could still be improved by
considering richer sets of formulas w.r.t. the length of the formulas and the number of vari-
ables extracted from the history. Finally, it would be worth investigating ways to improve
the optimization procedure upon which our learning approach is based so as to be able to
deal with spaces of candidate E/E strategies that are so large that even running once every
strategy on a single training problem would be impossible.
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Abstract
There has recently been much interest in history-based methods using suffix trees to

solve POMDPs. However, these suffix trees cannot efficiently represent environments that
have long-term dependencies. We extend the recently introduced CTΦMDP algorithm to
the space of looping suffix trees which have previously only been used in solving determinis-
tic POMDPs. The resulting algorithm replicates results from CTΦMDP for environments
with short term dependencies, while it outperforms LSTM-based methods on TMaze, a
deep memory environment.

1. Introduction

In reinforcement learning (RL) an agent must learn a policy (behaviour) that performs
well in a given (dynamic) environment through interactions with the environment itself
[Kaelbling et al., 1996]. Traditional RL methods maximise the reward in a given unknown
finite Markov Decision Process (MDP). In the general RL problem there are no states, the
agent instead receives observations that are not necessarily Markov. Feature Reinforcement
Learning (ΦMDP) Hutter [2009] automates the extraction of a good state representation
in the form of an MDP from the agent’s observation-reward-action history. More clearly,
this means that given a class of maps Φ we consider a class of environments that at least
approximately reduce to an MDP through a map φ ∈ Φ. Nguyen et al. [2011] recently
showed that this is viable in practice using a map class of history suffix trees.

The problem with using suffix trees as a map class is that they cannot efficiently re-
member events over a long period of time. The depth of the suffix tree is proportional to
the length of history that it has to remember. In order to deal with long-term dependencies
we make use of the class of looping suffix trees (looping STs) within the ΦMDP framework.
Holmes and Jr. [2006] first proposed looping STs in the deterministic case, we also consider
stochastic models which can be crucial even in deterministic environments. We show that
looping suffix trees in conjunction with the ΦMDP framework can be used to successfully
find compact representations of environments that require long-term memory in order to
perform optimally.

c© 2012 M. Daswani, P. Sunehag & M. Hutter.
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1.1. Related Work

Our looping suffix tree method learns a finite state automaton that is well suited to long-term
memory tasks. While tree-based methods such as USM [McCallum, 1995], MC-AIXI-CTW
[Veness et al., 2011], Active LZ [Farias et al., 2010], CTΦMDP [Nguyen et al., 2011] and
many others can in principle handle long-term memory tasks, they require excessively large
trees to represent such environments. These large trees can result in large state spaces,
which then promote the exacerbated exploration-exploitation problem. More related to our
work, Mahmud [2010] aims at searching the very large space of probabilistic deterministic
finite automata (with some restrictions). In a similar vein, but restricted to deterministic
observations [Haghighi et al., 2007] also construct finite automata that aim at being the
minimal predicting machine.

A popular alternative to finite state automaton learning is a class of algorithms based on
recurrent neural networks (RNNs) particularly those based on the Long Short-Term Memory
(LSTM) framework by Hochreiter and Schmidhuber [1997]. The LSTM framework was first
proposed to predict time-series data with long-term dependencies. This was introduced to
the RL context by Bakker [2002] and more recently a new model-free variant based on policy
gradients by Wierstra et al. [2007]. These methods are more often used in the continuous
case, but were also tested in the discrete setting. Recently, Echo State Networks [Szita et al.,
2006] which are also RNN-based have also been tested on long-term memory tasks.

2. Preliminaries

Agent-Environment Framework. We use the notation and framework from [Hutter,
2005]. An agent acts in an Environment Env. It chooses actions a ∈ A, and receives
observations o ∈ O and real-valued rewards r ∈ R where A,O and R are all finite. This
observation-reward-action sequence happens in cycles indexed by t = 1, 2, 3, .... We use x1:n

throughout to represent the sequence x1...xn. We define the space of histories as H :=
(O ×R×A)∗ ×O ×R. The history at time t is given by ht = o1r1a1...ot−1rt−1at−1otrt.
Using this definition of history we formally define the agent to be a function Agent : H; A
where Agent(ht) := at. Similarly, the environment can be viewed as a stochastic function of
the history, Env : H×A; O ×R, where Env(ht−1, at−1) := otrt. The symbol; indicates
a possibly stochastic function. A policy is defined as a map π : H; A.

If Pr(otrt|ht, at) = Pr(otrt|ot−1at), the environment is said to be a discrete Markov
Decision Process (MDP) [Puterman, 1994]. In this case, the observations form the state
space of the MDP. Formally an MDP is a tuple 〈S,A, T , R〉 where S is the set of states,
A is the set of actions and R : S ×A ; R is the (possibly stochastic) reward function
which gives the (real-valued) reward gained by the agent after taking action a in state s.
T : S ×A× S → [0, 1] is the state-transition function. The agent’s goal is to maximise its
future discounted expected reward, where a geometric discount function with rate γ is used.
The value of a state according to a stationary policy is given by V π(s) = Eπ{Rt|st = s}
where Rt =

∑∞
k=0 γ

krt+k+1 is the return. We want to find the optimal value function V ∗ such
that V ∗(s) = maxπ V

π(s). If an MDP is known then this can be done by value iteration
[Sutton and Barto, 1998]; in the unknown case the agent must deal with the problem of
exploration vs exploitation, which only has efficient approximate solutions.
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ΦMDP. Hutter [2009] proposes a framework that extracts relevant features from the history
for reward prediction. This framework gives us a method to find a map φ : H → S such that
the state at any time step st = φ(ht) is approximately a sufficient statistic of the history.
It uses a global cost function that is inspired by the minimum description length principle
[Rissanen, 1978]. The cost is the sum of the code lengths of state and reward sequences given
actions. This cost is combined with a global stochastic search technique (such as simulated
annealing [Liu, 2008]) to find the optimal map. The standard cost is defined as follows

Cost(φ|hn) := CL(s1:n|a1:n) + CL(r1:n|s1:n, a1:n) + CL(φ)

CL(s1:n|a1:n) is the code length of the state sequence given the action sequence. The
subsequence of states reached from a given state s via action a is i.i.d as it is sampled
from an MDP. We form a frequency estimate of the model of this MDP. The code length is
then the length of the arithmetic code with respect to the model plus a penalty for coding
parameters. The coding is optimal by construction. CL(r1:n|s1:n, a1:n) follows similarly.

The consistency of this cost criterion was proven by Sunehag and Hutter [2010]. The
modified cost by Nguyen et al. [2011] adds a parameter α to control the balance between
reward coding and state coding,

Costα(φ|hn) := αCL(s1:n|a1:n) + (1− α)CL(r1:n|s1:n, a1:n) + CL(φ).

We primarily care about reward prediction. However, since rewards depend on states we
also need to code the states. The Cost is well-motivated since it balances between coding
states and coding rewards. A state space that is too large results in poor learning and a
long state coding, while a state space that is too small can obscure structure in the reward
sequence resulting in a long code for the rewards.

Nguyen et al. [2011] search the map space of suffix trees (explained below). Our method
extends this to looping suffix trees. The generic ΦMDP algorithm is given in Algorithm
1 in the Appendix. The agent is first initialised with some history based on random ac-
tions. Then it alternates between finding a “best” φ using the simulated annealing algorithm
and performing actions based on the optimal policy for that φ found via the FindPolicy()
function. The FindPolicy() function can be any standard reinforcement learning algorithm
that finds the optimal policy in an unknown MDP, and should perform some amount of
exploration, generally via an optimistic initialisation. In this paper, we use the model-based
method as specified by Hutter [2009] which is based on Szita and Lörincz [2008]. This
method adds an additional “garden of eden” state (se) to the estimated MDP, which is an
absorbing state with a high reward. The agent is told that it has been to se once from every
other state, however the agent cannot actually transition to this state. Then we simply per-
form value iteration on this augmented MDP. Initially the agent will explore in a systematic
manner to try and visit se, but as it accumulates more transitions from a particular state,
the estimated transition probability to se decreases, and the agent eventually settles on the
optimal policy.

Definition 1 (Suffix Tree) Let O = {o1, o2, o3, ..., od} be a d-ary alphabet. A suffix tree
is a d-ary tree in which the outgoing edges from each internal node are labelled by the el-
ements of O. Every suffix tree has a corresponding suffix set which is the set of strings
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S = {s1, s2, ..., sn} generated by listing the labels on the path from each leaf node to the root
of the tree.

The suffix set has the property that no string is a suffix of any other string and any
sufficiently long string must have a suffix in the set. Each string in the suffix set is called a
state, and hence this is also called a suffix state set. The l-th level of the tree corresponds
to the l-th last observation in the history. By the above properties, any history of sufficient
length must be mapped to one and only one state based on its suffix.

Definition 2 (Looping Tree) A looping tree is a tree which may have loops from any leaf
node to an ancestor.

Definition 3 (Looping suffix Tree) A looping suffix tree based on a d-ary alphabet O =
{o1, o2, o3, ..., od} is a d-ary looping tree in which edges coming from each internal node are
labelled by the elements of O. The loops in the tree are unlabelled. The non-looping leaf
nodes in the looping ST form the state set along with an additional state sempty known as
the empty state.

In order to map a history sequence to a state in a looping ST we simply follow the edges in
the tree until we get to a state (Algorithm 2, Appendix). If we reach the beginning of the
history sequence without reaching a state, we map the sequence to the empty state.

Looping suffix trees have the effect of giving Kleene-star like representational ability to
the standard suffix set. For example, Figure 1 shows a looping suffix tree which has the
suffix set {0, 00(10)∗1, 1(10)∗1}. Let h = [0, 0, 1, 1, 0, 1]. We can map this history sequence
to the state sequence stateSeq = [s0, s0, s1, s2, s0, s2]. The last state is mapped by following
1,0,1 down the tree, then following the loop back up the tree to finally take another 1 to
end in s2.

3. Looping Suffix Trees in ΦMDP Figure 1:

10

10

s0

s2

s1

(a) Suffix Tree

10

s0
0 1

10

s1

s2

(b) Looping ST

The benefit of using looping STs comes from the ability to remember rele-
vant past events by ‘forgetting’ or looping over irrelevant details. Holmes
and Jr. [2006] restrict their discussion to the deterministic case without
rewards. Unfortunately their loopability criterion cannot work in the
stochastic case since a loop can change not only the possible transitions
but also the transition probabilities.

The cost function of the ΦMDP framework immediately gives us a
well-motivated criterion for evaluating looping suffix trees. Using looping
suffix trees as the map class in this framework allows us to extend them to
stochastic environments. While we have not yet shown theoretical guar-
antees, experimental results show that ΦMDP works well in the space of
looping suffix trees. The extension to stochastic tree sources is also useful
in deterministic environments, where in some cases a smaller stochastic
tree source can sufficiently capture a deterministic environment.
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Definition 4 A history is said to be consistent with respect to a particu-
lar looping suffix tree if it can be mapped to a state sequence that does not include the empty
state. The definition of inconsistent follows in the obvious manner.

Algorithm. The algorithm consists of a specification of CL(φ) and the neighbourhood
method which is needed for the simulated annealing algorithm in the generic ΦMDP algo-
rithm (Algorithm 1, Appendix). We call our algorithm LSTΦMDP. A tree with num_nodes
can be coded in num_nodes bits [Veness et al., 2011, Sec.5] and the starting and ending
nodes of all loops can be coded in 2 log(num_nodes)num_loops, so we define the model
cost of the map CL(φ) as

CL(φ) = num_nodes+ 2 log(num_nodes)num_loops.
The getNeighbour() method (Algorithm 3, Appendix) first selects a state randomly and then
with equal probability subject to certain conditions, it selects between one of 4 operations.
Note that the simulated annealing procedure that we use is a very simple generic method.
However this can be extended to more sophisticated annealing schemes such as parallel
tempering as done by Nguyen et al. [2011].

merge : In order to merge a state, all sibling nodes must also be states. From the
definition of a suffix set, we know that every state corresponds to a unique suffix. The
merge is simply the shortening of a context for those states. If si is the state being merged
and si = ojn′ where oj ∈ O and n′ is the remainder of the suffix corresponding to that state,
then the siblings of si are okn′ where k 6= i. If these siblings are also states then the merge
operator removes oin′ for all i from the suffix set and adds a new state n′.

split : Analogously, we can split any state si by adding a depth one context to the state
i.e. by constructing |O| new states of the form ojsi for all oj ∈ O and removing the state si.

addLoop : The addLoop function has two cases. Either we add a loop from an existing
state to it’s parent (thereby removing it from the state set and adding it to the loop set) or
we extend an existing loop to the parent of the existing node looped to.

removeLoop : The removeLoop function is simply a reverse of the addLoop function
allowing us to decrease the length of a loop, or if it is a length one loop create a new state
from the node.

Loops introduce a few problems to the ΦMDP procedure. A looped tree can be in-
consistent with the current history. This can be problematic if, for instance, the optimal
tree is inconsistent with the current history. One solution is to always provide a reasonable
pre-history that the optimal tree should be consistent with. For example in the TMaze case
(see Section 4), we ensure that the first observation is in fact the start of an episode, which
is a reasonable assumption. Then any trees that are inconsistent can be discarded. In fact
to make the search quicker, we can mark nodes where loops make the tree inconsistent and
no longer add those loops. The initial map is always set to be the depth one tree (i.e. one
split). Non-looping suffix trees were shown to be statistically consistent with reference to
the Cost function (under the restrictions of a fixed policy and ergodicity) only by neglecting
the root tree by Sunehag and Hutter [2010].

The space of looping STs includes the space of ordinary STs. Therefore, results from
the non-looping case [Nguyen et al., 2011] should be reproducible, as long as the simulated
annealing procedure is not adversely affected by the enlargement of the search space. Ex-
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perimental results show that some care must be taken in choosing α for this to be the case.
This is further discussed in Section 4.

4. Experiments

In this section we describe our experimental setup and the domains that we used to evaluate
our algorithm. Each domain was used to test a different ability of the algorithm. Every
experiment was run 50 times. The agent is given an initial history produced by taking
random actions. Each run of an experiment was conducted over some number of epochs
with each epoch containing 100 iterations of the agent performing actions according to its
current policy, based on the current map with a constant ε-exploration of 0.1 until a point
where it stops exploration. After every epoch, the agent was given a chance to change
its optimal map via a simulated annealing procedure. The annealing procedure used an
exponential cooling function with constants chosen so that the first few maps had an initial
acceptance probability in the range [0.6, 0.7]. Plots show every 10th point with 2 standard
error on either side. The exact constants used for all the experiments can be found in Table
1 in the Appendix.

S

GL

Figure 2: TMaze environment showing goal at left

TMaze. The TMaze problem is a classic non-Markovian problem in RL. It nicely demon-
strates the need for long-term memory as well as the exploration vs exploitation problem.
We use the formulation as described by Bakker [2002]. The environment is a T-shaped
maze (see Figure 2) with the length of the neck of the T (the corridor) being adjustable.
The observation space is O = {0, 1, 2, 3}, the rewards are R = {−0.1, 4} and there are four
actions denoted by up, right, left, down. The agent needs to remember the observation it
receives at the start of the maze, which tells it whether to turn left or right at the end.

The agent receives an observation (either 1 or 2) at the start of the maze that it must
remember until it reaches the decision node (observation 3), at which point it must turn
left(1) or right(2) according to the initial observation in order to receive a reward of 4. If it
chooses any other action it gets reset into the decision state and gets another observation of
0 and a reward of -0.1.

0 1 2 3

0 1 2 3

Figure 3: A reward opti-
mal LST for the
TMaze problem

We conducted experiments on three variants of TMaze. In
the first variant, the observation it receives at the start deter-
mines where the goal lies every time. In the second variant, the
agent receives two different observations in the corridor with
equal probability. This means that the looping ST needs to
loop over both observations in any possible order. The third
variant adds uncertainty to the accuracy of the starting obser-
vation along with the stochasticity in the corridor, it predicts
the position of the reward with 0.8 probability. In each variant
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Figure 4: LSTΦMDP on TMaze length 50
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Figure 5: Stochastic TMaze length 50
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Figure 7: Comparison on Tiger with
prob(listen)=0.85 for LSTΦMDP
and CTΦMDP

we can adjust the length of the corridor. Note that the first variant is deterministic within
a given episode, however the history itself is not deterministic since the observation received
at the start of the episode is selected randomly, which is enough to prohibit deterministic
approaches.

We compare our LSTΦMDP to RL-LSTM [Bakker, 2002] and Recurrent Policy Gradients
(RPG) [Wierstra et al., 2007] on the deterministic TMaze. Note that we use the results
from the corresponding papers; we did not implement the methods ourselves. Following the
experiments in those papers, we increase the length of the corridor systematically from 10
to 100, in increments of 10. In this case each experiment was run 10 times, and we measured
the number of successful runs per length. A run is said to be successful if the agent achieves
the optimal policy and hence the optimal reward in at least the last 10 epochs. We used this
metric to compare with other methods. All the successful runs had optimal policies from 400
epochs onward i.e. once there was no longer any ε-exploration. We continued to increase the
corridor length until the performance of our algorithm was worse than the performance of
the RPG method at length 100, which happened at corridor length 160 (6 successful runs).
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Locked door. In order to show that our algorithm was useful in solving other long-term
dependency problems we tested on a new domain we call the “locked door”. The agent is
in a room (represented by a grid). The room has a locked door and in order to leave, the
agent must collect a key from a particular location. In our experiment we use a 7x7 grid
with the door in the top-left corner, the key in the top-right corner and the agent starting
in the location one square below the door. The agent has actions up, down, left and right
and receives observations that are a binary coding of the adjacent walls. This means that
states with the same wall configuration have the same observation. Bumping into a wall,
collecting the key, and visiting the door have their own unique observations. The agent gets
a reward -5 for bumping into a wall, +10 for visiting the door after obtaining the key and
and -1 for every other timestep. The agent was given a history of 1000 random actions at
the start and every run of the experiment was 1000 epochs long with each epoch being a
100 iterations as usual.

5. Analysis

In this section we analyse the results from our experiments, and explain characteristic be-
haviours and parameter settings. The neighbourhood function was chosen to traverse the
state space slowly through the looping trees linked to a particular suffix tree, after a few
experiments with larger jumps failed. Loops make smaller representations of large environ-
ments possible. The difference in cost between two adjacent trees can be quite large, since
a loop can suddenly explain a very large amount of data by ignoring irrelevant sequences.

Deterministic TMaze. In the case of corridor length 50, the optimal policy has a value of
-0.018. The agent reaches the optimal policy in every run once the ε-exploration has been
turned off at 400 epochs. See Figure 4 for details. The results of the separate experiment
comparing the algorithms performance on varying corridor lengths are displayed in Figure 6.
Up to length 100 the agent reaches the optimal policy, with a few corridor lengths having
one run stuck on traversing the corridor without every having seen the goal. Note that the
algorithm does not necessarily reach the optimal tree, but finds a reward-optimal tree that
contains it. In comparison, RL-LSTM [Bakker, 2002] has increasingly many suboptimal
runs as the length of the corridor increases past 50. RPG [Wierstra et al., 2007] has optimal
results up to length 90 but has 3 unsuccessful runs at length 100. We continue increasing
corridor length until we have more than 3 unsuccessful runs at length 160. Additionally, our
algorithm uses 50000 iterations (500 epochs) in all cases, while RPG uses around 2 million
iterations for corridor length 100. We also tested CTΦMDP but it was not successful for
corridor lengths>5. We would need a depth n suffix tree to represent a TMaze with length
n. However, a looping suffix tree with optimal reward prediction is much easier to find, as
shown in Figure 3 and also much smaller, leading to greater data efficiency. We did not
test Echo State Networks, however from [Szita et al., 2006] we note that the method was
not successful on corridor lengths greater than 25. In this environment, the optimal looping
suffix tree (Figure 3) is the same regardless of the length of the corridor, since the tree simply
loops over the corridor observations. Of course the exploration-exploitation problem gets
harder as the corridor length increases. Despite this the systematic exploration of the agent
appears to work well. We also note that in comparison to Recurrent Neural Networks (i.e.
the LSTM based methods) it is relatively much simpler to interpret a looping suffix tree.
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Stochastic TMaze (corridor length 50). The optimal policy in the stochastic corridor
TMaze case has a value of -0.018 the same as the deterministic case. However, the agent
has to loop over a new observation, and hence needs a larger tree. The task is made
hard by the stochastic nature of the corridor observations. Failures occur mainly due to
exploration issues (agent not finding a reward often enough) rather than problems with
simulated annealing. This means that the average reward is a little lower than the optimal,
however in most cases the agent did reach the optimal. In the case where the accuracy of the
initial observation is 0.8, the expected reward is -0.03404. The results have more variability
at each point as seen in the higher error bars, but overall the agent reaches nearly optimal
reward in every run with the average of the final point being -0.04178.

Tiger. The Tiger example is interesting since it shows that the agent can still reproduce
results from the regular non-looping suffix tree case. The agent achieves the optimal reward
when the parameter α is set to a lower value of 0.01. Figure 7 shows that LSTΦMDP and
CTΦMDP perform nearly identically on this problem.
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Figure 8: Locked door

Locked door. When the agent visits the
door location there are two contexts, it ei-
ther has the key or it doesn’t. Remember-
ing that it has a key is much easier with
loops, since it can simply loop over obser-
vations once it has collected the key. The
LSTΦMDP agent with α = 0.1 succeeds in
finding a near-optimal policy in about half
the runs. CTΦMDP succeeds in learning
how to avoid walls but never improves fur-
ther in 1000 epochs. See Figure 8 for the
graph of the near-optimal runs of LSTΦMDP.

General Problems. The cost function needed mild tuning of the parameter α for the
experiments, generally relying on low values (especially in Tiger). This emphasises reward
prediction over state prediction. Looping STs can reduce the cost of coding state sequences
dramatically by looping over several observations and substantially reducing the number
of states. Obviously this can lead to a bad reward coding, which should eventually cause
the tree to be rejected. However, if the agent has not seen enough of the various available
rewards then the reward cost may not be particularly high. This can be self-reinforcing. Bad
models of the environment can result in policies that only rarely experience critical events,
for example opening the door in the Tiger or Locked door problem. This means that the
reward cost changes very slowly and may not ever dominate the total cost. Note that this
often means that if the agent does not find the reward early on in the run, then it has not
much chance of finding it later. Inspecting the failed runs for the deterministic TMaze, we
see that the agent never experiences the reward or only sees it once or twice. Particularly,
as the length of the maze increases both the optimism and the ε-exploration are insufficient
to fully explore the maze.

Computational Complexity. The most time consuming part of ΦMDP is the calculation
of the Cost of a new map. The calculation of Cost from the statistics is O(|S|2|A|) +
O(|S||A||R|). However, since the state space changes the statistics must be recomputed. In

19



Daswani Sunehag Hutter

CTΦMDP this can be done using a pass over the history (of length n) with backtracking
limited to the depth d of the tree, making the worst-case complexity O(dn). However, loops
can require backtracking to the start of the history making the worst-case complexity O(n2).
Note that if n < |S|2|A| there are some transitions that have not been seen and can thus be
ignored when calculating Cost, so the complexity is dominated by the O(dn) or O(n2) term.
In practice, the execution times are competitive to (non-looping) suffix tree based methods
on environments that do not require loops. For example on Tiger, the average execution
time for LSTΦMDP is 11.49s and for CTΦMDP it is 11.27s. In environments where loops
matter, LSTΦMDP is much slower, for example on TMaze (length 50) an average run for
LSTΦMDP is 216.93s while for CTΦMDP it is 38s. The large speed difference is because
CTΦMDP remains on the (sub-optimal) minimal tree of 4 states, which results in less time
spent in the annealing procedure.

6. Conclusion

We introduced looping suffix trees to the feature reinforcement learning framework [Hutter,
2009] to create an algorithm called LSTΦMDP. The experimental results show that looping
suffix trees are particularly useful in representing long-term dependencies by looping over
unnecessary observations. Loops allow for smaller representations leading to greater data
efficiency. We outperform LSTM-based algorithms [Bakker, 2002; Wierstra et al., 2007] on
TMaze. LSTΦMDP was also able to perform well on stochastic environments, which is a
handicap of previous methods using looping suffix trees [Holmes and Jr., 2006; Haghighi
et al., 2007]. We also replicated results of CTΦMDP [Nguyen et al., 2011] on short-term
environments.

Scaling to larger domains is the future direction of our research. Nguyen et al. [2012]
deal with large observation spaces by adding an unseen context state to the suffix tree,
which can be problematic with regard to data efficiency. A potentially better way is function
approximation techniques. An interesting idea is to use loops in instead of an unseen symbol,
e.g. requiring all things unseen to be looped over. In order to deal with the added time
complexity of loops, we aim to develop a neighbourhood function over Markov looping suffix
trees only, which would reduce the complexity of finding Cost of a new tree to O(n) by
allowing us to incrementally update the state based on the new observation.

Acknowledgements. The research was partly supported by the Australian Research Coun-
cil Discovery Project DP120100950.
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Appendix A. Table of constants

Experiment α epochs init-history stop-explore max-reward anneal-temp
Det Tmaze 0.1 500 20 100 400 1
Stoch Tmaze 0.1 500 100 100 400 1

Tiger 1 · 10−2 500 100 100 400 5
Locked Door 1 · 10−2 1,000 100 1,000 900 10

Table 1: The table lists the various constants used for each experiment. Common to all
experiments were the maximum number of steps for a single annealing run capped
at 50, the value of k in the exponential cooling scheme at 0.005, ε = 0.1 and
γ = 0.99. α is a parameter of the Cost that controls the balance between state
and reward code-lengths, anneal-temp refers to the temperature T in the cooling
schedule, init-history is the number of initial random actions performed by the
agent, stop-explore is the epoch beyond which the agent no longer uses ε-exploration
and max-reward is the value of the reward given to the garden-of-eden state in the
extended MDP for all actions.

Appendix B. Algorithms

Algorithm 1: A high-level view of the generic ΦMDP algorithm.
Initialise φ ;
Input : Environment Env();
Initialise history with observations and rewards from t = init_history random actions;
Initialise M to be the number of timesteps per epoch;
while true do

φ = SimulAnneal(φ, ht);
s1:t = φ(ht);
π = FindPolicy(s1:t, r1:t, a1:t−1) ;
for i = 1, 2, 3, ...M do

at ← π(st);
ot+1, rt+1 ← Env(ht, at);
ht+1 ← htatot+1rt+1;
t← t+ 1;

end
end
return [φ, π]
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Algorithm 2: Get current state given an observation sequence and a looping ST
getCurrentState(Observation sequence o1:t);
currentNode = root;
i = t;
while currentNode is not a state do

if currentNode has a loop then
currentNode = node at the end of the loop;

else
currentNode = the oi-th child of currentNode;
i = i− 1;

end
if i ≤ 0 then

return sempty;
end

end
return currentNode

Algorithm 3: getNeighbour() method for looping ST
Input: num_ obs : number of observations, statelist : list of states in current tree,
looplist : list of loops in current tree
state = random state from current statelist;
Let c be a random number in {1,2,3,4};
if c == 1 and (num_states > num_obs) and
every sibling of the current state is also a state then

merge(state);
else if c == 2 and (num_states > 2 × num_obs) then

if uniform(0, 1) > 0.5 and looplist 6= {} then
state = random state from looplist;

end
addLoop(state);

else if c == 3 and looplist 6= {} then
state = random state from looplist;
removeLoop(state)

else
split(state);

end
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Abstract
In some decision-making environments, successful solutions are common. If the evaluation
of candidate solutions is noisy, however, the challenge is knowing when a “good enough”
answer has been found. We formalize this problem as an infinite-armed bandit and provide
upper and lower bounds on the number of evaluations or “pulls” needed to identify a solution
whose evaluation exceeds a given threshold r0. We present several algorithms and use them
to identify reliable strategies for solving screens from the video games Infinite Mario and
Pitfall! We show order of magnitude improvements in sample complexity over a natural
approach that pulls each arm until a good estimate of its success probability is known.
Keywords: Multi-armed bandits, Planning under uncertainty, Stochastic optimization

1. Introduction

Consider the following trivial problem. A huge jar of marbles contains some fraction ρ of
black (success) marbles and the rest white (failure) marbles. We want to find a black marble
as quickly as possible. If the black marbles are sufficiently plentiful in the jar, the problem
is simple: Repeatedly draw marbles from the jar until a black one is found. The expected
sample complexity is Θ(1/ρ). This kind of generate-and-test approach is simple, but can
be extremely effective when solutions are common—for example, finding an unsatisfying
assignment for a randomly generated CNF formula is well solved with this approach.

The corresponding noisy problem is distinctly more challenging. Imagine the marbles
in our jar will be used to roll through some sort of obstacle course and (due to weight or
balance or size) some marbles are more successful at completing the course than others. If
we (quickly) want to find a marble that navigates the obstacle course successfully at least
r0 = 25% of the time, how do we best allocate our test runs on the course? When do we
run another evaluation of an existing marble and when do we grab a new one out of the
jar? How do we minimize the (expected) total number of runs while still assuring (with high
probability) that we end up with a good enough marble?

We formalize this problem as an infinite-armed bandit and provide a lower bound on
the number of arm pulls needed to find an arm with payoff above r0. We describe and
analyze several algorithms that are close to this lower bound. We include comparisons of
these algorithms using data from two well known video games—Infinite Mario and Pitfall!

c© 2012 S. Goschin, A. Weinstein, M.L. Littman & E. Chastain.
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2. Infinite-Armed Bandit Problem

We define an arm as a probability distribution (Da) over possible reward values within a
bounded range [rmin, rmax]. When an arm is pulled, it returns a reward value (sampled
from Da). One arm a is preferred to another a′ if it has a higher expected reward value,
Era∼Da [ra] > Era′∼Da′ [ra′ ]. Arms are sampled from an arm space S, possibly infinitely large.
The distribution D over the arm space defines an infinite-armed bandit problem IB(D).

We seek algorithms that take a reward level r0 as input and attempt to minimize the
number of pulls needed to identify an arm with expected value of r0 or more. This sample
complexity has a dependence on D and r0, as it may be likely or unlikely to encounter an arm
with high enough reward. Specifically, define ρ = Pa∼D(Era∼Da [ra] ≥ r0) as the probability
of sampling a “good enough” arm. We assume the domain is reward rich—specifically, that
ρ is bounded away from zero. By allowing the agent to aspire to any reward level, this
definition of the performance measure is akin to the earlier work of Wang et al. [2008],
which is constrained to finding the optimal reward value.

Formally, we define an (ε, δ, r0)-correct algorithm ALG for an IB(D) problem to be an
algorithm that after a number of samples T (ε, δ, r0, D) (that is finite with probability 1)
returns an arm a with expected value E[ra] ≥ r0 − ε with probability at least 1 − δ. This
formalism is a variation of the PAC-Bandit model [Even-Dar et al., 2002] to an infinite
number of arms.

Regarding the motivation of our model, we target a class of optimization problems
where standard local search approaches fail: in particular, relations between arms are either
not predictive of relations between their associated reward values or such relations can be
ignored without sacrificing much in terms of the number of evaluations needed to get an
approximately optimal solution. We view planning as an optimization problem, with every
possible plan being an ‘arm’ in the infinite bandit model described above.

Our claim is that some apparently hard planning problems can be solved via a sampling
and testing approach that cannot be solved by algorithms that depend on the existence
of local structure for search. We documented this phenomenon in the video games Infinite
Mario and Pitfall! where policies can be very similar but have vastly different outcomes (one
different action in a long sequence can lead the agent to failure as opposed to successfully
completing a level).

In Section 3, we introduce the problem by considering the simple case in which arms are
deterministic, P (E[ra] = ra) = 1. In Sections 4 and 5, we address the more general case of
arms with stochastic rewards. We will mostly focus on arms with a Bernoulli distribution
Da over rewards, but our bounds are extendable to arbitrary distributions with bounded
support.

2.1. Related Work

The framework used in our work is closely related to several models from the multi-armed
bandit literature. While the case of a finite number of arms is well understood [Auer et al.,
2002], in the past few years, papers discussing bandits with infinitely many arms have
appeared [Kleinberg et al., 2008; Bubeck et al., 2008]. Our work extends the PAC-Bandit
setting [Even-Dar et al., 2002] to an infinite number of arms [Wang et al., 2008], but we
replace the assumption about the probability of drawing a near optimal arm with a given
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Figure 3.1: A screenshot of Infinite Mario and plots of the distribution of the sample com-
plexity for an algorithm that pulls each arm once (x -axis log-scale). The dis-
tributions are plotted for 2 of the 50 Infinite Mario levels corresponding to the
first (easy) and third (hard) quartiles. See the Algorithms section for more
details.

target threshold. It is worth noting here that a typical assumption in the literature on
continuous-armed bandits (one class of infinite-armed bandits) is that the structure in the
arm space induces structure in the space of expected rewards of the arms. The mean-
reward function is usually assumed to be Lipschitz and algorithms are created that take
advantage of this smoothness assumption. In some cases, including our example problems,
this assumption does not hold and algorithms that depend on it can fail.

Regarding our chosen performance measure, we depart from the often used cumulative
regret setting and choose a setting that only requires an agent to have a good answer after
some finite experimentation. This setting is related to some recent work [Bubeck et al.,
2009; Audibert et al., 2010], but we chose the PAC-Bandit performance measure instead
of the simple regret setting defined in the aforementioned work. Besides existing PAC-
Bandit algorithms, we also draw algorithmic inspiration from the Hoeffding/Bernstein races
framework [Maron and Moore, 1997; Heidrich-Meisner and Igel, 2009; Mnih et al., 2008],
which we extend to our infinite-armed bandit setting, and from the empirical success of
the Biased Robin algorithm from the Budgeted Learning framework [Madani et al., 2003],
about which our analysis may offer some insight. Applicationwise, we target policy search
and planning under uncertainty.

3. Experiment: Infinite Mario

Our first experiment used a version of Infinite Mario (a clone of the Super Mario video
game, see the left panel of Figure 3.1) that was modified for the Reinforcement Learning
Competition [Whiteson et al., 2010]. It was also used for other competitions [Togelius
et al., 2010] and it is considered to be an interesting benchmark for planning and learning.
The game is deterministic and gives us an opportunity to present a natural problem that
illustrates the “reward richness” phenomenon motivating our work.

We treated starting screens in Infinite Mario as bandits, where each arm encodes an
action sequence 50-steps long. In the experiments, the agent’s goal was to reach a threshold
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on the right side of the initial screen. The action set of the agent was restricted by removing
the backward action (unnecessary for solving any level), resulting in 8 total actions and an
arm space of size 850. Action sequences were tested in the actual game, assigning rewards
of −1 if the agent was destroyed, 0 if it did not reach the goal in 50 steps, and a value of
100−t, otherwise (where t was the number of steps taken before reaching the goal). Since the
domain is deterministic, the agent simply sampled uniformly at random new arms until one
was found with reward greater than 0. Sampling uniformly from the space of arms induces
an unknown distribution D over the space of possible rewards, which is the distribution over
arms described in section 2.

The average number of pulls needed to find a strategy for completing the first screen over
a set of 50 levels ranged from 1 to 1000, with a median of 7.7 pulls and a mean of 55.7 (due
to a few very difficult levels). Thus, testing just a handful of randomly generated action
sequences was sufficient to find a successful trajectory in this game. The performance of the
method is conveyed by the black (leftmost) lines in the plots in Figure 3.1 (the algorithms
corresponding to the other curves are described in the next sections). The results show that
nearly all screens were solved in well under 100 samples.

As an extension to this experiment, we ‘chained’ trajectories together to completely solve
each of the 50 levels (as opposed to just treating the starting screens). Using a cap of 3000
pulls for each screen in a level, this simple method was able to complete 40 out of the 50
levels. (See the auxiliary material for links to videos of the discovered solutions.)

4. Sample Complexity Lower Bound

When the sampled arms are not deterministic, the problem of allocating pulls is more
complex. The agent is faced with a choice between getting better accuracy estimates of
previously sampled arms versus sampling new arms to find one with higher value. In the
following, we state and prove a lower bound on the expected sample complexity of a correct
algorithm for the case of Bernoulli arms.

Theorem 1 Any (ε, δ, r0)-correct algorithm for an IB(D) problem has an expected sample
complexity of at least T (ε, δ, r0, D) = Ω( 1

ε2
(1
ρ + log 1

δ )).

Due to space constraints, we leave the proof of the theorem for the auxiliary material
(Appendix C). The key element of the proof is the use of Theorem 13 of Mannor et al. [2004],
which states a lower bound on the expected sample complexity of any correct algorithm in the
PAC-Bandit setting when the expected rewards of the arms are known up to a permutation.

5. Algorithms

When ρ is known, the infinite-armed bandit problem can be reduced to the classic PAC-
Bandit setting and algorithms for that setting can be applied [Even-Dar et al., 2002; Mannor
et al., 2004]. Specifically, if one samples a number of arms such that, with high probability,
at least one has high expected reward (at least r0) and then uses a version of Median
Elimination [Mannor et al., 2004] to solve the resulting finite PAC-Bandit problem, the
sample complexity bound will be O( 1

ρε2
log 1

δ ), roughly a factor of log 1
δ away from the lower

bound. (Details available in Appendix F).
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For the more general case when ρ is not known, this section introduces three new algo-
rithms: one that is an incremental version of a naïve strategy [Even-Dar et al., 2002], one
inspired by the Hoeffding Races framework [Maron and Moore, 1997; Heidrich-Meisner and
Igel, 2009], and another that uses ideas from ballot-style theorems for random walks [Addario-
Berry and Reed, 2008] to quickly reject unpromising arms.

All the algorithms we introduce have the structure of the Generic Algorithm (Algo-
rithm 1): They sample an arm, make a bounded number of pulls for the arm, check if the
arm should be accepted (and in this case, stop and return the arm) or rejected (sample a
new arm from D and repeat). The decision rule for acceptance / rejection and when it can
be applied is what differentiates the algorithms.

Algorithm 1:
GenericAlgorithm (ε, δ, r0,RejectionFunction)

1: i = 1, found = false
2: for i = 1, 2, ... do
3: Sample a new arm ai ∼ D
4: decision = RejectionFunction(ai, i, ε, δ, r0)
5: if decision = ACCEPT then
6: return ai
7: end if
8: end for

5.1. Iterative Uniform Rejection (IUR)

Iterative Uniform Rejection (Algorithm 2) is an incremental version of the naïve strategy
by Even-Dar et al. [2002]. The algorithm pulls an arm a fixed number of times to decide
with high confidence if the arm has an expected reward less than or greater than r0 − ε. It
samples arms in this manner until one with an estimated mean reward of at least r0 − ε is
found.

Algorithm 2: IterativeUniformRejection (ε, δ, r0)
1: return GenericAlgorithm(ε, δ, r0,UniformRejection)

Function UniformRejection(a, i, ε, δ, r0)
1: n0 = 4

ε2
ln 2i2

δ
2: for k = 1, 2, ..., n0 do
3: Pull the arm to get reward rk ∼ a
4: end for
5: r̂a = 1

n0

∑n0
k=1 rk

6: if r̂a < r0 − ε
2 then

7: return REJECT
8: end if
9: return ACCEPT
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Theorem 2 Algorithm Iterative Uniform Rejection is an (ε, δ, r0)-correct algorithm for
any IB(D) problem and its expected sample complexity is upper bounded by O( 1

ρε2
log 1

ρδ ).

The IUR algorithm is simple, correct, and achieves a bound close to the lower bound
for the problem. We leave the proof of the theorem for the auxiliary material (Appendix A).

5.2. Iterative Hoeffding Rejection (IHR)

One problem with IUR is that it is very conservative in the sense of taking a large number
of samples for each arm (with the dominant term being 1

ε2
). The algorithm does not take

advantage of the fact that it may be possible to tell that an arm is highly unlikely to be
better than r0 − ε long before all n0 pulls are performed. As a result, the algorithm wastes
pulls deciding precisely how good or bad the arm is, when it just needs to know whether it is
good or bad. Iterative Hoeffding Rejection (Algorithm 3) exploits the situation in which
∆i, the difference between the expected reward of arm ai and r0, might be larger than ε, so
an unpromising arm could be rejected before reach the decision threshold from IUR—an
insight from the Hoeffding Races framework [Maron and Moore, 1997]. The main idea of the
IHR algorithm is to maintain confidence intervals built using the Hoeffding bound around
the empirical average for the sampled arm and to reject the arm as soon as the upper bound
of the confidence interval drops below a certain threshold. If this threshold is not reached
after a particular number of pulls, the arm is accepted.

Algorithm 3: IterativeHoeffdingRejection (ε, δ, r0)

1: return GenericAlgorithm(ε, δ, r0,HoeffdingRejection)

Function HoeffdingRejection (a, i, ε, δ, r0)
1: Let δ0 = δ

2i2
, j = 1

2: n0 = 4
ε2

ln 1
εδ0

3: for j = 1, 2, ..., n0 do
4: rj ∼ a; r̂aj = 1

j

∑j
k=1 rk

5: if r̂aj < r0 −
√

2 log(2j2/δ0)
j then

6: return REJECT
7: end if
8: j = j + 1
9: end for

10: return ACCEPT

Theorem 3 Algorithm Iterative Hoeffding Rejection is an (ε, δ, r0)-correct algorithm
for any IB(D) problem and its expected sample complexity is upper bounded by O( 1

ρε2
log 1

ερδ ).

