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Abstract

Rich and complex time-series data, such as those generated from engineering sys-
tems, financial markets, videos, or neural recordings are now a common feature
of modern data analysis. Explaining the phenomena underlying these diverse data
sets requires flexible and accurate models. In this paper, we promote Gaussian
process dynamical systems as a rich model class that is appropriate for such an
analysis. We present a new approximate message-passing algorithm for Bayesian
state estimation and inference in Gaussian process dynamical systems, a non-
parametric probabilistic generalization of commonly used state-space models. We
derive our message-passing algorithm using Expectation Propagation provide a
unifying perspective on message passing in general state-space models. We show
that existing Gaussian filters and smoothers appear as special cases within our
inference framework, and that these existing approaches can be improved upon
using iterated message passing. Using both synthetic and real-world data, we
demonstrate that iterated message passing can improve inference in a wide range
of tasks in Bayesian state estimation, thus leading to improved predictions and
more effective decision making.

1 Introduction

The Kalman filter and its extensions [1], such as the extended and unscented Kalman filters [7],
are principled statistical models that have been widely used for some of the most challenging and
mission-critical applications in automatic control, robotics, machine learning, and economics. In-
deed, wherever complex time-series are found, Kalman filters have been successfully applied for
Bayesian state estimation. However, in practice, time series often have an unknown dynamical
structure, and they are high dimensional and noisy, violating many of the assumptions made in es-
tablished approaches for state estimation. In this paper, we look beyond traditional linear dynamical
systems and advance the state-of the-art in state estimation by developing novel inference algorithms
for the class of nonlinear Gaussian process dynamical systems (GPDS).

GPDSs are non-parametric generalizations of state-space models that allow for inference in time
series, using Gaussian process (GP) probability distributions over nonlinear transition and measure-
ment dynamics. GPDSs are thus able to capture complex dynamical structure with few assumptions,
making them of broad interest. This interest has sparked the development of general approaches for
filtering and smoothing in GPDSs, such as [8, 3, 5]. In this paper, we further develop inference
algorithms for GPDSs and make the following contributions: (1) We develop an iterative local mes-
sage passing framework for GPDSs based on Expectation Propagation (EP) [11, 10], which allows
for refinement of the posterior distribution and, hence, improved inference. (2) We show that the
general message-passing framework recovers the EP updates for existing dynamical systems as a
special case and expose the implicit modeling assumptions made in these models. We show that EP
in GPDSs encapsulates all GPDS forward-backward smoothers [5] as a special case and transforms
them into iterative algorithms yielding more accurate inference.

* Authors contributed equally.
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2 Gaussian Process Dynamical Systems

Gaussian process dynamical systems are a general class of discrete-time state-space models with
xt = h(xt−1) +wt , wt ∼ N (0,Q) , h ∼ GPh , (1)
zt = g(xt) + vt , vt ∼ N (0,R) , g ∼ GPg , (2)

where t = 1, . . . , T . Here, x ∈ RD is a latent state that evolves over time, and z ∈ RE , E ≥ D,
are measurements. We assume i.i.d. additive Gaussian system noise w and measurement noise v.
The central feature of this model class is that both the measurement function g and the transition
function h are not explicitly known or parametrically specified, but instead described by probability
distributions over these functions. The function distributions are non-parametric Gaussian processes
(GPs), and we write h ∼ GPh and g ∼ GPg , respectively.

A GP is a probability distribution p(f) over functions f that is specified by a mean function µf
and a covariance function kf [15]. Consider a set of training inputs X = [x1, . . . ,xn]

> and
corresponding training targets y = [y1, . . . yn]

>, yi = f(xi) + w, w ∼ N (0, σ2
w). The poste-

rior predictive distribution at a test input x∗ is Gaussian distributed N (y∗ |µf (x∗), σ2
f (x∗)) with

mean µf (x∗) = k>∗K
−1y and variance σ2

f (x∗) = k∗∗ − k>∗K−1k∗, where k∗ = kf (X,x∗),
k∗∗ = kf (x∗,x∗), andK is the kernel matrix.

Since the GP is a non-parametric model, its use in GPDSs is desirable as it results in fewer restrictive
model assumptions, compared to dynamical systems based on parametric function approximators for
the transition and measurement functions (1)–(2). In this paper, we assume that the GP models are
trained, i.e., the training inputs and corresponding targets as well as the GP hyperparameters are
known. For both GPh and GPg in the GPDS, we used zero prior mean functions. As covariance
functions kh and kg we use squared- exponential covariance functions with automatic relevance
determination plus a noise covariance function to account for the noise in (1)–(2).

Existing work for learning GPDSs includes the Gaussian process dynamical model (GPDM) [20],
which tackles the challenging task of analyzing human motion in (high-dimensional) video se-
quences. More recently, variational [2] and EM-based [19] approaches for learning GPDS were pro-
posed. Exact Bayesian inference, i.e., filtering and smoothing, in GPDSs is analytically intractable
because of the dependency of the states and measurements on previous states through the nonlinear-
ity of the GP. We thus make use of approximations to infer the posterior distributions p(xt|Z) over
latent states xt, t = 1, . . . , T , given a set of observationsZ = z1:T . Existing approximate inference
approaches for filtering and forward-backward smoothing are based on either linearization, particle
representations, or moment matching as approximation strategies [8, 3, 5].

A principled incorporation of the posterior GP model uncertainty into inference in GPDSs is neces-
sary, but introduces additional uncertainty. In tracking problems where the location of an object is
not directly observed, this additional source of uncertainty can eventually lead to losing track of the
latent state. In this paper, we address this problem and propose approximate message passing based
on EP for more accurate inference. We will show that forward-backward smoothing in GPDSs [5]
benefits from the iterative refinement scheme of EP, leading to more accurate posterior distributions
over the latent state and, hence, to more informative predictions and improved decision making.

3 Bayesian State Estimation using Expectation Propagation

Expectation Propagation [10, 11] is a widely-used deterministic algorithm for approximate Bayesian
inference that has been shown to be highly accurate in many problems, including sparse regression
models [17], GP classification [9], and inference in dynamical systems [13, 6, 18]. EP is derived
using a factor-graph, in which the distribution over the latent state p(xt|Z) is represented as the
product of factors fi(xt), i.e., p(xt|Z) =

∏
i fi(xt). EP then specifies an iterative message passing

algorithm in which p(xt|Z) is approximated by a distribution q(xt) =
∏
i qi(xt), using approx-

imate messages qi(xt). In EP, q and the messages qi are members of the exponential family, and
q is determined such that the the KL-divergence KL(p||q) is minimized. EP is provably robust for
log-concave messages [17] and invariant under invertible variable transformations [16]. In practice,
EP has been shown to be more accurate than competing approximate inference methods [9, 17].

In the context of the dynamical system (1)–(2), we consider factor graphs of the form of Fig. 1 with
three types of messages: forward, backward, and measurement messages, denoted by the symbols
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Figure 1: Factor graph (left) and fully factored graph (right) of a general dynamical system.

Algorithm 1 Gaussian EP for Dynamical Systems

1: Init: Set all factors qi toN (0,∞I); Set q(x1) = p(x1) and marginals q(xt6=1) = N (0, 1010I)
2: repeat
3: for t = 1 to T do
4: for all factors qi(xt), where i = B,M,C do
5: Compute cavity distribution q\i(xt) = q(xt)/qi(xt) = N (xt |µ\i,Σ\i) with

Σ\i = (Σ−1t −Σ−1i )−1 , µ\i = Σ\i(Σ−1t µt −Σ−1i µi) (3)

6: Determine moments of fi(xt)q\i(xt), e.g., via the derivatives of

logZi(µ
\i,Σ\i) = log ∫ fi(xt)q\i(xt)dxt (4)

7: Update the posterior q(xt) ∝ N (xt |µt,Σt) and the approximate factor qi(xt):

µt = µ
\i + Σ\i∇>m , Σt = Σ\i −Σ\i(∇>m∇m − 2∇s)Σ

\i (5)

∇m := d logZi/dµ
\i , ∇s := d logZi/dΣ\i (6)

qi(xt) = q(xt)/q
\i(xt) (7)

8: end for
9: end for

10: until Convergence or maximum number of iterations exceeded

B,C,M, respectively. For EP inference, we assume a fully-factored graph, using which we compute
the marginal posterior distributions p(x1|Z), . . . , p(xT |Z), rather than the full joint distribution
p(X|Z) = p(x1, . . . ,xT |Z). Both the states xt and measurements zt are continuous variables and
the messages qi are unnormalized Gaussians, i.e., qi(xt) = siN (xt |µi,Σi)