We leave the proof of the theorem for the auxiliary material (Appendix D). The analysis
of the algorithm is tight in the worst case (consider the domain used to prove the lower bound
in Theorem 1). Nevertheless, as we will show in the experiments section, the algorithm has
a much better practical behavior than IUR. The reason can be understood by emphasizing
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the differences between the arms in the upper bound for IHR. Define ∆a = E[ra] − r0

to be a random variable that encodes the difference between r0 and the expectation of an
arm sampled from D, and define ∆− such that 1

∆2
−

= E[ 1
max(ε2,∆2

a)
|∆a < 0]. (∆− is lower

bounded by ε and it encodes the relevant difference for rejecting an arm if the arm has an
expectated value smaller than r0.) It can then be shown (see the proof in Appendix E) that:

Theorem 4 The expected sample complexity of Iterative Hoeffding Rejection is upper
bounded by O(( 1

ε2
+ 1

ρ∆2
−

) log 1
ερδ ) with probability at least 1− δ.

For situations where ∆− is larger than ε, the number of pulls needed to classify a ‘bad’
arm is actually much smaller (ignoring log factors, the difference is between O( 1

∆2
−

) and

O( 1
ε2

) pulls per arm). This difference is the reason why the algorithm has the potential to
be much more useful then IUR in practice.

The algorithm can be improved by accepting an arm faster if the lower bound of the
confidence interval for the empirical average of a particular arm becomes larger than r0.
Another immediate extension is to use Bernstein bounds [Mnih et al., 2008] instead of
Hoeffding bounds to take advantage of the case where the distributions associated with
each arm have low variance. We leave these straightforward improvements for an extended
version of the paper.

5.3. Iterative Greedy Rejection (IGR)

Both IUR and IHR carefully decide whether an arm is good or bad before deciding to
reject. As a consequence, with high probability, the first time they encounter a ‘good’ arm,
they accept it. This strategy is reasonable in general, but it has one disadvantage: when the
proportion of good arms is relatively low, these algorithms will spend a long time sampling
and discarding bad arms. In some cases, a better strategy could be to reject faster—without
being sure with high probability whether an arm is good or bad. This approach is permissible
in our framework since failure to accept a good arm is only penalized in terms of sample
complexity and does not compromise correctness. Related examples of empirically successful
algorithms that quickly reject are Biased Robin [Madani et al., 2003] in the Budgeted Bandit
setting and evolutionary algorithms in noisy settings [Fitzpatrick and Grefenstette, 1988].

We next describe an algorithm that implements such a strategy by constraining the
empirical average of each sampled arm to stay above a certain threshold for it not to be
rejected. While the worst-case bound we prove is a factor of O(1

ε ) worse than that of
the other algorithms, the algorithm is strong experimentally for real data sets, and is still
polynomial in the worst case.

Synthetic experiments that investigate various settings of the parameters (see Appendix G)
indicate the upper bound is loose and point to a tighter upper bound that is similar to the
one from Theorem 4 (with an advantage in some practical situations). We were unable to
prove this bound though, and thus leave the improvement of the bound for IGR as an open
problem.

Theorem 5 Algorithm Iterative Greedy Rejection is an (ε, δ, r0)-correct algorithm for
any IB(D) problem and its expected sample complexity is upper bounded by O( 1

ρε3
log 1

ερδ ), if
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Figure 5.1: An illustration of the behavior of three algorithms in a simple domain.

Algorithm 4: IterativeGreedyRejection (ε, δ, r0)
1: return GenericAlgorithm(ε, δ, r0,GreedyRejection)

Function GreedyRejection (a, i, ε, δ, r0)
The function is identical to HoeffdingRejection with the exception of Line 5:
5′: if r̂aj < r0 − ε

2 then

r0 > ε (if r0 ≤ ε, an algorithm can simply return the very first arm, which is guaranteed to
be ‘good’ because its reward r satisfies r ≥ 0 ≥ r0 − ε.)

The proof can be found in Appendix B and it is one of the core contributions of this
paper as it uses a new proving technique to upper bound the sample complexity.

The key idea of the proof is to interpret the evolution of the empirical average for a good
arm as a random walk and then apply a ballot-style theorem [Addario-Berry and Reed,
2008] to bound the probability that the average will always be higher than a fixed threshold.
Doing so allows us to lower bound the probability of accepting a good arm, which is the key
to upper bounding the expected sample complexity.

One possible looseness in the analysis comes from ignoring the fact that in non-worst
case scenarios, bad arms will be rejected before nmax(i) samples (which is why this strategy
is successful in practice).

6. Illustrating the Algorithms

Figure 5.1 illustrates the behavior of all three algorithms in a simple setting where arms
can take on three different values (0.20, 0.37, and 0.70) with equal probability (r0 = 0.5,
ε = 0.1, δ = 0.01). Thus, the goal is to recognize when a 0.70 arm is drawn. We note
that this experiment is not meant to compare the algorithms empirically, but only to give
insights about their different strategies for a simple example.

The first plot shows the behavior of IUR. Every time it draws an arm, it uses 1600 pulls
to accurately estimate its payoff before deciding whether to accept or reject. In the plot,
we show the algorithm’s estimate of the mean of each arm it draws as it accumulates more
data. We also plot a fixed interval of ε/2 around this mean, which is the confidence interval
of the estimate after 1600 pulls.
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Figure 6.1: Plot of distribution of the sample complexity (pulls needed) for IGR (Iterative
Greedy Rejection), IHR (Iterative Hoeffding Rejection) and IUR (Iterative
Uniform Rejection) over a set of 5000 repetitions. The distributions are plotted
for 3 different Pitfall! levels (shown along with a representation of a successful
policy in the lower half of the figure). Average sample complexity for each
algorithm is marked with a circle. All experiments used δ = 0.01.

The second plot depicts the behavior of IHR, which maintains confidence intervals on
the sample mean throughout. If the upper confidence interval drops below r0, the arm is
rejected. The result in the experiment is that IHR is able to reject 4 arms in the time it
takes IUR to reject 1.

The third plot provides the analogous illustration of IGR. Note that this algorithm rejects
an arm immediately if it fails on the first pull, and the sample mean must remain above r0

long enough to verify the arm’s payoff. The plot shows that the algorithm is able to test
many different arms very quickly, occasionally discarding good arms. Ultimately, it settles
in on a high scoring arm and evaluates it exhaustively.

7. Experiment: Pitfall!

Originally developed for the Atari 2600, Pitfall! is a game where the objective is to guide
the protagonist through the jungle collecting treasure while avoiding items that harm him.
In our experiments, interaction with the game was done via an emulator [JSt, 2008], which
was modified to allow for software control. In the experiment, the agent’s goal was defined
simply as arriving at the right side of the screen on the top tier (some levels can be finished on
the lower tier). The evaluation used the same 8 actionsfrom the Infinite Mario experiment.
Stochasticity was added by randomly changing the joystick input to a centered joystick with
no button press 5% of the time.
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In this game, constructing a policy as a mapping from states to actions is difficult because
it is unclear exactly what state representation to use. The Atari 2600 has 128 bytes of RAM,
which means the actual size of the state space can be 8128, much too large to effectively
plan in directly. Treating the game as a collection of objects greatly simplifies the problem
and has been used in Pitfall! for learning the dynamics of the first screen and navigating it
successfully [Diuk et al., 2008], but requires prior domain knowledge to define what kind of
interactions can occur between objects.

Because the issue of state in Pitfall! is problematic, one approach to planning in this
domain is to not factor in state at all but to execute action sequences (which are policies)
blindly (conditioned only on time, as opposed to state). The search space for sequences
of 500 actions is 8500 possible plans. However, on average far fewer than 84 of the pos-
sible sequences actually need to be sampled uniformly at random before a successful one
is found. This result is surprising, as the more difficult screens do not tolerate errors of
more than a couple of pixels of placement. The success indicates that, like Infinite Mario,
Pitfall! is reward rich. Figure 6.1 illustrates the results of running the three algorithms pre-
sented in this paper on the Pitfall! levels with stochasticity introduced. In all three cases,
the random-walk-based IGR outperformed the races-based IHR, which outperformed the
highly conservative IUR by a very large margin. The percentage improvement was greatest
for the most challenging levels (Vine and Crocs). The same pattern can also be seen in
Figure 3.1, where the algorithms were used on a deterministic domain without modification.
Note that the deterministic strategy used for Infinite Mario is not successful in Pitfall! be-
cause of the noise we introduced. The deterministic algorithm assumes an arm is good if
it is successful on the first pull, which can be very misleading. In Crocs, for example, the
deterministic strategy results in over 90% of the runs erroneously returning a bad arm.

Of all the advantages of the infinite-armed bandit algorithms discussed here, the most
significant may be the weak assumptions that are made: the only requirement is the prob-
ability of sampling a good enough arm be nonzero. It is thus an important topic of future
research to compare the strategies from this paper with local search strategies and plan-
ning algorithms that are designed to take advantage of relations between arms or policies
[Kleinberg et al., 2008; Bubeck et al., 2008; Bubeck and Munos, 2010].

8. Conclusion

We introduced an infinite-armed bandit framework that is tailored to optimization problems
to which local search cannot be applied. It is closely related to the finite PAC multi-armed
bandit model. We presented an almost-tight lower bound and three algorithms that solve the
problem and provided analyses (including a novel random-walk-based method) proving that
these algorithms achieve polynomial sample complexity bounds. We showed how a decision
maker can balance between allocating pulls to get high-accuracy estimates and sampling
new arms to find ones with higher expected rewards.

The framework models applications where good solutions are plentiful—where a good
arm can be found by random sampling. It was shown that some non-trivial planning prob-
lems (such as two encountered in established video games) can be solved handily by exploit-
ing this insight, even in the face of stochastic outcomes.
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Appendix A. Proof of Theorem 2

Proof
Sample Complexity. We will first show that there is a constant lower bound on the

probability of the algorithm stopping, which will in turn help us show the expected sample
complexity is finite. Let Ai be the event of accepting the i’th sampled arm (i ∈ 1, 2, ...),
conditioned on rejecting the first i−1 arms. Let N be a random variable that stands for the
number of arms sampled until the algorithm returns an arm, and SC be a random variable
that stands for the sample complexity. Note that P (Ai) = P (accept arm ai|ai is ’good’
)P (ai is ’good’) +P (accept arm ai|ai is ’bad’ )P (ai is ’bad’) ≥ P (accept arm ai|ai is ’good’
)P (ai is ’good’) ≥ (1 − δ

2i2
)ρ ≥ ρ

2 , ∀i ∈ 1, 2, . . . (where the third inequality holds due to an
application of the Hoeffding bound). Thus E[N ] ≤ 2

ρ (by the properties of the geometric
distribution, where Ai stands for “success”).

The expected sample complexity is E[SC] = E[
∑N

i=1
4
ε2

log 2i2

δ ] ≤ 4
ε2
E[N log 2N2

δ ] ≤
8
ε2

(E[N logN ] + 1
ρ log 2

δ ) (with the right hand side of the first equality determined by
the Hoeffding bound). The expectation for sample complexity is taken with respect to
both sampling the arms from D and noise in the pulls themselves. Now, E[N logN ] ≤√
E[N2]E[log2N ] ≤

√
4
ρ2
E[log2N ] (where the first inequality is Cauchy-Schwarz and the

second is due to the properties of the geometric distribution). To bound E[log2N ] we use
the fact that the function log2(x) is concave for x ≥ 3 (assuming a natural logarithm) and
we apply Jensen’s inequality to get E[log2N ] ≤ log2E[N ] ≤ log2 2

ρ .
So, for E[N ] ≥ 3, E[N logN ] ≤ 2

ρ log 2
ρ . For E[N ] < 3, E[N logN ] ≤ E[N2] < 9. As a

consequence, E[N logN ] ≤ max(9, 2
ρ log 2

ρ) and the bound follows.
Correctness. The algorithm will stop (with probability 1, since its expected sample

complexity is finite) and recommend either a ‘good’ arm (with reward r ≥ r0 − ε) or a
‘bad’ one (reward r < r0 − ε). The failure probability is P (failure) ≤ P (

⋃
i≥1{incorrect

recommendation at step i}) ≤
∑

i≥1
δ

2i2
≤ δ (the second inequality follows via the Hoeffding

bound given the number of samples n0(i) for each arm).
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Appendix B. Proof of Theorem 5

Before we give the actual proof we will restate for completeness (and to unify notation)
Corollary 2.3 from Kallenberg [1999].

Theorem A 1 [Kallenberg [1999]] Let (Z1, Z2, ...) a finite or infinite, stationary sequence
of random variables with values in R+ = [0,∞] and let Tj =

∑
i≤j Zi and β = E[Z1]. Then

there exists a random variable σ, uniform over (0, 1) (and independent of Zi) such that:

Pσ,Zi,i≥1[sup
j>0

Tj
j
≤ β

σ
] = 1.

Now we can prove theorem 5.
Proof We note that while the proof is done for Bernoulli arms, it is extendable to arbitrary
distributions with bounded support. We use the notation from Theorem 2 and we will only
discuss the sample complexity (the correctness follows similarly to the other algorithms). As
mentioned, the main challenge, given the aggressiveness of the rejection procedure, is to get
a positive lower bound on the probability of accepting a good arm. Let B be the event of
accepting an arm if the expected reward associated with that arm is r0 (the bound follows
immediately for all arms with r ≥ r0, since the probability of acceptance will be at least as
large as for r0). Define X = Bernoulli(r0) as a Bernoulli distributed random variable.

Define Y = X−r0+ε/2
1−r0+ε/2 as an affine transformation of X. Then, let α = E[Y ] = ε/2

1−r0+ε/2 ≥
ε
2 (since r0 > ε). Since Y = 1 with probability r0 and Y = −r0+ε/2

1−r0+ε/2 < 0 with probability

1− r0, we can interpret the series {Sj} (with Sj =
∑j

i=1 Yi, with Yi being i.i.d. samples of
Y , and implicitly Xi being i.i.d. samples of X) as a random walk.

We will now make two simplifying assumptions (and then describe at the end of the
proof how to remove them). We assume: (1) r0 − ε

2 ≥
1
2 and (2) −r0+ε/2

1−r0+ε/2 ∈ Z− (the set
of negative integers). Then, {Sj} is a positively biased random walk on the integers with
maximum step value 1. In this case, we can apply a classic ballot-style result that says that
P (Sj > 0,∀j = 1, 2, ...) = max(E[Y ], 0) = α, for example, Theorem 3 from Addario-Berry
and Reed [2008], which is based on a result by Takacs [1967].

But, α = P (Sj > 0,∀j = 1, 2, ...) ≤ P (Sj ≥ 0,∀j = 1, 2, ...) = P (
∑j
i=1Xi
j ≥ r0 − ε

2 ,∀j =

1, 2, ...) = P (X̂j ≥ r0− ε
2 , ∀j = 1, 2, ...) ≤ P (X̂j ≥ r0− ε

2 , ∀j = 1, 2, ..., nmax(i)) (where X̂j is
the empirical average after j samples and corresponds to r̂aj from Line 5′ of the algorithm).
Thus, P (B) ≥ α ≥ ε

2 .
So, as in Theorem 2, P (Ai) ≥ P (B)ρ ≥ ερ

2 . This fact implies E[N ] ≤ 2
ερ and the proof

for the expected sample complexity bound follows similarly to that of Theorem 3 with an
extra 2

ε factor in the bound that comes via the upper bound on E[N ].
To complete the proof, one needs to show that a ‘bad’ arm (with expected value smaller

than r0 − ε) will be rejected after at most nmax(i) samples. This claim follows via the same
application of the Hoeffding bound as for the previous algorithms (the probability that a
‘bad’ arm is accepted after nmax(i) samples is smaller than δ0, which is enough to bound
the probability of error for the entire execution of the algorithm).

To remove Assumptions 1 and 2, we will apply ballot-style theorems for random variables
with real values. The result will then follow by applying Corollary 2.3 from Kallenberg [1999].
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The goal of the last part of the proof is to complete the proof for IGR for the general
case of random walks on the real numbers.

Let Z = 1 − Y (where Y was defined in the main text as a transformation of the
Bernoulli random variable X). A set of i.i.d. samples of X induces a set of i.i.d. samples
of Y and implicitely of Z (Z1, Z2, ...). But (Z1, Z2, ...) is a stationary sequence of variables
with E[Z1] = E[Z] = 1− E[Y ] = 1− α. The support of Z is {0, 1

1−r0+ ε
2
} ⊂ R+.

Let Tj =
∑

i≤j Zi. Then, the conditions for theorem 1 hold and so there exists a
Uniform(0, 1) random variable σ such that P [supj>0

Tj
j ≤

1−α
σ ] = 1.

Let’s note V = supj>0
Tj
j and W = 1−α

σ two transformed random variables of Zi and σ
respectively. We know that P [V ≤ W ] = 1 (a relation known under the name of absolute
stochastic dominance or statewise stochastic dominance). It is known that this relation
implies the usual notion of (first order) stochastic dominance (which states that a random
variable Y stochastically dominates a random variable X if for all elements x in the support
of X and Y , P (Y > x) ≥ P (X > x) or equivalently P (Y ≤ x) ≤ P (X ≤ x)).

So since W stochastically dominates V in an absolute sense, it also dominates it in a
first-order sense. We will pick 1 ∈ R+ and it follows that P (W ≤ 1) ≤ P (V ≤ 1).

But P (W ≤ 1) = Pσ(1−α
σ ≤ 1) = Pσ(σ ≥ 1 − α) = 1 − (1 − α) = α (where the third

equality follows immediately from the properties of the uniform distribution).
We’ve thus shown that α ≤ P (V ≤ 1). Then α ≤ P (supj>0

Tj
j ≤ 1) = P (

Tj
j ≤ 1, ∀j >

0) = P (
∑

i≤j(1−Yi) ≤ j,∀j > 0) = P (Sj ≥ 0,∀j > 0). We know from the proof of theorem
5 in the main text that P (Sj ≥ 0, ∀j > 0) ≤ P (X̂j ≥ r0− ε

2 ,∀j = 1, 2, ..., nmax(i)). Thus the
desired relation (P (B) ≥ α) holds even when Assumptions 1 and 2 are removed, and we con-
sider random walks with steps taking real values. The rest of the proof remains unchanged.

Appendix C. Proof of Theorem 1

We will shortly introduce the PAC-Bandit setting as its definition is needed for the proof.
For a thorough introduction we refer the reader to Even-Dar et al. [2002].

The PAC-Bandit problem is defined as follows: Given n arms and two parameters ε and
δ, stop in finite time with probability 1 and return an arm at most ε away from the arm
with the highest expected reward among the n with probability at least 1 − δ. The lower
bound we will use from Mannor et al. [2004] has the form Ω( 1

ε2
(n+ log 1

δ )).
Proof We will use contradiction and assume there exists an (ε, δ, r0)-correct algorithm ALG
that solves any IB(D) problem with expected sample complexity o( 1

ε2
(1
ρ + log 1

δ )). The goal
is to show that ALG would imply a correct algorithm for the PAC-Bandit problem with
expected sample complexity o( 1

ε2
(n+log 1

δ )), which would contradict the known lower bound
in the PAC-Bandit setting.

Let D be a categorical probability distribution with 2 values in its support: 0.5 − ε (a
bad arm) and 0.5 + ε (a good arm) with probability mass 1− x on the first value and x on
the second. Let’s choose an arbitrary r0 ∈ (0.5, 0.5 + ε] (so that we follow the constraint
that ρ is bounded away from zero). Then ρ = x. Now, define a PAC-Bandit problem as
follows: assume we are given n arms, n−1 of which have expected reward of 0.5− ε and one
of which has expected reward of 0.5 + ε. To be precise, it is worth mentioning that we allow
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the algorithms in the PAC-Bandit setting to resample arms and ignore any previous pulls
taken for those arms (this actually makes the PAC-Bandit problem harder, so the lower
bound still has to hold).

Let x = ρ = 1
n . When we use ALG for the PAC-Bandit problem, each time the algo-

rithm samples a new arm from the environment, it selects an arm uniformly at random, with
replacement, from the n arms. Applying ALG, it will get the good arm with probability at
least 1 − δ with an expected number of samples o( 1

ε2
(1
ρ + log 1

δ )) = o( 1
ε2

(n + log 1
δ )), which

contradicts the lower bound mentioned above (Theorem 13 Mannor et al. [2004]).

Appendix D. Proof of theorem 3

Proof Sample Complexity. We keep the same notation as in the proof of Theorem 2. We
use E[rai ] to represent the expected value associated with arm ai, r̂aij the empirical average

of ai’s rewards after its jth pull, and CI(j) =
√

2 log(2j2/δ0)
j the confidence interval for the

empirical average at step j. Let nmax(i) = 4
ε2

log 1
εδ0

be the maximum number of pulls for
arm ai.

Now, P (Ai) = ρ(1−P (reject arm ai| arm ai is good)) = ρ(1−P (∪nmax(i)
j=1 {r̂aij 6∈ [E[rai ]−

CI(j), E[rai ] + CI(j)]})) ≥ ρ(1 −
∑nmax(i)

j=1
δ0
2j2

) ≥ ρ(1 − δ0) ≥ ρ
2 . So, as in Theorem 2,

E[N ] ≤ 2
ρ .

Since the sampling of each arm stops after at most nmax(i) steps, E[SC] ≤ E[
∑N

i=1
4
ε2

log 2i2

εδ ]
and then the sample complexity bound follows similarly to the proof of Theorem 2.

Correctness. The algorithm stops with probability 1 in finite time, and P (failure) ≤∑
i≥1 P ({ incorrect recommendation at step i}) =

∑
i≥1 P (

⋃nmax(i)
j=1 {r̂aij 6∈ [E[rai ]−CI(j), E[rai ]+

CI(j)]}) ≤
∑

i≥1

∑
j≥1

δ
4i2j2

≤ δ.

Appendix E. Proof of Theorem 4

Proof Since this is a high probability statement, we can assume for the rest of the proof
that we are in a situation where the algorithm commits no errors (which happens w.p. at
least 1 − δ as it can be shown that, for the entire experiment, the algorithm fails w.p. at
most δ). Let’s define SC(a) to be the same complexity of accepting or rejecting an arm a.
Let’s fix (for now) the total number of sampled arms to N = n, and fix an arm a, with
∆a < 0 (which we label as a ’bad’ arm).

Then, using the Hoeffding bound, SC(a) = 4
max(ε2,∆2

a)
log 2i2

max(ε,∆a)δ (where i is the index
of the arm among all n arms). Let’s assume D is continuous (the discrete case is similar)
and let’s define f(∆a) to be the pdf of ∆a. Then, since a ∼ D, E[SC(a)|a ‘bad’] =∫

∆a<0
4

max(ε2,∆2
a)

log 2i2

max(ε,∆a)δf(∆a)d∆a ≤ log 2n2

εδ

∫
∆a<0

4
max(ε2,∆2

a)
f(∆a)d∆a ≤ 4

∆2
−

log 2n2

εδ .

So, E[samples from all ‘bad’ arms|N = n] =
∑n

k=1E[samples from k ‘bad’ arms|N =

n]P (k arms are bad) ≤ 4
∆2
−

log 2n2

εδ

∑n
k=1 kP (k arms are bad) = 4(1−ρ)n

∆2
−

log 2n2

εδ . Similarly, it

can be shown that E[samples from all ‘good’ arms|N = n] ≤ 4ρn
ε2

log 2n2

εδ .

39



Goschin Weinstein Littman Chastain

Then, for any N , EB = E[samples from all ‘bad’ arms] ≤
∑∞

n=1
4(1−ρ)n

∆2
−

log 2n2

εδ P (N =

n) ≤ 4(1−ρ)
∆2
−

log 2
εδE[N ] + 8(1−ρ)

∆2
−
E[N log(N)] ≤ 16(1−ρ)

ρ∆2
−

log 4
ερδ (where the last inequality fol-

lows from the bounds forE[N ] andE[N log(N)] from Theorem 2). So, EB = O( 1
ρ∆2
−

log( 1
ερδ )).

Using a similar argument, one can show that EG = E[samples from all ‘good’ arms] =
O( 1

ε2
log( 1

ερδ )). Thus, E[SC] = EB + EG = O(( 1
ε2

+ 1
ρ∆2
−

) log 1
ερδ ).

Appendix F. Known Probability to Get a “Good” Arm—Algorithms

The algorithms we introduced so far treat the scenario for which the concentration of rewards
(ρ) is unknown. In this section, we will solve the problem for the case of known ρ by reducing
it to the PAC-Bandit setting (that we introduced formally in Appendix C).

The high level strategy is to compute how many arms one needs to sample to get a
“good” arm with high probability and then apply a PAC-Bandit algorithm to select the
“good arm” from the sampled ones. Algorithm 5 implements this strategy. It is worth
noting here that besides the standard algorithms (Uniform Planning (UP), Sequential
Elimination (SE) or Median Elimination (ME) Even-Dar et al. [2002]), we can also
apply an algorithm with a better upper bound due to our assumption that the domain is
reward rich (ρ > 0)—the version of Median Elimination from Section 7.1 of Mannor et al.
[2004] (which we label as Median Elimination with Known Bias (MEKB) from this
point on). The last algorithm is built to take advantage of knowledge of the bias of the best
arm.

Algorithm 5: PAC-Bandit Reduction (ε, δ, r0, ρ)
1: Sample n = 1

ρ log(2
δ ) arms.

2: Execute a correct PAC-Bandit Algorithm with input (ε, δ2 , n) on the n multi-armed
bandit problem.

3: Return the output of the PAC-Bandit Algorithm

We denote as SCALG the expected sample complexity of an IB(D) algorithm that uses
a PAC-Bandit algorithm ALG as a subroutine in Step 2.
Proof [Proof]Correctness. Let a1, a2, ..., an ∼ D i.i.d. Define eventA = {∀i ∈ {1...n}, E[ai] <
r0} (in words, A stands for the event that the expected value of all the sampled arms is
smaller than r0). Then, Pai∼D,i∈{1...n}(A) = (1 − ρ)n. If we choose n = 1

ρ log(2
δ ), then

P (A) ≤ δ
2 .

When ALG is executed with parameters from Step 2 in Algorithm 5, it will fail with
probability at most δ

2 . Thus, by the union bound on P (A) and the failure probability of
ALG, the algorithm will fail with probability at most δ and will otherwise return an arm
with the desired properties.

The sample complexity obviously depends on the algorithm chosen. It is easy to show
that, in the worst case, SCUP = O( 1

ρε2
log 1

δ log 1
ρδ ), SCME = O( 1

ρε2
log2 1

δ ) and SCMEKB =

40



Planning in Reward-Rich Domains via PAC Bandits

5 10 15

0
50

00
0

10
00

00
15

00
00

20
00

00
25

00
00

Varying ∆

1/∆

E
[S

C
]

IHR
IGR

0 100 200 300 400 500

60
00

80
00

10
00

0
12

00
0

14
00

0
16

00
0

Varying ρ

1/ρ

E
[S

C
]

IHR
IGR

0 20 40 60 80 100

0
50

00
0

10
00

00
15

00
00

20
00

00

Varying ε

1/ε

E
[S

C
]

IHR
IGR

Figure G.1: Each data point in each graph is the average of 500 repetitions of the experi-
ment. (a) In the left figure, we plot the dependence of the empirical average
sample complexity (E[SC]) on 1/∆. ε and ρ are fixed (ε = 0.05, ρ = 0.005). (b)
In the center figure, we plot the dependence of E[SC] on 1/ρ. ε and ∆ are fixed
(ε = 0.05,∆ = 0.4). (c) In the right figure, we plot the dependence of E[SC] on
1/ε. ρ and ∆ are fixed (ρ = 0.005,∆ = 0.4). For all experiments, δ = 0.01.

O( 1
ρε2

log 1
δ ). It can be observed that there is a gap of O(log 1

δ ) between the upper bound of
MEKB and the lower bound from Theorem 1 (we leave the closing of this gap as an open
problem)1.

Appendix G. Experiments

G.1. Pitfall! and Infinite Mario

This section provides additional details about the experiments we ran for Pitfall! and Infinite
Mario.

Four videos are included for Pitfall!. The experimental setting is described in the paper
— it requires Harry to navigate from the left to the right side of the screen on the top
tier without being killed or running out of time. Each video demonstrates one discovered
trajectory, chosen as a representative of the others found. Each trajectory is run 20 times
in each video. The locations of the videos are:

• Screen 3, Best Observed Policy, 3:11: http://www.youtube.com/watch?v=Jw-t7Ihe4Uc

• Screen 3, Worst Observed Policy, 3:36: http://www.youtube.com/watch?v=uAdXraDpUs0

• Screen 4, Best Observed Policy, 8:05: http://www.youtube.com/watch?v=r8Hr2Dc_NN0

• Screen 4, Worst Observed Policy, 7:06: http://www.youtube.com/watch?v=fOmAyGuXdvI

For Infinite Mario, we recorded videos of the performance of the simple strategy defined
in the paper:

1. We remark here that while Median Elimination (and its variant MEKB) is the PAC-Bandit algorithm
that offers the best sample complexity upper bound, it is not a practical algorithm.
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• Success video (resulting from stitching together solutions to consecutive screens), 0:53:
http://www.youtube.com/watch?v=tH5DRNrRS8I

• Partial success video, 0:49: http://www.youtube.com/watch?v=Wh8HGKIp7PQ

• First screens for 50 levels, 9:51: http://www.youtube.com/watch?v=tcJSQcVzRkc

Regarding the implementation, we took the Infinite Mario code from RLCompetition
source code: http://code.google.com/p/rl-competition/ and RL-Glue code from RL-Glue
source: http://glue.rl-community.org/wiki/Main_Page.

G.2. Synthetic Experiments

The role of this section is to further investigate the empirical sample complexity of IGR so
as to give indications as to how the upper bound of IGR can be tightened and how does
IGR compare with IHR in various scenarios.

We will use a simple but illustrative infinite bandit problem inspired by the sample
complexity lower bound example. Let D (the probability distribution over the space of
arms) be a categorical distribution with parameter ∆ such that with probability ρ an arm
is Bernoulli(1

2 + ∆) (a ’good’ arm) and with probability 1 − ρ is is Bernoulli(1
2 − ∆) (a

’bad’ arm). The ρ parameter encodes (as usual) the reward richness of the domain while ∆
encodes how large is the difference between the good and the bad arms (and plays the role
of ∆− from section 5.2).

The three parameters of interest are obviously ε,∆ and ρ. In figure G.1, in each graph,
two parameters have fixed values and the third is varied. We plot the dependence of the
empirical average sample complexity on the inverse of each parameter (since the sample
complexity bounds depend on 1/ε, 1/∆−, and 1/ρ). We only compare IGR with IHR, since
the empirical sample complexity of IUR is always significantly larger than the other two
algorithms and thus does not offer any interesting insight.

In the left graph from Figure G.1 it is visible that IGR increasingly dominates IHR as
the difference between the good and the bad arms increases. We think this is one of the two
factors that determine the success of IGR in practice, as it provides fast rejection of bad
arms for a variety of types of bad arms (for a fixed accuracy ε and concentration of good
arms ρ). The behavior is consistent for other fixed values of ε and ρ.

In the center graph from Figure G.1 the dependency of IGR and IHR on ρ is interest-
ing. For values of ρ > 0.01, IHR dominates, while when the concentration of good arms
decreases, IGR starts to have a better sample complexity. The better dependency on ρ as
it decreases is the second factor that makes IGR strong empirically.

In the graph on the right side of Figure G.1 the dependency on ε is plotted. The
performance comparison between IGR and IHR is reversed as compared to the experiment
where ρ was varied. IGR dominates for values of ε > 0.04 while IHR starts dominating
when ε decreases further.

While the experiments (b) and (c) in Figure G.1 show that IGR and IHR are not
totally ordered in terms of sample complexity performance, it is intuitive that for practical
applications (where ε is usually fixed) IGR tends to behave better. All three synthetic
experiments indicate that the bound from Theorem 5 is loose and the true bound of IGR
is actually closer to Theorem 4.
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Abstract
We consider reinforcement learning in Markov decision processes with high dimensional
state and action spaces. We parametrize policies using energy-based models (particularly
restricted Boltzmann machines), and train them using policy gradient learning. Our ap-
proach builds upon Sallans and Hinton (2004), who parameterized value functions using
energy-based models, trained using a non-linear variant of temporal-difference (TD) learn-
ing. Unfortunately, non-linear TD is known to diverge in theory and practice. We introduce
the first sound and efficient algorithm for training energy-based policies, based on an actor-
critic architecture. Our algorithm is computationally efficient, converges close to a local
optimum, and outperforms Sallans and Hinton (2004) in several high dimensional domains.

1. Introduction

A major challenge in reinforcement learning is to find successful policies in problems with
high-dimensional state or action spaces. In order to solve these problems effectively, it is
advantageous to learn representations of the state and action spaces that enable a policy to
achieve high performance. In this paper, we develop a framework for parameterizing richly
structured policies, and for finding those with (locally) optimal performance.

We consider a class of policies based on energy-based models [LeCun et al., 2006], where
the (negative) log probability of selecting an action is proportional to an energy function.
Energy-based models have been widely studied in both supervised and unsupervised learn-
ing. They can learn deep, distributed representations of high-dimensional data (such as im-
ages) and model high-order dependencies, and here we will use them to directly parametrize
representations over states and actions. We explore in detail a class of energy-based mod-
els called restricted Boltzmann machines (RBMs; Freund and Haussler, 1994; Welling et al.,
2004). RBMs and conditional RBMs have been applied to a range of challenging tasks includ-
ing multi-class classification [Larochelle and Bengio, 2008], collaborative filtering [Salakhut-
dinov et al., 2007], motion capture modeling [Taylor and Hinton, 2009], modeling of transfor-
mations in natural images [Memisevic and Hinton, 2010], and structured output prediction
[Mnih et al., 2011].

To successfully use energy-based policies for reinforcement learning, it is necessary to
address several challenges. First, the parameterized representations can be highly non-
linear, leading to non-convex objectives with multiple optima. Second, it is often intractable
to compute the partition function that normalizes the energy function into a probability
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distribution. Third, evaluating a policy typically has high variance, since the performance
depends on the rewards accumulated over a complete trajectory. Prior work [Sallans, 2002;
Sallans and Hinton, 2004; Otsuka et al., 2010; Elfwing et al., 2010] partially addressed these
issues using value-based reinforcement learning. The idea was to approximate the action-
value function by the free energy of an energy-based model, and to train it by temporal-
difference (TD) learning. However, this approach has a serious drawback: TD learning is
known to diverge, both in theory and in practice, when using non-linear value functions
[Tsitsiklis and Van Roy, 1997]. In addition, the policy is based on an arbitrary temperature
which makes the algorithm hard to tune in practice.

We introduce a new approach to reinforcement learning with energy-based policies. The
basic idea is to adjust the policy parameters to follow the gradient of the policy performance,
using sample trajectories to obtain estimates of the gradient [Williams, 1992; Sutton et al.,
1999; Baxter and Bartlett, 2001]. One major advantage of this approach is that it converges
to a local optimum, even for non-linear policies. Simple policy gradient methods are sensitive
to the parameterization of the policy, and also suffer from high variance in the gradient
estimates. We address these shortcomings by following the natural gradient, which reduces
the dependence of the performance of the policy gradient on the parameterization [Kakade,
2001]; and by using an actor-critic architecture, which uses an approximate value function
to reduce the variance in the gradient estimates [Peters and Schaal, 2008; Bhatnagar et al.,
2009]. We introduce two novel natural actor-critic algorithms for efficiently following the
gradient of energy-based policies without resorting to explicit computation of the partition
function. We apply our algorithms to learn RBM policies in a number of tasks, finding
that they converge quickly to reasonable solutions in all tasks and consistently outperform
Sallans and Hinton [2004], which sometimes even fails to converge.

2. Energy-based policies

We consider stationary Markov decision processes (MDPs) with bounded rewards and high
dimensional state and action spaces denoted S and A respectively. Denote the state, action
and reward at time t by st, at and rt respectively, and the state transition probabilities and
expected reward function by P (st+1|st, at) and R(st, at). We will consider stochastic and
stationary polices described by conditional distributions over actions πθ(a; s) parameterized
by θ. We assume that given policy πθ the MDP is ergodic with stationary distribution dθ.

In this paper we consider energy-based policies which can be expressed as conditional
joint distributions over actions a and a set of latent variables h:

πθ(a, h; s) = 1
Z(s)e

φ(s,a,h)>θ (1)

where φ(s, a, h) are a pre-defined set of features and Z(s) =
∑

a,h exp(φ(s, a, h)>θ) is the
normalizing partition function. The policy itself is then obtained by marginalizing out
h. The latent variables allow energy-based policies to parametrize complex non-linear and
non-factorial relationships between actions and states, even though the underlying parame-
terization (1) is log linear in the features φ(s, a, h). For example, in a conditional restricted
Boltzmann machine (RBM), the states s, actions a and latent variables h are all high-
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dimensional binary vectors, and (1) is parameterized as:

πθ(a, h; s) = 1
Z(s)e

s>Wsh+a>Wah+b>s s+b
>
h h+b>a a (2)

where the parameters are matrices Ws,Wa and vectors bs, ba, bh of appropriate dimension-
alities. Marginalizing out h, we get a non-linearly parameterized policy:

F θ(s, a) = −b>s s− b>a a−
∑

i log(1+es
>Wsi+a

>Wai+bhi), πθ(a; s) = 1
Z(s)e

−F (s,a;θ) (3)

where i indices the latent variables, and Wsi,Wai, bhi are parameters associated with latent
variable hi. The quantity F (s, a; θ) is called the free energy.

2.1. Free-energy Sarsa

Sallans and Hinton [2004] use the RBM free energy as a non-linear function approximator.
Specifically, they approximate the action-value function Qθ(s, a) of a discounted MDP using
−F θ(s, a), and select actions according to a Boltzmann exploration policy,

πθ(a; s, T ) = 1
Z(s,T )e

−F (s,a;θ)/T (4)

where the temperature T scales units of reward into units of probability: as T → ∞ the
policy becomes uniform; as T → 0 it becomes greedy. The parameters of the RBM are
updated using a non-linear version of the Sarsa algorithm, with time-varying step size βt,

δt = rt+1 − γF θt(st+1, at+1) + F θt(st, at)

θt+1 = θt − βtδt∇θF θt(st, at), (5)

where δt is the TD error and γ is the discount factor of the MDP. We refer to this algo-
rithm as energy-based Sarsa (ESARSA). Since Sarsa is a control algorithm based on TD
learning, it may diverge with non-linear function approximations [Tsitsiklis and Van Roy,
1997]. Recently, convergent non-linear prediction algorithms based on gradient TD have
been developed, however even these may still diverge when used for control [Maei et al.,
2009].

2.2. Policy gradient

In this paper we consider an average reward formulation of MDPs. Our objective is to find
parameters θ that (locally) maximize the average reward per time-step J(θ),

J(θ) = lim
T→∞

1
T Eθ

[∑T
t=1 rt

]
= Eθsa [R(s, a)] (6)

where Eθ denotes expectation under πθ and Eθsa denotes expectation under the stationary
distribution (where s ∼ dθ and a|s ∼ πθ(·; s)). The state-value function V θ(s) and action-
value function Qθ(s, a) for policy πθ are given by the differential reward from s (and a),

Qθ(s, a) =

∞∑
t=1

Eθ [rt − J(θ)|s0 = s, a0 = a] (7)

V θ(s) =
∞∑
t=1

Eθ [rt − J(θ)|s0 = s] =
∑
a∈A

πθ(s; a)Qθ(s, a) = Eθa[Q
θ(s, a)] (8)
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where Eθa denotes expectation under a|s ∼ πθ(·; s). The advantage function is the differential
value for action a in state s:

Aθ(s, a) = Qθ(s, a)− V θ(s) (9)

Policy gradient methods update the policy parameters θ to follow the gradient of the
average reward. The policy gradient theorem [Baxter and Bartlett, 2001; Sutton et al., 1999;
Bhatnagar et al., 2009] provides the gradient of J(θ) with respect to θ,

∇θJ(θ) = Eθsa

[
Aθ(s, a)∇θ log πθ(a; s)

]
(10)

In practice, the advantage function Aθ is unknown and must be approximated. Actor-
critic policy gradient algorithms estimate the advantage function, Âw ≈ Aθ, and update this
estimate (the critic) in parallel with the policy parameters (the actor). If the parameteri-
zation of the approximation Âw is compatible with the parameterization of the policy, then
this approximation does not introduce any bias into the gradient direction [Sutton et al.,
1999]. A parameterization is compatible if it satisfies

∇wÂ
w(s, a) = ∇θ log πθ(a; s) (11)

That is, Âw(s, a) = ψθ(s, a)>w where ψθ(s, a) = ∇θ log πθ(a; s). Furthermore, the parame-
ters w should minimize the mean-squared-error (MSE),

w=argmin
w′

Eθsa

[(
Aθ(s, a)−ψθ(s, a)>w′

)2] (12)

This can be obtained by stochastic gradient updates:

wt+1 = wt + αt(δt − ψθt(st, at)>wt)ψ
θt(st, at) (13)

where θt is the current policy parameter, αt is a step size and δt is an unbiased estimate of
Aθ(st, at) (later).