3.1 Implicit Linearizations Require Explicit Consideration

Alg. 1 describes the main steps of Gaussian EP for dynamical systems. For each node xt in the
fully-factored factor graph in Fig. 1, EP computes three messages: a forward, backward, and mea-
surement message, denoted by qB(xt), qC(xt), and qM(xt), respectively. The EP algorithm updates
the marginal q(xt) and the messages qi(xt) in three steps. First, the cavity distribution q\i(xt) is
computed (step 5 in Alg. 1) by removing qi(xt) from the marginal q(xt). Second, in the projec-
tion step, the moments of fi(xt)q\i(xt) are computed (step 6), where fi is the true factor. In the
exponential family, the required moments can be computed using the derivatives of the log-partition
function (normalizing constant) logZi of fi(xt)q\i(xt) [10, 11, 12]. Third, the moments of the
marginal q(xt) are set to the moments of fi(xt)q\i(xt), and the message qi(xt) is updated (step 7).
We apply this procedure repeatedly to all latent states xt, t = 1, . . . , T , until convergence.

EP does not directly fit a Gaussian approximation qi to the non-Gaussian factor fi. Instead, EP
determines the moments of qi in the context of the cavity distribution such that qi = proj[fiq

\i]/q\i,
where proj[·] is the projection operator, returning the moments of its argument.

To update the posterior q(xt) and the messages qi(xt), EP computes the log-partition function logZi
in (4) to complete the projection step. However, for nonlinear transition and measurement models
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in (1)–(2), computing Zi involves solving integrals of the form

p(a) =

∫
p(a|xt)p(xt)dxt =

∫
N (a |m(xt),S(xt))N (xt | b,B)dxt , (8)

where a = zt for the measurement message, or a = xt+1 for the forward and backward mes-
sages. In nonlinear dynamical systems m(xt) is a nonlinear measurement or transition function.
In GPDSs, m(xt) and S(xt) are the corresponding predictive GP means and covariances, respec-
tively, which are nonlinearly related to xt. Because of the nonlinear dependencies between a and xt,
solving (8) is analytically intractable. We propose to approximate p(a) by a Gaussian distribution
N (a | µ̃, Σ̃). This Gaussian approximation is only correct for a linear relationship a = Jxt, where
J is independent of xt. Hence, the Gaussian approximation is an implicit linearization of the func-
tional relationship between a and xt, effectively linearizing either the transition or the measurement
models.

When computing EP updates using the derivatives ∇m and ∇s according to (5), it is crucial to
explicitly account for the implicit linearization assumption in the derivatives—otherwise, the EP
updates are inconsistent. For example, in the measurement and the backward message, we directly
approximate the partition functions Zi, i ∈ {M,C} by Gaussians Z̃i(a) = N (µ̃i, Σ̃

i
). The consis-

tent derivatives d(log Z̃i)/dµ\i and d(log Z̃i)/dΣ\i of Z̃i with respect to the mean and covariance
of the cavity distribution q are obtained by applying the chain rule, such that

∇m = d log Z̃i

dµ\i = ∂ log Z̃i

∂µ̃i
∂µ̃i

∂µ\i = (a− µ̃i)>(Σ̃i
)−1J> ∈ R1×D , (9)

∇s =
d log Z̃i

dΣ\i = ∂ log Z̃i

∂Σ̃
i

∂Σ̃
i

∂Σ\i = 1
2

(
∂ log Z̃i

∂(µ̃i)>
∂ log Z̃i

∂µ̃i − Σ̃
i
)

∂Σ̃
i

∂Σ\i ∈ RD×D , (10)

∂µ̃i

∂µ\i = J> ∈ RE×D , ∂Σ̃
i

∂Σ\i = JI4J
> ∈ RE×E×D×D , (11)

where I4 ∈ RD×D×D×D is an identity tensor. Note that with the implicit linear model a = Jxt,
the derivatives ∂µ̃i/∂Σ\i and ∂Σ̃

i
/∂µ\i vanish. Although we approximate Zi by a Gaussian Z̃i,

we are still free to choose a method of computing its mean µ̃i and covariance matrix Σ̃
i
, which also

influences the computation of J = ∂(µ̃i)/∂µ\i. However, even if µ̃i and Σ̃
i

are general functions
of µ\i and Σ\i, the derivatives ∂µ̃i/∂µ\i and ∂Σ̃

i
/∂Σ\i must equal the corresponding partial

derivatives in (11), and ∂µ̃i/∂Σ\i and ∂Σ̃
i
/∂µ\i must be set to 0. Hence, the implicit linearization

expressed by the Gaussian approximation Z̃i must be explicitly taken into account in the derivatives
to guarantee consistent EP updates.