The direction of the vanilla policy gradient is sensitive to reparameterizations of the pol-
icy that don’t affect the action probabilities. Natural policy gradient algorithms [Kakade,
2001; Peters and Schaal, 2008] remove this dependence, by finding the direction that im-
proves J(θ) the most for a fixed small amount of change in distribution (e.g. measured by
KL divergence). The natural policy gradient ∇nat

θ J(θ) is defined by

∇nat
θ J(θ) = G−1

θ ∇J(θ), Gθ = Eθsa
[
∇ log π(s, a)∇ log π(s, a)T

]
(14)

where Gθ is the Fisher information matrix. When using compatible function approximation,
we find that,

∇θJ(θ) = Eθsa

[
∇θ log πθ(a; s)Aθ(s, a)

]
= Eθsa

[
∇θ log πθ(a; s)(∇θ log πθ(a; s))Tw

]
= Gθw (15)

and the natural gradient simplifies to ∇nat
θ J(θ) = w. Policy parameters updates are then:

θt+1 = θt + βtwt+1, (16)
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The final ingredient is estimating the advantage function Aθ(s, a). One unbiased estimate
is the TD error:

δt = rt+1 − J(θ) + V θ(st+1)− V θ(st) (17)

which is used by Bhatnagar et al. [2009] to motivate their natural TD actor-critic (NATDAC)
algorithm: They approximate the state-value function, and hence the TD error, using a linear
function approximator V̂θ(s) ≈ f(s)Tv, where f(s) is a state-dependent feature vector and
v are updated by TD learning:

Ĵt+1 = (1− ζt)Ĵt + ζtrt+1

δt = rt+1 − Ĵt+1 + f(st+1)Tvt − f(st)
Tvt

vt+1 = vt + αtδtf(st) (18)

Provided that the average reward, TD error and critic are updated on a slower time scale
than for the actor, and step sizes are reduced at appropriate rates, NATDAC converges to
a policy achieving near-local maximum average reward [Bhatnagar et al., 2009, Section 5].

3. NATDAC for energy-based policies

Energy-based policies pose a challenge to policy gradient methods. Both vanilla policy
gradient updates and natural actor-critic updates require the computation of compatible
features ψθ(s, a) = ∇θ log πθ(s, a). For an energy-based policy, this requires the computation
of two expectations:

ψθ(s, a) = ∇θ log πθ(a; s) = ∇θ log
∑

h e
φ(s,a,h)>θ −∇θ logZ(s)

= Eθh [φ(s, a, h)]− Eθa′h
[
φ(s, a′, h)

] def
= φθ(s, a)− Eθa′

[
φθ(s, a′)

]
. (19)

where Eθh is the expectation wrt the conditional of h given a and s while Eθah is wrt both a
and h. The first expectation, which we denote by φθ(s, a), can be computed efficiently in a
wide class of energy-based models, including RBMs. The second expectation involves a sum
over all actions, and is intractable to compute in high-dimensional action spaces.

We now propose two incremental actor critic algorithms that avoid evaluating either this
expectation or the partition function. The first algorithm energy-based NATDAC (ENAT-
DAC) uses independent samples from the energy-based policy to approximate the intractable
expectations. The second algorithm, energy-based Q-value natural actor critic (EQNAC)
uses a deterministic approximation and has a lower computational requirement.

3.1. Energy-based NATDAC

For our first algorithm, we note that energy-based policies such as RBMs may be efficiently
sampled, for example by blocked Gibbs sampling, without explicitly computing the partition
function. Unbiased estimates of the update (13) can then be formed using two independent

47



Heess Silver Teh

unbiased estimates of the compatible features ψθ(s, a),

ψ̂′t = φθt(st, at)−
1

K

K∑
k=1

φθt(st, a
′
k), ψ̂′′t = φθt(st, at)−

1

L

L∑
l=1

φθt(st, a
′′
l )

wt+1 = wt + αt

(
δt − ψ̂′t

>
wt

)
ψ̂′′t (20)

where a′k, a
′′
l ∼ πθt(·; s) iid. Because (20) is equal in expectation to the critic update (13),

the two time scale convergence proof for NATDAC [Bhatnagar et al., 2009, section 5.3] can
be applied. Specifically, under our assumption that the critic is updated on a much slower
time-scale than the actor, the policy θt and therefore φθt is effectively stationary during critic
updates. As a result, the TD learning updates (20) are based on a function approximator
that is linear in φθt , and do not suffer from the divergence issues faced by energy-based
Sarsa.

Algorithm 4.1: ENATDAC

1: Input: Ĵ0,v0,w0, θ0, s0

2: for t = 0, 1, . . . do
3: at, a

′
1...K , a

′′
1...L ∼ πθt(·; st)

4: st+1 ∼ P (·|st, at)
5: rt+1 = R(st, at)
6: ψ̂′t = φθt(st, at)− 1

K

∑K
k=1 φ

θt(st, a
′
k)

7: ψ̂′′t = φθt(st, at)− 1
L

∑L
l=1 φ

θt(st, a
′′
l )

8: ˆJt+1 = (1− ζt)Ĵt + ζtrt+1

9: δt = rt+1 − Ĵt+1 + v>f̂t+1 − v>f̂t
10: vt+1 = vt + αtδtf(st)
11: wt+1 = wt + αt(δt − ψ̂′Tt wt)ψ̂

′′
t

12: θt+1 = θt + βtwt+1

13: end for

One drawback of the NATDAC algo-
rithm is that the quality of the state-value
function approximator depends on the fea-
ture vector f(s). Although the algorithm
converges, the quality of the final policy may
be significantly affected by the choice of fea-
tures. In an energy-based framework, it is
possible to marginalize over φθ(s, a) to de-
fine an energy-based feature vector f(s) =
Eθa[φ

θ(s, a)]. Again, this expectation is in-
tractable to compute, but can be approxi-
mated by a third set of samples from the
policy, a′′′m ∼ πθ(s, ·)

f̂t =
1

M

M∑
m=1

φθt(st, a
′′′
m) (21)

Pseudocode for energy-based NATDAC is given in Algorithm 4.1. In summary, it uses
an advantage actor-critic, based on TD learning with an energy-based feature vector, and
using the sample approximation to the intractable expectations, and updates the policy by
following the natural gradient.

3.2. Energy-based Q-value natural actor-critic

We now introduce our second algorithm, EQNAC, which is also based on a natural actor-
critic approach. The key new idea is to note that, when using the compatible function
approximator ψθ(s, a), the approximate advantage function Âw(s, a) can be represented in
terms of an approximate action-value Q̂w(s, a),

Âw(s, a) = ψθ(s, a)>w =
(
φθ(s, a)− Eθa′

[
φθ(s, a′)

])>
w = φθ(s, a)>w − Eθa′

[
φθ(s, a′)

]>
w

def
= Q̂w(s, a)− Eθa′ [Q̂

w(s, a′)]. (22)
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This suggests that it is sufficient to estimate the action-value function Qθ(s, a) by a linear
approximator Q̂w = φθ(s, a)>w. This representation does not involve any intractable ex-
pectations. The EQNAC algorithm updates the critic parameters w by TD learning, and
updates the policy parameters θ by following the natural gradient in the direction of w.
Pseudocode for EQNAC is shown in Algorithm 4.2. Again, for an effectively stationary
policy the TD learning procedure is linear in φθ and therefore avoids the divergence issues
encountered by energy-based Sarsa. Unlike ENATDAC, this algorithm does not require
repeated sampling of actions to estimate the expectations. Furthermore, it only maintains
two sets of parameters θ and w, and does not require a state feature vector to be defined.

4. Experiments Algorithm 4.2: EQNAC

1: Input: Ĵ0,w0, θ0, s0

2: a0 ∼ πθ0(·; s0)
3: for t = 0, 1, 2, . . . do
4: rt+1 = R(st, at)
5: st+1 ∼ P (·|st, at)
6: at+1 ∼ πθt(·; st)
7: Ĵt+1 = (1− ζt)Ĵt + ζtrt+1

8: δt = rt+1 − Ĵt+1+
φθt(st+1, at+1)>wt − φθt(st, at)>wt

9: wt+1 = wt + αtδtφ
θt(st, at)

10: θt+1 = θt + βtwt+1

11: end for

We evaluate our two algorithms, comparing
them against ESARSA on three tasks below.
As an additional comparison, we also con-
sidered a neural network (NN) with stochas-
tic output units and the same structure as
the RBM except that the hidden units were
deterministic instead of stochastic. The
NN was trained with NATDAC (details in
supplemental material). The learning algo-
rithms are sensitive to the choice of learning
parameters. For all tasks and algorithms we
therefore perform a grid search over differ-
ent settings of the relevant parameters, and report results for the best setting.1 In a cross-
validation style setup, we first choose the parameters based on a preliminary parameter
sweep, then fix the parameters and perform a final run for which we report the results. In
all cases, we learn several policies with the same parameter settings but different random
initializations. We obtain learning curves by evaluating each policy at regular intervals dur-
ing learning, performing several hundred repeats of each task.2 We use exact sampling for
all algorithms in the stochastic policy and blocker tasks, and block Gibbs sampling for the
octopus arm task. Note that our algorithms use an average reward formulation; whereas
ESARSA uses a discounted reward formulation. For ESARSA on the blocker and octopus
arm tasks γ is set to 1; for the stochastic policy task γ = 0.

The stochastic policy task [Sallans, 2002] is an example where a stochastic policy
is required to deal with state aliasing, and serves to demonstrate that RBMs can model
stochastic policies with high-dimensional action spaces. The action space consists of N
binary variables and there are K unobserved states. Each of the unobserved states is associ-
ated with one particular configuration of the action variables. If the environment is in state
k and the associated action is performed a reward of 10 is received and the environment

1. For ESARSA we consider initial learning rate, speed of decay of the learning rate, decay of the exploration
temperature T (starting at 1), and variance of the Gaussian distribution used to randomly initialize the
policy parameters at the beginning of learning. For the policy gradient algorithms we consider α0, β0,
rate of decay for α, β, and scale of random initialization. We use ζ = α in all experiments.

2. 500 actions for stochastic policy; 1000 epochs for blocker task; 100 epochs for octopus arm.
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N K prototypical actions
task 1 5 2 (0 0 1 0 1)

(0 1 0 1 1)
task 2 6 3 (1 1 0 0 0 0)

(0 0 1 1 0 0)
(0 0 0 0 1 1)

task 3 8 3 (0 0 1 0 1 0 1 1)
(0 1 0 1 1 1 0 0)
(1 1 1 0 1 0 0 0)
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Figure 4.1: Stochastic policy task: The table shows the task-parameters for the three ver-
sions of the task. Results are shown for ENATDAC (green circles), EQNAC
(blue squares), SARSA (red crosses), and NN (magenta). Black lines show av-
erage reward for optimal policy; light gray lines show rewards with independent
actions.

Figure 4.2: Blocker task: The top plot illustrates several
steps in a blocker game (adapted from Sallans
and Hinton 2004). To win, the agents need to
cooperate. Here, agents 1,2 force the block-
ers to split so that agent 3 can enter the end
zone in the middle. The bottom plot shows, for
each algorithm, mean and standard deviation
of the average reward per step of the learned
policies for 20 restarts with different random
initialziations (see Fig. B.3 in the supplemen-
tal material for individual traces).

123

A B

C D

80000 240000 400000
−1

−0.9

−0.8

−0.7

# actions

a
v
g

. 
re

w
a

rd
 p

e
r 

a
c
ti
o

n

 

 

SARSA

NN

EQNAC

ENATDAC

transitions into state k + 1 (or into state 1 from K). Otherwise the state is unchanged and
no reward is provided. Since the agent does not observe the environment state the optimal
policy is to choose the K “good” action configurations with equal probability, achieving an
average reward of 10

K . A deterministic policy will get zero reward since it will get stuck in one
of the states. Further, it is necessary to model dependencies between action variables: for
independently drawn action variables the probability of generating a “good” configuration
is very low. We consider three versions of the task with N = 5, 6, 8, and K = 2, 3, 3 (cf.
Fig. 4.1). The first version was considered in Sallans [2002]. We used an RBM with 1 hidden
unit for task 1 and 2 hidden units for tasks 2 and 3. Training was performed for 20000 ac-
tions. Results are shown in Fig. 4.1. The NN models each action dimension independently
and therefore performs very poorly (see supplemental material for further discussion). In
contrast, the RBM learns to represent these correlations via stochastic latent variables and
performs very effectively. When training the RBM, ESARSA is only able to find the optimal
policy for task 1, whereas EQNAC and ENATDAC find optimal policies in all cases.3

The blocker task (Sallans 2002; Sallans and Hinton 2004) is a multi-agent task in which
agents have to reach the end zone at the top of a playing field while blockers try to stop

3. Although only the first 20000 actions are shown we allowed 50000 actions for ESARSA training. For
task 2 additional training leads to a small improvement relative to the performance after 20000 actions
but not for task 3 (see also Fig. B.1 in supplemental material).
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Figure 4.3: Octopus arm: Average number of steps re-
quired to hit the target. For each algorithm
mean and std.-dev. for 10 restarts with
different random initializations are shown.
Figs. B.5,B.6 in the suppl. material show
individual traces. 30000 90000 150000
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them. In each iteration of the game, each agent moves by one step in one of four directions,
while the blockers behave in a deterministic manner, moving left or right to block the agents.
We used a 7× 4 board with 3 agents and 2 blockers as illustrated in Fig. 4.2. Blockers have
a limited range of responsibility, with blocker 1 responsible for columns 1-4 and blocker 2
for columns 4-7. The state space consists of locations for each agent and for blocker (using
1-of-N encoding for each). A game is started by randomly placing agents at the bottom
and the blockers at the top. It is played for 40 steps or until one of the agents reaches
the end zone. A reward of -1 is given for each step prior to reaching the end zone, and a
reward of 1 when one of the agents succeeds and the game is ended. We used RBMs with 16
hidden units, and learning was performed for 400000 actions. Results are shown in Fig. 4.2.
EQNAC and ENATDAC consistently achieved good results. ESARSA and NN generally
converged more slowly and found lower quality policies.

In this task we also experimented with several different state feature vectors f(s), as
required by ENATDAC (but not the other algorithms). We tested: randomly generated
binary features (as e.g. Bhatnagar et al., 2009), choosing the dimensionality D of f(s) to be
lower than the number of states (which is 87808; we experimented with D = 400, 1000); raw
feature encoding based on the state vector s directly; and the “energy based” feature vector
described in section 3.1. We found that a poor choice of f(s) can significantly reduce the
asymptotic performance. The energy-based features performed very well, only equalled by
large sets of carefully scaled random features.

Finally, we tested our algorithms on an octopus arm [Engel et al., 2005] task. The
aim is to learn to control a simulated octopus arm to hit a target. The arm consists of
C compartments and is attached to a rotating base. There are 8C + 2 continuous state
variables (x,y position/velocity of the nodes along the upper/lower side of the arm; angular
position/velocity of the base) and 3C+2 action variables that control three muscles (dorsal,
transversal, central) in each compartment as well as the clockwise and counter-clockwise
rotation of the base. Previous work [Engel et al., 2005] simplified the high-dimensional action
space using 6 “macro-actions” corresponding to particular patterns of muscle activations.
Here, we do not make any such simplification; patterns of muscle activations are learnt by
latent variables. Each muscle output was restricted to a binary activation. Below we present
results for an arm with C = 4 compartments. The goal is to strike the target with any part
of the arm. To direct exploration we provide a shaping reward at each time step: if the
minimum distance between arm and target is decreased then a shaping reward of +1 is
provided; if the distance is increased the reward is -1. The final reward for hitting the target
is +50. An episode ends when the target is hit or after 300 steps.

We learned RBM-based policies with 32 stochastic hidden units, and an NN-based policy
with 32 deterministic hidden units. We used energy-based features for (E)NATDAC as
these are directly applicable in continuous-valued state spaces. Results for the octopus arm
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are shown in Fig. 4.3. The policy-gradient approaches performed significantly better in
this experiment. In particular, the RBM trained by ENATDAC, and the NN trained by
NATDAC, both learnt good policies that were consistently able to hit the target. Some
ENATDAC runs were trapped in suboptimal maxima where the arm moves only in one
direction, thus taking a longer time to reach the target on some episodes (see Figs. B.5,
B.6 in the supplemental material). The policies learned by EQNAC are slightly worse but
the arm still learns to find and hit the target in the majority of cases. ESARSA performed
relatively poorly. A video demonstration of the learnt octopus arm policies is available at:
http://www.gatsby.ucl.ac.uk/~nheess/papers/ebrl/

5. Discussion

In our most challenging task, an energy-based policy was able to represent and learn, using
ENATDAC, an effective control policy for a high-dimensional octopus arm. Unlike prior
work, the latent variables automatically learnt to represent useful patterns of activations.
In this task, a stochastic NN with deterministic hidden nodes was also able to solve the
problem. This is not entirely unexpected as here a deterministic final policy is likely to be
sufficient, while learning is simpler in the NN as it allows direct sampling of actions and the
exact calculation of ψθ and f(s). However, as demonstrated by the stochastic policy task,
there are many domains in which partial observability, or an adversary, entails the need for
highly structured stochastic policies that cannot be encoded by deterministic hidden nodes.

In our experiments the ESARSA algorithm did not achieve satisfactory results in the
larger stochastic policy tasks, and also performed relatively poorly on the blocker and octo-
pus arm tasks. The poor performance in some runs, and sensitivity to initial values, suggests
that ESARSA is indeed suffering from divergence problems, presumably caused by the use
of non-linear temporal-difference learning. In contrast, ENATDAC and EQNAC converged
more robustly to a satisfactory solution in all tasks, suggesting that policy gradient algo-
rithms may be more appropriate than value-based ones in this setting.

Our first algorithm, ENATDAC, is guaranteed to converge to a policy that achieves
an average-reward that is close to local maximum. The algorithm requires the policy to
be sampled many times: to select an action, to estimate the compatible features, and to
construct the energy-based feature vector f(s). However, we found empirically that a very
small number of samples was sufficient to achieve good results: We used K,L = 1 in our
experiments (cf. line 3 of Algorithm 4.1) except for the octopus arm where K = L =
5. Although the samples should be independent to ensure convergence, in practice the
performance was unaltered by reusing the same samples.

Our second algorithm, EQNAC, uses a simple approximation to the advantage function.
This algorithm does not require additional samples of the policy, beyond selecting the next
action, making it more computationally efficient. It is also simpler than ENATDAC, using
two parameter vectors rather than three. In practice, both algorithms performed well,
achieving very similar performance on the blocker task, but with ENATDAC performing
slightly better on the stochastic policy and more consistently on the octopus arm tasks.

In conclusion, reinforcement learning is particularly challenging in high-dimensional state
and action spaces. Energy-based policies provide a promising architecture for addressing this
challenge. We have demonstrated that prior work on value-based reinforcement learning,
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using the ESARSA algorithm, is often unsatisfactory when using highly non-linear policies
such as an RBM. We have introduced two novel algorithms, based on energy-based policy
gradient methods, that are more robust and effective than ESARSA. ENATDAC is guar-
anteed to converge to a near-local maximum in average reward; EQNAC is also robust in
practice, and requires less computation. Both algorithms outperformed ESARSA on several
high dimensional tasks.
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Appendix A. Neural Network
In order to provide a comparison with an alternative structured parameterization of a stochastic policy we
considered a 2-layer neural network (NN). The network’s structure is very similar to the RBM but it has
deterministic hidden units and a feedforward archictecture.

For binary or continuous valued states s and binary action units a the state-conditional action distribu-
tion πθ(a; s) defined by the NN is given as follows:

πθ(a; s) =
∏
i

p(ai|s), (23)

p(ai = 1|s) = σ(Wah(s) + b), (24)
h(s) = σ(Wss+ c), (25)

where h(s) is a vector of (deterministic) hidden units with activation between 0 and 1, and σ(y) = 1/(1 +
exp(−y)) is the sigmoid function that is applied element-wise. Weight matrices Ws, Wa, and bias vectors c,
and b are the parameters of the network. The above architecture is easily generalized to discrete stochastic
output units with more than two states.

This NN has the same number of parameters as the RBM and is able to model nonlinear dependence
of the actions on the states. Unlike in a RBM, however, the stochastic output units are conditionally
independent given the state. The network therefore fails to model correlations between the action variables.
In particular, it is unable to represent multi-modal state-conditional action distributions as required for the
the stochastic policy task.

In our experiments we trained the NN using NATDAC with the “energy-based” state features f(s) =
Eθa[φ

θ(s, a)] described in section 3.1 of the main text. Due to the independence of the action units (cf. eq.
23 above) for the NN the gradient of the log-policy ∇θ log πθ(a; s) = ψθ(s, a) and the energy-based state
features f(s) can be computed analytically and the approximations described in section 3.1 of the main text
are not required.

It is worth noting that it is, in principle, possible to make the hidden units stochastic while maintaining
a feed-forward architecture4. This would introduce correlations between the action variables. At the same
time, however, it would also render the exact computation of e.g. ψ intractable (except in simple cases) due
to the need to integrate – or sum – out the hidden variables.

Appendix B. Additional Experiments and Results

B.1. Stochastic policy task
Note that in the stochastic policy task there is no observed state. In this case the NN reduces to a set
of biases that model the activation of each action unit independently. The RBM in contrast can model
correlations between the action units and hence represent the multi-modal distribution over binary action
vectors required for this task.

For instance, when the NN is applied to stochastic policy task 1 with K = 2 unobserved states the first
and last action units a1 and a5 are effectively set deterministically to 1 and 0 respectively, but the remaining
action units a2, a3, a4 will have p(ai = 1) = 0.5 for i = 2, 3, 4 after learning. Hence, the probability of
drawing one of the two “good” actions is only 1

8
instead of 1

2
for the RBM (which is why the NN achieves a

reward of only 10/8 instead of 10/K.
As explained in footnote 3 in the main text we allowed 50000 actions for learning for SARSA but only

the performance after 20000 actions is shown in Fig. 1 in the main text (in line with the number of actions
available to the other algorithms). Figure B.1 shows the full learning curves for SARSA for the stochastic
policy task.

B.2. Grid world
The grid world task requires an agent to learn how to navigate to a final state. At the beginning of each trial
the agent is placed at a random position in the environment. At each step he chooses one of the four actions

4. While the RBM corresponds to an undirected graphical model, a feedforward NN with stochastic hidden
units would correspond to a directed graphical model.
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Figure B.1: Stochastic policy task: full learning curves for SARSA for all three versions of
the task (red: task 1; green: task 2; blue: task 3). Same data as in Fig. 1 in
the main text but all 50000 actions are shown. The dashed black line indicates
the reward achieved by the optimal policy for task 1, the solid black line the
optimal reward for tasks 2 and 3.

(N,S,E,W). The reward is -1 for all steps except if the agent reaches the end state, in which case it is 2. An
episode ends when the agent reaches the end state or after a maximum of 20 actions. If an action cannot be
performed, the agent remains at its current position. States and actions both use a 1-of-N encoding, and we
also use a 1-of-N encoding for the state-value function approximation in ENATDAC, allowing it to represent
the state-value function exactly. We used RBMs with 3 hidden units, and learning was performed for 40000
actions. The particular environment used in the experiments and the results obtained are shown in Fig. B.2.
ENATDAC and EQNAC both find an optimal policy quickly and robustly, while ESARSA takes longer to
converge to a policy, the policy found is usually not optimal, and the policy found is strongly dependent
on the initialization of the policy parameters. Also, we found ESARSA to be much more sensitive to the
settings of the learning parameters than our algorithms.
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Figure B.2: 5× 5 grid world: white squares are fields the agent can move to; black squares
are walls; the end state is marked green. Results shown are for 20 runs. Gray
curves indicate results for individual runs, blue curves show average.

B.3. Blocker Task
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Figure B.3: Blocker task: Same data as in Fig. 4.2 in the main text but showing results
for the 20 restarts with different random initializations individually for each
algorithm: Gray lines show individual runs; thick blue line shows the median.
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Figure B.4: Octopus arm hitting the target: Each row corresponds to a different run, start-
ing from two different initial positions. The arm is shown in its initial position,
after 5, 10, 20, and 30 steps, and after having hit the target. The target is
shown by the red cross.

30000 90000 150000
0

50

100

150

200

250

300

350

# actions

a
v
e

ra
g

e
 e

p
is

o
d

e
 l
e

n
g

th

30000 90000 150000
0

50

100

150

200

250

300

350

# actions

a
v
e

ra
g

e
 e

p
is

o
d

e
 l
e

n
g

th

30000 90000 150000
0

50

100

150

200

250

300

350

# actions

a
v
e

ra
g

e
 e

p
is

o
d

e
 l
e

n
g

th

30000 90000 150000
0

50

100

150

200

250

300

350

# actions

a
v
e

ra
g

e
 e

p
is

o
d

e
 l
e

n
g

th

ESARSA EQNAC ENATDAC Neural Network

Figure B.5: Octopus arm: Average number of steps required to hit the target. Same data as
in Fig. 4.3 in the main text but results are shown separately for the 10 restarts
with different random initializations. The policies are evaluated every 15000
steps with 100 episodes. Gray lines correspond to individual runs, the median
is shown in blue. For ENATDAC runs that got trapped in a local optimum (as
explained in the text) are shown in light gray, others in dark gray.

B.4. Octopus Arm
For the simulations we used the octopus arm simulator that is part of the RL Glue package5. We considered
an arm with C = 4 compartments. Thus, the continuous state space was 34 dimensional, the binary
action space 14 dimensional. (On the accompanying website6 we also show results for an arm with C = 6
compartments, i.e. with a 50 dimensional state space, and a 20 dimensional action space.) Note that
continuous valued states do note pose a problem for binary conditional RBMs.

At the beginning of each episode the arm is initialized at one of 4 random positions and the goal is
then to hit the target as quickly as possible with any part of the arm. Fig. B.4 shows frames of two movies
of the arm controlled by a learned policy hitting the target from two different initial positions. See the
accompanying website for more results.

In Fig. B.6 we show as an alternative visualization of the results the average reward per step achieved with
the learned policies. As pointed out in the main text ENATDAC occasionally got trapped in local optima,
learning policies in which the arm rotated always in one direction independently of its initial position. With
these policies the arm still hits the target reliably but requires a larger number of steps from some initial
positions. This leads to a lower average reward per step at the end of learning. ENATDAC runs in which
the arm learned suboptimal policies are shown in light gray in Figs. B.5, B.6.

5. http://glue.rl-community.org/wiki/Main\_Page
6. http://www.gatsby.ucl.ac.uk/~nheess/papers/ebrl/
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Figure B.6: Octopus arm: Alternative visualization of the results in Fig. B.5 (Fig. 4.3 in
the main text). Average reward per step of the learned policies as a function
of actions performed during learning. Results are shown for 10 restarts with
different random initializations. Same format as in Fig. B.5

58



JMLR: Workshop and Conference Proceedings 24:59–75, 2012 10th European Workshop on Reinforcement Learning

Directed Exploration in Reinforcement Learning with
Transferred Knowledge

Timothy A. Mann mann23@tamu.edu
Yoonsuck Choe choe@tamu.edu
Department of Computer Science & Engineering
Texas A&M University

Editor: Marc Peter Deisenroth, Csaba Szepesvári, Jan Peters

Abstract
Experimental results suggest that transfer learning (TL), compared to learning from scratch,
can decrease exploration by reinforcement learning (RL) algorithms. Most existing TL al-
gorithms for RL are heuristic and may result in worse performance than learning from
scratch (i.e., negative transfer). We introduce a theoretically grounded and flexible ap-
proach that transfers action-values via an intertask mapping and, based on those, explores
the target task systematically. We characterize positive transfer as (1) decreasing sample
complexity in the target task compared to the sample complexity of the base RL algorithm
(without transferred action-values) and (2) guaranteeing that the algorithm converges to
a near-optimal policy (i.e., negligible optimality loss). The sample complexity of our ap-
proach is no worse than the base algorithm’s, and our analysis reveals that positive transfer
can occur even with highly inaccurate and partial intertask mappings. Finally, we empiri-
cally test directed exploration with transfer in a multijoint reaching task, which highlights
the value of our analysis and the robustness of our approach under imperfect conditions.
Keywords: Reinforcement Learning, Transfer Learning, Directed Exploration, Sample
Complexity

1. Introduction

Transfer learning (TL) applied to reinforcement learning (RL) exploits knowledge gained
while interacting with source tasks to learn faster in a target task [Lazaric, 2008; Taylor and
Stone, 2009]. When TL is successful it is referred to as positive transfer, and when TL fails it
is referred to as negative transfer. Previous research applying TL to RL has demonstrated its
effectiveness in decreasing learning time [Selfridge et al., 1985; Taylor et al., 2007; Fernández
et al., 2010], but there is a lack of theoretical understanding about when TL applied to RL
will succeed or fail [Taylor and Stone, 2011]. Most TL+RL algorithms are heuristic in
nature. This is in contrast with provably efficient single task RL algorithms such as R-MAX
[Brafman and Tennenholtz, 2002; Kakade, 2003] and Delayed Q-learning [Strehl et al., 2006].
Lazaric and Restelli [2011] – a notable exception – has analyzed the sample complexity of
TL from a batch RL perspective, but their work does not address exploration in the target
task.

To learn efficiently, RL algorithms must balance between exploitation (executing a se-
quence of actions the algorithm has already learned will provide high long-term rewards)
and exploration (trying uncertain actions to gain more information about the environment).

c© 2012 T.A. Mann & Y. Choe.
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Exploration strategies can be broadly categorized as either undirected exploration or di-
rected exploration [Thrun, 1992]. Undirected exploration is characterized by local, random
selection of actions, while directed exploration, by contrast, uses global information to sys-
tematically determine which action to try. ε-greedy represents the most popular undirected
exploration strategy, while “optimism in the face of uncertainty” (OFU) represents the most
popular directed exploration strategy. OFU initially assumes that all actions result in higher
value than may be true in the environment and greedily selects the action believed to give
the highest reward (breaking ties arbitrarily). When the agent tries an action it samples its
value distribution. If the sampled values are lower than expected, the algorithm lowers the
action’s estimated value and switches to another (possibly overestimated) action. Otherwise
the algorithm sticks with its current action. In this way, the algorithm eventually settles
on a nearly optimal action at every state (which results in a near-optimal policy [Kakade,
2003, Theorem 3.1.1]).

Previous research on TL+RL has almost exclusively studied undirected exploration [Tay-
lor et al., 2007; Fernández et al., 2010] or batch transfer [Lazaric, 2008]. Although the sample
complexity of exploration has been examined in the literature, to our knowledge, no previ-
ous work has formally analyzed sample complexity of exploration in the considerably more
complex case of action-value transfer. Analyzing TL is more complicated because there are
multiple learning algorithms and tasks that need to be considered. Our main innovation is
to show how TL can be analyzed from a sample complexity perspective. We analyze action-
value transfer via intertask mappings [Taylor and Stone, 2011] paired with the provably
efficient Delayed Q-learning algorithm [Strehl et al., 2006] that uses the OFU exploration
strategy to learn faster in the target task while avoiding optimality loss (i.e., positive trans-
fer). Our approach has several advantages compared to previous TL approaches:

1. We can theoretically analyze our TL approach because we precisely define positive
transfer in terms of sample complexity and optimality loss. The sample complexity of
our approach can be compared to the sample complexity of single task RL algorithms
(with respect to the target task).

2. Our analysis reveals that positive transfer can occur even when the distance between
the optimal target task action-values and the transferred action-values is large.

3. Intertask mappings enable transfer between two tasks with different state-action spaces
or when only a partial intertask mapping can be derived.

The rest of this paper is organized as follows: In section 2, we provide background on RL
and TL. In section 3, we introduce α-weak admissible heuristics, which we use in section 4 to
analyze the sample complexity and optimality loss of TL+RL. In section 5, we demonstrate
the advantage of applying directed exploration to TL. In section 6 we discuss advantages
and limitations of our approach and conclude in section 7.

2. Background

A Markov decision process (MDP) M is defined by a 5-tuple 〈S,A, T,R, γ〉 where S is a set
of states, A is a set of actions, T is a set of transition probabilities Pr [s′|s, a] determining
the probability of transitioning to a state s′ ∈ S immediately after selecting action a ∈ A
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while in state s ∈ S, R : S × A → R assigns scalar rewards to state-action pairs, and γ is
a discount factor that reduces the value of rewards distant in the future [Sutton and Barto,
1998]. We assume the transition probabilities T and the reward function R are unknown.
The objective of most RL algorithms is to find a policy π : S → A that maximizes

QπM (st, at) = E

[
R(st, at) +

∞∑
τ=t+1

γτ−tR(sτ , π(sτ ))

]
, (1)

the action-value for (st, at), which is the discounted, expected sum of future rewards from
time t forward [Sutton and Barto, 1998]. The value function V π

M (s) = maxa∈AQ
π
M (s, a).

We denote the optimal value and action-value functions by V ∗M and Q∗M (respectively) and
assume that the reward function is bounded to the interval [0, 1]. Therefore, 0 ≤ V ∗M (s) ≤

1
1−γ for all states s ∈ S.

Sample complexity enables theoretical comparison between RL algorithms by measuring
the number of samples required for an RL algorithm to achieve a learning objective. Given
any MDP M , ε > 0, and δ ∈ (0, 1], the sample complexity of exploration of an RL algorithm
A is the number of timesteps t, such that, with probability at least 1− δ,

V AtM (st) < V ∗M (st)− ε (2)

where st is the state and V AtM denotes the value of A’s policy at timestep t [Kakade, 2003].
Sample complexity that is polynomial in 1

ε ,
1
δ ,

1
1−γ , N = |S|, and K = |A| is considered

efficient. Algorithms that are provably efficient with respect to sample complexity of explo-
ration are called PAC-MDP [Strehl et al., 2009].

A key component of algorithms with polynomial sample complexity is directed explo-
ration. Whitehead [1991] demonstrated conditions where undirected exploration leads to
exponential sample complexity, with respect to the number of states. Provably efficient
algorithms such as R-MAX [Brafman and Tennenholtz, 2002; Kakade, 2003] and Delayed
Q-learning [Strehl et al., 2006] use the OFU directed exploration strategy. Although the
analysis in this paper can be extended to other provably efficient single task RL algorithms,
we focus on Delayed Q-learning (DQL) for clarity. DQL has two parameters m and ε1,
where m controls the number of samples used during each update of a state-action pair and
ε1 controls how close to optimal the learned policy should be.

Previous research on TL+RL has primarily considered undirected exploration strategies
[Taylor et al., 2007; Fernández et al., 2010] or batch RL, which does not consider the prob-
lem of exploration [Lazaric, 2008; Lazaric and Restelli, 2011]. If the transferred knowledge
is not similar enough to any near-optimal policy, undirected exploration can lead to expo-
nential sample complexity due to the same reasons it fails in single task RL. In this paper,
we consider the transfer of action-values, which has been demonstrated to be effective in
experiments [Selfridge et al., 1985; Taylor et al., 2007] with directed exploration. Before
explaining our TL setup, we will find it useful to define a new structure called a weak
admissible heuristic.

3. Action-value Initialization with Weak Admissible Heuristics

A good guess of the initial action-values can be useful in speeding up RL. A function U :
S × A → R is an admissible heuristic if Q∗(s, a) ≤ U(s, a) ≤ 1

1−γ for all (s, a) ∈ S × A.
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Strehl et al. [2009] demonstrated that if the action-values are smaller than 1
1−γ , then this

initialization can decrease the sample complexity of exploration while maintaining PAC-
MDP guarantees. Admissible heuristics provide valuable prior knowledge to PAC-MDP RL
algorithms, but the specified prior knowledge does not need to be exact. This property will
be useful in a TL setting for two reasons: (1) knowledge is estimated from a source task and
(2) there is rarely an exact relationship between source and target tasks.

The admissible heuristic used by Strehl et al. [2009] is more restrictive than necessary. For
example, Figure 3.1 shows an example where some of the initial action-values’ estimates are
below their corresponding optimal values, yet, following a simple OFU exploration strategy
will converge to the near-optimal action b2. Consider what would happen if the OFU
exploration strategy is run on the example in Figure 3.1. First, the algorithm’s initial policy
would select action b6 because the heuristic value (dotted box) is the highest. After selecting
b6 several times an update would occur decreasing the value associated with b6 because its
true value is much lower than the estimated value. Now action b2 would be selected because
it has the second highest estimated value and this estimate is very unlikely to drop below
the value of any other action. So the algorithm would converge on the near-optimal action
b2. For our analysis of TL+RL, we would like to derive an extremely weak structure that
will help characterize when TL will succeed and when it will fail. To help with this, we
define the concept of a weak admissible heuristic.

Action-Values
Weak Admissible
Heuristic Values

Optimal
Action-Values b2

b1

b3

b4

b5
b6

b1 b2 b3 b4 b5 b6

s'

Optimal
Value

α-Optimal
Cutoff

Figure 3.1: Weak admissible heuristic applied to a one-state task with six actions. The weak
admissible heuristic only needs to optimistically initialize the action-value for a
single nearly optimal action.

Definition 1 A function W : S × A → R is an α-weak admissible heuristic (or just
weak admissible heuristic) for MDPM = 〈S,A, T,R, γ〉, if for each s ∈ S, there exists ã ∈ A
such that

V ∗(s)− α ≤ Q∗(s, ã) ≤W (s, ã) ≤ 1

1− γ
(3)

where α is the smallest non-negative value satisfying this inequality.

In other words, W is a weak admissible heuristic if at every state s ∈ S at least one α-
optimal action is mapped to an optimistic value, even though other action-values (including
the optimal action) may be severely pessimistic. This is consistent with the situation in
Figure 3.1, where an OFU exploration strategy converges to the near-optimal action b2,
with high probability, and not the optimal action b1. In this case, the weak admissible
heuristic implicitly eliminated several actions (including the optimal action b1). This helped
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reduce sample complexity because only one suboptimal action (b6) was ever explored, and
the algorithm still converges to a near-optimal policy.

Although weak admissible heuristics are considerably less constrained than the notion of
admissible heuristic employed by Strehl et al. [2009], initializing DQL with a weak admissible
heuristic (with small enough α) is sufficient to maintain PAC-MDP guarantees. For our
analysis, the critical aspect of weak admissible heuristics is that they implicitly eliminate
some state-action pairs from consideration (Lemma 1 below). This improves the efficiency
of directed exploration because there are fewer state-action pairs to explore.

Lemma 1 (State-action Pair Elimination) Let η ≥ 0, W be an α-weak admissible heuris-
tic for an MDP M , and A is a value-based RL algorithm with initial action-value esti-
mates Q̂0 = W such that for all timesteps t ≥ 1, (1) A follows a greedy policy (At(s) =
arg maxa∈A Q̂t(s, a)), (2) Updates to Q̂t(s, a) can only occur if (s, a) has been visited, and
(3) If W (s, a) ≥ Q∗(s, a), then Q̂t(s, a) ≥ Q∗(s, a) − η, then for all (s, a) ∈ S × A where
W (s, a) < V ∗(s) − (α + η), A will never explore (s, a) (At(s) 6= a at any timestep t ≥ 1,
where At denotes the policy of A at timestep t).

Proof Since A follows a greedy policy with respect to Q̂t, a state-action pair (s, a) will
only be selected if Q̂t(s, a) = maxa′∈A Q̂t(s, a

′). The proof is by induction on the timestep
t. Suppose, without loss of generality, that W (s, a) < V ∗(s)− (α+ η).

Base Case (t = 0): By the definition of W there exists ã such that W (s, ã) ≥ Q∗(s, ã) ≥
V ∗(s)− α > W (s, a). Thus a 6= arg maxa′∈AW (s, a′) = arg maxa′∈A Q̂0(s, a′).

Induction Step: By assumption 3 the action-value estimate for Q̂t(s, ã) ≥ Q∗(s, ã)− η ≥
(V ∗(s)− (α+ η)) > W (s, a). Since (s, a) has not been tried yet no update to its action-
value could have occurred (assumption 2), and will not be executed on timestep t+1 because
Q̂t(s, a) = W (s, a) < Q̂t(s, ã).

Therefore by induction, (s, a) will never be executed.

IfW is a weak admissible heuristic, then Lemma 1 says that low valued state-action pairs
will never be explored by the algorithm’s policy. Condition 3 guarantees that the algorithm
will never underestimate action-values (by more than η) that are initially optimistic. This
combined with the weak admissible heuristic assumption allows us to guarantee that an α-
optimal action will eventually be the action selected by the algorithm’s greedy policy. DQL
satisfies the algorithmic requirements of Lemma 1, with high probability.

Theorem 2 Let α ≥ 0, ε > 0, δ ∈ (0, 1], and W be an α-weak admissible heuristic with
respect to M = 〈S,A, T,R, γ〉. There exists ε1 = O (ε(1− γ)) and m = O

(
ln(NK/δ)
ε21(1−γ)2

)
, such

that if A is an instance of the DQL algorithm initialized with parameters ε1 and m, then
V At(st) ≥ V ∗(st)− (ε+ α

1−γ ) on all but

O

(
NK −X
ε4(1− γ)8

ln
1

δ
ln

1

ε(1− γ)
ln

NK

δε(1− γ)

)
(4)

timesteps t, with probability at least 1−δ, where X =
∣∣∣{(s, a) ∈ S ×A |W (s, a) < V ∗(s)− α− α

1−γ

}∣∣∣.
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The proof of this theorem is similar to [Strehl et al., 2006, Theorem 1], which provides
the following sample complexity bound for DQL without transferred knowledge:

O

(
NK

ε4(1− γ)8
ln

1

δ
ln

1

ε(1− γ)
ln

NK

δε(1− γ)

)
Our proof relies on Lemma 1 to demonstrate its dependence on NK −X ≤ NK. See the
Appendix for a proof of Theorem 2.

If X > 0 and α is small, then the sample complexity bound depends on Õ(NK − X),
which is smaller than the lower bound for any single task RL algorithm Ω(NK) with respect
to the number of states and actions Strehl et al. [2009]. If X = 0 and α = 0, then we restore
the upper bound from [Strehl et al., 2006, Theorem 1]. Therefore, a weak admissible heuristic
can help to decrease the sample complexity of exploration.

4. Transferring a Weak Admissible Heuristic

We use the concept of a weak admissible heuristic to analyze action-value transfer with the
objective of learning to act near-optimally in the target task with sample complexity of
exploration (Eq. 2) that is smaller than DQL without transferred knowledge. We denote
the source task/MDP by Msrc and the target task/MDP by Mtrg. Consider the situation
in Figure 4.1. First the agent learns action-values for the source task. Next, because the
source task and the target task have a different number of actions, a function h called an
intertask mapping (defined below) is used to relate action-values from the source task to the
target task. Finally, notice that in Figure 4.1 the transferred action-values satisfy a weak
admissible heuristic. In this section, we explore assumptions about the intertask mapping
needed to ensure that the transferred action-values satisfy a weak admissible heuristic and
how transfer influences sample complexity of exploration in the target task.

Source Task
Action-Values Target Task Action-Values

Transferred 
Estimates
Optimal
Action-Values

a2

a1 a3

a1 a2 a3

b2

b1

b3

b4

b5
b6

b1 b2 b3 b4 b5 b6

VMAX

0 h(s',.)

s'
s

Target TaskSource Task

Figure 4.1: Transfer from a one-state source task with three actions to a one-state target task
with six actions. Despite the transferred action-values severely underestimating
the optimal action b1 and severely overestimating the lowest valued action b6,
an OFU exploration strategy can still converge to a near-optimal policy (i.e.,
b2).

There are two factors that affect positive transfer: (1) sample complexity and (2) opti-
mality loss. Positive transfer occurs when the sample complexity of exploration in the target
task is lower than the sample complexity of the base RL algorithm and no optimality loss
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has occurred. Optimality loss occurs when transferred knowledge causes an RL algorithm
to converge to a suboptimal policy along its current trajectory.

Typically, access to samples of the source task is less “expensive” than access to samples
from the target task. For the purposes of this paper, we assume unrestricted access to a
generative model forMsrc. Using, for example, the PhasedValueIteration algorithm [Kakade,
2003] it is possible to learn arbitrarily accurate source task action-values with arbitrarily high
confidence with polynomially many samples. Therefore, we will assume that the estimated
source task action-values Q̂src are εsrc-accurate.

If Msrc and Mtrg have different state-action spaces, then an intertask mapping h : D →
Ssrc × Asrc is needed, where D ⊆ Strg × Atrg, to relate a subset of state-action pairs from
the target task to state-action pairs in the source task. We assume that if (s, a) ∈ D, either
there exists (s, ã) ∈ D such that

V ∗trg(s)− α ≤ Q∗trg(s, ã) ≤ Q∗src(h(s, ã)) , (5)

which is analogous to (3) with W (s, a) = Q∗src(h(s, a)) or there exists (s, ã) /∈ D such that

V ∗trg(s)− α ≤ Q∗trg(s, ã) (6)

in which case we can assign the value W (s, ã) = 1
1−γ . To transfer action-values we use

W (s, a) =

{
min

(
Q̂src(h(s, a)) + εsrc,

1
1−γ

)
if (s, a) ∈ D

1
1−γ otherwise

(7)

to set initial action-value estimates given an intertask mapping h, and εsrc-accurate source
task action-value estimates Q̂src. At every state at least one nearly optimal action is mapped
to an action-value which overestimates the true action-value or not mapped at all. If a state-
action pair is not in the domain D, then we assign the maximum possible value to ensure
it is optimistically initialized. Under these assumptions the transferred action-values are an
α-weak admissible heuristic.

Theorem 3 Let ε > 0, εsrc > 0, δ ∈ (0, 1], h : D → Ssrc×Asrc be an intertask mapping from
a subset of state-action pairs inMtrg toMsrc satisfying (5) and (6), and Q̂src are εsrc-accurate
action-value estimates for Msrc. There exists ε1 = O(ε(1− γ)) and m = O

(
ln(NK/δ)
ε21(1−γ)2

)
such

that if an instance A of the DQL algorithm with ε1, m, and action-value estimates initialized
by Eq. (7) is executed on Mtrg, then V Attrg (s) < V ∗trg(s)− (ε+ α

1−γ ) occurs on at most

O

(
NK − Y
ε4(1− γ)8

ln
1

δ
ln

1

ε(1− γ)
ln

NK

δε(1− γ)

)
timesteps t, with probability at least 1− δ, where N = |S|, K = |A|, and

Y =

∣∣∣∣{(s, a) ∈ D | Q̂src(h(s, a)) < V ∗trg(s)− (α+
α

1− γ
+ εsrc)

}∣∣∣∣
is the number of state-action pairs that will never be explored.
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See Appendix for a proof of Theorem 3. The main importance of Theorem 3 is that we
have reduced the analysis of action-value transfer to the analysis of learning with an α-weak
admissible heuristic. Here, α controls optimality loss, and we can think of α (or α/(1− γ))
as the error introduced by the intertask mapping h. If α ≈ 0 compared to ε, then there is
little or no optimality loss compared to learning from scratch. In many cases, α = 0 can
be achieved, for example, if W turns out to be an admissible heuristic [Strehl et al., 2009].
However, if α is large, then the result of TL is likely to be poor in the worst case. Similar
to X in Theorem 2, when Y is large the sample complexity of exploration in the target task
decreases significantly compared to learning from scratch with DQL. Notice, however, that
the sample complexity is never worse than learning from scratch. The main consideration
should be identifying an intertask mapping that does not introduce much optimality loss.
Thus, TL is characterized by optimality loss and sample complexity, and Theorem 3 helps
to clarify this relationship.

5. Experiments and Results

Our experimental tasks were inverse kinematics problems (Figure 5.1a). In the source task
Msrc, the agent controlled a two-joint mechanical arm guiding its end-effector to one of four
reach target locations. In the target taskMtrg, the agent controlled a three-joint mechanical
arm with noisy actuators by moving its end-effector to one of four reach target locations.
In both tasks the state was represented by the target index and the joint locations. The
actions encode whether to rotate each joint and in which direction. Actions only perturbed
joints by a small amount. So a sequence of actions was needed to complete each task. In the
target task there was a small probability (0.2) that the action applied to a joint would either
leave the joint unchanged or overshoot the desired location. Because of the different number
of joints, there is no one-to-one mapping between the state-action space of the source task
and the state-action space of the target task. We defined an intertask mapping that relates
the reach target index, and joints J1 to I1 and J3 to I2, leaving out joint J2.

We compared DQL, which uses directed exploration, with and without transferred knowl-
edge, and Q-learning (QL) using an ε-greedy exploration strategy with and without trans-
ferred knowledge. Figure 5.1b demonstrates that the transferred action-values enable DQL
to quickly converge to a near-optimal solution, while DQL (with the same parameters)
learning from scratch takes much longer to learn a good policy. Both QL conditions perform
worse than the DQL conditions because local exploration is not efficient in the target task’s
large state-action space. The negligible difference between QL and Transfer QL is due to
the fact that the transferred action-values are a very poor approximation to the optimal
action-values.

DQL and Transfer DQL spend most of their timesteps in a small number of states (less
than 50 out of 1,372). Figure 5.1c shows the average proportion of highly visited states where
the transferred action-values satisfy the admissible heuristic (AH) and α-weak admissible
heuristic criteria with α = 0.1. Most of the transferred action-values at these highly visited
states fall under α-WAH and AH conditions. Note that AH ⊆ α-WAH. A small proportion
do not satisfy α-WAH (i.e., Other). For the states satisfying α-WAH, we found that the
policy learned by Transfer DQL selected good action choices (i.e., Q∗trg(s, π(s)) ≥ V ∗trg(s)−α)
almost 100% of the time. Interestingly, Transfer DQL performs well despite the fact that
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Figure 5.1: (a) Transfer between inverse kinematic tasks where the source task controls
a two-joint arm, and the target task controls a three-joint arm. (b) Average
reward over 3,000 episodes in the target task for Delayed Q-learning without
transfer (DQL (Baseline)), Delayed Q-learning with transferred action-values
(Transfer DQL), Q-learning with transferred action-values (Transfer QL), and Q-
learning without transfer (QL). Transfer DQL learns much more quickly than the
compared algorithms. (c) Percentage of transferred action-values (out of highly
visited states) satisfying the admissible heuristic (AH) and α-weak admissible
heuristic (α-WAH) criteria. Note: AH ⊆ α-WAH.

some of the highly visited states do not satisfy the α-WAH condition. This demonstrates the
robustness of our TL approach in practice and is an important observation since we would
not expect in practice to be able to rigerously guarantee (5) and (6) for all states. These
result suggest that the weak admissible heuristic concept is important for understanding
when transfer learning succeeds. On the other hand, in practice, guaranteeing that the
transferred action-values satisfy the weak admissible heuristic criterion at every state is not
necessary to achieve positive transfer.

We considered the impact of TL with partial intertask mappings by modifying the in-
tertask mapping from the previous experiment. State-action pairs from its domain were
randomly removed with probability λ. Figure 5.2 shows the average reward curve for Trans-
fer DQL as λ is varied from 0.0 to 1.0. The training time has an approximately linear
relationship with λ, increasing as λ increases.

6. Discussion

The main advantages of our approach are that it can be theoretically analyzed and that it
works with several existing provably efficient algorithms, such as R-MAX, Modified R-MAX,
and DQL. This approach may also work with future RL algorithms. We have shown that
the transferred action-values do not need to be accurate (with respect to L1-norm), and our
analysis holds for MDPs with stochastic transitions and rewards.

The main limitation of our approach is that if the action-values do not satisfy a weak ad-
missible heuristic with small α, then the final learned policy may be poor and the algorithm
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Figure 5.2: (a) Average reward for Transfer DQL as state-action pairs are removed from
the intertask mapping’s domain (with probability λ). (b) Increase in training
time is approximately proportional to the probability that state-action pairs are
removed.

will never recover. Another potential objection to our method is that there is no general
way to obtain a good intertask mapping between tasks without solving both tasks. However,
there are interesting special cases, for example, where an identity intertask mapping is used
because the tasks only differ by their dynamics or reward structure.

7. Conclusion

We theoretically analyzed the combination of (1) action-value transfer via an intertask map-
ping with (2) directed exploration and found that the approach has several provable benefits.
Only weak assumptions on the intertask mapping are necessary for positive transfer. Pos-
itive transfer can occur even when the distance between the transferred action-values and
the optimal target task action-values is large. Although we have analyzed our TL approach
using DQL, our analysis can be extended to other efficient algorithms such as R-MAX [Braf-
man and Tennenholtz, 2002] or Modified R-MAX [Szita and Szepesvári, 2010]. Finally, we
demonstrated these advantages empirically on an inverse kinematics task. For states where
the intertask mapping induced a weak admissible heuristic, DQL almost always learned to
select a good action. Furthermore, our TL approach performed well even though a few
highly visited states did not satisfy the weak admissible heuristic criteria, suggesting the
approach is robust in practice. Although previous research has mostly paired undirected
exploration with TL, we believe that directed exploration is an important mechanism for
developing provably efficient TL+RL algorithms.
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Appendix

In this appendix we provide proofs for Theorems 2 and 3. Throughout this appendix we assume that
M is an MDP defined by 〈S,A, T,R, γ〉 and W is an α-weak admissible heuristic for some α > 0,
unless otherwise noted. To prove Theorem 2 we need to introduce several concepts and lemmas.

7.1. PAC-MDP Framework

Analysis of PAC-MDP algorithms typically depends on the notion of an induced MDP [Kakade,
2003; Strehl et al., 2006, 2009; Szita and Szepesvári, 2010]. We introduce a modified version of
the induced MDP that depends on how action-values are initialized. We assume that the RL
algorithm maintains action-values Q̂t initialized by W = Q̂0. State-action pairs with optimistically
initialized action-values (i.e., W (s, a) ≥ Q∗M (s, a)) are treated separately from state-action pairs
with pessimistically initialized action-values (i.e., W (s, a) < Q∗M (s, a)). This allows us to essentially
ignore pessimistically initialized state-action pairs and focus on optimistically initialized state-action
pairs.

Definition 2 Let M = 〈S,A, T,R, γ〉 be an MDP, κ ⊆ S × A, and W be an α-weak admissible
heuristic with respect to M . The induced MDP with respect to M and κ is denoted by Mκ =
〈S ∪ {zs,a | (s, a) /∈ κ}, A, Tκ, Rκ, γ〉 where

Tκ(s′|s, a) =

 T (s′|s, a) if (s, a) ∈ κ and W (s, a) ≥ Q∗M (s, a)
1 if ((s, a) /∈ κ and s′ = zs,a) or (s ∈ {zs,a | (s, a) /∈ κ} and s′ = s)
0 otherwise

and

Rκ(s, a) =

{
R(s, a) if (s, a) ∈ κ and W (s, a) ≥ Q∗M (s, a)

(1− γ)Q̂(s, a) otherwise

where Tκ defines the transitions probabilities and Rκ defines the reward function of Mκ.

The purpose of this more complex version of the induced MDP is to obtain the following action-
value function. Suppose that a value-based RL algorithm is initialized with action-values W = Q̂0,
πt is the policy followed by the RL algorithm at timestep t and κt ⊆ S ×A, then the induced MDP
Mκt has action-values defined by

QπtMκt
(s, a) =

{
R(s, a) + γ

∑
s′∈S V

π
Mκt

(s′) if (s, a) ∈ κt and W (s, a) ≥ Q∗M (s, a)

Q̂t(s, a) if (s, a) /∈ κt or W (s, a) < Q∗M (s, a)
(8)

for all (s, a) ∈ S×A. The induced MDP represents an idealized version of what the RL algorithm has
learned. The set κ represents the number of state-action pairs that have been experienced enough
to be considered “well modeled”. In the standard analysis of Delayed Q-learning, the induced MDP
Mκ becomes equivalent to M , if κ ≡ S×A. In our analysis, we show instead that when it is difficult
to escape from the set κ, then an ε-optimal policy in Mκ is an

(
ε+ α

1−γ

)
-optimal policy in M .

Strehl et al. [2009] introduced a meta-PAC-MDP theorem that has been successfully used to
analyze a number of RL algorithms. The next theorem is a minor generalization of [Strehl et al.,
2009, Theorem 10].

Theorem 4 [Strehl et al., 2009, Theorem 10] Let ε > 0, δ ∈ (0, 1], and A(ε, δ) be any value-based
greedy learning algorithm such that, for every timestep t, A(ε, δ) maintains action-value estimates
Q̂t ≤ 1

1−γ and there exists a set κt of state-action pairs that depends on the agent’s history up to
timestep t. We denote maxa∈A Q̂t(s, a) by V̂t(s) and assume that the set κ does not change unless
an action-value is updated (i.e., κt = κt+1 unless, Q̂t 6= Q̂t+1) or an escape event occurs. Let Mκt
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be the known state-action MDP with respect to MDP M and W and πt be the greedy policy followed
by At. Suppose that with probability at least 1 − δ the following conditions hold for all state-action
pairs s ∈ S and timesteps t ≥ 1:

Condition 1: V̂t(s) ≥ V ∗M (s)− β (optimism),

Condition 2: V̂t(s)− V AtMκt
(s) ≤ ε (accuracy), and

Condition 3: the total number of updates of action-value estimates plus the number of times the
escape event from κt can occur is bounded by ζ(ε, δ) (learning complexity).

If A(ε, δ) is executed on M it will follow a (3ε+ β)-optimal policy on all but

O

(
ζ(ε, δ)

ε2(1− γ)2
ln

1

δ
ln

1

ε(1− γ)

)
timesteps t with probability at least 1− 2δ.

The key difference between this version of the theorem and the one reported in Strehl et al. [2009]
is that we have separated the error variable β in condition 1 from the error variable ε in condition 2,
which allows for a tighter optimality bound in our proof of Theorem 2. We omit the complete proof
of Theorem 4 because our modification from [Strehl et al., 2009, Theorem 10] requires only minor
changes to the proof. However, due to our modified notion of induced MDP, we discuss why the
core inequalities hold without modification. The main objective is to argue that the policy followed
by the algorithm is either a near-optimal policy in the MDP M or the algorithm’s policy is likely
to experience a state-action pair that is outside of the set of “well-modeled” experiences. Since the
latter can only happen a finite number of times before there are no more “poorly modeled” state-
action pairs (because our knowledge of the state-action pair improves with each experience), then
eventually the algorithm must follow a near-optimal policy in M . In the proof of Strehl et al. [2009,
Theorem 10], the argument starts by comparing the algorithm’s value in M over a finite sequence of
timesteps H to the same policy πt in the induced MDP Mκt over H timesteps minus the probability
of Z, an escape event will occur during H timesteps, times 2

1−γ . In our definition of induced MDP
the equation

V AtM (s,H) ≥ V πtMκt
(s,H)− Pr[Z]

(
2

1− γ

)
still holds because πt always has a smaller value in the induced MDP while in κt and outside of κt
the difference must be bounded by

(
2

1−γ

)
since 1

1−γ is the maximum possible value in both M and
Mκt . Furthermore, the policy πt only escapes from κt with probability Pr[Z]. This enables us to
reproduce the core inequalities used by Strehl et al. [2009] to prove their Theorem 10:

V AtM (s,H) ≥ V πtMκt
(s,H)− Pr[Z]

(
2

1−γ

)
≥ V πtMκt

(s)− ε− Pr[Z]
(

2
1−γ

)
≥ V̂t(s)− 2ε− Pr[Z]

(
2

1−γ

)
≥ V ∗M (s)− β − 2ε− Pr[Z]

(
2

1−γ

)
where the second step is obtained by choosing H (see Kearns and Singh [2002, Lemma 2]) large
enough so that V πtMκt

(s)−V πtMκt
(s,H) ≤ ε. The third step is due to Condition 2 (V̂t(s)−V AtMκt

(s) ≤ ε),
and the final step is due to Condition 1 (V̂t(s) ≥ V ∗M (s)− β).
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7.2. Delayed Q-learning Background & Lemmas

Similar to Strehl et al. [2009], our analysis of Delayed Q-learning will apply Theorem 4. The analysis
of Delayed Q-learning mostly consists of finding appropriate values for arguments m > 0 and ε1 > 0
that depend on ε > 0 and δ ∈ (0, 1], where increasing the value of m provides more statistical
accuracy by averaging over more samples and decreasing ε1 causes the algorithm to learn to act
closer to optimal. Our analysis is similar to Strehl et al. [2006, 2009], but there are significant
differences due to initializing the action-value estimates Q̂ with an α-weak admissible heuristic.

We have assumed that the immediate rewards are bound to the interval [0, 1]. In Strehl et al.
[2006], the Delayed Q-learning algorithm worked by initializing its action-values to 1

1−γ (the max-
imum possible action-value) and decreasing these estimates in a series of updates. Here the main
difference is that Delayed Q-learning is initialized by Q̂0 = W . Initializing the action-value estimates
with a weak admissible heuristic introduces several technical issues that are not addressed by Strehl
et al. [2006] or Strehl et al. [2009]. Delayed Q-learning is called “delayed” because it updates action-
value estimates in a series of batches of m samples from a state-action pair (s, a) before attempting
to update (s, a)’s action-value estimate. It may collect many batches of m samples from each state-
action pair. To know when to stop updating a state-action pair, Delayed Q-learning maintains a
Boolean value for each state-action pair. These Boolean values are called the LEARN flags.

Definition 3 A batch of m samples

AU(s, a) =
1

m

m∑
i=1

(
Rki(s, a) + γ max

a′∈As′
Q̂ki(s

′, a′)

)
(9)

occurring at timesteps k1 < k2 < · · · < km for a state-action pair (s, a) consists of a sequence of m
visits to (s, a) where the first visit occurs at a timestep k1 corresponding to either the first timestep
that (s, a) is visited by the algorithm or during the most recent prior visit to (s, a) at timestep k′ < k1,
LEARNk′(s, a) = true and lk′(s, a) = m was true. A batch of samples is said to be completed on
the first timestep t > k1 such that LEARNt(s, a) = true and lt(s, a) = m.

Delayed Q-learning has three notions of update:

1. Attempted Updates : An attempted update occurs when a batch of m samples has just been
completed.

2. Update (or Successful Updates) : A successful update to a state-action pair (s, a) occurs when
a completed batch of m samples at timestep t causes a change to the action-value estimates
so that Q̂t(s, a) 6= Q̂t+1(s, a).

3. Unsuccessful Updates : An unsuccessful update occurs when a batch of m samples completes
but no change occurs to the action-values.

An attempted update to a state-action pair (s, a) at timestep t is successful if

Q̂t(s, a)−AUt(s, a) ≥ 2ε1 (10)

the completed batch of samples is significantly lower (< 2ε1) than the current action-value estimate,
and a successful update assigns

Q̂t+1(s, a) = AUt(s, a) + ε1 (11)

the completed batch of samples plus a small constant to the new action-value estimate. These rules
guarantee that whenever a successful update occurs, the action-value estimates decrease by at least
ε1.
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Lemma 5 [Strehl et al., 2009, Lemma 19] No more than u = NK
(

1 + NK
ε1(1−γ)

)
attempted updates

can occurs during an execution of Delayed Q-learning on M .

Lemma 5 bounds the total number of attempted updates that can possibly occur during the
execution of Delayed Q-learning. This lemma is important because it allows us to bound the total
probability that a failure event will occur.

The set

κt =

{
(s, a) ∈ S ×A | Q̂t(s, a)−

(
R(s, a)− γ

∑
s′∈S

T (s′|s, a)V̂t(s
′)

)
≤ 3ε1

}
(12)

consists of state-action pairs with small Bellman residual. Because the state-action pairs in κt have
low Bellman error, Szita and Szepesvári [2010] has called Eq. (12) the “nice” set. The set κt is
somewhat analogous to the known-state MDP used in the analysis of R-MAX. However, unlike R-
MAX, the algorithm cannot determine which state-action pairs are actually in this set. It is used
strictly for the purposes of analysis.

Let X1 denote the event that when Delayed Q-learning is executed on M , then every time k1
when a new batch of samples for some state-action pair (s, a) begins, if (s, a) /∈ κk1 and the batch is
completed at timestep km, then a successful update to (s, a) will occur at timestep km.

Lemma 6 [Strehl et al., 2006, Lemma 1] If Delayed Q-learning is executed on M with parameters
m and ε1 where m satisfies

m =
1

2ε21(1− γ)2
ln
u

δ
(13)

then event X1 will occur, with probability at least 1− δ.

Lemma 6 establishes a value of m that is large enough to ensure that event X occurs with high
probability.

The next lemma is a modified version of Strehl et al. [2006, Lemma 2]. The reason that this
lemma needs to be modified is because not all of the action-value estimates maintained by Delayed Q-
learning will be optimistic, since they are initialized according to the α-weak admissible heuristicW .
Instead we show that the action-values that were initialized optimistically will remain approximately
optimistic. In addition to the original purpose for this lemma, it also shows how Delayed Q-learning
can be made to satisfy Condition 3 of Lemma 1, which we will use in our proof of Theorem 2.

Let X2 be the event that for all timesteps t ≥ 0 and (s, a) ∈ S × A, if W (s, a) = Q̂0(s, a) ≥
Q∗M (s, a), then Q̂t(s, a) ≥ Q∗M (s, a)− α

1−γ .

Lemma 7 If Delayed Q-learning is initialized by the α-weak admissible heuristic W and is executed
with m determined by (13), then event X2 occurs with probability at least 1− δ.

Proof We prove the claim by induction on the timestep t.
Base Case (t = 0): By our assumption if W (s, a) ≥ Q∗M (s, a), then Q̂0(s, a) = W (s, a) ≥

Q∗M (s, a) > Q∗M (s, a)− α
1−γ .

Induction Step (t > 0): Suppose that for all timesteps τ = 1, 2, . . . , t− 1, if W (s, a) ≥ Q∗M (s, a),
then Q̂τ (s, a) ≥ Q∗M (s, a) − α

1−γ . If during timestep t − 1 no successful update occurs, then the
action-value estimates are unchanged implying that Q̂t(s, a) = Q̂t−1(s, a) ≥ Q∗M (s, a) − α

1−γ . On
the other hand, if a successful update occurs during timestep t− 1 at some state-action pair (s, a),
then by the update rule given by (11)

Q̂t(s, a) = AU(s, a) + ε1

= 1
m

∑m
i=1

(
Rki(s, a) + γV̂ki(s

′
ki

)
)

+ ε1
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where V̂ki(s) = maxa∈A Q̂ki(s, a) for k1 < k2 < · · · < km = t− 1. Notice that

V̂ki(s) ≥ V ∗M (s)− α− α

1− γ
(14)

for all s ∈ S and i = 1, 2, . . . ,m, because the definition of an α-weak admissible heuristic guarantees
that there exists ã ∈ A such that W (s, ã) ≥ Q∗M (s, ã) ≥ V ∗M (s) − α. This implies that V̂ki(s) =

maxa∈A Q̂ki(s, a) ≥ Q∗M (s, ã)− α
1−γ ≥ V

∗
M (s)−α− α

1−γ for every state s ∈ S. Now we can plug (14)
into the previous inequality to obtain

Q̂t(s, a) = 1
m

∑m
i=1

(
Rki(s, a) + γV̂ki(s

′
ki

)
)

+ ε1

≥ 1
m

∑m
i=1

(
Rki(s, a) + γ

(
V ∗M (s′ki)− α−

α
1−γ

))
+ ε1

= 1
m

∑m
i=1

(
Rki(s, a) + γV ∗M (s′ki)

)
− α

1−γ + ε1

.

Now we define the random variables Ji =
(
Rki(s, a) + γV ∗M (s′ki)

)
for i = 1, 2, . . . ,m bound by the

interval
[
0, 1

1−γ

]
. By the Hoeffding inequality and our choice of m (13), 1

m

∑m
i=1 Ji ≥ E[J1] − ε1

with probability at least 1− δ
u . Thus

Q̂t(s, a) ≥ E[J1]− ε1 + ε1 − α
1−γ

= E[J1]− α
1−γ

= Q∗M (s, a)− α
1−γ

We extend our argument over all u potential attempted updates using the union bound so that
Q̂t(s, a) ≥ Q∗M (s, a)− α

1−γ holds over all timesteps t ≥ 0, with probability at least 1−u δu = 1− δ.

The next lemma bounds the number of timesteps that a state-action pair outside of the “nice”
set κ can be experienced. This lemma is a modification of [Strehl et al., 2006, Lemma 4]. Our
lemma decreases the number of times that a state-action pair that is not in κ can be experienced
from 2mNK

ε1(1−γ) to 2m(NK−X)
ε1(1−γ) , where X is the number of state-action pairs that are eliminated by

initializing the action-value estimates with W . If X is large this represents a significant decrease
in the number of experiences of state-action pairs outside of κ, which is the key factor in proving
Theorem 2.

Lemma 8 If events X1 and X2 occur, then (s, a) /∈ κt can be experienced on at most 2m(NK−X)
ε1(1−γ)

timesteps t, where X =
∣∣∣{(s, a) ∈ S ×A |W (s, a) < V ∗M (s)− α− α

1−γ

}∣∣∣.
Proof We start by applying Lemma 1. By its definition the Delayed Q-learning algorithm always
follows a greedy policy (satisfying Condition 1 of Lemma 1) and cannot change an action-value
estimate unless the corresponding state-action pair has been experienced (satisfying Condition 2 of
Lemma 1). Since event X2 occurs, this satisfies Condition 3 of Lemma 1. Therefore by Lemma 1,
under the above assumptions, Delayed Q-learning will only visit NK −X state-action pairs.

The result follows from the proof of [Strehl et al., 2006, Lemma 4] over NK − X state-action
pairs rather than all NK state-action pairs.

7.3. Proof of Theorem 2

Now we are ready to prove Theorem 2.
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Proof (of Theorem 2) We proceed by applying Theorem 4. We select ε1 = ε(1−γ)
3 and m according

to (13) so that event X1 holds with probability at least 1− δ (by Lemma 6) and event X2 holds with
probability at least 1− δ (by Lemma 7).

Suppose that events X1 and X2 occur. Condition 1 (V̂t(s) ≥ V ∗M (s)−β) of Theorem 4 is satisfied
with β = α

1−γ (by Lemma 7). Now we argue that Condition 2 (V̂t(s) − V πtMκt
(s) ≤ ε) of Theorem 4

is also satisfied. Notice that

V̂t(s)− V πtMκt
(s) ≤

{
γ
∑
s′∈S T (s′|s, a)

(
V̂t(s

′)− V πtMκt
(s′)
)

+ 3ε1 if (s, πt(s)) ∈ κt
0 if (s, πt(s)) /∈ κt

because V̂t(s)−
(
R(s, a) + γ

∑
s′∈S V̂t(s

′)
)
≤ 3ε1, whenever (s, πt(s)) ∈ κt. This implies that V̂t(s)−

V πtMκt
(s) ≤ 3ε1

1−γ = 3(ε(1−γ)/3)
1−γ = ε.

The number of timesteps that a state-action pair that is not in κt can be experienced is bounded
in Lemma 8, which satisfies Condition 3 of Theorem 4. By our choice of m, events X1 and X2 occur
with probability at least 1− 2δ (applying the union bound). Therefore the conditions of Theorem 4
are met with probability at least 1− 2δ. By applying Theorem 4 and plugging in the values for the
learning complexity, m, and ε1, we obtain the fact that on all but

O

(
NK −X
ε4(1− γ)8

ln
1

δ
ln

1

ε(1− γ)
ln

NK

δε(1− γ)

)
timesteps, Delayed Q-learning follows an

(
3ε+ α

1−γ

)
-optimal policy, with probability at least 1−3δ.

We obtain our final result by setting ε← ε
3 and δ ← δ

3 , which modifies the bound by constant factors
only.

7.4. Proof of Theorem 3

Proof (of Theorem 3) Let s ∈ Strg be a state in the target task. Because h is assumed to satisfy (5)
and (6) there exists an action ã ∈ Atrg such that either (1) (s, ã) ∈ D and V ∗trg(s)−α ≤ Q∗trg(s, ã) ≤
Q∗src(h(s, ã)) or (2) (s, ã) /∈ D and V ∗trg(s)− α ≤ Q∗trg(s, ã).

In the first case ((s, ã) ∈ D), Eq. (7) will assign the value

W (s, ã) = min
(
Q̂src(h(s, ã)) + εsrc,

1
1−γ

)
≥ Q̂src(h(s, ã)) + εsrc
≥ (Q∗src(h(s, ã))− εsrc) + εsrc
≥ Q∗trg(s, ã) ≥ V ∗trg(s)− α

where the initial equality is due to the fact that (s, ã) ∈ D and values are transferred according
to Eq. (7). The first step removes the minimum operation. The second step replaces the source
task action-value estimates with the true source task action-values by subtracting εsrc. The final
step is due to the fact that the intertask mapping satisfies (5). This inequality satisfies the α-weak
admissible heuristic criteria for state s.

In the second case ((s, ã) /∈ D), W (s, ã) is assigned the maximum value 1
1−γ which is greater

than or equal to Q∗trg(s, ã) and V ∗trg(s)−α. Therefore in both cases, the α-weak admissible heuristic
criteria is satisfied at the state s. Since this argument holds for all states, then the transferred
action-values induce an α-weak admissible heuristic with respect to the target task Mtrg.

The remainder of proof follows from applying Theorem 2 to the target task with the transferred
action-values taking the place of the α-weak admissible heuristic.
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Abstract
We introduce a new online skill discovery method for reinforcement learning in discrete
domains. The method is based on the bottleneck principle and identifies skills using a
bottom-up hierarchical clustering of the estimated transition graph. In contrast to prior
clustering approaches, it can be used incrementally and thus several times during the
learning process. Our empirical evaluation shows that “assuming dense local connectivity
in the face of uncertainty” can prevent premature identification of skills. Furthermore, we
show that the choice of the linkage criterion is crucial for dealing with non-random sampling
policies and stochastic environments.
Keywords: Hierarchical Reinforcement Learning, Skill Discovery, Multi-task Learning

1. Introduction

Reinforcement Learning (RL) can provide autonomous agents with means to learn to im-
prove their performance with experience. There exist theoretical guarantees for certain
RL algorithms that the optimal policy for any discrete Markov Decision Process (MDP) is
learned asymptotically. However, scaling RL to real-world problems with large or continuous
state spaces remains a major challenge since the amount of experience the agent can collect
is limited. One approach to alleviate this problem is Hierarchical RL [Barto and Mahade-
van, 2003] which aims at dividing a problem into simpler subproblems, learning solutions
for these subproblems, and encapsulate the acquired knowledge into so-called skills that can
potentially be reused later on in the learning process. It has been shown that skills can help
an agent to adapt to non-stationarity of the environment and to transfer knowledge between
different but related tasks [Digney, 1998] and can increase the representability of the value
function in continuous domains [Konidaris and Barto, 2009]. One of the major challenges
in Hierarchical RL is to identify what might constitute a useful skill, i.e. how the problem
should be decomposed. Skills should be reusable, distinct, and easy to learn. The task of
identifying such skills is called skill discovery [Kirchner, 1995; Digney, 1996].

We propose the new online skill discovery method OGAHC which identifies densely
connected regions in the state space using a constrained agglomerative hierarchical clustering
of the estimated state transition graph. We show empirically in Section 4.1 that the proposed
method is robust with regard to the agent’s sampling policy and the stochasticity of the
environment. In Section 4.2, we compare the proposed incremental, online skill discovery
method to its non-incremental, offline counterpart. Furthermore, we show in Section 5
that using OGAHC for skill discovery in a Hierarchical RL agent outperforms related skill
discovery approaches in a multi-task learning domain.

c© 2012 J. Metzen.
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2. Background and Related Work

We adopt the option framework [Sutton et al., 1999], which formalizes skills as options. An
option o consists of three components: the option’s initiation set Io ⊂ S determining the
states in which the option may be invoked, the option’s termination condition βo : S → [0, 1]
specifying the probability of option execution terminating in a given state, and the option’s
policy πo which defines the probability of executing an action in a state under option o. In
the options framework, the agent’s policy π may in any state s decide not solely to execute a
primitive action but also to call any of the options for which s ∈ Io. If an option is invoked,
the option’s policy πo is followed until the option terminates according to βo.

The option’s policy πo is defined relative to an option-specific reward function Ro that
may differ from the global external reward function. Learning πo given Io, βo, and Ro is
denoted as skill learning and learning π given primitive actions and options is known as
compositional learning. In this work we focus on skill discovery, i.e. choosing appropriate
Io, βo, and Ro for a new option o. Autonomous skill discovery is very desirable since the
quantities Io, βo, and Ro need not be predefined but can been identified by the agent itself
and thus, skill discovery increase the agent’s autonomy.

Most prior work on autonomous skill discovery is based on the concept of bottleneck
areas in the state space. Informally, bottleneck areas have been described as the border
states of densely connected areas in the state space [Menache et al., 2002] or as states that
allow transitions to a different part of the environment [Şimşek and Barto, 2004]. A more
formal definition is given by Şimşek & Barto [2009] which define bottleneck areas as those
states which are local maxima of betweenness—a measure of centrality on graphs—on the
transition graph. Once bottleneck areas have been identified, typically one (or several) skills
are defined that try to reach this bottleneck from a local neighborhood of the bottleneck.

Since betweenness requires complete knowledge of the transition graph and is computa-
tionally expensive, several heuristics have been proposed to identify bottlenecks. One class
of heuristics are frequency-based approaches that compute local statistics of states. Diverse
density [McGovern and Barto, 2001] and relative novelty [Şimşek and Barto, 2004] have
been considered in frequency-based heuristics. In diverse density, bottlenecks are identi-
fied as those states that are visited often on successful but not on unsuccessful trajectories.
Relative novelty defines bottlenecks as those states that allow the agent to transition to an
area in the state space that is otherwise difficult to reach from its current region. One dis-
advantage of frequency-based approaches is that they require repeated-sampling to obtain
accurate estimates of the statistics and are thus not very sample-efficient.

An other class of heuristics that may be more sample-efficient are graph-based approaches.
These heuristics are based on estimates of the transition graph and aim at partitioning this
graph into subgraphs that are densely connected internally but only weakly connected with
each other. Menache et al. [2002] propose a top-down approach for partitioning the global
transition graph based on the max-flow/min-cut heuristic. Şimşek et al. [2005] follow a simi-
lar approach but partition local estimates of the global transition graph using a spectral clus-
tering algorithm and use repeated sampling for identifying globally consistent bottlenecks.
Due to the repeated sampling the approach shares some properties with the frequency-based
approaches. Mannor et al. [2004] propose a bottom-up approach that partitions the global
transition graph using agglomerative hierarchical clustering. The approach is offline, i.e. the
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clustering can be executed only once and thus does not allow us to identify skills at different
times during learning. This property limits the utility of the approach since there may be
no single optimal point in time for skill discovery.

The main contribution of this work is a skill discovery method based on agglomerative
clustering of the transition graph that shares some similarities with the work of Mannor et
al. [2004]; however, the proposed method is online, i.e. can identify skills at any time.

3. Online Graph-based Agglomerative Hierarchical Clustering

We adopt the concept of identifying bottlenecks in the state space as basis for skill discovery.
Informally, a set of states forms a bottleneck area if it lies on the boundary1 of two densely
connected areas of the state space that are only weakly connected mutually. We investi-
gate approaches that identify such bottlenecks based on the sample transition graph using
agglomerative clustering. We base skill discovery thus solely on the MDP’s state transition
probabilities P ass′ and ignore the expected rewards Rass′ since we consider Rass′ to encode the
task and aim at identifying task-independent skills that can be reused in different tasks.

3.1. Sample Transition Graph

For discrete environments, we construct the sample transition graph G = (V,E,w), which
is a directed, weighted graph that is used as estimate for the actual unknown transition
graph, as follows: for a given set of n transitions {(si, ai, s′i)}i=1...n sampled from an MDP,
we set V = {si} ∪ {s′i} to the set of all states that have been visited and E = {(si, s′i)} to
the set of all one-step transitions that have occurred. For each action a ∈ A, we add the
attribute N(s, a, s′) =

∑n
i=1 δ((s, a, s

′), (si, ai, s
′
i)) to any edge (s, s′) ∈ E and the attribute

N(s, a) =
∑n

i=1 δ((s, a), (si, ai)) to any node s ∈ V where δ(x, y) = 1 if x = y else 0.
Different choices for the edge weights w(e) have been proposed. While Mannor et

al. [2004] used essentially uniform edge weights wuni(e) = 1, Şimşek et al. [2005] proposed
the edge weights won((s, s′)) =

∑
aN(s, a, s′), i.e. how often the transition s→ s′ has been

observed under the sampling policy. While wuni ignore both the stochasticity of the environ-
ment and the action preferences of the agent, won take both into account (i.e. it is “on-policy”
with regard to the sampling policy). We argue that in order to identify properties of P ass′
like bottlenecks, one should take the stochasticity into account but be independent of the
sampling policy. Thus, we propose the edge weights woff ((s, s′)) =

∑
aN(s, a, s′)/N(s, a),

which are “off-policy” (note that N(s, a, s′)/N(s, a) is the maximum likelihood estimate of
P ass′ and thus independent of the sampling policy).

3.2. Linkage criteria

The purpose of the linkage criterion l is to give a quantitative judgment if the boundary
of two connected, disjoint subgraphs A,B ⊂ G forms a bottleneck in G = (V,E,w). The
larger the linkage value for the pair (A,B), the more evidence the criterion offers for a
bottleneck between A and B. By choosing a threshold ψ, one can create a binary criterion
for “bottleneckness” (by identifying a bottleneck between A and B if l(A,B) > ψ).

1. For a graph G = (V,E), we define the boundary of two disjoint node sets A,B ⊂ V as
bG(A,B) = {v ∈ V |∃v∗ ∈ V : (v, v∗) ∈ E ∩ (A×B ∪B ×A)}
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Algorithm 1: Constrained agglomerative clustering
Input: graph G = (V,E,w), constraint set C, linkage criterion l, threshold ψ
Initialize partition: P = {{v}|v ∈ V }
C = C ∪ lambda p1, p2 : (p1 × p2) ∩ E 6= ∅ # Merge only clusters pi that are connected in G
while True do
Mc = {(p1, p2)|(p1, p2) ∈ (P × P ) ∧

∧
c∈C

c(p1, p2)} # Merge-candidates that fulfill all

constraints
p∗1, p

∗
2 = arg min

p1,p2∈Mc

l(p1, p2) # Find merge candidates with minimal linkage

if l(p∗1, p
∗
2) > ψ: return P # No more densely connected clusters → return clustering

P = (P \ {p∗1, p∗2}) ∪ {p∗1 ∪ p∗2} # Merge p∗1 and p∗2

As base for linkages, we define the (directed) connectivity mass cm of subgraphs A
and B as cm(A,B) =

∑
e∈E∩(A×B)

w(e). The connectivity mass gets large for large, densely

connected subgraphs with big edge weights. Mannor et al. [2004] proposed a linkage criterion
for bottleneck identification in transition graphs that is defined as follows (using our notation
and |A| being the number of vertices in subgraph A): M(A,B) = min(|A|,|B|) log(max(|A|,|B|))

cm(A,B)+cm(B,A) .
The linkage is based on uniform edge weights such that the denominator is equal to the
number of edges between A and B in G. The linkage thus assigns large values to subgraphs
of similar sizes that are only weakly interconnected.

Şimşek et al. [2005] have proposed the N̂cut criterion which is defined as follows (using
our notation): N̂cut(A,B) = cm(A,B)+cm(B,A)

cm(A,V )+cm(B,A) + cm(B,A)+cm(A,B)
cm(B,V )+cm(A,B) . The N̂cut criterion is an

approximation of the sum of probabilities that the agent transitions in one time step from
a state in subgraph A to a state in subgraph B or vice versa. The authors used a top-down
spectral clustering algorithm to find graph cuts that minimize N̂cut; in order to use it as a
linkage criterion where large values indicate a bottleneck, we shall use −N̂cut. The authors
used the criterion with on-policy edge weights; we claim that it should rather be used with
off-policy weights (see Section 4.1).

3.3. Constrained Agglomerative Clustering

In order to identify all bottlenecks of G, we determine a partition P ∗ of minimal cardinality
of the graph nodes into disjoint clusters pi such that neither of the subgraphs induced by
the pi contains a bottleneck. By construction, the boundary of any connected pair of these
subgraphs forms a bottleneck (otherwise, the two subgraphs would have been merged because
of the minimal cardinality objective). Formally: P ∗ = arg min

P∈P(V )
|P | s.t. max

pi∈P,qi⊂pi
l(pi \

qi, qi) ≤ ψ, with P(V ) being the set of all possible partitions of V . Alternatively, we may
also fix the number of clusters to k and identify a partition P ∗ with |P ∗| = k such that the
maximal intra-cluster linkage l is minimized: P ∗ = arg min

|P |=k
max

pi∈P,qi⊂pi
l(pi \ qi, qi).

Since finding the optimal solutions for these problems isNP-hard, we use an approximate
approach similar to the one proposed by Mannor et al. [2004] which is based on agglomerative
hierarchical clustering (see Algorithm 1). This algorithm starts by assigning each node into a
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Algorithm 2: OGAHC
Input: linkage criterion l, parameters ρ, ψ, m
Initialize: partition P = ∅, graph G = (∅, ∅),
while True do

(s1, a1, s2, . . . , am−1, sm) = ACT(AGENT, ENV) # Act for m− 1 steps and observe
trajectory
UPDATE(G, (s1, a1, s2, . . . , am−1, sm)) # Update transition graph with trajectory
G′ = SMOOTH(G, ρ) # Pseudo transitions for under-explored nodes
C = ∅ # Constraints for keeping partitions consistent
for (pA, pB) ∈ P × P with pA 6= pB do

# Must not merge two clusters with elements that had not been merged in last iteration
C = C ∪ {lambda p1, p2 : (p1 ∪ p2) ∩ pA = ∅ ∨ (p1 ∪ p2) ∩ pB = ∅}

end for
P = CAC(G′, C, l, ψ) # Partition G′ using constrained agglomerative clustering (CAC)

separate cluster and afterwards merges greedily the pair of clusters that has minimal linkage
among all pairs of clusters connected in G until no pair remains with a linkage below ψ.
Additionally, the algorithm allows the specification of further constraints that determine
which clusters may be merged (see Section 3.4).

3.4. Online Clustering

The clustering approach presented in Section 3.3 is an offline approach, i.e. it can be executed
only once when “enough” transitions have been gathered to estimate the sample transition
graph. The specific point in time when clustering is performed presents a trade-off: on the
one hand, one would like to perform the clustering as early as possible in order to maxi-
mize the impact of the discovered skills during learning; on the other hand, performing the
clustering too early may result in spurious clusters that are due to considerable deviations
of the estimated transition graph from the true transition graph. It would thus be highly
desirable to use an online clustering algorithm instead, which can be invoked several times
during learning. In order to make such an online clustering algorithm useful for skill dis-
covery, it has to fulfill the following properties: a) Subsequent executions of the clustering
should be consistent, i.e. bottlenecks identified in one invocation of the clustering should
persist in subsequent ones. Otherwise, skills corresponding to these bottlenecks would need
to be deleted (causing an undesirable loss of learned knowledge) or to be modified to a new
target, which would require re-learning and might have a detrimental effect onto higher-level
policies which are based on these skills. b) The less reliable the estimate of the transition
graph in a certain area of the state spaces is, the less likely the clustering should identify
bottlenecks in this area.

To address these issues, we propose the Online Graph-based Agglomerative Hierarchical
Clustering (OGAHC) method (see Algorithm 2). Its main contributions are the following: a)
In order to guarantee consistency of subsequent clusterings, an increasing set of constraints
that must be obeyed by the clustering is maintained. These constraints ensure that no
two nodes that have been assigned to different clusters are assigned to the same cluster in
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subsequent clusterings. b) In order to prevent premature identification of bottleneck areas,
OGAHC builds on a heuristic that may be framed as “assume dense local connectivity
in the face of uncertainty”. Technically, instead of working on the maximum likelihood
estimate G of the transition graph, the clustering is performed on a modified transition
graph G′ = SMOOTH(G, ρ). In G′, for each N(s, a) < ρ, N(s, a, s′) is incremented by
(ρ−N(s, a))/k for any s′ that is among the k = max(5, ρ) nearest neighbors. The nearest
neighbors can be computed based on any measure of state similarity; if no such measure
exists, one could alternatively use the k graph nodes with minimal distance to s in G.
ρ is a free parameter of the algorithm that determines if the algorithm is more liberal,
i.e. tends to identify bottlenecks early in the learning process despite the uncertainty in the
sample transition graph, or—for larger values of ρ— more conservative. Note that sparsity
properties of G—which correspond to a reduced runtime of the constrained agglomerative
clustering algorithm because of less merge candidates—are maintained in G′.

The heuristic “assume dense local connectivity in the face of uncertainty” prevents bot-
tlenecks from being identified prematurely since the linkage value is typically decreased by
adding pseudo transitions and thus, fewer clusters are formed in early invocations of the
algorithm. Over time, fewer pseudo transitions are added, the connectivity decreases, the
typical linkage of subgraphs increases, and thus, more clusters are formed. Note that speci-
fying the number of clusters k beforehand instead of ψ is not practical in online clustering
since it does not allow the implicit increase of granularity of the clustering over time.

3.5. Skill Prototype Generation

Given the partitioning P obtained using OGAHC, one skill is generated for reaching each
identified bottleneck area. We set the bottleneck area of two clusters A and B to the
boundary of the corresponding subgraphs of G. The skill prototype (IAB, βAB, RAB) that
is generated for the bottleneck between A and B is then defined as follows:

IAB = (A∗ ∪B∗) \ bG(A,B) βAB(s) = 0 if s ∈ IAB else 1

RAB((s, a, r, s′)) = r if s′ ∈ (A∗ ∪B∗) else rp + r,

where A∗ = {v ∈ V |∃v′ ∈ A : (v, v′) ∈ E}, and rp is a parameter of the algorithm that
determines the penalty for failing to fulfill a skill’s objective. Further skill prototypes are
generated for reaching identified terminal states st from the adjacent clusters A. Note that
the skill prototypes may change over time when A or B change because of re-clustering;
however, a skill and its corresponding bottleneck area can never disappear.

4. Cluster Accordance Analysis

This section presents an empirical evaluation of the quality of the partitions generated
by different clustering approaches and linkage criteria in 50 randomly generated MDPs.
Each of the MDPs consists of 400 states and in each state, 4 actions are available. The
stochasticity of the MDPs is controlled by the parameter χ ∈ [0, 1], where larger values of
χ correspond to increased stochasticity. Along with the MDPs, ground-truth partitions of
the states consisting of 7 clusters have been generated. For more details, we refer to the
supplementary material. For each MDP, an optimal policy has been computed offline and
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Figure 4.1: Upper row: Comparison of different linkage criteria for different degrees of explo-
ration and different stochasticity of the environment. Lower row: Comparison
of OGAHC (for different values of ρ) and offline clustering. Errorbars show the
standard error of the mean.

a trajectory consisting of n transitions has been sampled by following the optimal policy
ε-greedily. ε was set initially to 1 and then decayed after each step by the factor 1− εdecay.
Based on the sampled transitions, a partition of the states is determined and compared to
the ground truth partition. The agreement of the two partitions P1 and P2 is measured
using the accordance ratio acc(P1, P2) = 1

|S|2
∑
s,s̄∈S

δ(δ(P1(s), P1(s̄)), δ(P2(s), P2(s̄))), i.e. the

ratio of element-pairs on which P1 and P2 agree on assigning them to the same or to different
clusters (δ(x, y) = 1 if x = y else 0). Statistical hypothesis testing has been conducted using
Student’s independent two-samples t-test.

4.1. Linkage criterion

In a first experiment, we compare different linkage criteria in an offline clustering setting
for χ = 0. To analyze the effect of non-uniform exploration of the agent, we have varied
εdecay. Large values of εdecay correspond to an agent which starts to exploit more early and
as a consequence, obtains a more biased estimate of the transition graph. The upper left
plot in Figure 4.1 shows a comparison of the partitions obtained after n = 25000 transitions
for the M -linkage and the N̂cut-linkage with both on-policy and off-policy edge weights as
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discussed in Section 3.2. The main result shown in the figure is that the on-policy N̂cut

linkage obtains significantly worse partitions than the other two linkages for intermediate
values of εdecay (p < 0.008 for εdecay ∈ {10−5, 10−4, 10−3}). This can be attributed to the
fact that the on-policy N̂cut linkage bases its partitioning not solely on the environment’s
transition probabilities but also on the agent’s action selection which is undesirable if the
agent selects action non-uniformly. In a second experiment (n = 25000, εdecay = 0), we
have varied the stochasticity χ of the environment. The upper right plot in Figure 4.1
shows that the M -linkage obtains significantly worse results than the off-policy N̂cut linkage
if the environment gets slightly non-deterministic (p < 0.0001 for 0.05 ≤ χ ≤ 0.8). This
is due to the use of uniform edge weights in the M -linkage; these weights do not allow to
differentiate between probable and less probable transitions, which is apparently important
for skill discovery in non-deterministic environments. In summary, the results show that the
off-policy N̂cut-linkage is the most robust linkage criterion; the following experiments have
been conducted with this linkage accordingly.

4.2. Online Graph-Clustering

In this subsection, we compare the OGAHC algorithm with its offline counterpart (essentially
the approach proposed by Mannor et al. [2004]). We have used the same 50 MDPs as before
and set n = 30000, εdecay = 0, χ = 0, and ψ = −0.075. For OGAHC, the clustering has
been updated every 500 steps and different choices of ρ have been evaluated. The offline
clustering has been performed after m ∈ {500, 1000, . . . , 30000} transitions, taking all m
transitions that have been acquired so far into account at once.

The lower left plot in Figure 4.1 shows how the accordance ratio of the identified parti-
tions changes over time. It can be seen that smaller values of ρ achieve higher accordance
ratios in the early phase since they tend to identify clusters more early. However, these
clusters are potentially suboptimal since they are based on a sample transition graph that
was estimated based on a small number of transitions and has thus a high sampling error.
Accordingly, it can be seen that for e.g. ρ = 0 the accordance ratio plateaus on a lower level
than for larger values of ρ. Comparing OGAHC to offline clustering, one can see that for
any number of transitions, the online clustering tends to be slightly worse than the offline
clustering obtained at that point in time. This can either be due to the enforced consistency
with prior clusterings or to the influence of ρ.

However, the clusterings of OGAHC can be refined over time while the clusterings of
the offline approach are fixed. Thus, the performance of the two method should not only be
compared at a single point in time. The lower right plot of Figure 4.1 shows the accordance
ratio averaged over the 30000 steps for different values of ρ and m. For both small and
large values of m, the average accordance of the offline clustering is low. For small m, the
average accordance is low because the clustering is based on only few transitions and cannot
be improved later on; for large values of m, the average accordance is low because there is
no clustering at all for a long initial period. Intermediate values (m ≈ 4500) obtain a higher
average accordance of approx. 0.81. In contrast, the online clustering depends less on the
specific choice of ρ. The optimal value for ρ is 1, which results in an average accordance
of approx. 0.91; however, for any value 0 ≤ ρ ≤ 6, OGAHC achieves a significantly higher
average accordance than the offline clustering for m = 4500 (p < 0.019). Thus, even without
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Figure 5.1: Left: Structure, ground-truth partitioning, and bottlenecks of the multi-task
maze world. Right: Reward per episode (averaged over the first 1000 episodes)
for different skill discovery strategies. ρ and to are varied over the same value
range (bottom x-axis). See supplementary material for detailed learning curves.

fine-tuning ρ, the online clustering can outperform the offline clustering with optimally cho-
sen m with regard to the average clustering quality. In the next section, we will investigate if
the same holds true for the learning performance of a Hierarchical RL agent using OGAHC
for skill discovery compared to agents using other approaches.

5. Multi-task Learning

In this section, we evaluate the utility of the OGAHC method within a Hierarchical RL
agent in a multi-task learning scenario. The scenario is a 23× 23 maze world consisting of
four rooms with four “special” states (see Figure 5.1). In each time step, the agent obtains
a reward of −1. The agent has to learn to solve 12 different tasks in this environment; each
task is defined by a pair (s0, st) of special states where s0 is the start state and st is the
goal state of the task. In each episode, a task is chosen at random and the specific task is
communicated to the agent as a state space dimension. This dimension is used by the agent
for policy learning but ignored during skill discovery and skill learning. The acquired skills
can thus be transferred between tasks and may give a useful exploration bias for the agent.

The agent uses a 2-level hierarchy: The lower level consists of the acquired skills and a
special option discussed below. On the upper level, the agent may choose among these skills
but not choose a primitive action directly, i.e. the action space is abstracted not augmented.
1-step intra-option Q-Learning [Precup, 2000] is used for skill learning; no experience replay
is conducted to avoid intermixing the contributions of skill discovery and experience replay
(see Jong et al. [2008] for a discussion). A special low-level option prototype is provided to
the agent: this option can be invoked in any state, terminates in any state with probability
β = 0.01, and uses the external reward signal. This option allows the agent thus to learn
a monolithic global policy. The reasons for this option are twofold: on the one hand, it
guarantees that the agent can learn a global optimal policy eventually despite the abstraction
of the action space. On the other hand, it makes the agent less susceptible to the broken
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exploration symmetry that is caused by temporal abstraction (see [Jong et al., 2008]) than
pure augmentation of the action space.

We compare OGAHC to the Offline Clustering approach proposed by Mannor et al. [2004]
and the Local Graph Partitioning (LGP) approach by Şimşek et al. [2005]. As baseline, we
evaluate the agent using no skill discovery (i.e. learning a monolithic policy using the “special”
option), and the agent that is provided with the ground-truth partitioning (see Figure 5.1)
from the beginning. |ψ| has been set to 0.075 for all approaches. For LGP, the required
hit-ratio has been set to tp = 0.2, the option lag to lo = 20, the window length to h = 1000,
and the update frequency to 250. These parameters have been chosen based on preliminary
experiments. The discount factor of the agent has been set to γ = 0.99, the learning rate to
α = 1.0, the value functions have been initialized optimistically to 0.0, and the penalty for
failing to fulfill a skill’s objective has been set to rp = −100. For OGAHC, the parameter ρ
has been varied between 0 and 30, for LGP the minimum number of state observations to
has been varied between 1 and 30, and the Offline Clustering has been conducted after m
steps in which no novel state has been encountered (where m has been varied between 5000
and 50000). Each setting has been evaluated 15 times for 1000 episodes.

The results of the experiment are depicted in Figure 5.1. The agent provided with
predefined skill prototypes obtains an average reward per episode of r̄e = −296.3± 1.6 and
the agent using no skills of r̄e = −395.5 ± 0.9. The maximal gain of average reward that
can be achieved by biasing exploration using skills is thus approx. +100. Using LGP for
skill discovery does not achieve an average reward of more than r̄e = −350 for any choice of
to. Closer inspection showed that for small values of to, the resulting partitioning was far
from being optimal while for larger values of to, the skills have been introduced too late to
provide a useful exploration bias. Using the Offline Clustering approach, the optimal time
for performing the clustering is after m∗ = 30000 steps without observing any novel state
which results in r̄e = −306.8 ± 2.6. Thus, performing Offline Clustering at the right time
does already realize 90% of the possible reward gain. However, for the same reasons as in
Section 4.2 the choice of m is crucial: performing clustering too early results in suboptimal
partitions while performing it too late limits the benefits of the acquired skills for learning.

The OGAHC approach achieves r̄e > −305 for any choice of ρ ≤ 15 and r̄e = −294.5±2.1
for ρ = 10. The approach allows thus to acquire more than 90% of the possible reward gain
(and thus more than obtained by Offline Clustering for any choice of m) for a broad range
of values for ρ, making the specific choice of ρ less important. For the optimal choice
ρ∗ = 10, OGAHC achieves an average reward that is on par with what can be obtained
with the predefined skill prototypes. This can be explained by the observation that for this
choice of ρ, OGAHC discovers skills that are close to the optimal ones very early during
learning (typically during the first 3 episodes). Since skill learning takes several episodes,
the predefined skill prototypes offer the agent an efficient exploration bias starting after
approx. 5 episodes; thus OGAHC can be on a par with the predefined skill prototypes. In
summary, the results show that using OGAHC for skill discovery allows to identify reusable
skills at an early stage of learning without requiring to fine-tune the parameter ρ.
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6. Conclusion and Future Work

We have presented the novel online skill discovery method OGAHC which is based on identi-
fying bottleneck areas in the state transition graph by means of an agglomerative hierarchical
clustering. Our empirical studies suggest that the approach can reliably identify useful skills
in a very early stage of learning and allows the agent thus to explore the environment more
efficiently than with other skill discovery methods or without utilizing skills at all. Future
work is to extend the approach to MDPs with large and continuous state spaces and to
evaluate it on real-world problems.
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Abstract
Off-policy evaluation is the problem of evaluating a decision-making policy using data
collected under a different behaviour policy. While several methods are available for ad-
dressing off-policy evaluation, little work has been done on identifying the best methods.
In this paper, we conduct an in-depth comparative study of several off-policy evaluation
methods in non-bandit, finite-horizon MDPs, using randomly generated MDPs, as well as a
Mallard population dynamics model [Anderson, 1975] . We find that un-normalized impor-
tance sampling can exhibit prohibitively large variance in problems involving look-ahead
longer than a few time steps, and that dynamic programming methods perform better than
Monte-Carlo style methods.

1. Introduction

One of the core competencies of most intelligent decision-making agents is the ability to
properly evaluate their decision-making strategy. In a reinforcement learning context, this
is the policy evaluation problem, which involves the estimation of the expected return asso-
ciated with a policy. The ideal method for evaluating policies is to apply them in practice,
observe the return, and estimate the expected return (and its uncertainty) using this data.
However, if data is expensive (or rare), or the number of policies to evaluate is large, this
may be infeasible. A popular alternative is to evaluate the decision-making policy of inter-
est (called the target policy) using data collected under a different, behaviour policy. This
method is known as off-policy policy evaluation. Off-policy learning has been used in a range
of applications, such as energy systems [Hannah and Dunson, 2011], robotics [Riedmiller,
2005], clinical studies [Pineau et al., 2009], and tax collection [Abe et al., 2010].

We focus on two types of off-policy estimators: model-based [Sutton and Barto, 1998;
Mannor et al., 2007], and importance sampling weighting of the returns [Precup et al., 2000;
Robins et al., 2000; Murphy, 2005]. Several methods for continuous MDPs that would fall
in neither category, such as LSTD, can be shown to reduce to a model-based estimator in
the discrete setting [Boyan, 2002]. The tree backup algorithm proposed in Precup et al.
[2000] also becomes, in expectation, equivalent to a model-based estimator. One class of
algorithms which cannot be easily pegged into one of these categories is gradient-based
temporal-difference methods [Sutton et al., 2009]. However, since these algorithms are de-

c© 2012 C. Păduraru, D. Precup, J. Pineau & G. Comănici.



Păduraru Precup Pineau Comănici

signed specifically to handle infinite-horizon problems in which function approximation is
necessary, we will not discuss them in this paper. Three of the estimators we compare have
been proposed in the literature. The other two (per-step importance sampling and nor-
malized per-step importance sampling) are related to existing methods, but have not been
studied in the form we propose.

Previous comparative studies for off-policy estimators considered single-step contextual
bandit problems [Kang et al., 2007; Dudik et al., 2011]. We present an empirical study for
finite-horizon discrete MDPs with arbitrary horizon length. We use a set of randomly gen-
erated MDPs, similar to those used by Castronovo and Ernst [2012], and a simulated model
of the Mallard population dynamics, first proposed by Anderson [1975] and subsequently
used by Fonnesbeck [2005].

2. Finite-horizon MDPs

A finite-horizon MDP is defined as a tuple 〈S,A, P,R〉, where S is a set of states; A is a set
of actions; P : S ×A×S → [0, 1] is the transition model, with P s′sa denoting the conditional
probability of a transition to state s′ given current state s and action a; R : S × A→ [0, 1]
is the reward function, with Rsa denoting the immediate expected reward for state s and
action a. A policy π : S ×A→ [0, 1] specifies how decisions are made. In a finite MDP, the
model can be represented using matrices P ∈ R|S×A|×|S| and R ∈ R|S×A|. Similarly, policies
can also be represented as block-diagonal matrices π ∈ R|S|×|S×A|.

The value of a policy π for a decision horizon of length K is defined as:

V π
K(s) = E[r0 + r1 + · · ·+ rK |s0 = s] =

∑
a

πsa

(
Rsa +

∑
s′

P s
′
saV

π
K−1(s′)

)
.

or, if we consider V π
K to be the vector of all state values,

V π
K = π(R+ PV π

K−1) = · · · =
K∑
k=0

(πP )kπR. (1)

3. Off-policy value function estimation

In practice, the model of the MDP is usually unknown, so Eq. (1) cannot be applied directly.
Furthermore, the user might not be able to obtain trajectories using policy π. In natural
resource management, in particular, implementing a policy is not only expensive but also
potentially unrealistic, given that interesting time horizons may span decades. Instead, the
user may have access to data gathered under some existing policy b (or possibly, under
several known policies from different geographic regions or different periods). Off-policy
value function estimation methods are designed to deal with this case.

All estimators used in this paper are summarized in Table 1. We will now describe the
notation and context for each of them.

Importance sampling [Rubinstein, 1981] is a technique for sampling from one distribution
by weighting the samples generated from another distribution. It has been proposed as an
off-policy estimator for MDPs both in reinforcement learning [Precup et al., 2000] and in the
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Un-normalized Normalized

Per-
trajectory
importance
sampling

V̂ PTIS
K (s) =

1

ns

ns∑
i=1

 K∏
j=1

π(si:j , ai:j)

b(si:j , ai:j)

 K∑
l=1

ri:l

Instead of ns, divide by

ns∑
i=1

 K∏
j=1

π(si:j , ai:j)

b(si:j , ai:j)



Per-step
importance
sampling

V̂ PSIS
k (s) =

1

ns

∑
a

πsa
bsa

∑
i∈B(s,a)

[ri+V̂
PSIS
k−1 (s′i)]

Instead of ns, divide by∑
i∈B(s)

π(s, ai)

b(s, ai)
=
∑
a

nsa
πsa
bsa

Model-based V̂MB
K (s) =

∑
a

πsa

(
R̂sa +

∑
s′

P̂ s
′
saV̂

MB
K−1(s′)

)
=

K∑
k=0

(πP̂ )kπR̂

Table 1: Off-policy estimators for discrete MDPs. All methods are consistent, but (un-
normalized) per-trajectory importance sampling is the only one that is
unbiased.

clinical trial literature [Robins et al., 2000], where it is called inverse probability weighting.
Importance sampling methods typically assume that the behaviour policy used to collect
the data, denoted b, is known, and that πsa > 0 =⇒ bsa > 0. The naive implementation
of importance sampling for off-policy evaluation weighs entire trajectories. This existing
estimator is the (un-normalized) per-trajectory importance sampling (PTIS) in Table 1. It
is computed based on ns trajectory fragments of length K that start from state s in the
batch, where the ith trajectory is denoted by:

(si:0 = s, ai:0, ri:0, si:1, ai:1, ri:1, ..., si:K , ai:K , ri:K),

The weights in the importance sampling estimator can be scaled to the [0, 1] interval by
normalizing over their sum. This is seen as a way to reduce estimator variance, and leads
to the normalized per-trajectory importance sampling estimator in Table 1, which we will
denote by V̂ PTIS−N . This is also an existing estimator [Precup et al., 2000; Murphy, 2005].

In order to avoid the variance introduced by weighting entire trajectories, we introduce
per-step importance sampling as an alternative. These estimators are very similar to the
per-decision importance sampling [Precup et al., 2000]. However, we present them for state
values and finite-horizon problems with batch data, rather than for action values and episodic
problems with on-line data. Consider the more general setting where a sample i is composed
of start state si, action ai generated from b at si, and (ri, s

′
i) the response of the model (P,R)

at (si, ai). The (un-normalized) per-step importance sampling estimator, shown in Table 1,
uses ns, nsa, and nsas′ to denote the sizes of the subsets restricted by the start state s, action
a and/or next state s′, and B(s) and B(s, a) to denote the subsets of samples for which the
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start state and/or action choice is s, a. If ns = 0, there is no data at this state, so we
have to pre-define V̂ PSIS

k (s). We also construct a normalized version, which we denote by
V̂ PSIS−N
K .
Model-based MDP estimators construct approximations P̂ and R̂ of the transition and

reward model, and then use standard methods such as dynamic programming to compute
the value function for the estimated model. For discrete MDPs, consistent estimators of the
model are given by:

R̂sa =
1

nsa

∑
i∈B(s,a)

ri, P̂ s
′
sa =

nsas′

nsa
. (2)

Similarly to per-step importance sampling, we have to use a pre-defined value if ns = 0 or
nsa = 0. The finite-horizon value function can then be estimated using the approximate
model R̂, P̂ .

This estimator is intuitive and has a long history. However, we are only aware of one
work on its statistical properties, by Mannor et al. [2007]. For infinite-horizon discrete
MDPs with discounting, Mannor et al. [2007] compute second-order approximations for the
bias and variance of the model-based estimator, and examine its empirical performance on
a discretized version of a catalog ordering problem.

Note that the MB estimator can be expressed in the same form as the per-step importance
sampling estimators, but with an estimate of b as surrogate:

V̂MB
k (s) =

1

ns

∑
a

πsa
nsa/ns

∑
i∈B(s,a)

(
ri + V̂MB

k−1 (s′i)
)
. (3)

Results from [Rubinstein, 1981] can be used to show that both PTIS and PTIS-N are
consistent estimators. PTIS is also unbiased; however, normalization can introduce bias,
while typically reducing variance. The dynamic programming estimators (PSIS, PSIS-N
and MB) are also consistent. This can be proven using Slutsky’s theorem [Dudewicz and
Mishra, 1988], by noting that all of them can be written in the form

V̂K =

K∑
k=0

(πZP̂ )kπZR̂, (4)

where Z is a diagonal matrix with entries

ZPSISsa = (nsa/ns)/bsa ZPSIS−Nsa = (nsa/W (s))/bsa ZMB
sa = 1,

with W (s) denoting the normalization term for PSIS-N.

4. Empirical results

In this section we study the empirical performance of the different off-policy estimators on
two domains: a simulated model of a natural resource management problem, and a set of
randomly generated MDPs. Note that, for the model-based method, we use a default reward
value Rsa = 0 for the state-action pairs (s, a) for which nsa = 0 (unless otherwise specified),
and a default transition model that self-loops (P ssa = 1).
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4.1. Mallard population model

Anderson’s model is formulated as an MDP with yearly time increments, two-dimensional
state, and continuous actions [Anderson, 1975]. The state variables are the adult population
Nt and the number of ponds Pt (both expressed in millions), while the action Ht represents
the proportion of animals to be harvested in year t. The state transitions are defined by the
following equations:

Nt+1 = Nt(1− 0.37e2.78Ht) +

(
1

12.48
P 0.851
t +

0.519

Nt

)−1

(1− 0.49e0.9Ht)

Pt+1 = −2.76 + 0.391Pt + 0.233εt

where εt ∼ N(16.46, 4.41) is a normally distributed random variable describing the amount
of precipitation during year t (in inches). The reward is defined as the number of birds
harvested in a given year, computed as

R(Nt, Pt, Ht) = Ht

(
0.92Nt +

(
1

12.48
P 0.851
t +

0.519

Nt

)−1
)
.

Anderson constructed and validated this model based on real data about the evolution of
the Mallard population. For more details, including model justification, we refer the reader
to [Anderson, 1975].

For our experiments, we used a discretized version of the model. Since the states where
the bird population is close to 0 are particularly important, we used a discretization with
higher resolution in that region of the state space. More precisely, we divided Nt into
intervals of length 2 when Nt > 2, and length 0.25 when Nt ≤ 2. Pt was divided into four
intervals of unit length. We also assumed that state features are bounded, so Nt ∈ [0, 17] and
Pt ∈ [0, 4]. This resulted in 64 states. We generated 10 million transitions from the original
MDP by sampling starting states uniformly randomly; then, we used the data to estimate
a transition matrix and reward function for the discrete MDP. The transition function was
estimated using maximum likelihood estimation, whereas the reward function was defined
as a Gaussian for each discretized interval, with its mean and variance estimated from
the generated data. This produced the MDP that we used as “ground truth”; that is, we
investigated how well our methods estimate the value function for this discretized MDP.

We considered three policies, all selecting from two actions: a1 representing Ht = 0 and
a2 representing Ht = 0.3. The first policy, which we call discourage hunting, selects a1 with
probability 0.8 and a2 with probability 0.2 in every state. The second policy, which we call
state-dependent hunting, prescribes reduced hunting when the mallard population or the
number of ponds is low, and larger amounts of hunting otherwise; more precisely, it selects
a1 with probability 0.8 in the discrete states corresponding to [0, 12] × [0, 1], [0, 8] × [1, 2],
[0, 4] × [2, 3], and [0, 2] × [3, 4], and a2 with probability 0.8 for the rest of the state space.
The third policy, called encourage hunting, selects a2 with probability 0.8 in all states.
Throughout the experiments, we used discourage hunting as the behaviour policy, and used
the discrete state corresponding to Nt = 7 and Pt = 1.5 as the starting state s0. Each
batch of training data was generated as a single, uninterrupted trajectory starting in s0,
with actions selected according to the behaviour policy. Hence, the number of samples in a
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Figure 4.1: State probabilities (left) and standard deviations of three estimators (right).
Results averaged over 100, 000 runs. Note the logarithmic scale for the y axis in
the right panel.

batch is the length of this trajectory. We present results estimating the value of the start
state s0 under all policies. Unless otherwise specified, the results are averages over 1000
batches.

As seen in Figure 1(a), the three policies tend to visit different regions of the state
space. In particular, the distribution of states under encourage hunting leads predominantly
to states corresponding to low population numbers, which is very different from the other
two policies. Intuitively, this discrepancy should make estimating the value function for
encourage hunting particularly challenging, given that discourage hunting is used as the
behaviour policy. This intuition is confirmed by our empirical results.

Figure 4.1(b) contains a plot of the standard deviations of the different estimators when
state-dependent hunting is the target policy. Even for a target policy that induces a state
distribution fairly close to the one under the behaviour policy, PSIS and PTIS can have very
large variance for horizons longer than a few time steps.

For the remainder of this section, we further investigate the performance of PSIS-N,
PTIS-N, and MB. We examine the performance of these three estimators in terms of bias
and root mean squared error (RMSE), when either state-dependent hunting or encourage
hunting is the target policy.

For a particular horizon, we can examine the methods’ performance as a function of the
amount of data available, as illustrated in Figures 4.2 and 4.3. As expected, the performance
of both methods improves when increasing the size of the batch, although much slower if
the target policy is very different from the behaviour policy.

PTIS-N exhibits the poorest performance in all settings. The performance difference
is most striking when encourage hunting is the target policy. Encourage hunting has the
reversed action selection probabilities from the behaviour policy, and it induces a completely
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Figure 4.2: RMSE and bias of the 20-step value function estimate for various sample sizes,
using state-dependent hunting as the target policy.
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(a) Default MB reward = 0.
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(b) Default MB reward = 10.

Figure 4.3: RMSE and bias of the 20-step value function estimate for various sample sizes,
using encourage hunting as the target policy. The only difference between the
two graphs is the default value used by the model-based method for Rsa when
nsa = 0. Note that the x axis is different from Figure 4.2, allowing for batch
sizes of up to 500,000 samples.

different state distribution (as seen in Figure 4.1). This suggests that PTIS-N’s performance
is particularly weak when the problem is highly off-policy.

The poor performance of per-trajectory methods is particularly interesting, given that
they are commonly used as a method for evaluating treatment effects from clinical trials
[Robins et al., 2000; Murphy, 2005]. We conjecture that this happens because of at least
two reasons. First, the existing evaluations of multi-stage treatments are based on clinical
trials that typically have very short horizon lengths (two and three stage trials are common),
and for such short horizons the difference between the methods’ performance is not as large.
Second, epidemiologists tend to include information about previous treatment in the state
space, making the set of states accessible in k steps different for all k. In such a setup,
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Figure 4.4: RMSE and bias for various horizons and batches of 500 samples each, using
state-dependent hunting as the target policy. For the bias graph, the line for
PSIS-N overlaps that for the correct value.

methods that take advantage of the Markov property (such as PSIS-N and MB) may offer
fewer benefits.

PSIS-N performed strongly in all settings. The only time that the model-based method
outperformed PSIS-N was when encourage hunting was the target policy, and the default
value used by the model-based method for the state-action pairs (s, a) for which nsa = 0
was Rsa = 0 (Figure 4.3(a)). The good performance of the model-based method in this
setting is likely to be due to the fact that the reward for most states encountered under
encourage hunting is actually very close to zero, because encourage hunting depletes the
animal population. When a different default value was used (Rsa = 10, Figure 4.3(b)), the
model-based method performed noticeably worse, due to the increased bias induced by using
a default reward that was further from the true value.

Figure 4.4 illustrates how the length of the horizon affects performance. The perfor-
mance of all methods degrades as the horizon increases. This is expected, as increasing the
horizon while maintaining the same number of samples means that we effectively have fewer
samples per time step, which increases the variance. However, the ranking of the meth-
ods’ performance remains the same regardless of the horizon. We have observed a similar
phenomenon when using encourage hunting as a target policy.

4.2. Randomly generated MDPs

In this section, we present experiments on a set of randomly generated MDPs. The exper-
iments in the previous section indicated that the model-based method may have reduced
performance due to high bias when there are zero samples for some of the state-action pairs.
Since increasing the total number of available actions increases the probability of having no
samples for a state-action pair, we use the random MDPs to illustrate how the bias of the
model-based method is affected by the number of available actions.

The randomly generated MDPs are similar to those used by Castronovo and Ernst [2012].
Each of the MDPs has 20 states and 5 actions, except for one experiment where we varied
the number of actions. The transition function is generated by randomly selecting, for each
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state-action pair (s, a), 10% of the states as successor states, generating a uniform random
variable in N(s′) ∈ [0, 1] for each of the successor states s′, and then normalizing to obtain
the transition probabilities: P s′sa = N(s′)∑

s′′∈Succ(s,a)N(s′′) .
For states one through 10, the reward for state-action pair (s, a) is equal to zero with 0.9

probability and to a number chosen uniformly randomly in [0, 1] otherwise. For states 11
through 20, the probabilities are reversed (zero with probability 0.1 and a uniform number
with probability 0.9). This is slightly different from Castronovo and Ernst [2012] - they used
the first reward model (the one we used for states 1-10) as a prior for generating deterministic
rewards at all the states in the MDP. The starting state is state 1.

We used a uniform behaviour policy that selected each action with equal probability at
all states. The target policy was one that ascribed 60% of the probability mass to the first
action, with the rest spread equally among the other actions.

Similar to the previous experiment, we computed the bias and RMSE of the different
estimators with respect to the correct value function. We sampled 10 different MDPs, and
for each of the MDPs we generated 1000 batches. The results we will present are averaged
over the resulting 10000 batches.
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Figure 4.5: RMSE and bias of the 20-step value function estimate for various sample sizes
on the random MDPs.

Figure 4.5 illustrates the performance of the methods as a function of the sample size
on a 20-step problem. The results are similar to those observed on the mallard domain,
with PSIS-N having the best performance, the model-based estimator having high RMSE
for small sample sizes due to bias induced by having to use default parameter values when
nsa = 0, and PTIS-N being very slow to converge.

In order to emphasize the effect that having to use default parameter values when nsa = 0
has on the model-based method, we conducted an experiment where we varied the number
of actions for our random MDPs. Our hypothesis was that the probability that some nsa is
zero will increase as the number of actions increases, and therefore the bias of the model-
based method will increase as well. The results, displayed in Figure 4.6, illustrate this
phenomenon. For small sample sizes (Figure 4.6(a)), the bias of the model-based method
increases steeply as the number of available actions increases. In contrast, PSIS-N appears
to be more robust to changes in the size of the action set. For larger sample sizes, P (nsa = 0)
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(a) Batch size = 500 transitions.
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(b) Batch size = 2000 transitions.

Figure 4.6: RMSE and bias of the 20-step value function estimate for various action set sizes
on the random MDPs. The two graphs differ in the number of samples in the
each batch.

decreases, and all methods are affected by the change in the size of the action set in a similar
way (Figure 4.6(b)).

5. Discussion

We studied several off-policy learning algorithms, including two new estimators, PSIS and
PSIS-N, that are per-step versions of importance sampling which take advantage of Markov
assumptions about the model. We briefly discussed the estimators’ bias and consistency,
and presented a detailed empirical analysis of their performance in a case study pertaining
to the management of an animal species. We found that the model-based estimator and the
normalized per-step estimator (PSIS-N) performed particularly well. We also found that the
model-based estimator can suffer from significant bias if no samples are available for some
of the state-action pairs, particularly for problems with many available actions.

We emphasize that the importance sampling estimators require a fixed and known be-
haviour policy. If the behaviour policy is instead estimated from data, we obtain the model-
based estimator (as shown). Cases in which the data is gathered according to multiple
behaviour policies (e.g. gathered from different geographic locations), could also be easily
incorporated in the estimators by appropriate weighting of the different data batches.

The bias and variance of the off-policy estimators were illustrated through the empirical
results. From a theoretical standpoint, there are challenges in providing a formal analysis
of the weighted estimators in the sequential case (horizon > 1). This is an interesting area
for future work, though we expect it may be difficult to obtain closed-form expressions for
these quantities.

As shown in our experiments, it is crucial to assess values for longer time horizons, as the
horizon impacts the value of a policy, as well as the ordering of policies. Our results suggest
that the horizon length should also be an important factor when choosing an estimator.
Some decision-making domains, notably in medicine, deal with relatively short horizons,
and in those cases estimators such as PTIS, which have large variance over long horizons
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but are unbiased, may be preferable. In domains with longer decision horizons, estimators
such as PSIS-N tend to have lower error (though the error increases with horizon length).

One limitation of this work is that the empirical domains are discrete, simulated environ-
ments. Additional experiments with real data would undoubtedly make the analysis more
compelling. However, gathering real data under a new policy in domains such as natural
resource management tends to be expensive, or even impossible. Therefore, ground truth
(V π in our case) is difficult to establish, potentially rendering comparative analyses less
meaningful.

In continuous MDPs, off-policy learning can be applied, but generates further compli-
cations. In particular, the discrepancy between the probability of a trajectory under the
behaviour and the target policy can lead to divergence. Several algorithms have been pro-
posed in order to account for trajectory distribution discrepancies. Precup et al. [2001] use
importance sampling weights to correct for the probability of reaching a specific point in a
trajectory. The resulting estimators are consistent (in the space of representable value func-
tions) but tend to have high variance. Sutton et al. [2009] address the problem of off-policy
learning from on-line data. The main idea is to estimate a secondary set of parameters
(in addition to those describing the value function), which are used to stabilize the value
function weights and prevent divergence. In discrete MDPs, however, all these estimators
are more conservative and hence less sample-efficient than those on which we focused.
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Abstract
EXP3 is a popular algorithm for adversarial multiarmed bandits, suggested and analyzed
in this setting by Auer et al. [2002b]. Recently there was an increased interest in the
performance of this algorithm in the stochastic setting, due to its new applications to
stochastic multiarmed bandits with side information [Seldin et al., 2011] and to multiarmed
bandits in the mixed stochastic-adversarial setting [Bubeck and Slivkins, 2012]. We present
an empirical evaluation and improved analysis of the performance of the EXP3 algorithm in
the stochastic setting, as well as a modification of the EXP3 algorithm capable of achieving
“logarithmic” regret in stochastic environments.

1. Introduction

Multiarmed bandits are the simplest instance of the exploration-exploitation trade-off prob-
lem, which is the basic question in reinforcement learning. There exist two main variants
of this problem: stochastic and adversarial. In stochastic multiarmed bandit problems the
rewards for playing each arm are generated independently from unknown distributions cor-
responding to each arm [Auer et al., 2002a]. In adversarial multiarmed bandit problems a
sequence of rewards is generated for each arm by an adversary before the game starts [Auer
et al., 2002b].

The performance of algorithms for multiarmed bandits is usually evaluated in terms of
regret bounds. In the stochastic setting the regret bounds control the difference between the
reward obtained by the algorithm and the expected reward that would have been obtained if
the algorithm would have played the best arm in all rounds of the game. In the adversarial
setting the regret bounds control the difference between the reward obtained by the algo-
rithm and the reward that could have been obtained if the algorithm would have played in
all rounds the arm corresponding to the best rewards sequence. In both stochastic and ad-
versarial environments we can talk about in-expectation and high-probability regret bounds.

c© 2012 Y. Seldin, C. Szepesvári, P. Auer & Y. Abbasi-Yadkori.
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In-expectation regret bounds are concerned with the expected regret of the algorithm (with
respect to its internal randomization and, in the stochastic case, the stochasticity of the
environment). High-probability regret bounds provide stronger high-probability guarantees
on individual roll-outs of the game. This difference is important to keep in mind when
comparing different results.

There exist stochastic and deterministic strategies for stochastic multiarmed bandits.
Deterministic strategies are based on computing upper confidence bounds for each of the
arms at each round of the game and playing the arm with the highest upper confidence
bound. The simplest algorithm from this family is UCB1 algorithm of Auer et al. [2002a],
which uses Hoeffding’s inequality for computing the upper confidence bounds. Several im-
provements of this algorithm were proposed, which use tighter concentration inequalities
for computing the upper confidence bounds and/or more careful algorithms [Audibert and
Bubeck, 2009; Audibert et al., 2009; Auer and Ortner, 2010; Garivier and Cappé, 2011;
Maillard et al., 2011].

Stochastic algorithms for stochastic multiarmed bandits include Thompson sampling
[Thompson, 1933; Chapelle and Li, 2011; Kaufmann et al., 2012] and EwS algorithm of
Maillard [2011]. Stochastic policies have some practical advantages over deterministic UCB-
type algorithms. In particular, they are easier to apply in the situation of delayed feedback
[Chapelle and Li, 2011].

The most well-known algorithm for adversarial multiarmed bandits is the EXP3.P sug-
gested by Auer et al. [2002b]. In each round of the game EXP3.P picks an arm according
to a Gibbs distribution based on upper confidence bounds for each arm, and plays it.

Most analyses of algorithms for stochastic multiarmed bandits provide in-expectation
regret bounds. Typically these bounds achieve regret of the form O(

∑
{a:∆(a)>0}

ln t
∆(a)),

termed “logarithmic” regret, where ∆(a) is the gap between the expected reward of arm a
and the expected reward of the “best” arm (the one corresponding to the highest expected
reward). In the adversarial case EXP3.P yields Õ(

√
KT ) high-probability regret bound,

where the time horizon T is assumed to be known and Õ hides some logarithmic factors
[Auer et al., 2002b]. Unknown time horizons are treated by using the “doubling trick”.

There is another algorithm for adversarial multiarmed bandits suggested in Auer et al.
[2002b], called EXP3, that picks arms according to a Gibbs distribution based on empirical
importance-weighted rewards of the arms instead of using upper confidence bounds. To
be more precise, the Gibbs distribution is mixed in a carefully designed proportion with a
uniform distribution, which performs the exploration.

We note that there is an important distinction between EXP3 and stochastic algorithms
for stochastic multiarmed bandits mentioned earlier (Thompson sampling and EwS): EXP3
is based on importance-weighted sampling, whereas the other two algorithms are based on
unweighted rewards. Importance-weighted sampling provides certain advantages when mov-
ing to more complex problems, such as stochastic multiarmed bandits with side information
[Seldin et al., 2011]. It is also used as a part of the strategy in mixed adversarial and stochas-
tic settings [Bubeck and Slivkins, 2012]. This motivates our study of the performance of
EXP3 in stochastic environments.

Seldin et al. [2012] observed that the performance of EXP3 in stochastic environments
is comparable to the performance of UCB1 in the “initial phase” of the game (the “initial
phase” corresponds to t < ln(∆)2/∆4, where ∆ is the minimal positive gap). However,
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EXP3 cannot keep up with UCB1 after the “initial phase” and the paper provided only
suboptimal high-probability Õ(K1/3t2/3) regret bound for the algorithm. We note that Auer
et al. [2002b] provided a Õ(

√
KT ) in-expectation regret bound for EXP3 in the adversarial

setting, but no high-probability statement could be derived. The question of whether a high-
probability Õ(

√
Kt) regret bound can be derived in the stochastic setting remained open.

Although there is a high-probability Õ(
√
KT ) regret bound for the EXP3.P algorithm in

the adversarial setting (which directly implies that the same bound holds in the stochastic
setting), Seldin et al. [2012] showed that in practice in the stochastic setting EXP3.P is
significantly inferior to EXP3, which provided the motivation for a deeper study of EXP3.

1.1. Summary of the Main Contributions

In Theorem 1 we provide a Õ(
√
KT ) high-probability regret bound for application of the

EXP3 algorithm in stochastic environments. We note that we analyze EXP3 algorithm with
time-varying learning rate, which is a more elegant approach than the doubling trick.

Theorem 1 is based on Lemma 2, which shows that in stochastic environments the
empirical importance-weighted rewards of all arms are “well-behaved” with high probability.
We note that in adversarial environments the empirical importance-weighted rewards are
not “well-behaved” and additional tools are required for their control, such as EXP3.P.

We also propose and analyze a modification of the EXP3 algorithm that we name
EXP3ELM, which is based on a combination of EXP3 with action elimination (see Al-
gorithm 2 box). EXP3ELM performs identically to EXP3 in the “initial phase” of the game
and comparably to UCB1 after the “initial phase”. In Theorem 3 we prove a “logarithmic”
regret bound for EXP3ELM.

We also provide an empirical evaluation of the performance of EXP3 and EXP3ELM.

2. Problem Setting and Definitions

Let A be a set of K actions (arms) and let a ∈ A denote the actions. Denote by R(a) the
expected reward of action a and let p(·|a) be the unknown reward distribution underlying
a. We assume that the support of p(·|a) is contained in the [0,1] interval. Let πt be a
distribution over A that is played at round t of the game (a policy). Let {A1, A2, . . . }
be the sequence of actions played, such that At is distributed according to πt and πt is
computed based on the history of past observations, Ht−1 ≡ (A1, . . . , At−1, R1, . . . , Rt−1),
where R1, R2, . . . is the sequence of observed rewards, so that Rt is distributed according to
p(·|At).

For t ≥ 1 and a ∈ {1, . . . ,K} define a set of random variables Rat (the importance
weighted rewards) and their cumulative sum R̂t(a) as:

Rat ≡
Rt
πt(a)

I{At=a} =

{ 1
πt(a)Rt, if At = a;

0, otherwise;
R̂t(a) ≡

t∑
τ=1

Raτ .

Note that E[Rat |Ht−1] = R(a) and E[R̂t(a)] = tR(a).
Let a∗ ≡ arg maxaR(a) be the “best” action in the game (if there are multiple “best”

actions, pick any of them arbitrarily). We define the regret and empirical regret of an action
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t = 0; ε0 = 1
K ; ∀a: R̂0(a) = 0.

for t = 1, 2, . . . do

εt = min

{
1
K ,
√

lnK
Kt

}
.

∀a: ρ̃t(a) = (1−Kεt) eεt−1R̂t−1(a)∑
a′ e

εt−1R̂t−1(a
′) +εt.

Draw At according to ρ̃t and play it.
Observe reward Rt.
∀a: R̂t(a) = R̂t−1(a) + Rt

ρ̃t(a)I{a=At}.
end
Algorithm 1: EXP3.

Input: Confidence parameter δ.
Initialization: t = 0; ε0 = 1

K ; A0 = A;
B = 4(e− 2)

(
2 lnK + ln 2

δ

)
; ∀a: R̂0(a) = 0;

for t = 1, 2, . . . do

εt = min

{
1
K ,
√

lnK
Kt

}
.

∀a ∈ At:
ρ̃t(a) = (1− |At|εt) eεt−1R̂t−1(a)∑

a′∈At
eεt−1R̂t−1(a

′) + εt.

Draw At ∈ At according to ρ̃t and play it.
Observe reward Rt.
∀a: R̂t(a) = R̂t−1(a) + Rt

ρ̃t(a)I{a=At}.
∀a ∈ At: VRt(a) = VRt−1(a) + 1

ρ̃t(a) .
At = At−1\{
a : R̂maxt − R̂t(a) >

√
B(VRt(â

∗
t ) + VRt(a))

}
.

end
Algorithm 2: EXP3ELM.

a by:
∆(a) ≡ R(a∗)−R(a), ∆̂t(a) ≡ R̂t(a∗)− R̂t(a).

Note that R̂t(a)− tR(a) is a martingale. The variance of this martingale satisfies:

t∑
τ=1

E
[
(Raτ −R(a))2

∣∣Hτ−1

]
=

t∑
τ=1

E
[
(Raτ )2

∣∣Hτ−1

]
− tR(a)2 ≤

t∑
τ=1

πt(a)
(Rt)

2

πt(a)2
=

t∑
τ=1

1

πτ (a)
,

where we used the fact that Rt ≤ 1. Let VRt(a) ≡
∑t

τ=1
1

πτ (a) be the upper bound on the

variance of the martingale R̂t(a)− tR(a).
Finally, define the highest empirical reward at round t and the empirically best arm at

round t as:
R̂maxt ≡ max

a
R̂t(a), â∗t ≡ arg max

a
R̂t(a).

3. Algorithms

In this section we present two learning algorithms that we are using in this paper. The
first algorithm is a minor modification of the EXP3 algorithm of Auer et al. [2002b]. The
difference is that the learning rate εt, which is equal to the exploration rate, is changing
with time.

The EXP3 algorithm keeps sampling “bad” actions at the rate of εt =
√

lnK
Kt and,

therefore, its regret is Ω(
√
Kt) and it cannot compete with UCB1 after the “initial phase”

of the game. This shortcoming is fixed in the EXP3ELM algorithm in the Algorithm 2 box.
EXP3ELM maintains a set At of “active” actions. Initially, A0 = A and the actions are
withdrawn from the active set as soon as it becomes evident with high probability that they
are suboptimal.
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(a) K = 2, ∆ = 0.1 (b) K = 10, ∆ = 0.1 (c) K = 100, ∆ = 0.1

(d) K = 2, ∆ = 0.01 (e) K = 10, ∆ = 0.01 (f ) K = 100, ∆ = 0.01

Figure 4.1: Comparison of EXP3, EXP3ELM, UCB1, KL-UCB, EwS, and
Thompson sampling. The legend in figure (f) corresponds to all the figures. Solid
lines represent the mean performance over the experiments and dashed lines represent
the mean plus one standard deviation over the ten repetitions of the corresponding
experiment. In figures (c) - (f) the number of rounds was insufficient for arms elim-
ination to take place, therefore, the behavior of EXP3ELM is identical to EXP3 and
EXP3ELM is omitted from the figures. Enlarged version of the figure is provided in
the supplementary material.

4. Experimental Results

Before we dive into the analysis of the algorithms we present several experimental results.
We consider stochastic multiarmed bandit problem with Bernoulli rewards. For all the
suboptimal arms the rewards are Bernoulli with bias 0.5 and for the single best arm the
reward is Bernoulli with bias 0.5 + ∆. We run the experiments with K = 2, K = 10, and
K = 100, and ∆ = 0.1 and ∆ = 0.01 (in total, six combinations of K and ∆). We run each
game for 107 rounds and make ten repetitions of each experiment.

We compare EXP3 and EXP3ELM algorithms presented in the previous section with
UCB1 [Auer et al., 2002a], KL-UCB [Garivier and Cappé, 2011; Maillard et al., 2011] (we use
the version of the algorithm suggested in Garivier and Cappé [2011] with constant c = 3),
EwS [Maillard, 2011], and Thompson sampling [Thompson, 1933; Kaufmann et al., 2012].
From the experiments we see that EXP3 is superior to UCB1 in the “initial phase” of the game
and EXP3ELM is identical to EXP3 in the “initial phase” and comparable to UCB1 after
the “initial phase”. The KL-UCB algorithm is a much stronger competitor. Nevertheless,
for the hardest “needle in a haystack” problems (∆ = 0.01 and K = 10 and 100) EXP3
performs comparably and, in the hardest case, even slightly better. EwS and Thompson
sampling are clear leaders, however, we remind that EXP3 is based on importance-weighted
sampling and its study in the stochastic setting is of independent interest.
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5. Analysis

In this section we present an analysis of the EXP3 and EXP3ELM algorithms. For the rigor-
ous analysis we consider a slightly modified version of the algorithms that we name EXP3C
and EXP3ELMC. The modification reduces the learning rate by a factor of 1/

√
C lnK

(namely, we take εt = min
{

1/
√
CKt, 1/(2K)

}
), where C is defined in Theorem 1. We

point out that C depends on the confidence parameter δ, but not on the time horizon. In
practice, the reduction of the learning rate reduces the performance. The elimination rule
in the modified EXP3ELMC algorithm uses a slightly weaker deterministic upper bound on
the variance of the martingales:

At = At−1 \
{
a : R̂maxt − R̂t(a) > 2

√
CKt

}
. (1)

We let R̂t(EXP3C) ≡
∑t

τ=1Rτ denote the reward of EXP3C after t rounds. Similarly,
R̂t(EXP3ELMC) is the cumulative reward of EXP3ELMC after t rounds.

Theorem 1 Let δ ∈ (0, 1) and define C ≡ 4(e − 2)
(
lnK + ln 4

δ

)
e2. Then with probability

greater than 1− δ the regret of EXP3C is bounded as:

tR(a∗)− R̂t(EXP3C) ≤ (1 + lnK)
√
CKt+ 2(3e− 4)

√
Kt

C
+ (e− 2)

√
1

2
t ln

2

δ
+ 2K. (2)

The key element in the proof of Theorem 1 are inequalities (3) and (4) in the following
lemma, which show that the empirical rewards of all actions in EXP3 are “well-behaved”
and that the empirical reward of the best action a∗ always stays “at the top”. (The proofs
are provided at the end of this section.)

Lemma 2 In the EXP3C algorithm with probability greater than 1− δ
2 , for all t:

R̂maxt ≤ tR(a∗) +
√
CKt, (3)

R̂t(a
∗) ≥ tR(a∗)−

√
CKt, (4)

VRt(a
∗) ≤ C ′Kt, (5)

1

ρ̃t(a∗)
≤ C ′K, (6)

If R̂t−1(a) ≥ (t− 1)R(a∗)−
√
CK(t− 1), then

1

ρ̃t(a)
≤ C ′K, (7)

where C ′ = e2 and C is defined in Theorem 1.

It is important to note that in the EXP3.P algorithm for the adversarial case the con-
trol over empirical importance-weighted rewards is achieved by adding the variance of the
rewards to the exponent of the Gibbs distribution in ρ̃t. As it follows from Lemma 2, in the
stochastic case the empirical importance-weighted rewards are controlled directly.

Finally, we show that EXP3ELM achieves “logarithmic” regret (ln t term does not appear
explicitly in the bound, but it is replaced by ln(1/δ) in the definition of C). The proof of
this theorem is provided in the supplementary material.
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Theorem 3 Let δ ∈ (0, 1) and C as defined in Theorem 1, let RHS (2) be the right hand
side of (2), then with probability greater than 1− δ the regret of EXP3ELMC is bounded as:

tR(a∗)− R̂t(EXP3ELMC) ≤ min

{
RHS (2), 4CK

∑
a

1

∆(a)

}
.

5.1. Proofs

Let ρt(a) ≡ eεt−1R̂t−1(a)

Z(ρt)
denote the non-smoothed version of ρ̃t, where Z(ρt) ≡

∑
a e

εt−1R̂t−1(a)

is the normalization factor. Also, let ρεt (a) ≡ eεR̂t−1(a)

Z(ρεt )
and Z(ρεt ) ≡

∑
a e

εR̂t−1(a) denote the
corresponding quantities, where instead of the “native” value εt−1 we use a different ε.

We use the following two results from prior work. The first result from Auer et al.
[2002b] relates the rewards Rt to the logarithm of the fraction of normalization coefficients.
Note that in the definition of ρt we have εt−1, so Z(ρ

εt−2

t ) corresponds to ρt with ε from the
definition of ρt−1.

Lemma 4 ([Auer et al., 2002b])

Rt ≥ (1−Kεt)
1

εt
ln
Z(ρ

εt−2

t )

Z(ρt−1)
− (e− 2)εt

1

ρ̃t(At)
(8)

The second result from [Maillard, 2011, Section 3.2] bounds the sum of logarithms of the
fractions of normalization coefficients.

Lemma 5 ([Maillard, 2011])

t∑
τ=1

1

ετ
ln
Z(ρ

ετ−2
τ )

Z(ρτ−1)
≥ R̂t(a∗)−

lnK

εt
.

We also prove the following lemma that takes care of the last term in (8). Lemma 5
together with Lemma 6 allow us to work with a varying learning rate.

Lemma 6 With probability greater than 1− δ
2 , for all t:

t∑
τ=1

ετ
1

ρ̃τ (Aτ )
≤ 2

√
Kt

C
+

√
1

2
t ln

2

δ
.

Proof of Lemma 6 We have E
[

1
ρ̃t(At)

∣∣∣∣Ht−1

]
=
∑

a ρ̃t(a) 1
ρ̃t(a) = K, which implies that∑t

τ=1 ετ

(
1

ρ̃τ (Aτ ) −K
)
is a martingale. Since εt 1

ρ̃t(At)
∈ (0, 1], we have by Hoeffding-Azuma’s

inequality, with probability greater than 1− δ
2 :

t∑
τ=1

ετ
1

ρ̃τ (Aτ )
≤ K

t∑
τ=1

ετ +

√
1

2
t ln

2

δ
≤ 2

√
Kt

C
+

√
1

2
t ln

2

δ
.
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By martingale stopping argument, similar to the one used in the proof of Bernstein’s in-
equality (see supplementary material), the statement holds for all t simultaneously.

Now we are ready to prove Theorem 1. (The proof of Lemma 2 is provided below.)
Proof of Theorem 1 Summing over t the two sides of Lemma 4 and applying Lemmas 5,
2, and 6, we obtain with probability greater than 1− δ:

t∑
τ=1

Rt ≥
t∑

τ=1

(1−Kετ )
1

ετ
ln
Z(ρ

ετ−2
τ )

Z(ρτ−1)
− (e− 2)

t∑
τ=1

ετ
1

ρ̃τ (Aτ )

=

t∑
τ=1

1

ετ
ln
Z(ρ

ετ−2
τ )

Z(ρτ−1)
−K

t∑
τ=1

ετ
1

ετ
ln
Z(ρ

ετ−2
τ )

Z(ρτ−1)
− (e− 2)

t∑
τ=1

ετ
1

ρ̃τ (Aτ )

≥ R̂t(a∗)−
lnK

εt
− 2(e− 1)K

t∑
τ=1

ετ − 2(e− 2)

√
Kt

C
− (e− 2)

√
1

2
t ln

2

δ
(9)

≥ tR(a∗)−
√
CKt−

√
CKt lnK − 4(e− 1)

√
Kt

C
− 2(e− 2)

√
Kt

C
− (e− 2)

√
1

2
t ln

2

δ
− 2K

(10)

= tR(a∗)− (1 + lnK)
√
CKt− 2(3e− 4)

√
Kt

C
− (e− 2)

√
1

2
t ln

2

δ
− 2K,

where in (9) we applied Lemmas 5 and 6 and used the following upper bound on 1
εt

ln
Z(ρ

εt−2
t )

Z(ρt−1) ,
which follows from Lemma 4 (by definition εt ≤ 1

2)

1

εt
ln
Z(ρ

εt−2

t )

Z(ρt−1)
≤ 1

1−Kεt

(
Rt + (e− 2)εt

1

ρ̃t(At)

)
≤ 2(1 + (e− 2)) = 2(e− 1),

and in (10) we applied Lemma 2. (By the union bound, Lemmas 2 and 6 hold simultaneously
with probability greater than 1− δ.)

Proof of Lemma 2 We prove the lemma by induction. For t = 1 all the claims of the
lemma hold. We assume that the claims hold for t− 1 and show that this implies that they
also hold for t.

We start with the proof of (6). If ρt(a∗) ≥ 1
K we are done. Otherwise:

1

ρ̃t(a∗)
≤ 1

ρt(a∗)
=

∑
a′ e

εt−1R̂t−1(a′)

eεt−1R̂t−1(a∗)

≤
∑
a′

e
εt−1

(
R̂maxt−1 −(t−1)R(a∗)+

√
CK(t−1)

)
≤ Ke2εt−1

√
CK(t−1) = C ′K,

where we used the fact that R̂t−1(a′) ≤ R̂maxt−1 for all a′ and the induction assumption
R̂t(a

∗) ≥ tR(a∗)−
√
CKt.

Inequality (5) follows from (6) and inequality (4) follows from (5) by Bernstein’s inequal-
ity (see supplementary material).
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Now we prove (7). We note that the proof of (6) was based on the induction assumption
(4) for t− 1. In (7) we assumed that R̂t−1(a) ≥ (t− 1)R(a∗)−

√
CK(t− 1) and using this

assumption the proof is identical.
It is now left to prove (3). If R̂t−1(a) < (t− 1)R(a∗)−

√
CK(t− 1) then

R̂t(a) = R̂t−1(a) +Rat ≤ (t− 1)R(a∗)−
√
CK(t− 1) +

1

εt
≤ tR(a∗) +

√
CKt.

Otherwise, we are in the case R̂t−1(a) ≥ (t− 1)R(a∗)−
√
CK(t− 1). Let

`(t) ≡ max
τ

{
τ :

τ<t and
R̂τ−1(a)<(τ−1)R(a∗)−

√
CK(τ−1)

and R̂τ (a)≥τR(a∗)−
√
CKτ

}
.

`(t) is the last time before t when R̂τ (a) crosses the τR(a∗) −
√
CKτ line from below. If

R̂τ (a) always stays above this line, define `(t) ≡ 1.
Let R̂t2t1(a) ≡

∑t2
τ=t1+1R

a
τ be the sub-sum of the rewards of arm a from time t1+1 to time

t2. By our assumption and the definition of `(t) we have R̂τ (a) ≥ (t−1)R(a∗)−
√
CK(t− 1)

for all `(t) ≤ τ < t. Furthermore, R̂t`(t) − (t − `(t))R(a) is a martingale and, by (7), the
variance of this martingale satisfies

t∑
τ=`(t)+1

E
[
(R̂aτ −R(a))2|Hτ−1

]
≤

t∑
τ=`(t)+1

1

ρ̃τ (a)
≤ C ′K(t− `(t)).

Therefore, by Bernstein’s inequality:

R̂t`(t) ≤ (t− `(t))R(a) +
√
CK(t− `(t)) ≤ (t− `(t))R(a∗) +

√
CKt.

As well,

R̂`(t)(a) = R̂`(t)−1(a) +
1

ε`(t)
≤ (`(t)− 1)R(a∗)−

√
CK(`(t)− 1) +

1

ε`(t)
≤ `(t)R(a∗).

Putting it together we obtain:

R̂t(a) = R̂`(t)(a) + R̂t`(t)(a) ≤ `(t)R(a∗) + (t− `(t))R(a∗) +
√
CKt = tR(a∗) +

√
CKt.

5.2. Comparison with Other Regret Bounds

We stress out that our results in Theorems 1 and 3 and Lemma 2 are high-probability results,
as opposed to in-expectation analysis that is provided for most other algorithms for stochas-
tic multiarmed bandits, so the comparison is not completely straightforward. In Theorem 3
we obtain an O((

√
Kt) lnK) regret in the “initial phase” of the game and O(K lnK

∑
a

1
∆(a))

after the “initial phase” of the game. The bound for the “initial phase” can be compared
with O(

√
KT ln(K lnK)√

lnK
) in-expectation regret bound for an improved version of UCB [Auer
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and Ortner, 2010]. We lose slightly less than a factor of
√

lnK, however, we achieve a
stronger high-probability statement. We also note that the

√
lnK factor can be slightly

reduced by tuning C. The regret bound after the “initial phase” can be compared with the
O(ln t

∑
a

1
∆(a)) in-expectation regret bound for the UCB1 algorithm [Auer et al., 2002a].

We do not have the ln t factor since we eliminate arms, but this factor will come back if
we replace the elimination by more intelligent exploration schedule. On the other hand, we
have K lnK factor in our bound, but, as in the case with the “initial phase”, we provide a
stronger high-probability statement.

It is also interesting to compare our result with the analysis of EXP3 and EXP3.P algo-
rithms for adversarial multiarmed bandits in Auer et al. [2002b]. In Theorem 1 we provide a
high-probability O(lnK

√
Kt) regret bound for EXP3 in the stochastic setting. This can be

compared with O(
√
KT lnK) in-expectation regret bound for EXP3 and O(

√
KT ln(KT ))

high-probability regret bound for EXP3.P in the adversarial setting. (We note that Auer
et al. [2002b] assume that the time horizon T is known and tune the learning rate based
on this knowledge. A similar in-expectation regret bound for application of EXP3 with
time-varying learning rate to adversarial bandits is provided by Maillard [2011].) The main
message of Theorem 1 and Lemma 2 is that in the stochastic setting we can apply Gibbs sam-
pling based on the empirical rewards instead of Gibbs sampling based on upper confidence
bounds used by EXP3.P algorithm for adversarial environments.

6. Discussion

We presented a high-probability analysis of the EXP3 algorithm in stochastic environments
and designed a modification of EXP3 that performs identically to EXP3 in the “initial
phase” of the game and comparably to UCB1 after the “initial phase”. The main distinction
of the proposed algorithm from existing algorithms for stochastic multiarmed bandits is that
it is based on importance-weighted sampling. We provided a comprehensive study of the
behavior of importance-weighted sampling in stochastic environments.
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Supplementary Material

Appendix A. Proof of Theorem 3

For the proof of Theorem 3 we need one small lemma.

Lemma 7
if R̂t−1(a) ≥ R̂maxt−1 − 2

√
CK(t− 1), then

1

ρ̃t(a)
≤ C ′K (11)

and for all actions in the active set At at time t, we have VRt(a) ≤ C ′Kt.

Proof of Lemma 7 We start with the proof of (11). If ρt(a) ≥ 1
K we are done. Otherwise,

1

ρ̃t(a)
≤ 1

ρt(a)
=

∑
a′ e

εt−1R̂t−1(a′)

eεt−1R̂t(a)

≤
∑
a′

e
εt−1

(
R̂maxt−1 −R̂maxt−1 +2

√
CK(t−1)

)
=
∑
a′

e2εt−1

√
CK(t−1) = C ′K,

where we used that fact that R̂t−1(a′) ≤ R̂maxt−1 for all a′ and the assumption R̂t−1(a) ≥
R̂maxt−1 − 2

√
CK(t− 1). Finally, as long as an action a is in the active set, the precondition

of (11) holds and, therefore, we obtain VRt(a) =
∑t

τ=1
1

ρ̃τ (a) ≤ C
′Kt.

Proof of Theorem 3 By inequalities (3) and (4) and the definition of the elimination rule,
with probability greater than 1− δ the best action a∗ is never eliminated by EXP3ELMC.

Now we bound the number of times that suboptimal actions are played. As long as
action a is active, by Bernstein’s inequality and the bound on VRt(a) in Lemma 7, with
probability greater than 1− δ we have R̂t(a) ≤ tR(a) +

√
CKt. On the other hand, R̂maxt ≥

R̂t(a
∗) ≥ tR(a∗)−

√
CKt. Thus, with probability greater than 1− δ:

R̂maxt − R̂t(a) ≥ t∆(a)− 2
√
CKt. (12)

By the elimination rule (1), an action a is eliminated, at the latest, when the right hand
side of (12) is greater than 2

√
CKt, which means that with probability greater than 1 − δ

each suboptimal action is eliminated after at most 4CK
∆(a)2

rounds. The cumulative regret for
playing action a with regret ∆(a) over 4CK

∆(a)2
rounds is 4CK

∆(a) . Summing over the actions we
obtain the result of the theorem.

Appendix B. Bernstein’s Inequality

We used the following form of Bernstein’s inequality, which is based on a fairly standard
martingale stopping argument [Freedman, 1975; Abbasi-Yadkori et al., 2011].
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Theorem 8 (Bernstein’s Inequality) Let X1, X2, . . . be a martingale difference sequence,
such that |Xt| ≤ αt for an increasing deterministic sequence α1, α2, . . . with probability 1.
LetMt ≡

∑t
τ=1Xτ be martingale. Let V̄1, V̄2, . . . be a sequence of deterministic upper bounds

on the variance Vt ≡
∑t

τ=1E[X2
τ |X1, . . . , Xτ−1] of the martingale Mt, such that V̄t-s satisfy√

ln 2
δ

(e−2)V̄t
≤ 1

αt
. Then with probability greater than 1− δ for all t:

|Mt| ≤ 2

√
(e− 2)V̄t ln

2

δ
.

The theorem is based on the following lemma [Freedman, 1975; Beygelzimer et al., 2011].

Lemma 9 For Mt and Vt defined in Theorem 8 and λt ∈ [0, 1
αt

]:

E
[
eλtMt−(e−2)λ2tVt

]
≤ 1.

Proof of Theorem 8. Define the stopping time t?:

t? ≡ min

{
t : |Mt| > 2

√
(e− 2)V̄t ln

2

δ

}
.

Define the stopped martingale difference sequence by Xt?
t ≡ XtIt≤t? . We have |Xt?

t | ≤ αt
for all t. Clearly, the stopped martingale difference sequence is also a martingale difference
sequence. Define by M t?

t ≡
∑t

τ=1X
t?
t the stopped martingale and by V t?

t its conditional
variance process. Clearly, V t?

t ≤ V̄ t?
t? for all t. Hence, we have:

E
[
eλt?M

t?

t −(e−2)λ2
t?
V̄t?
]
≤ E

[
eλt?M

t?

t −(e−2)λ2
t?
V t
?

t

]
≤ 1.

From here, by Markov’s inequality, with probability greater than 1− δ
2 :

λt?M
t?

t − (e− 2)λ2
t? V̄t? ≤ ln

2

δ
+ lnE

[
eλt?M

t?

t −(e−2)λ2
t?
V̄t?
]
≤ ln

2

δ
.

By applying the same argument to the negative martingale −Mt and taking λt? ≡
√

ln 2
δ

(e−2)V̄t?

we obtain that with probability greater than 1− δ:

|M t?

t | ≤
ln 2

δ

λt?
+ (e− 2)λ2

t? V̄t? = 2

√
(e− 2)V̄t? ln

2

δ

Finally, we have:

P

{
∃t : |Mt| > 2

√
(e− 2)V̄t ln

2

δ

}
= P {t? <∞} = P

{
|M t?

t? | > 2

√
(e− 2)V̄t? ln

2

δ
, t? <∞

}

≤ P

{
|M t?

t? | > 2

√
(e− 2)V̄t? ln

2

δ

}
≤ δ
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Appendix C. Enlarged Version of Figure 4.1

(a) K = 2, ∆ = 0.1 (b) K = 2, ∆ = 0.01

(c) K = 10, ∆ = 0.1 (d) K = 10, ∆ = 0.01

(e) K = 100, ∆ = 0.1 (f ) K = 100, ∆ = 0.01

Figure C.1: Enlarged version of Figure 4.1. The columns in this figure correspond to the
rows in Figure 4.1. Please, see the caption of Figure 4.1 for explanations.
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Abstract

Temporal-difference (TD) networks (Sutton and Tanner, 2004) are a predictive represen-
tation of state in which each node is an answer to a question about future observations
or questions. Unfortunately, existing algorithms for learning TD networks are known to
diverge, even in very simple problems. In this paper we present the first sound learning rule
for TD networks. Our approach is to develop a true gradient descent algorithm that takes
account of all three roles performed by each node in the network: as state, as an answer,
and as a target for other questions. Our algorithm combines gradient temporal-difference
learning (Maei et al., 2009) with real-time recurrent learning (Williams and Zipser, 1994).
We provide a generalisation of the Bellman equation that corresponds to the semantics of
the TD network, and prove that our algorithm converges to a fixed point of this equation.

1. Introduction

Representation learning is a major challenge faced by machine learning and artificial in-
telligence. The goal is to automatically identify a representation of state that can be up-
dated from the agent’s sequence of observations and actions. Predictive state representations
(PSRs) provide a promising approach to representation learning. Every state variable is ob-
servable rather than latent, and represents a specific prediction about future observations.
The agent maintains its state by updating its predictions after each interaction with its en-
vironment. It has been shown that a small number of carefully chosen predictions provide a
sufficient statistic for predicting all future experience; in other words that those predictions
summarise all useful information from the agent’s previous interactions [Singh et al., 2004].
The intuition is that an agent which can effectively predict the future will be able to act
effectively within its environment, for example to maximise long-term reward.

Temporal-difference networks (TD networks) are a type of PSR that may ask compo-
sitional predictions, not just about future observations, but about future state variables
(i.e. predictions of predictions). This enables TD networks to operate at a more abstract
level than traditional PSRs. However, temporal-difference networks suffer from a major
drawback: the learning algorithm may diverge, even in simple environments.

The main contribution of this paper is to provide a sound and non-divergent learning
rule for TD networks and related architectures. Unlike previous TD network learning rules,
our approach is based on a true gradient descent algorithm. It uses gradient temporal-
difference (GTD) learning to account for the compositions of predictions into the future;
and backpropagation through time (BPTT) [Rumelhart et al., 1986] or real-time recurrent
learning (RTRL) [Williams and Zipser, 1989] to correctly account for the full history of
previous state variables.

c© 2012 D. Silver.
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2. Gradient Temporal-Difference Learning

A key problem in reinforcement learning is to estimate the total discounted reward from
a given state, so as to evaluate the quality of a fixed policy. In this section we consider a
Markov reward process with state space S, transition dynamics from state s to s′ given by
Ts,s′ = P [s′|s], reward r given by Rs = E [r|s], and discount factor 0 < γ < 1. The return
counts the total discounted reward from time t, Rt =

∑∞
k=0 γ

krt+k, and the value function
is the expected return from state s, Vs = E [Rt | st = s]. The Bellman equation defines a
recursive relationship, V = R+γT V . This equation has a unique fixed point corresponding
to the true value function.

In general, the transition dynamics T and reward functionR are unknown. Furthermore,
the number of states |S| is often large, and therefore it is necessary to approximate the true
value function Vs using a function approximator Vs = f(s, θ) with parameters θ. These
parameters can be updated by stochastic gradient descent, so as to minimise the mean
squared error between the value function and the return, ∆θt = α(Rt−V θ

st)∇θV
θ
st , where α is

a scalar step-size parameter. However, the return is high variance and also unknown at time
t. The idea of temporal-difference (TD) learning is to substitute the return Rt with a lower
variance, one-step estimate of value, called the TD target : rt+γV θ

st+1
. This idea is known as

bootstrapping [Sutton, 1988], and leads to the TD learning update, ∆θt = αδt∇θV θ
st , where

δt is the TD error δt = rt+γV
θ
st+1
−V θ

st . Temporal-difference learning is particularly effective
with a linear function approximator V θ

s = φ(s)>θ. Unfortunately, for non-linear function
approximation, or for off-policy learning, TD learning is known to diverge [Tsitsiklis and
Van Roy, 1997; Sutton et al., 2009].

Temporal-difference learning is not a true gradient descent algorithm, because it ignores
the derivative of the TD target. Gradient temporal-difference (GTD) learning addresses
this issue, by minimising an objective function corresponding to the error in the Bellman
equation, by stochastic gradient descent. This objective measures the error between value
function V θ and the corresponding target given by the Bellman equation R+ γT V θ. How-
ever, the Bellman target typically lies outside the space of value functions that can be
represented by function approximator f . It is therefore projected back into this space
using a projection Πθ. This gives the mean squared projected Bellman error (MSPBE),
J(θ) = ||V θ − Πθ(R + γT V θ)||2ρ, where the squared norm || · ||2ρ is weighted by the sta-
tionary distribution ρ(s) of the Markov reward process. To ensure tractable computation
when using a non-linear function approximator f , the projection operator Πθ is a linear
projection onto the tangent space of V θ, Πθ = Φθ(Φ

>
θ DΦθ)

−1Φ>θ D, where D is the diagonal
matrix D = diag(ρ); and Φθ is the tangent space of V θ, where each row is a value gradient
φ(s) = (Φθ)s,· = ∇θV θ

s .
TheGTD2 algorithm minimises the MSPBE by stochastic gradient descent. The MSPBE

can be rewritten as a product of three expectations,

J(θ) = E [φ(s)δ]> E
[
φ(s)φ(s)>

]−1
E [φ(s)δ] (1)

which can be written as J(θ) = E [φ(s)δ]>wθ where wθ = E
[
φ(s)φ(s)>

]−1
E [φ(s)δ]. The

GTD2 algorithm simultaneously estimates w ≈ wθ by stochastic gradient descent; and also
minimises J(θ) by stochastic gradient descent, assuming that the current estimate is correct,
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Figure 3.1: A TD network with 3 predictions and 1 observation. The question network
gives the semantics of the predictions: v∗1 is the expected observation at the
next time-step; v∗2 is the expected observation after two time-steps; and v∗3 is
the expected sum of future observations. The structure of the question network
is specified by weight matrices P,Q; black edges have weight 1 and grey edges
have weight 0. The answer network specifies the mechanism by which answers
to these questions are updated over time. Its weight matrices A,B are adjusted
so that v ≈ v∗.

i.e. that w = wθ. This gives the following updates, applied at every time-step t with step-size
parameters α and β,

ψt = (δt − φ(st)
>w)∇2

θVsw (2)

∆θt = α
(
φ(st)− γφ(st+1))(φ(st)

>w
)
− ψt (3)

∆wt = βφ(st)
(
δt − φ(st)

>w
)

(4)

The GTD2 algorithm converges to a local minimum of J(θ), even when using non-linear
function approximation [Maei et al., 2009] or off-policy learning [Sutton et al., 2009]. The
TDC algorithm minimises the same objective but using a slightly different derivation,

∆θt = α
(
φ(st)δ − γφ(st+1)(φ(st)

>w)
)
− ψt (5)

3. Temporal Difference Networks

We focus now on the uncontrolled case in which an agent simply receives a time series of
m-dimensional observations ot at each time-step t. A history ht is a length t sequence of
observations, ht = o1...ot. We assume that histories are generated by a Markov chain with
a probability 1− γ of terminating after every transition, to give a history of length τ . The
Markov chain has (unknown) transition probabilities Th,ho = γP [ot+1 = o | ht = h, τ > t],
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with zero probability for all other transitions. This Markov chain has a well-defined distri-
bution d(h) over the set H of all histories, d(ht) = P [τ = t, o1...ot = ht].

A state representation is a function v(h) mapping histories to a vector of state variables
vi(h). For a state representation to be usable online, it must be incremental – i.e. the state
can be updated from one observation to the next, v(ht+1) = f(v(ht), ot+1). A predictive state
representation (PSR) is a state representation in which all state variables are predictions
of future events. The target of a prediction is a function of future observations, zt =
g(ot+1, ot+2, ...). The true answer for a prediction is the expected value of the target, given
a history of observations h, v∗(h) = E [zt | ht = h]. The PSR learns an estimated answer
v(h, θ) ≈ v∗(h) to each prediction, by adjusting parameters θ. The answer vector v(ht, θ) is
the state representation used by the agent at time-step t. For example, in the original PSR,
g was a vector of indicator functions over future observations, and f was a linear function
[Singh et al., 2004].

A temporal-difference (TD) network is comprised of a question network and an answer
network. The question network defines the semantics of the compositional predictions, i.e.
how a target depends on subsequent targets. We focus here on linear question networks,
where the target is a linear combination of the subsequent target and observation, zt =
Pot+1 +Qzt+1. Linear question networks satisfy a Bellman network equation,

v∗(ht) = E [zt | ht] = E [Pot+1 +Qzt+1 | ht] = E [Pot+1 +Qv∗(ht+1) | ht] (6)

The simplest predictions are grounded directly in observations, for example the target might
be the observation at the next time-step, v∗1(h) = E [ot+1 | ht = h]. A compositional predic-
tion might be the expected value at time-step t+ 1 of the expected observation at time-step
t+ 2, v∗2(h) = E [v∗1(ht+1) | ht = h]. Compositional questions can also be recursive, so that
questions can be asked about temporally distant observations. For example, a value function
can be represented by a prediction of the form v∗3(h) = E [ot + v∗3(ht+1) | ht = h], where ot
can be viewed as a reward, and v∗3 is the value function for this reward.

The answer network is a non-linear representation of state containing n state variables.
Each state variable vi(h) represents the estimated answer to the ith prediction. The answers
are updated incrementally by combining the state v(ht−1) at the last time-step – the previous
answers – with the new observation ot. In the original TD network paper, the answers were
represented by a recurrent neural network, although other architectures are possible. In
this case, v(ht, θ) = σ(Aot + Bv(ht−1)) where σ(x) is a non-linear activation function with
derivative σ′(x); θ = [A,B] is an n× (m+ n) weight matrix; and v(h0) := 0 by definition.

The key idea of temporal-difference networks is to train the parameters of the answer
network, so that the estimated answers approximate the true answers as closely as possible.
One way to measure the quality of our answers is using the Bellman network equation,
i.e. to seek answers v(h, θ) that (approximately) satisfy this equation. One approach to
solving the Bellman network equation is by bootstrapping, i.e. by using the right hand side
of the equation, Pot+1 +Qv(ht+1, θ), as a surrogate for the true value function v∗(ht). The
parameters of the answer network can then be adjusted online by gradient descent, so as to
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minimise the mean squared error, MSE(θ) = E
[∑n

i=1 (v∗i (ht)− vi(ht, θ))
2
]
,

−1

2
∇θMSE(θ) = E

[
n∑
i=1

(v∗i (ht)− vi(ht, θ))∇θvi(ht, θ)

]
= E [φ(ht, θ) (v∗(ht)− v(ht, θ))] (7)

where φ(h, θ) is a matrix combining the gradients for each answer,

φ(h, θ) = [∇θv1(h, θ), ...,∇θvn(h, θ)] (8)

Sampling the gradient gives a stochastic gradient descent algorithm,

∆θ = αφ(ht, θ) (v∗(ht)− v(ht, θ))

≈ αφ(ht, θ) (Pot+1 +Qv(ht+1, θ)− v(ht, θ))

= αφ(ht, θ)δ(ht+1, θ) (9)

where α is a scalar step-size; and δ(ht+1, θ) is the TD error,

δ(ht+1, θ) := Pot+1 +Qv(ht+1, θ)− v(ht, θ) (10)

However, Sutton et al. did not in fact follow the full recurrent gradient, but rather a
computationally expedient one-step approximation to this gradient,

∇θvi(ht) = ∇θσ(Ai,:o(ht) +Bi,:v(ht−1))i

∂vi(ht)

∂Aj,k
≈
{
ok(ht)σ

′(vi(ht)) if i = j
0 otherwise ∆Ai,k = αδi(ht+1, θ)ok(ht)σ

′(vi(ht))

∂vi(ht)

∂Bj,k
≈
{
vk(ht−1)σ′(vi(ht)) if i = j
0 otherwise ∆Bi,k = αδi(ht+1, θ)vk(ht−1)σ′(vi(ht))

(11)

Like simple recurrent networks [Elman, 1991], this simple TD network learning rule only
considers direct connections from previous state variables v(ht−1) to current state variables
v(ht), ignoring indirect contributions from previous state variables v(h1), ..., v(ht−2).

Simple temporal-difference networks have been extended to incorporate histories [Tanner
and Sutton, 2005a]; to learn over longer time-scales using a TD(λ)-like algorithm [Tanner
and Sutton, 2005b]; to use action-conditional or option-conditional questions [Sutton et al.,
2005]; to automatically discover question networks [Makino and Takagi, 2008] and to use
hidden nodes [Makino, 2009].

Unfortunately, it is well known that the simple TD network learning rule may lead to
divergence, even in seemingly trivial problems such as a 6-state “cycle world" [Tanner, 2005].
This is because each node in a TD network may perform up to three different roles. First, a
node may act as state, i.e. the state variable vi(ht−1) at the previous time-step t− 1 is used
to construct answers vj(ht) at the current time-step t. Second, a node may act as an answer,
i.e. vj(ht) provides the current answer for the jth prediction at time t. Third, a node may
act as a target, i.e. vk(ht+1) may be predicted by a predecessor answer vj(ht). The simple
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TD network learning rule only follows the gradient with respect to the first of these three
roles, and is therefore not a true gradient descent algorithm. Specifically, if an answer is
selfishly updated to reduce its error with respect to its own question, this will also change
the state representation, which could result in greater overall error. It will also change the
TD-targets, which could again result in greater overall error. This last issue is well-known
in the context of value function learning, causing TD learning to diverge when using a non-
linear value function approximator [Tsitsiklis and Van Roy, 1997]. In the remainder of this
paper, we develop a sound TD network learning rule that correctly takes account of all three
roles.

4. Bellman Network Equation

The standard Bellman equation provides a recursive one-step relationship for one single
prediction: the value function. The main contribution of this paper is to generalise the
Bellman equation to linear question networks (see equation 6). We can then find answer
network parameters θ that solve, as effectively as possible, the Bellman network equation.
We now make this notion precise.

In our Markov chain, there is one “state” for each distinct history. The Bellman network
equation provides a recursive relationship between the answers vi(h) for every prediction i
and every history h. To represent all of these values, we define an answer matrix V θ

h,i =
vi(h, θ), which is the ∞× n matrix of all answers given parameters θ = [A,B].

Each prediction is weighted by a non-negative prediction weight ci indicating the relative
importance of question i. Each history h is weighted by its probability d(h). We define a
weighted squared norm ||.||c,d that is weighted both by the prediction weight ci and by the
history distribution d(h),

||V ||2c,d =
∑
h∈H

d(h)
n∑
i=1

ciV
2
h,i (12)

We define Π(V ) to be the non-linear projection function that finds the closest answer matrix
V θ to the given matrix V , using the weighted squared norm ||.||2c,d,

Π(V ) = argmin
θ
||V θ − V ||2c,d (13)

The question network represents the relationship between true answers. However, the true
expectations will not typically be representable by any parameter vector θ, and therefore we
must project them back into the representable space of answer networks,

V θ = Π(T (OP> + V θQ>)) (14)

where O is the ∞×m matrix of last observations, Oht,i = ot; P and Q are the parameters
of the question network; and T is the history transition matrix. In practice, the non-linear
projection Π is intractable to compute. We therefore use a local linear approximation Πθ

that finds the closest point in the tangent space to the current answer matrix V θ. The
tangent space is represented by an∞× (m+n)n matrix Φθ of partial derivatives. Each row
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of the tangent space corresponds to a particular combination of history h and prediction i,
with a row index that we denote by h ◦ i. Each column j corresponds to a parameter θj of

the answer network, (Φθ)h◦i,j =
∂V θh,i
∂θj

. The linear projection operator Πθ projects an answer
matrix V onto tangent space Φθ,

ΠθV = Φθ(Φ
>
θ GΦθ)

−1Φ>θ GV (15)

where the operator V represents a reshaping of an ∞× n matrix V into a ∞× 1 column
vector with one row for each combined history and prediction h ◦ i. G is a diagonal matrix
that gives the combined history distribution and prediction weight for each history and
prediction h ◦ i, Gh◦i,h◦i = cid(h). This linear projection leads to the projected Bellman
network equation,

V θ = ΠθT (OP> + V θQ>) (16)

5. Gradient Temporal-Difference Network Learning Rule

Our approach to solving the linear TD network equation is based on the nonlinear gradient
TD learning algorithm of Maei et al. (2009). Like this prior work, we solve our Bellman-like
equation by minimising a mean squared projected error by gradient descent. However, we
must extend Maei et al. in three ways. First, TD networks include multiple value functions,
and therefore we generalise the mean-squared error to use the projection operator Πθ defined
in the previous section. Second, each answer in a TD networks may depend on multiple
interrelated targets, whereas TD learning only considers a single TD target rt + γV θ

st+1
.

Third, we must generalise from a finite state space to an infinite space of histories. We
proceed by defining the mean squared projected Bellman network error (MSPBNE), J(θ),
for answer network parameters A. This objective measures the difference between the answer
matrix and the expected TD-targets at the next time-step, projected onto the tangent space,

J(θ) = ||ΠθT (OP> + V θQ>)− V θ||2G = ||Πθ∆θ||2G = ∆>θ Π>θ GΠθ∆θ = ∆>θ G
>Πθ∆θ

= ∆>θ G
>Φθ(Φ

>
θ GΦθ)

−1Φ>θ G∆θ =
(

Φ>θ G∆θ

)> (
Φ>θ GΦθ

)−1 (
Φ>θ G∆θ

)
(17)

where ∆θ := T (OP> + V θQ>)− V θ is the TD network error, a column vector giving the
expected one-step error for each combined history and prediction h ◦ i. Each of these three
terms can be rewritten as an expectation over histories,

Φ>θ GΦθ =
∑
h∈G

n∑
i=1

φi(h, θ)cid(h)φi(h, θ)
>

= E
[
φ(h, θ)Cφ(h, θ)>

]
(18)

Φ>θ G∆θ = Φ>θ G
(
T (OP> + V θQ>)− V θ

)
=
∑
h∈G

n∑
i=1

φi(h, θ)cid(h)

(∑
h′∈G

Th,h′δi(h
′, θ)

)
= E

[
φ(h, θ)Cδ(h′, θ)

]
(19)
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where C is the diagonal prediction weight matrix Cii = ci. The MSPBNE can now be
written as a product of expectations,

wθ = E
[
φ(h, θ)Cφ(h, θ)>

]−1
E
[
φ(h, θ)Cδ(h′, θ)

]
J(θ) = E

[
φ(h, θ)Cδ(h′, θ)

]>
wθ (20)

The GTD network learning rule updates the parameters by gradient descent, so as to min-
imise the MSPBNE. In the appendix we derive the gradient of the MSPBNE,

ψ(θ, wθ) =
n∑
i=1

ci

(
δi(h

′, θ)− φi(h, θ)>wθ
)
∇2
θVh,iwθ (21)

−1

2
∇θJ(θ) = E

[
−∇θδ(h′, θ)Cφ(h, θ)>wθ − ψ(θ, wθ)

]
(22)

From Equation 10 we see the derivative of the TD error is a linear combination of gradients,

−∇θδ(h′, θ) = φ(h, θ)− φ(h′, θ)Q> (23)

As in GTD2, we separate the algorithm into an online linear estimator for w ≈ wθ, and an
online stochastic gradient descent update that minimises J(θ) assuming that w = wθ,

∆θ = α
[(
φ(h, θ)− φ(h′, θ)Q>

)
C(φ(h, θ)>w)− ψ(θ, w)

]
(24)

∆w = βφ(h, θ)C(δ(h′, θ)− φ(h, θ)>w) (25)

This recurrent GTD network learning rule is very similar to the GTD2 update rule for
non-linear function approximators (Equations 1 to 3), where states have been replaced by
histories, and where we sum the GTD2 updates over all predictions i, weighted by the
prediction weight ci.

We can also rearrange the gradient of the MSPBNE into an alternative form,

−1

2
∇θJ(θ) = E

[
φ(h, θ)Cφ(h, θ)>wθ − φ(h′, θ)Q>Cφ(h, θ)>wθ − ψ(θ, wθ)

]
= E

[
φ(h, θ)Cδ(h′, θ)− φ(h′, θ)Q>Cφ(h, θ)>wθ − ψ(θ, wθ)

]
(26)

This gives an alternative update for θ, which we call the recurrent TDC network learning
rule, by analogy to the non-linear TDC update [Maei et al., 2009].

∆θ = α
[
φ(h, θ)Cδ(h′, θ)− φ(h′, θ)Q>C(φ(h, θ)>w)− ψ(θ, w)

]
(27)

The first term is identical to recurrent TD network learning when ci = 1,∀i (see equation
9); the remaining two terms provide a correction that ensures the true gradient is followed.

Finally, we note that the components of the gradient matrix φ(h, θ) are sensitivites of the
form ∂vi(h)

∂Aj,k
and ∂vi(h)

∂Bj,k
, which can be calculated online using the real-time recurrent learning

algorithm (RTRL) [Williams and Zipser, 1989]; or offline by backpropagation through time
[Rumelhart et al., 1986]. Furthermore, the Hessian-vector product required by ψ(θ, w)
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can be calculated efficiently by Pearlmutter’s method [Pearlmutter, 1994]. As a result, if
RTRL is used, then the computational complexity of the recurrent GTD (or TDC) network
learning is equal to the RTRL algorithm, i.e. O(n2(m + n)2) per time-step. If BTPP is
used, then the computational complexity of recurrent GTD (or TDC) network learning is
O(T (m+n)n2) over T time-steps, which is n times greater than BPTT because the gradient
must be computed separately for every prediction. In practice, automatic differentiation
(AD) provides a convenient method for tracking the first and second derivatives of the
state representation. Forward accumulation AD performs a similar computation, online, to
real-time recurrent learning [Williams and Zipser, 1989]; whereas reverse accumulation AD
performs a similar computation, offline, to backpropagation through time [Werbos, 2006].

6. Outline Proof of Convergence

We now outline a proof of convergence for the GTD network learning rule, closely following
Theorem 2 of [Maei et al., 2009]. For convergence analysis, we augment the above GTD
network learning algorithm with an additional step to project the parameters back into a
compact set C ⊂ R(m+n)n with a smooth boundary, using a projection Γ(θ). Let K be the
set of asymptotically stable equilibria of the ODE (17) in [Maei et al., 2009], i.e. the local
minima of J(θ) modified by Γ.

Theorem 1 Let (hk, h
′
k)k≥0 be a sequence of transitions drawn i.i.d. from the history dis-

tribution, hk ∼ d(h), and transition dynamics, h′k ∼ Ph,· | hk. Consider the augmented
GTD network learning algorithm, with a positive sequence of step-sizes αk and βk such that∑∞

k=0 αk = ∞,
∑∞

k=0 βk = ∞,
∑∞

k=0 α
2
k < ∞,

∑∞
k=0 β

2
k < ∞ and αk

βk
→ 0 as k → ∞. As-

sume that for each θ ∈ C, E(
∑n

i=1 φi(h, θ)φi(h, θ)
>) is nonsingular. Then θk → K, with

probability 1, as k →∞.

The proof of this theorem follows closely along the lines of Theorem 2 in [Maei et al., 2009],
using martingale difference sequences based on the recurrent GTD network learning rule,
rather than the GTD2 learning rule. Since the answer network is a three times differentiable
function approximator, the conditions of the proof are met.1

7. Network Architecture

A wide variety of state representations based on recurrent neural network architectures have
been considered in the past. However, these architectures have enforced constraints on the
roles that each node can perform, at least in part to avoid problems during learning. For
example, simple recurrent (SR) networks [Elman, 1991] have two types of nodes: hidden
nodes are purely state variables, and output nodes are purely answers; no nodes are allowed
to be targets. TD networks [Sutton and Tanner, 2004] have one type of node, representing
both state variables and answers; no nodes are allowed to be purely a state variable (hidden)
or purely an answer (output). Like SR networks, SR-TD networks [Makino, 2009] have
both hidden nodes and output nodes, but only hidden nodes are allowed to be targets.

1. We have omitted some additional technical details due to using an infinite state space.
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Clearly there are a large number of network architectures which do not follow any of these
constraints, but which may potentially have desirable properties.

By defining a sound learning rule for arbitrary question networks, we remove these
constraints from previous architectures. Recurrent GTD networks can be applied to any
architecture in which nodes take on any or all of the three roles: state, answer and target.
To make node i a hidden node, the corresponding prediction weight ci is set to zero. To
make node i an output node, the outgoing edges of the answer network Ai,j should be set
to zero for all j. Recurrent GTD networks also enable many intermediate variants, not
corresponding to prior architectures, to be explored.

8. Empirical Results

We consider a simple cycle world, corresponding to a cyclic 6-state Markov chain with
observation o = 1 generated in state s1 and observation o = 0 generated in the five other
states. We used a simple depth 6 “chain" question network containing M -step predictions
of the observation: v∗1(ht) = E [ot+1 | ht], v∗i+1(ht) = E [v∗i (ht+1) | ht] for i ∈ [1, 6]; and a
fully connected recurrent answer network with logistic activation functions. This domain
has been cited as a counter-example to TD network learning, due to divergence issues in
previous experiments [Tanner, 2005].

We used forward accumulation AD [Rump, 1999] to estimate the sensitivity of the an-
swers to weight parameters. We used a grid search to identify the best constant values for α
and β. Weights in θ = [A,B] were initialised to small random values, and w was initialised
to zero. On each domain, we compared the simple TD network learning rule (Equation
11) [Sutton and Tanner, 2004], with the recurrent GTD and TDC network learning rule
(Equations 25). 10 learning curves were generated over 50,000 steps, starting from random
initial weights; performance was measured by the mean squared observation error (MSOE)
in predicting observations at the next time-step. The results are shown in Figure 8.1. The
simple TD network learning rule performs well initially, but is attracted into an unstable
divergence pattern after around 25,000 steps; whereas GTD and TDC network learning
converge robustly on all runs.

9. Conclusion

TD networks are a promising approach to representation learning that combines ideas from
both predictive representations and recurrent neural networks. We have presented the first
convergent learning rule for TD networks. This should enable the full promise of TD net-
works to be realised. Furthermore, a sound learning rule enables a wide variety of new
architectures to be considered, spanning the full spectrum between recurrent neural net-
works and predictive state representations.
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Figure 8.1: Empirical convergence of TD network learning rules on a 6 state cycle world. 10
learning curves are shown for each algorithm, starting from random weights.
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Appendix A. Gradient of the MSPBNE

The gradient of the MSPBNE can be derived by an extension of Maei et al. (2009), making
an equivalent assumption that E [P ]φ(h)Cφ(h)> is non-singular in a neighbourhood around
A. We recall the definition of the MSPBNE Jθ), and formulate the derivative in terms of
the term wθ,
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wθ = E [P ]φ(h)Cφ(h)>
−1

E [P ]φ(h)Cδ(h′, θ)

J(θ) = E
[
φ(h)Cδ(h′, θ)

]> E
[
φ(h)Cφ(h)>

]−1
E
[
φ(h)Cδ(h′, θ)

]
−

1

2
∇θJ(θ) = −∇θE

[
φ(h)Cδ(h′, θ)

]> E
[
φ(h)Cφ(h)>

]−1
E
[
φ(h)Cδ(h′, θ)

]
−

1

2
E
[
φ(h)Cδ(h′, θ)

]>∇θE
[
φ(h)Cφ(h)>

]−1
E
[
φ(h)Cδ(h′, θ)

]
= −∇θE

[
φ(h)Cδ(h′, θ)

]> E
[
φ(h)Cφ(h)>

]−1
E
[
φ(h)Cδ(h′, θ)

]
+

1

2
E
[
φ(h)Cδ(h′, θ)

]> E
[
φ(h)Cφ(h)>

]−1
∇θE

[
φ(h)Cφ(h)>

]
E
[
φ(h)Cφ(h)>

]−1
E
[
φ(h)Cδ(h′, θ)

]
= −∇θE

[
φ(h)Cδ(h′, θ)

]>
wθ +

1

2
w>θ ∇θE

[
φ(h)Cφ(h)>

]
wθ

= −∇θE

[
n∑
i=1

ciφi(h, θ)δi(h
′)

]>
wθ +

1

2
w>θ ∇θE

[
n∑
i=1

ciφi(h, θ)φi(h, θ)
>

]
wθ

= −E

[
n∑
i=1

ciφi(h, θ)∇θδi(h′)
]>

wθ − E

[
n∑
i=1

ci∇θφi(h, θ)δi(h′)
]>

wθ + E

[
n∑
i=1

ciw
>
θ φi(h, θ)∇θφi(h, θ)

>wθ

]

= −E
[
∇θδ(h′, θ)Cφi(h, θ)>wθ

]
− E

[
n∑
i=1

ci∇2
θ(V (h)wθ)

(
δi(h

′)− φi(h, θ)>wθ
)]

= −E
[
∇θδ(h′, θ)Cφi(h, θ)>wθ + ψ(θ, wθ)

]

where ψ(θ, wθ) =
∑n

i=1 ci∇2
θ(V (h)wθ)

(
δi(h

′, θ)− φi(h, θ)>wθ
)
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Abstract
In apprenticeship learning we aim to learn a good policy by observing the behavior of an
expert or a set of experts. In particular, we consider the case where the expert acts so as
to maximize an unknown reward function defined as a linear combination of a set of state
features. In this paper, we consider the setting where we observe many sample trajectories
(i.e., sequences of states) but only one or a few of them are labeled as experts’ trajectories.
We investigate the conditions under which the remaining unlabeled trajectories can help
in learning a policy with a good performance. In particular, we define an extension to the
max-margin inverse reinforcement learning proposed by Abbeel and Ng [2004] where, at
each iteration, the max-margin optimization step is replaced by a semi-supervised optimiza-
tion problem which favors classifiers separating clusters of trajectories. Finally, we report
empirical results on two grid-world domains showing that the semi-supervised algorithm is
able to output a better policy in fewer iterations than the related algorithm that does not
take the unlabeled trajectories into account.

1. Introduction

In traditional reinforcement learning, agents are rewarded for achieving certain states and
try to learn a policy that maximized the rewards cumulated over time. Constructing such
a reward can be not only tedious but a reward could also be difficult to encode explicitly.
The goal of apprenticeship learning [Ng and Russell, 2000] is to learn a good behavior by
observing the behavior of an expert (usually a human). In fact, in many applications it is
easier to collect observations of experts’ behaviors rather than encoding a suitable reward
function to obtain the desired behavior. The effectiveness of this approach to learn non-
trivial behaviors has already been demonstrated on complex tasks such as inverted helicopter
navigation [Ng et al., 2004], ball-in-a-cup game [Boularias et al., 2011], or learning highway
driving behavior [Abbeel and Ng, 2004; Levine et al., 2011].

A typical scenario for apprenticeship learning is to have an expert performing a few
optimal (or close to the optimal) trajectories and use these to learn a good policy. In this
paper, we consider a different setting where we also have access to many other trajectories,
for which we do not know whether they are actually generated by an expert or not. For
instance, in learning a driving behavior we might have recorded many driving patterns but
only a few has been thoroughly analyzed and labeled as expert trajectories. We refer to this
setting as semi-supervised apprenticeship learning.

c© 2012 M. Valko, M. Ghavamzadeh & A. Lazaric.
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Since the beginning of apprenticeship learning [Ng and Russell, 2000], several different
approaches have been proposed, including inverse reinforcement learning [Abbeel and Ng,
2004], max-margin planning [Ratliff et al., 2006], or maximum entropy inverse reinforcement
learning [Ziebart et al., 2008]. In this paper, we address the semi-supervised setting by an
extension of the (max-margin) inverse reinforcement learning proposed by Abbeel and Ng
[2004]. We assume that the “good" and “bad" trajectories are well enough separated in some
feature space defined over the state space. Therefore, a decision boundary that separates
good and bad trajectories, should not cross the dense regions of the data. This distributional
assumption is typical in semi-supervised learning [Zhu, 2008] and it is often referred to as
cluster assumption. Such an assumption enables us to use semi-supervised support vector
machines [Bennett and Demiriz, 1999] and to take advantage of the unlabeled trajectories
when learning a policy. This assumption can be verified if some policies (and therefore
trajectories) are more natural given the semantics of the problem.

The IRL method of Abbeel and Ng [2004] is an iterative algorithm, where in each step
a new reward is generated. In each step we use a MDP solver to compute the optimal
policy given that reward. The goal of IRL is to find a policy (or a mixture thereof) that
would match the expected feature counts of the expert (i.e., the probability with which the
agent achieves different states). The new reward is generated as a solution to a max-margin
classification, where the expert’s feature expectations are considered as positives and the
feature expectation of the generated policies as negatives. In the method we propose, we
aim to reduce the number of iterations of this procedure and therefore reduce the number
of calls to the MDP solver. We do it by augmenting the feature expectations of the expert’s
and generated policies with the feature expectations of unlabeled trajectories. The aim
is to improve the max-margin classification learning and discover better policies in fewer
iterations. Furthermore, if the expert performer does not achieve the maximum reward
already, the unlabeled trajectories may help us discover a better performing policy.

2. Background

Let MDP\R denote a finite state Markov decision process without a reward function:
(S,A, T, γ,D), where S is a finite set of states, A is a set of actions, T is a set of tran-
sition probabilities, γ is a discount factor, and D is the initial state distribution from which
a starting state s0 is sampled. We assume that we are given a vector of state features
φ : S → [0, 1]k. We also assume the existence of a true reward function R? defined as
a linear combination of the features φ, i.e., R?(s) = w? · φ(s), where ‖w?‖1 ≤ 1 is the
true weight reward vector. The value function of a policy π is defined as the expected sum
of discounted rewards, i.e., V π(s) = E

[∑
t γ

tR(st)
]
, thus the expected value of a policy π

w.r.t. to the initial distribution D becomes

Es0∼D[V π(s0)] = E

[ ∞∑
t=0

γtR(st)|π

]
= w · E

[ ∞∑
t=0

γtφ(st)|π

]
= w · µ(π),

where µ(π) = E
[∑∞

t=0 γ
tφ(st)|π

]
is the vector of feature expectations given policy π. We

also assume that we can access an MDP solver which, given a reward function, outputs a
policy that maximizes it. The main input of an IRL method is a set of m expert trajectories.
Let a trajectory τi = (s

(i)
E,1, . . . , s

(i)
E,Ti

) be a sequence of Ti states generated by the expert
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Algorithm 1: IRL: Inverse reinforcement learning [Abbeel and Ng, 2004]
Input: ε, expert trajectories {τi}mi=1

Estimate µ̂E ← 1
m

∑m
i=1

∑Ti
t=0 γ

tφ(s
(i)
E,t)

Randomly pick π(0) and set i = 1
repeat
t(i) ← max‖w‖2≤1 minj<i w · (µ̂E − µ̂(j))

Let w(i) be the one attaining this maximum
π(i) ← MDPSolver(R = w(i) · φ)
Estimate µ̂(i) ← µ(π(i))
i← i+ 1

until t(i) ≤ ε

policy πE starting from state s(i)
E,1. Consequently, the input of an IRL algorithm is a set

{τi}mi=1. Given the set of trajectories we can compute an empirical estimate of their feature
expectations as

µ̂E =
1

m

m∑
i=1

Ti∑
t=0

γtφ(s
(i)
E,t).

The goal of IRL algorithm of Abbeel and Ng [2004] is to find a policy π̃, such that
‖µ(π̃)− µE‖2 ≤ ε. In such case, for any ‖w‖1 ≤ 1:∣∣∣∣∣E
[ ∞∑
t=0

γtR(st)|πE

]
− E

[ ∞∑
t=0

γtR(st)|π̃

]∣∣∣∣∣ = |wTµ(π̃)−wTµE | ≤ ‖w‖2 ‖µ(π̃)− µE‖2 = ε,

since ‖w‖2 ≤ ‖w‖1 ≤ 1. This implies that if we find a policy π̃ whose feature expectations
are ε-close to the ones of the expert, then the performance of π̃ would also be ε-close to
the performance of the expert, no matter the actual value of the true reward vector w∗.
Algorithm 1 of Abbeel and Ng [2004] is therefore trying to find such π̃. Notice that the
algorithm terminates whenever the margin t(i+1) falls below a given threshold ε given as
input to the algorithm. As a result,

∀w, where ‖w‖2 ≤ 1, ∃i s.t. wTµ(i) ≤ wTµE − ε. (1)

We can then construct a mixture policy π̃, such that for any w, the feature expectations
µ(π̃) are at most ε away from the feature expectations µE of the expert,

µ(π̃) = min
µ
‖µE − µ‖2 s.t. µ =

∑
i

λiµ
(i) and

∑
i

λi = 1. (2)

This corresponds to a mix of the policies computed during the execution of Algorithm 1
with the mixing weights λ. The resulting mixture policy can be executed by sampling
from {π(i)}i at the beginning and then acting according to π(i). For such a mixture, it is
guaranteed that ‖µE − µ(π̃)‖2 ≤ ε. However, having a resulting policy being a mixture of
several policies instead of a single policy is often seen as a drawback of the IRL method
[Ratliff et al., 2006; Ziebart et al., 2008].
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3. Semi-supervised inverse reinforcement learning

The optimization step for w of Algorithm 1 described in Section 2 is equivalent to support
vector machines (SVM) by Vapnik [1995], if we associate a label +1 with the expert’s feature
expectations µE , and a label −1 with the feature expectations of the policies computed so
far: {µ(π(j)) : j = 0 . . . (i − 1)}. As Abbeel and Ng [2004] point out, the optimization can
be solved by any quadratic program solver or a specialized SVM solver.

In the following, we describe how to improve the previous IRL algorithm when we have
access to many other trajectories but without knowing whether they are generated by an
expert or not. Specifically, unlabeled trajectories can help us to find w that separates
the expert feature counts from the non-expert ones faster. We describe how to use semi-
supervised SVMs for this purpose.

Besides the standard hinge loss L(f,x, y) = max{1−y |f(x)| , 0} where (x, y) is a labeled
sample and f is a generic classifier, semi-supervised support vector machines (SVMs) also
uses the hat loss L̂(f,x) = max{1 − |f(x)| , 0} on unlabeled data [Bennett and Demiriz,
1999] and define the optimization problem

f̂ = min
f

[∑
i∈L
L(f,xi, yi) + γl ‖f‖2 + γu

∑
i∈U
L̂(f,xi)

]
, (3)

to compute the max-margin decision boundary f̂ that avoids dense regions of data, where L
and U are the sets of labeled and unlabeled samples respectively, γl is the cost penalty as in
standard SVMs, and γu weighs the influence of unlabeled examples in U . No matter what
the label of an unlabeled example would be, the hat loss L̂ penalizes functions f with a small
distance to unlabeled examples. The hat loss, however, makes the optimization problem (3)
non-convex. As a result, it is hard to solve the problem optimally and most of the work
in this field has focused on approximations. A comprehensive review of these methods was
done by Zhu [2008]. In our experiments, we make use of the transductive SVMs by Joachims
[1999a].

The objective of IRL is to find such mixture policy that would be close to the expert’s
one in the feature space. IRL builds this mixture iteratively with every new policy getting
closer. In the early rounds however only few policies are available. This is where we can
take advantage of the unlabeled trajectories. Assuming that the expert and non-expert
policies are separated in the feature space, optimizing the objective (3) can result in w that
is very close to w? and in turn can generate better performing policy sooner. In other words,
our algorithm in the beginning looks for a policy that would be optimal for w suggested
by the unlabeled data. As the more new policies are generated, they outweigh this bias
and the final mixture policy would be close to the expert’s in the feature space for any
possible w. Figure 3.1 illustrates how can unlabeled trajectories help the learning when the
cluster assumption is satisfied. In the figure, the true reward is the vertical line, the feature
expectations of the expert is the big red dot on the bottom left and the feature expectation
of the generated trajectory (after the first iteration) is the big blue dot on the top right. The
remaining dots correspond to the feature expectations of the unlabeled trajectories. Semi-
supervised learning objective gets penalized when the learned reward (decision boundary)
crosses the dense regions of the feature space and therefore can recover a reward close to
the true one.
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Figure 3.1: Cluster assumption of semi-supervised learning. Left: supervised learning.
Right: semi-supervised learning (with unlabeled trajectories)

Specifically, the optimization problem (3) for linear functions f , where the experts feature
expectation are labeled as +1 and all the feature expectations from the generated policies
labeled as −1, simplifies to:

min
w

(
max{1−wTµ̂E , 0}+ γl ‖w‖2 +

∑
j<i

max{1 +wTµ̂(j), 0}+ γu
∑
u∈U

max{1− |wTµ̂u| , 0}
)

Algorithm 2 shows the pseudocode of our SSIRL algorithm. At the beginning, we com-
pute the empirical estimates µ̂u for each unlabeled trajectory (or a set of mu trajectories, if
several trajectories belong to the same performer). After the optimization step for w, which
corresponds to (3), we normalize w such that ‖w‖2 = 1, in order to preserve the approx-
imation properties of the IRL algorithm. Note that since both SSIRL and IRL algorithms
iteratively create new policies, eventually the unlabeled trajectories will be outweighed and,
in the limit, the performance of the generated mixture policies will be similar. However, with
the informative set of unlabeled trajectories present during the learning, SSIRL is able to
recover w? faster. Therefore, it may need less iterations than IRL and consequently smaller
number of calls to the MDP solver.

After the execution of SSIRL algorithm, we need to perform the same optimization
procedure (Equation 2) as for the IRL algorithm to get the mixing weights λ. However,
we would like to stress an important point about policy mixing with SSIRL: Even though
the feature expectations from the unlabeled trajectories can speed up the learning we do
not know the policies that generated them. This has two consequences. First, these feature
expectations cannot be used for finding the final mixture after the algorithm has converged.
Consequently, the final mixture policy still consists of policies related to labeled trajectories.
Second, the distance between the unlabeled feature counts (i.e. the margin t) cannot be taken
into account for the stopping criterion. Otherwise, it could for example happen that we have
an unlabeled feature expectations which are ε close to µE . The algorithm would terminate
immediately but no policy could be actually generated. Therefore, the benefit of SSIRL is
that a better w is likely to be found earlier and consequently a better policy is generated
for that w.
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Algorithm 2: SSIRL: Semi-supervised inverse reinforcement learning
Input: ε, γl, γu
expert trajectories {s(i)

E,t}
unlabeled trajectories from U performers {s(i)

u,t}
estimate µ̂E ← 1

m

∑m
i=1

∑Ti
t=0 γ

t
lφ(s

(i)
E,t)

for u = 1 to U do
estimate µ̂u ← 1

mu

∑mu
i=1

∑Tu,i
t=0 γ

tφ(s
(i)
u,t)

end for
randomly pick π(0) and set i← 1
repeat

w(i) ← min
w

(
max{1−wTµ̂E , 0}+ γl ‖w‖2

+
∑
j<i

max{1 +wTµ̂(j), 0}+ γu
∑
u∈U

max{1− |wTµ̂u| , 0}
)

w(i) ← w(i)/
∥∥w(i)

∥∥
2

π(i) ← MDP(R = (w(i))Tφ)
estimate µ̂(i) ← µ(π(i))
t(i) ← miniw

T(µ̂E − µ̂(i))
i← i+ 1

until t(i) ≤ ε

4. Experiments

The purpose of this section is to show that with unlabeled trajectories, SSIRL can find a
good policy in less iterations than IRL, thus requiring fewer calls to the MDP solver. For
the comparison we use the variations of the gridworld domain of Abbeel and Ng [2004].

4.1. Gridworld

In the first set of experiments, we use 64 × 64 gridworlds. The agent has 4 actions (north,
west, south, east) with 70% chance of success and 30% chance of taking a random different
action. The grid is divided into 64 macrocells of size 8 × 8. These macrocells define the
features: for each macrocell i and state s there is a feature φi such that φi(s) = 1 if the
state s belongs to the macrocell i and 0 otherwise. The rewards are randomly generated
such that the w? is sparse, which gives rise to interesting policies [Abbeel and Ng, 2004].
The discount factor γ is set to 0.99.

To simulate the clustering assumption in this domain, we sample the trajectories as
follows. We sample w? for the expert and a different w′ for the non-expert performer.
The estimated feature expectations µ̂E for the expert were computed by simulating the
policy optimizing w?. The first half of the unlabeled trajectories corresponds to different
simulations of the same expert policy. The other half of trajectories was simulated from
a policy optimizing w′. Therefore, this setup also shows how SSIRL can address sampling
errors, when the expert trajectory is a noisy sample from the optimal policy.

136



Semi-Supervised Apprenticeship Learning

B w
a
te

r 

expert’s trajectory 

unlabeled trajectory to “A” 

unlabeled trajectory to “B” 

A 

unlabeled trajectory  

in the opposite direction 

bridge 

Figure 4.1: Two goals domain

4.2. Two goals navigation

The domain illustrated in Figure 4.1 defines a more natural scenario where clustered feature
expectations arise in practice. It consists of a starting section on the left, two places of
interest (“A" and “B") in the corners on the right, and a river with a bridge in the middle.
The task is to navigate from the start to the one of the two places of interest while avoiding
stepping into the river.

The state space, actions, and features are defined as in the previous domain of gridworlds.
However, the true reward (unknown to a learner) is set to 0.01 for the feature corresponding
to the place “A" and to -0.005 for the features corresponding to the river except for the bridge
where it is set to zero (as well for the other regions). The expert demonstrates a trajectory
from the start to the place “A". The first half of the unlabeled trajectories consists also from
demonstrations navigating from the start to “A" which can be thought of as additional well
performing demonstrations.

We perform two experiments with this domain in which we provide different set of
trajectories as the other half of unlabeled trajectories. In the first one, the other half of the
trajectories are demonstrations from the start to “B" instead. In the second experiment, the
other half of demonstrations are trajectories in the reversed direction, i.e., from “A" to the
start. Due to the design, one can expect that the both sets of trajectories form two clusters
in the feature space of the macrocells. We choose these trajectories such that some features
can be helpful (as passing through the bridge) and some not (as going to a different goal or
in an opposite direction).

4.3. Implementation details

As an MDP solver, we use a standard policy iteration method. For the optimization of w
both in IRL and SSIRL algorithm we use SVMlight implementation of Joachims [1999a],
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Figure 4.2: Performance of the mixture policies under the true reward after 10 iterations of
both algorithms as a function of the number of extra unlabeled trajectories.

which is capable of both supervised and semi-supervised (transductive) SVM learning.
Learning parameters γl, γu were set to the default values. To calculate the mixture co-
efficients λ of the mixture policy (Eq. 2) we use the quadratic program solver CVX by
Grant et al. [2006].

4.4. Results

Figures 4.2 and 4.3 show the results of the gridworld experiments. Both the true reward
function and the reward function for the non-experts are sampled randomly at the beginning
of each trial. In Figure 4.2 we varied the number of unlabeled trajectories for our semi-
supervised SSIRL method and compared it to IRL. Figure 4.2 shows the performance of the
final mixture policy under the true reward (unknown to both algorithms) after 10 iterations1

of both IRL and SSIRL. The results are averaged over 10 simulations2. The improvement
levels off after 6 iterations. In Figure 4.3 we fixed the number of unlabeled trajectories
to 10 and observe the performance under the true reward function in a single run as we
iterate IRL and SSIRL. In this case, IRL converged to the expert’s feature counts in few
iterations. On the other hand, notice that SSIRL what was able in the begging discover
even better mixture policy than the expert. We also show the performance of the optimal
policy given the true reward (Figure 4.3, red squares). After the fifth iteration, performance
SSIRL drops as the unlabeled trajectories are outweighed by the newly generated policies.
As mentioned before, as we increase the number of iterations SSIRL converges to IRL.
However, as Figure 4.3 shows, a better policy may be discovered much sooner.

1. Note again, that since number of unlabeled trajectories is finite, after many iterations both IRL and SSL
converge to an approximately same policy.

2. The performance of IRL is obviously independent of the number of unlabeled trajectories. The small
fluctuations in this and the following plots are due to averaging over different 10 simulations each time.
This is to assure that the both algorithms are given the same (noisy) sample of the expert’s feature
counts.
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Figure 4.3: Gridworld - Performance of the mixture policies under the true reward (un-
known to both algorithms). The true reward function and the reward function
for unlabeled trajectories are chosen randomly and the graph shows the perfor-
mance of the mixture policy. The performance of the optimal policy is shown
by the dashed line with red squares.
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Figure 4.4: Two goals navigation - Performance after 5 iterations of both algorithms
as a function of the number of extra unlabeled trajectories. First half of the
unlabeled trajectories goes from start to “A", the other half goes to “B”.

The results for the both setups in two goals navigation domain are shown in Figures 4.4
and 4.5. In both cases we vary the number of the unlabeled trajectories given to SSIRL
and observed how it affects the performance under the true reward. The figures display the
performance of the mixture policies under the true reward after 5 iterations of both IRL
and SSIRL. We can observe the improvement of the learned mixture policies in the case of
SSIRL, which is typically greater when more unlabeled trajectories are provided.
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Figure 4.5: Two goals navigation - Performance after 5 iterations of both algorithms
as a function of the number of extra unlabeled trajectories. First half of the
unlabeled trajectories goes from start to “A", the other half goes the opposite
direction.

5. Conclusion

We presented a semi-supervised IRL algorithm for apprenticeship learning. The algorithm
combines the max-margin IRL algorithm of Abbeel and Ng [2004] and transductive SVMs
[Joachims, 1999b]. Our SSIRL algorithm leverages the cluster assumption in the feature
expectations space of the provided trajectories. To our best knowledge this is the first work
that makes use of the unlabeled trajectories in the apprenticeship learning.

One of the limitation of the SSIRL is that the expected feature counts of provided
trajectories should comply with the clustering assumption. Otherwise, including them in
the optimization maybe not helpful at all, as shown by Singh et al. [2008]. Moreover,
our method inherits the well known limitations of IRL [Abbeel and Ng, 2004], such as the
assumption of the linearity for the reward in the feature space or only a mixture policy
as the output of the algorithm. Finally, since the stopping criterion for IRL is defined as
closeness to the expert trajectory in the feature space, other stopping criteria need to be
used to recognize that the policy found by SSIRL is performing better.

In the future, we plan to enhance other methods with unlabeled trajectories, such as
max-margin planning or maximum entropy inverse reinforcement learning. Moreover, we
plan to investigate leveraging manifold assumption, which is also well studied in the semi-
supervised learning [Zhu et al., 2003].
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Abstract
In the imitation learning paradigm algorithms learn from expert demonstrations in order
to become able to accomplish a particular task. Daumé III et al. [2009] framed structured
prediction in this paradigm and developed the search-based structured prediction algorithm
(Searn) which has been applied successfully to various natural language processing tasks
with state-of-the-art performance. Recently, Ross et al. [2011] proposed the dataset aggre-
gation algorithm (DAgger) and compared it with Searn in sequential prediction tasks.
In this paper, we compare these two algorithms in the context of a more complex structured
prediction task, namely biomedical event extraction. We demonstrate that DAgger has
more stable performance and faster learning than Searn, and that these advantages are
more pronounced in the parameter-free versions of the algorithms.
Keywords: Real-world Applications, Imitation Learning, Natural Language Processing,
Structured Prediction.

1. Introduction

Imitation learning algorithms aim at learning controllers from demonstrations by human
experts [Schaal, 1999; Abbeel, 2008; Syed, 2010]. Unlike standard reinforcement learning
algorithms [Sutton and Barto, 1996], they do not require the specification of a reward func-
tion by the practitioner. Instead, the algorithm observes a human expert perform a series of
actions to accomplish the task in question and learns a policy that “imitates” the expert with
the purpose of generalizing to unseen data. These actions have dependencies between them,
since earlier ones affect the input to the following ones and the algorithm needs to handle
the discrepancy between the actions of the expert in the demonstration during training and
the actions predicted by the learned controller during testing. Imitation learning algorithms
have been applied successfully to a variety of domains and tasks including autonomous he-
licopter flight [Coates et al., 2008] and statistical dialog management [Syed and Schapire,
2007].

For structured prediction tasks in natural language processing (NLP) the output space
of an instance is a structured group of labels [Smith, 2011]. For example, in part-of-speech
tagging the output for a sentence is a sequence of part-of-speech tags, or in handwriting
recognition the output is a sequence of characters. Structures can often be more complex
than sequences, for example in syntactic dependency parsing the output space for a sentence
is a set of labeled edges spanning the words. While learning methods such as Conditional
Random Fields [Lafferty et al., 2001] and Markov Logic Networks [Domingos and Lowd,

c© 2012 A. Vlachos.
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2009] have been developed for structured prediction, they are usually tailored to particular
structures so that they can perform parameter learning and inference efficiently. As a result,
a common approach that performs well in practice is to decompose structured prediction
into multiple classification tasks, in which each label of the structured output is predicted
by a classifier.

Under this prism, learning for structured prediction can be viewed as learning a controller
whose actions are to output each of the labels of the structured output. Similar to the
controllers in reinforcement learning, these actions have dependencies between them (e.g. in
part-of-speech tagging, determiners are commonly followed by nouns instead of verbs, or in
handwriting recognition some character sequences are more likely than others) which must
be taken into account in order to achieve good performance. The training signal commonly
provided is a set of labeled instances produced by a human expert, which is akin to the
human demonstrations in the imitation learning paradigm. Daumé III et al. [2009] proposed
an imitation learning algorithm1, search-based structured prediction (Searn), that reduces
the problem of learning a model for structured prediction into learning a set of classifiers.
This reduction enables Searn to tackle structured prediction tasks with complex output
spaces, and it has been applied successfully to a variety of tasks including summarization
[Daumé III et al., 2009] and biomedical event extraction [Vlachos and Craven, 2011].

In this work, we investigate a novel imitation learning algorithm proposed by Ross et al.
[2011], dataset aggregation (DAgger) that also reduces the problem of learning structured
prediction to classification learning. It was compared to Searn on learning video game-
playing agents and handwriting recognition and was shown to be more stable and have
faster learning while achieving state-of-the-art performance.

In this paper we make the following contributions. We present Searn and DAgger in a
unified description, highlighting the connections between imitation learning and structured
prediction. We then compare them in the context of biomedical event extraction [Kim
et al., 2011], a task in which the structure of the output is more complex than a sequence
of labels, and confirm the aforementioned advantages of DAgger over Searn which are
more pronounced in the parameter-free versions of the algorithms. Furthermore, we explore
the effect of the learning rate on the balance between precision and recall achieved by the
algorithms. We believe that these contributions are relevant to applications of imitation
learning algorithms to other structured prediction tasks, as well as to the development and
evaluation of imitation learning algorithms.

2. Imitation learning algorithms for structured prediction

Searn and DAgger form the structured output prediction of an instance s as a sequence
of T actions ŷ1:T made by a learned policy H. Each action ŷt can use features from s and all
previous actions ŷ1:t−1, thus exploiting possible dependencies. The number of actions taken
for an instance is not defined in advance but it depends on the actions chosen.

Algorithm 1 presents the training procedure for Searn and DAgger. Both algorithms
require a set of labeled training instances S and a loss function ` that compares structured

1. Searn infers rewards using the loss function and the labeled instances, therefore it is better described as
an apprenticeship learning algorithm [Syed, 2010]. Note though that this distinction between imitation
and apprenticeship learning is not consistent among authors [Abbeel, 2008].
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Algorithm 1: Imitation learning training
Input: training data S, expert policy π?, loss function `,
learning rate β, CSC learner CSCL
Output: policy HN

1 Examples E = ∅
2 for i = 1 to N do
3 p = (1− β)i−1

4 current policy π = pπ? + (1− p)Hi−1

5 if Searn then
6 Examples E = ∅
7 for s in S do
8 Predict π(s) = ŷ1:T

9 for ŷt in π(s) do
10 Extract features Φt = f(s, ŷ1:t−1)

11 foreach possible action yjt do
12 if Searn then
13 Predict y′t+1:T = π(s|ŷ1:t−1, y

j
t )

14 else
15 Predict y′t+1:T = π?(s|ŷ1:t−1, y

j
t )

16 Estimate cjt = `(ŷ1:t−1, y
j
t , y′t+1:T )

17 Add (Φt, ct) to E

18 Learn a policy hi = CSCL(E)
19 if Searn then
20 Hi = β

∑i
j=1

(1−β)i−j

1−(1−β)i
hj

21 else
22 Hi = hi

output predictions of instances in S against the correct output for them. In addition,
an expert policy π? must be specified which is a function that returns the optimal action
ŷt for the instances in the training data, which is akin to an expert demonstrating the
task. An action is optimal when it minimizes the loss over the instance given the previous
actions ŷ1:t−1 assuming that all future actions ŷt+1:T are also optimal. π? is typically derived
from the labeled training instances (e.g. in handwriting recognition π? returns the correct
character for each position) and it must be able to deal with mistaken ŷ1:t−1. Both algorithms
output a learned policy H that is a classifier, which unlike the expert policy π?, it can
generalize to unseen data. Finally, the learning rate β and a cost sensitive classification
(CSC) learner (CSCL) must be provided. In CSC each training instance has a vector of
misclassification costs associated with it, thus rendering some mistakes on some instances
to be more expensive than others [Domingos, 1999].

Each training iteration of both algorithms begins by setting the probability p (line 3) of
using π? in the current policy π. In the first iteration only π? is used but in later iterations
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π becomes stochastic as for each action we use π? with probability p and the learned policy
from the previous iteration hi−1 with probability 1 − p (line 4). Then π is used to predict
each instance s in the training data (line 8). For each s and each action ŷt, a CSC example
is generated (lines 10-17). The features Φt are extracted from s and the previous actions
ŷ1:t−1 (line 10) and are desinged to be good predictors of the current action ŷt. For example,
in part-of-speech tagging, commonly used features include the word whose part of speech
label we are predicting, the words preceding it and following it, as well as the label predicted
for the previous word. The cost for each possible action yjt is estimated by predicting the
remaining actions y′t+1:T in s using either π or π? (line 13 or 15) and calculating the loss
incurred given that action w.r.t. the correct output using ` (line 16). The features for each
timestep together with the costs for each possible action at that timestep (Φt, ct) form one
CSC example (line 17). The CSC examples obtained from all the training instances are
used by a CSC learning algorithm to learn a policy hi (line 18) which is combined with the
previously learned ones to form the new policy Hi.

In each iteration, the algorithm predicts the instances in the training data and estimates
the cost of each action. This procedure is commonly referred to as inverse reinforcement
learning [Abbeel and Ng, 2004], since unlike standard reinforcement learning, an expert
policy is given but we try to learn the reward for each action (cost). Note that the learned
policy from the previous iteration is used in generating the CSC examples in predicting each
training data instance (line), as well as estimating the cost for each action in the case of
Searn (line 13). The degree to which it is used depends on the probability p set in the
beginning of each iteration. By gradually decreasing the use of the expert policy in the
current policy, both algorithms adapt the learned policy to its own predictions.

The main algorithmic difference between Searn and DAgger is in the learning of the
classifiers hi in each iteration and in combining them into a policy Hi. Under Searn, each hi
is learned using only the CSC examples generated in iteration i (line 6) and is then combined
with the classifiers learned in the previous iterations h1:i−1 according to the learning rate
β (line 20). On the other hand, DAgger learns hi using CSC examples from iterations
1 : i and uses it as the learned policy Hi (line 22). Thus DAgger can combine the training
signal obtained from all iterations more flexibly, which results in faster learning and more
stable performance compared to Searn.

Another difference between the two algorithms is that DAgger uses the expert policy
π? to predict the remaining actions in y′t+1:T .2 This approach to costing had been proposed
by Daumé III et al. [2009] in the context of Searn, referred to as optimal approximation.

The learning rate β determines how fast the current policy π moves away from π?. A
special case is obtained when β = 1, also referred to as pure policy iteration or parameter-
free. In this case, π? is used only in the first iteration to reproduce the correct output and
π only uses only the learned policy from the previous iteration Hi−1. Furthermore, the
classifier combination under Searn becomes the same as the one of DAgger, i.e. only
the most recently learned classifier is used. In this setting the algorithms cannot query π?

after the first iteration, thus π? does not need to handle mistakes in previous actions since
all actions are optimal in the first iteration. Furthermore, the predictions in lines 8 and
12 become deterministic. However, relying only on the learned policy for action prediction

2. This fact was pointed out by a reviewer as it was not mentioned by Ross et al. [2011].
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beyond the first iteration (note that the cost estimation still uses the correct output via the
loss function) renders the learning harder as the algorithms are given less supervision.

3. Tackling biomedical event extraction with imitation learning

Vlachos and Craven [2012] developed a biomedical event extraction approach trained with
Searn that achieved the second-best reported performance on the data from the recent
BioNLP 2011 shared task (BioNLP11ST) [Kim et al., 2011]. Therefore, we decided to use
the BioNLP11ST setup to compare empirically Searn and DAgger. In this section we
describe briefly the task and the approach, but the interested reader is referred to the article
by Vlachos and Craven [2012] for more details.

The term biomedical event extraction is used to refer to the task of extracting descrip-
tions of actions and relations among one or more entities from the biomedical literature.
In BioNLP11ST each event consists of a trigger and one or more arguments, the latter
being proteins or other events. Protein names are annotated in advance and any token
in a sentence can be a trigger for one of the nine event types. Depending on their event
types, triggers are assigned theme and cause arguments. In an example demonstrating the
complexity of the task, given the passage “. . . SQ 22536 suppressed gp41-induced IL-10 pro-
duction in monocytes”, systems should extract the three appropriately nested events listed
in Figure 3.1(d). Performance is measured using Recall, Precision and F-score over complete
events, i.e. the trigger, the event type and the arguments all must be correct in order to
obtain a true positive.

In our approach, we treat each sentence independently and decompose event extraction
in four stages: trigger recognition, theme assignment, cause assignment and event con-
struction (Fig. 3.1).3 Apart from the last one which is rule-based, each stage has its own
module to perform the classification needed. The basic features used are extracted from the
lemmatization and the syntactic parse of the sentence. Furthermore, we extract structural
features for each action from the previous ones, for example the trigger recognition label of
the previous token is used as a feature to predict the label for the current token.

The loss function sums the number of false positive and false negative events, following
the task evaluation. The expert policy for a sentence is derived from the correct events
contained in the training data and returns the action that minimizes the loss over the
sentence given the previous actions and assuming that all future actions are optimal. In
the first iteration it returns the actions required to reproduce the correct events in the
sentence. In subsequent iterations, in order to deal with mistakes in previous actions, it
avoids assigning arguments to incorrectly tagged triggers and avoids using incorrect events
as arguments of other events. It it important to note that the same events can be obtained
using different sequences of actions and that the correct events in the training data specify
only one such sequence. For example in Figure 3.1, token “SQ” could have been tagged as a
trigger without assigning any arguments to it and we ould still obtain the correct events. In
order to resolve this ambiguity, we restrict the expert policy to return only the the triggers
that are necessary to produce the correct events.

3. While different task decompositions are possible, this 4-stage decomposition is the most commonly used
one among the systems participating in BioNLP11ST.
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(a) Trigger recognition

SQ 22536 suppressed
Neg_reg

gp41 -induced
Pos_reg

IL-10 production
Gene_exp

Theme

ThemeTheme

(b) Theme assignment

SQ 22536 suppressed
Neg_reg

gp41 -induced
Pos_reg

IL-10 production
Gene_exp

Theme

Theme

Cause

Theme

(c) Cause assignment

ID type Trigger Theme Cause
E1 Neg_reg suppressed E2
E2 Pos_reg induced E3 gp41
E3 Gene_exp production IL-10

(d) Event construction

Figure 3.1: The stages of our biomedical event extraction system.

The classifiers learned for trigger recognition, theme assignment and cause assignment,
are unlikely to be able to replicate to the expert policy due to the difficulty of the tasks. In
such cases, the optimal approximation method for costing (line 15 in Alg. 1) is unlikely to
estimate the cost of each action correctly, since the actions predicted by the learned policy
are likely to differ from the ones returned by the expert policy. Therefore, in our experiments
we use the Searn-style cost estimation (line 13 in Alg. 1) for both Searn and DAgger. In
order to restrict the effects of the stochasticity of this approach, we use the focused costing
method [Vlachos and Craven, 2011], in which the cost estimation for an action takes into
account only the part of the output graph connected with that action, thus limiting the part
of the structured output considered for this purpose.

The structure of the output space for the biomedical event extraction decomposition
described above is a sequence of tags defining triggers and their event types, combined
with a directed acyclic graph in which vertices correspond to triggers or proteins and edges
represent argument assignments. Thus it is more complex than the handwriting recognition
task that was used in the comparison performed by Ross et al. [2011] which is a sequential
tagging task. Also, it is not amenable to several commonly used structured prediction
methods which rely on the output structure being a sequence or a tree in order to perform
inference efficiently. Furthermore, incorrect actions can prohibit other correct actions from
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being taken, e.g. if a token is incorrectly predicted not to be a trigger, it is impossible to
assign arguments to it. Again, this is unlike sequential tagging tasks, where an incorrect
prediction of a token does not prohibit the correct prediction of the remaining ones. Both
algorithms under comparison use the learned policies from previous iterations in order to
generate training examples (line 9 in Alg 1), therefore incorrectly predicted actions can
inhibit the algorithm from reaching regions of the output space that could provide useful
CSC examples. Thus, the learning rate which determines how frequently the expert policy
is queried is likely to be more important for biomedical event extraction than it was in the
comparisons of Ross et al. [2011].

4. Experiments

In our experiments we run Searn and DAgger for 12 training iterations and perform
CSC learning using the online passive-aggressive (PA) algorithm [Crammer et al., 2006].
BioNLP11ST comprises three datasets – training, development and test – which consist
of five full articles each and 800, 150 and 260 abstracts respectively. We extract features
from the output of the syntactic parser by McClosky [2010] as provided by the shared task
organizers [Stenetorp et al., 2011]. The use of this publicly available resource allows for
easy replication of our experiments. While the correct output is provided for the training
and development datasets, evaluation on the test dataset is only possible once per day via a
webserver in order to maintain the fairness of comparisons between systems. However, since
we focus on comparing the algorithms in terms of stability and learning speed, we report
results on the development set.

Initially we compare Searn and DAgger with learning rate equal to one. Figure 4.1(a)
shows that the performance of DAgger peaks after 6 iterations beyond which it remains
stable. On the other hand, the performance of Searn oscillates between high recall/low
precision and low recall/high precision iterations (Figures 4.1(b) and 4.1(c)). In particular,
in the first iteration Searn learns theme and cause assignment components given correctly
identified triggers only (the expert policy only returns those), but the trigger recognition
component learned returns many incorrect ones, thus resulting in high recall and low pre-
cision. This behaviour is reversed in the second iteration, in which the theme and cause
assignment components are learned so that they can accommodate for incorrectly recognized
triggers, but at the same time the trigger recognition component becomes extremely conser-
vative. This pattern holds for subsequent iterations, albeit progressively less pronounced. In
contrast, DAgger can combine training signal from both iterations, thus its performance
improves faster and avoids such oscillating behaviour. The unstable behaviour of Searn
affects the training time as well, since in the high recall/low precision iterations the algo-
rithm needs to consider many more actions during the cost-sensitive example generation
steps (lines 8-17 in Alg. 1).

Figure 4.1(b) shows a substantial drop in recall for both algorithms in the second iter-
ation. This is due to the learned policy in the first iteration being unable to replicate the
correct output without using the expert policy. This issue did not emerge in the experiments
of Ross et al. [2011], but as explained in Section 3, event extraction is likely to be affected by
it. Using slower learning rates ameliorates this problem (Figure 4.1(e)) and renders Searn
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Figure 4.1: Development dataset results for DAgger(β) and Searn(β) with various learn-
ing rates.

more stable, but DAgger still learns faster for a range of learning rates (0.7, 0.3 and 0.1 in
Figures 4.1(d), 4.1(g) and 4.1(h) respectively).

Even though slower learning rates improve the performance for both Searn and Dag-
ger, the improvement for the latter is not as dramatic (about 1.5 points in F-score). As
discussed in Sec. 2, when β < 1 action costing becomes stochastic, which can result in un-
reliable estimates. In our experiments we used the focused costing approach proposed by
Vlachos and Craven [2011], who reported that it improved the performance of Searn by 4
F-score points. In Figure 4.1(i) we compared the performance of DAgger with and without
focused costing and we show that even though focused costing results in faster learning, the
difference in terms of F-score is smaller, approximately 2 points. In other words, DAgger
is more robust w.r.t. the choice of action costing method. Also note that using DAgger
with β = 1 avoids introducing stochasticity in action costing, while unlike Searn it remains
stable, thus it is more likely to be applicable to other structured prediction tasks.
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5. Conclusions - Future work

In this paper we compared two imitation learning algorithms for structured prediction,
Searn and DAgger. We presented them in a unified description and evaluated them
on biomedical event extraction. We found that DAgger is more stable and learns faster,
while being more robust with respect to the choice of learning rates and action costing.
These advantages are more pronounced in the parameter-free versions of the algorithms
which avoid stochastic cost estimates and need simpler expert policy definitions. Finally,
we assessed the effect of the learning rate in complex structured prediction tasks in which
mistaken predictions can inhibit imitation learning algorithms from exploring useful parts of
the training data. Our contributions should be relevant to applications of imitation learning
to other structured prediction tasks.

In future work, we will apply imitation learning algorithms to other complex struc-
tured prediction tasks. Furthermore, we would like to explore and compare against other
structured prediction frameworks such as structured prediction cascades [Weiss and Taskar,
2010] and output space search [Doppa et al., 2012] that also rely on reductions of structured
prediction learning to simpler problems.
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Abstract
Recently, rollout-based planning and search methods have emerged as an alternative to
traditional tree-search methods. The fundamental operation in rollout-based tree search is
the generation of trajectories in the search tree from root to leaf. Game-playing programs
based on Monte-Carlo rollouts methods such as “UCT” have proven remarkably effective
at using information from trajectories to make state-of-the-art decisions at the root. In
this paper, we show that trajectories can be used to prune more aggressively than classical
alpha-beta search. We modify a rollout-based method, FSSS, to allow for use in game-tree
search and show it outprunes alpha-beta both empirically and formally.

1. Introduction

Rollout-based planning is an approach that has been highly successful in game-tree search.
This class of methods attempts to build estimates of the quality of available actions by
sampling values from the reward and transition functions of a generative model, repeatedly
beginning execution at some start state and ending at a terminal state. UCT [Kocsis and
Szepesvári, 2006] is an example of this method that was initially designed for planning
in standard stochastic Markov decision processes (MDPs), but was later extended to find
approximate solutions in minimax trees. Since its introduction, UCT has seen significant
success in the game of Go, and was the first computer agent to achieve master level play in
the 9x9 variant [Gelly and Silver, 2008].

While UCT does produce state-of-the-art results in Go, it has been proven to perform
very poorly when searching trees with particular properties, due to highly aggressive prun-
ing [Coquelin and Munos, 2007; Walsh et al., 2010]. Likewise, UCT has not been successful
in chess, a result attributed to poor performance of the algorithm in the presence of “search
traps," which are common in chess but not in Go [Ramanujan et al., 2011].

Exact minimax search algorithms do not suffer from this behavior. Alpha-beta [Edwards
and Hart, 1961] is one such branch-and-bound algorithm which computes the exact minimax
value of a search tree. While it has been shown that alpha-beta is optimal in terms of the
number of leaves explored [Pearl, 1982], the proof holds only for directional, or depth-first
algorithms.
∗ This research was supported in part by National Science Foundation DGE-0549115.
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One of the earliest best-first algorithms provably better than alpha-beta in terms of state
expansions was the best-first SSS* [Stockman, 1979]. This algorithm, however, requires ex-
ponential time operations. Framing the algorithm differently resolved this issue: MTD(+∞)
performs state expansions in the same order as SSS*, but is computationally tractable [Plaat
et al., 1996].

In this paper, forward-search sparse sampling [Walsh et al., 2010], or FSSS, is extended
for use in minimax search, resulting in the algorithm FSSS-Minimax. In its original formu-
lation for MDPs, FSSS conducts rollouts and prunes subtrees that cannot contribute to the
optimal solution. Additionally, it does so in a principled manner that allows it to avoid the
previously mentioned problems of UCT. In the setting of game-tree search, we will prove
that FSSS-Minimax dominates (is guaranteed to expand a subset of the states expanded
by) alpha-beta, while still computing the correct value at the root. Even though the guar-
antees of FSSS-Minimax, SSS*, and MTD(+∞) are the same with respect to alpha-beta,
there are important distinctions. SSS* and MTD(+∞) are two different approaches that
produce identical policies, while FSSS-Minimax follows a different policy in terms of state
expansions.

Next, the minimax setting where planning takes place, as well as the original formulation
of FSSS, is discussed. From there, the extension of FSSS to minimax trees is presented. After
its introduction, FSSS-Minimax is empirically compared to alpha-beta and MTD(+∞)Ȧ
formal comparison of the two algorithms follows, proving FSSS-Minimax expands a subset
of states expanded by alpha-beta. The discussion section addresses shortcomings of FSSS,
and proposes future work.

2. Setting

Search is performed on a tree G = 〈S,A,R, T 〉. This tuple is composed of a set of states S,
a set of actions A, a reward function R, and a transition function T . All functions in G are
deterministic. Each state s has a value V (s), which is conditioned on the rules dictated by
the three types of states in the tree. The state types are: max where the agent acts, min
where the opponent chooses, and leaves where no further transitions are allowed. The goal
of a max state s is to select actions that maximize V (s) by choosing a path to a leaf l that
maximizes R(l), and min states must minimize this value. The value of the tree, V (G) is
equal to the value of the root of G, V (G.root)

The following functions over states s ∈ S are defined: min(s), max(s), and leaf(s) which
return Boolean values corresponding to membership of the state to a class of states. Because
it simplifies some of the descriptions, min and max states have a field defined as f . For a
max state s, s.f = max, and likewise for min states.

The transition function, T , is defined only for min and max states, and actions a ∈ A,
where T (s, a) → s′ ∈ S. For leaves, T is undefined. The reward function R(s) → R is
defined only for leaves.

2.1. FSSS-Expectimax

The original formulation of FSSS, which we call FSSS-Expectimax, is designed for searching
a tree that consists of expect (an additional type of state where a stochastic transition
occurs) and max states [Walsh et al., 2010]. Like all FSSS algorithms, FSSS-Expectimax
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explores the tree while conducting rollouts from the root to a leaf, maintaining upper and
lower bounds (U and L) on the value of each state in the tree. The ultimate goal is to have
the the lower bound L and upper bounds U meet at the root. Rollouts in FSSS-Expectimax
proceed by checking the function to choose a next state. In max states, the child is the one
with the highest upper bound. In expect states, the outcome which contributes most to the
difference between L and U is chosen. Previously published results show that this approach
computes the correct value of the tree in finite time.

After the rollout, information from the expanded leaf is propagated up in the following
manner: when a leaf is expanded, its upper and lower bounds are set to its reward. From
there, for a max parent s, and updated child s′, if L(s′) or U(s′) are maximal values amongst
its siblings, the bounds of the parent are updated. For an expectation parent s, L and U are
updated based on the weighted averages of value over all observed children. This process
continues up the tree until either an update fails to modify a state value, or L(G.root) and
U(G.root) have been updated, at which point a new rollout begins.

3. FSSS-Minimax

The most commonly used method to solve minimax trees is the alpha-beta algorithm, which
prunes subtrees of the currently visited state s, based on whether further information from s
can contribute to the solution. It does so by maintaining variables α and β, which correspond
to the range of values at the current state that could impact the value at the root, based
on the expansions done to that point. Alpha-beta search is described in Algorithm 1, but is
written to highlight its similarities to Algorithm 2 (our main contribution) so storage of V
is not technically necessary.

When exploring a state where the inequality α < β is not maintained, search is ter-
minated from that state, as any further information from the subtree rooted at that state
could not possibly influence V (G). This simple rule is quite effective, and there are cases
where the algorithm visits the minimum number of possible states [Knuth and Moore, 1975].
As mentioned, however, alpha-beta’s optimality in terms of pruning is only over the class
of depth-first search algorithms [Pearl, 1982]. Because rewards only exist in the leaves the
setting described in this paper, we define performance in terms of the number of leaves
expanded. The algorithm introduced next is a best-first algorithm that never expands more
leaves than alpha-beta.

In Algorithm 2, we introduce the extension of FSSS to minimax trees, FSSS-Minimax.
For the sake of brevity, beyond this point we will use FSSS to refer to FSSS-Minimax.
The description that follows is for max states, but the behavior in min states is symmetric.
Like alpha-beta, FSSS uses top-down variables α and β to guide pruning, but unlike alpha-
beta, it also computes lower and upper bounds on the minimax value bottom up, which are
maintained in the variables L and U which are maintained and updated during all rollouts
on the game tree. Children effectively have L and U clipped by the α and β values of the
parent. The bounds are constrained in this manner because, just like in alpha-beta, values
outside the range of (α, β) cannot influence the value at the root.

After a child is identified to be visited, the α and β bounds must be adjusted based
on the bounds of its siblings to avoid unnecessary calculation further down in the tree. In
alpha-beta, α′—the α value used at a child state—is set to be the maximum value amongst
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Algorithm 1: Alpha-Beta
begin Solve(G)

1 return Search (G.root,−∞,∞)

end
begin Search(s, α, β)

2 if leaf(s) then
3 V (s)← R(s)
4 return

end
5 α′ ← α
6 β′ ← β
7 for i∗ ← 1...|A| do
8 if max(s) then
9 v ← maxi<i∗ V (T (s, ai))

10 α′ ← max(α, v)

end
11 if min(s) then
12 v ← mini<i∗ V (T (s, ai))
13 β′ ← min(β, v)

end
14 if α′ ≥ β′ then
15 break

end
16 Search (T (s, ai∗), α

′, β′)

end
17 V (s)← (s.f)iV (T (s, ai))

end

158



Rollout Game-tree Search Outprunes Alpha-beta

0.0 0.2 0.4 0.6 0.8

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

8

8 8

8 8 8 8

8 8 8 8 8 8 8 8

4

Alpha-Beta 1

MTD 1

FSSS 1

3

2

10

1

3

2

2

8 0

4

5

5

8

6

0

7

5

8

3

3

6

9

5

4

0

10

4

3 7

11

6

5

4

12

7

6

7

13

8

7

1

14

9

8

Order of Leaf Expansions

Figure 3.1: Order of expansions performed by alpha-beta, MTD(+∞), and FSSS. Rewards
are rendered in the leaves. Max states are square, min states are circular.

α and the siblings that have been searched (those to its left). Because FSSS has partial
information about all siblings, α′ is set to the maximum of α and the upper bounds of the
siblings of the child to be visited.

The modification of α′ and β′ by ε (which must be a value smaller than the possible
differences in leaf values) on lines 18 and 24 of Algorithm 2, has no direct parallel in alpha-
beta. As will be proved later, there is always an unexpanded leaf at the end of the trajectory
followed by FSSS. For this to hold, it is necessary to have both a non-point range of possible
values, as well as overlap between the ranges (α, β) and (L,U). Therefore, if α = U , or
β = L, the range of values considered becomes a point value of the state, making it look
prematurely closed. Because of this, slightly incrementing β (or decrementing α) allows
FSSS to still consider a range of values, without impacting the correctness.

In Figure 3.1, an illustration of the leaf expansions performed by alpha-beta, MTD(+∞)
and FSSS for a small tree is presented. Leaves have integer rewards as labeled, and actions
are ordered left to right. In this small example, alpha-beta expands 14 leaves, MTD(+∞)
expands 10, and FSSS expands 8. The minimax value is 4, which comes from the leaf third
from the right. As a depth-first method, alpha-beta can only choose to ignore leaves, but
must proceed strictly from left to right. MTD(+∞) and FSSS, as best-first methods, can
explore the leaves “out of order," which helps to grant them more effective pruning. (The
numbers beneath the leaves denote the expansion order of the leaves for each algorithm.)

This example demonstrates the difference between MTD(+∞)and FSSS, which occurs
at the fourth leaf expansion. Because of the initialization of the null-window in MTD(+∞),
the first iteration performs what is called a “max-expansion” of the tree. In a max-expansion,
max states expand all their children, but min states only expand the first (leftmost) child.
Therefore, in a tree of this height, MTD(+∞) will always perform the first 4 expansions in
this manner independent of the values encountered at the leaves.
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Algorithm 2: FSSS-Minimax
begin Solve(G)

1 while L(G.root) 6= U(G.root) do
2 Search (G.root,−∞,∞)

end
3 return L(G.root)
end
begin Search(s, α, β)

4 if leaf(s) then
5 L(s)← U(s)← R(s)
6 return

end
7 i∗, α′, β′ ← Traverse (s, α, β)
8 Search (T (s, ai∗), α

′, β′)
9 L(s)← (s.f)i L(T (s, ai)), U(s)← (s.f)i U(T (s, ai))

end
begin Traverse(s, α, β)

10 for i← 1...|A| do
11 U ′(s, ai)← min(β, U(T (s, ai))), L′(s, ai)← max(α,L(T (s, ai)))

end
12 α′ ← α, β′ ← β
13 if max(s) then
14 i∗ ← argmaxi U

′(s, ai)
15 v ← maxi 6=i∗ U

′(s, ai)
16 α′ ← max(α, v)
17 if α′ = U ′(s, ai∗) then
18 α′ ← α′ − ε

end
end

19 if min(s) then
20 i∗ ← argmini L

′(s, ai)
21 v ← mini 6=i∗ L

′(s, ai)
22 β′ ← min(β, v)
23 if β′ = L′(s, ai∗) then
24 β′ ← β′ + ε

end
end

25 return i∗, α′, β′

end
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FSSS, on the other hand, is only forced to perform the first 3 expansions regardless of
the observed rewards. In all cases, the algorithm will also traverse to the grandparent of
the third leaf to be expanded on the following trajectory. From that state, FSSS traverses
based on the results of the first two expansions. Here, because neither had a reward greater
than 5, FSSS need not expand the fourth leaf expanded by MTD(+∞).

4. Empirical Comparison

In this section, we compare alpha-beta, MTD(+∞), and FSSS in two classes of synthetic
game trees. All trees have binary decisions and randomly selected rewards in the leaves.
Because rewards only exist in the leaf states, the metric we report is the number of leaf
states expanded, and in the experiments the number of leaves (and therefore the height of
the trees) varies. Children of a state are initially explored in fixed left-to-right order in all
cases, and ties are broken in favor of the left child. The height h of the tree is counted
starting at 0, which is just the root, so there are 2h leaves in a tree.

In the first experiment, rewards are integers sampled uniformly from roughly −231 to 231.
The results presented in Figure 4.1(a) show the number of leaves expanded by alpha-beta
and FSSS when searching trees of a varying size. Note that both axes are log-scale, so the
slight difference in the slope of the two lines indicates a difference in the base determining
exponential growth. Using the height h, generating fit curves to the data yielded the func-
tions 1.74 · 1.68h for alpha-beta and 1.46 · 1.65h for FSSS, which fit within the error bounds
of the empirical data at almost all points. In this case, the number of expansions of FSSS
and MTD(+∞) are not statistically significantly different, so only the expansions of FSSS
are rendered. Between FSSS and MTD(+∞), the algorithm that expands the fewest leaves
varies from tree to tree, so neither algorithm dominates the other.

We performed a second experiment to provide a clearer picture of the relative strengths of
FSSS and MTD(+∞) in the context of trees with binary (0 or 1) valued leaves. Specifically,
we measured the proportion of such trees where FSSS or MTD(+∞) expanded strictly fewer
leaves than alpha-beta. (Neither algorithm ever expands more leaves than alpha-beta.)

The results of this experiment are shown in Figure 4.1(b) (higher values indicate more
pruning). Two things are worth mentioning. First, the results varied greatly based on
the parity of the tree height—we plot performance for odd height and even height trees
separately in the graph. A similar finding has been reported previously [Plaat et al., 1996].
Second, although the figure shows that FSSS expands less nodes than alpha-beta more often
than MTD(+∞), in many cases the difference between the actual number of leaves expanded
by FSSS and MTD(+∞)was extremely small even on the largest trees, partially because of
the small range of leaf values.

5. Formal Comparison

The previous section showed that FSSS outprunes alpha-beta on a set of randomly generated
game trees. This section proves a stronger result—FSSS will never expand a state that alpha-
beta does not. Therefore, the total number of leaves expanded by FSSS is upper bounded
by the expansions made by alpha-beta.
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Figure 4.1: Emprical comparison of FSSS and alpha-beta.

First, we argue that FSSS finds V (G) and that it terminates because it never revisits an
expanded leaf.

Theorem 1 (FSSS) FSSS never attempts to enter a closed state, and its bounds are cor-
rect.

This proof will be by induction. When execution begins from the root, if L(G.root) =
U(G.root), then calculation is complete. At each stage during a rollout, if s is a leaf, that leaf
is expanded and the ranges are updated accordingly. Otherwise, in the rollout, L(s), U(s)
are the bounds on the value of state s, k is the branching factor (k = |A|), and s1, ..., sk are
the children of state s, reachable by corresponding actions {a1, ..., ak} = A. L(s1), ..., L(sk)
and U(s1), ..., U(sk) are the lower and upper bounds on the children.

Recall that L(s) = maxi L(si), U(s) = maxi U(si) for max states and L(s) = mini L(si),
U(s) = mini U(si) for min states. At the start of the rollout, 3 conditions hold:

1. L(s) 6= U(s), because rollouts end when the bounds at the root match.

2. L(s) < β, because β = ∞. (If L(s) = β = ∞, then U(s) = ∞, contradicting
Condition 1.)

3. α < U(s), because α = −∞. (If U(s) = α = −∞, then L(s) = −∞, contradicting
Condition 1.)

We now consider the recursive step when a child si∗ is selected for traversal.

5.1. Condition 1: L(si∗) 6= U(si∗)

Proof Proof by contradiction, for the case when s is a max state. Assume L(si∗) =
U(si∗). Note that L(si∗) ≤ L(s) and L(s) < β. So, L(si∗) < β and U(si∗) < β. Since
U(si∗) = maxi min(β, U(si)) and β > U(si∗), then U(si∗) = maxi U(si) = U(s). In addi-
tion, L(s) = maxi L(si), so it follows that L(s) = L(si∗) = U(si∗) = U(s). But, L(s) 6= U(s),
by the inductive hypothesis, so the contradiction implies L(si∗) 6= U(si∗). The same argu-
ment goes through with the appropriate substitutions if s is a min state.
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5.2. Condition 2: L(si∗) < β′

Proof If s is a max state, β′ = β. We have L(s) < β by our induction hypothesis. We also
have L(si∗) ≤ L(s) because L(s) is computed to be the largest of the L(si) values.

If s is a min state, i∗ = argmini max(α,L(si)). Then, β′ = mini 6=i∗max(α,L(si)). We
know L(si∗) ≤ β′ because the range of values in the min that defines β′ is more restrictive
than the one that defines i∗. If L(si∗) < β′, the result is proved. If L(si∗) = β′, the algorithm
increases β′ infinitesimally, which also completes the result.

5.3. Condition 3: α′ < U(si∗)

In this case, the arguments here are the same as for Condition 2, with the appropriate
substitutions.

5.4. FSSS and Alpha-Beta

Now that we have established that FSSS makes consistent progress toward solving the tree,
we show that all of the computation takes place within the parts of the tree alpha-beta has
not pruned.

Theorem 2 FSSS only visits parts of the tree that alpha-beta visits.

Proof We proceed by showing that, for any state s visited by alpha-beta, FSSS will not
traverse to a child state that alpha-beta prunes. Given the base case—that FSSS and alpha-
beta both start at the root—it follows that FSSS will remain within the set of states visited
by alpha-beta.

Let α and β be the values of the corresponding variables in FSSS when the current state
is s. (We assume s is a max state. The reasoning for min states is analogous.) Let α̂ and
β̂ be the α and β values in alpha-beta at that same state. The “primed” versions of these
variables denote the same values at a child state of s. Note that the following invariant
holds: α̂ ≤ α and β ≥ β̂. That is, the α and β values in FSSS lie inside those of alpha-beta.
To see why, note that this condition is true at G.root. Now, consider the computation of α̂′

in alpha-beta. It is the maximum of α̂ and all the values of the child states to its left.
Compare this value to that computed in Lines 15 and 16 of Algorithm 2. Here, the value

α′ passed to the selected child state is the maximum of α (an upper bound on α̂ by the
inductive hypothesis) and the upper bounds of the values of all the other child states (not
just those to its left). Because α′ is assigned the max over a superset of values compared to
in alpha-beta, α′ must be an upper bound on α̂′.

The only case left to consider is what happens in Lines 17 and 18 of Algorithm 2. In
this case, if the α′ value has been increased and now matches the clipped upper bound of
the selected child state, α′ is decremented a tiny amount—one that is guaranteed to be less
than the difference between any pair of leaf values. Since this value is increased (almost) up
to β, it remains an upper bound on α̂′.

For max states, the values of β do not change in either algorithm. Thus, if the α and
β range for FSSS lies inside the α and β range for alpha-beta at some state, it will also lie
inside for all the states visited along a rollout to a leaf. Therefore, FSSS remains within the

163



Weinstein Littman Goschin

subtree not pruned by alpha-beta.

Putting the two theorems together, as a rollout proceeds, FSSS always keeps an unex-
panded leaf that alpha-beta expands beneath it, and FSSS at most expands the same states
expanded by alpha-beta.

6. Discussion

In terms of related work, FSSS is similar to the Score Bounded Monte-Carlo Tree Search
algorithm [Cazenave and Saffidine, 2010]. The major difference between it and FSSS is the
lack of α and β values to guide search of the game tree, which is significant because without
them does not dominate alpha-beta. We also note there are other algorithms provably better
than alpha-beta not mentioned, as we are most concerned with the relationship between
FSSS and alpha-beta; further comparisons would make valuable future work.

While FSSS is guaranteed to never expand more leaves than alpha-beta, the best-first
approach comes at a cost. In terms of memory requirements, alpha-beta only needs to
store α, β, and the path from the root to the current state being examined, which has cost
logarithmic in the size of the tree. FSSS, on the other hand, must store upper and lower
bounds for all states it has encountered, which is linear in the number of states visited.
Fortunately, it has been shown that memory is not a limiting factor when performing game-
tree search even on “large" games such as chess and checkers [Plaat et al., 1996].

Similarly, alpha-beta is also superior to FSSS in terms of computational cost. In the
worst case, nearly all the states in the tree must be expanded to compute V (G). For alpha-
beta, processing is done in one depth-first traversal of the tree, which has cost linear in the
size of the tree. FSSS, however, must conduct a number of trajectories through the tree,
visiting each leaf once. In this case, for a tree of height h, alpha-beta visits 2h+1 states,
whereas FSSS visits states a total of h2h times. The costs associated with increased memory
use and full rollouts did seem to manifest themselves in practice, as alpha-beta was faster
than FSSS in all our experiments.

Although we did observe FSSS to be slower than alpha-beta, this may not hold in all
domains. In our experiments, R(s) is quickly queried, so it is not harmful to visit many
leaves. In some domains, however, the method that assigns a value to a leaf is expensive
to compute. While good heuristic functions are known for evaluating board states in chess,
they do not yet exist for the game of Go. As a result, when attempting to evaluate the
quality of a leaf (generally not end-game positions in practice), the game is played out to
completion using a (potentially randomized) policy and the process may be conducted many
times to obtain a reasonable estimate of value. In such cases where evaluating the quality of
a leaf is expensive, FSSS may be faster in terms of actual processing time than alpha-beta.

In order to improve computation time, FSSS can benefit from refinements which we have
not included in order to simplify the algorithm. In particular, value backups can stop, and
rollouts can be restarted from, the deepest state in the tree visited in the last trajectory
that did not have a change in its (L,U) bounds instead of from the root of the tree. This
does not alter the policy of the algorithm.

Another point worth noting is that, in practice, search algorithms are generally combined
with move ordering, iterative deepening, and evaluation functions—speed up techniques that

164



Rollout Game-tree Search Outprunes Alpha-beta

have not been addressed here. While these additions generally improve performance, they
also violate assumptions made in terms of guarantees of state expansions between algorithms.
For example, when incorporating these methods, it was shown that alpha-beta sometimes
expands fewer states than MTD(+∞) Plaat et al. [1996]; we believe the same to be true for
FSSS.

7. Future Work

There are a number of opportunities to extend FSSS. The original formulation of FSSS
incorporates domain knowledge about possible values a state can achieve in G. As long as
these values are admissible, pruning would be improved while proofs of correctness as well
as dominance of alpha-beta would still be maintained. Additionally, FSSS can be extended
for use in minimax domains that involve stochasticity, such as backgammon. Finally, an
extension of FSSS to the anytime case would be useful when the game-tree cannot be solved
due to time constraints.

Finally, FSSS as presented only terminates once the upper and lower bounds at the root
become equal. If we are simply interested in the optimal action, as opposed to the value at
the root, execution can be terminated once the lower bound on an action is greater than
the upper bound on all other actions at the root. If computation has a hard limitation (in
terms of time or number of samples requested), extension of the algorithm to function in an
“anytime” manner, such as what UCT performs, also warrants investigation.
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