3.2 Messages in Gaussian Process Dynamical Systems

We now describe each of the messages needed for inference in GPDSs, and outline the approxima-
tions required to compute the partition function in (4). Updating a message requires a projection
to compute the moments of the new posterior marginal q(xt), followed by a Gaussian division to
update the message itself. For the projection step, we compute approximate partition functions
Z̃i, where i ∈ {M,B,C}. Using the derivatives d log Z̃i/dµ

\i
t and d log Z̃i/dΣ

\i
t , we update the

marginal q(xt), see (5).

Measurement Message For the measurement message in a GPDS, the partition function is

ZM(µ
\M
t ,Σ

\M
t ) =

∫
fM(xt)q\M(xt)dxt ∝

∫
fM(xt)N (xt |µ\Mt ,Σ

\M
t )dxt , (12)

fM(xt) = p(zt|xt) = N (zt |µg(xt),Σg(xt)), (13)

where fM is the true measurement factor, and µg(xt) and Σg(xt) are the predictive mean and co-
variance of the measurement GP GPg . In (12), we made it explicit that ZM depends on the moments
µ
\M
t and Σ

\M
t of the cavity distribution q\M(xt). The integral in (12) is of the form (8), but is

intractable since solving it corresponds to a GP prediction at uncertain inputs [14], resulting in non-
Gaussian predictive distributions. However, the mean and covariance of a Gaussian approximation
Z̃M to ZM can be computed analytically: either using exact moment matching [14, 3], or approxi-
mately by expected linearization of the posterior GP [8]; details are given in [4]. The moments of
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Z̃M are also functions of the mean µ\Mt and variance Σ
\M
t of the cavity distribution. By taking the

linearization assumption of the Gaussian approximation into account explicitly (here, we implicitly
linearize GPg) when computing the derivatives, the EP updates remain consistent, see Sec. 3.1.

Backward Message To update the backward message qC(xt), we require the partition function

ZC(µ
\C
t ,Σ

\C
t ) =

∫
fC(xt)q\C(xt)dxt ∝

∫
fC(xt)N (xt |µ\Ct ,Σ

\C
t )dxt , (14)

fC(xt)=

∫
p(xt+1|xt)q\B(xt+1)dxt+1=

∫
N (xt+1 |µh(xt),Σh(xt))q\B(xt+1)dxt+1 . (15)

Here, the true factor fC(xt) in (15) takes into account the coupling between xt and xt+1, which
was lost in assuming the full factorization in Fig. 1. The predictive mean and covariance of GPh are
denoted µh(xt) and Σh(xt), respectively. Using (15) in (14) and reordering the integration yields

ZC(µ
\C
t ,Σ

\C
t ) ∝

∫
q\B(xt+1)

∫
p(xt+1|xt)q\C(xt)dxtdxt+1 . (16)

We approximate the inner integral in (16), which is of the form (8), by N (xt+1 | µ̃\C, Σ̃
\C

) by

moment matching [14], for instance. Note that µ̃\C and Σ̃
\C

are functions of µ\Ct and Σ
\C
t . This

Gaussian approximation implicitly linearizes GPh. Now, (16) can be computed analytically, and

we obtain a Gaussian approximation Z̃C = N (µ
\B
t+1 | µ̃\C, Σ̃

\C
+ Σ

\B
t+1) of ZC that allows us to

update the moments of q(xt) and the message qC(xt).

Forward Message Similarly, for the forward message, the projection step involves computing the
partition function

ZB(µ
\B
t ,Σ

\B
t ) =

∫
fB(xt)q\B(xt)dxt =

∫
fB(xt)N (xt |µ\Bt ,Σ

\B
t )dxt, (17)

fB(xt) =

∫
p(xt|xt−1)q\C(xt−1)dxt−1 =

∫
N (xt |µf (xt−1),Σf (xt−1))q\C(xt−1)dxt−1 ,

where the true factor fB(xt) takes into account the coupling between xt−1 and xt, see Fig. 1. Here,
the true factor fB(xt) is of the form (8). We propose to approximate fB(xt) directly by a Gaussian
qB(xt) ∝ N (µ̃B, Σ̃

B
). This approximation implicitly linearizes GPh. We obtain the updated

posterior q(xt) by Gaussian multiplication, i.e., q(xt) ∝ qB(xt)q\B(xt). With this approximation
we do not update the forward message in context, i.e., the true factor fB(xt) is directly approximated
instead of the product fB(xt)q\B(xt), which can result in suboptimal approximation.

3.3 EP Updates for General Gaussian Smoothers

We can interpret the EP computations in the context of classical Gaussian filtering and smooth-
ing [1]. During the forward sweep, the marginal q(xt) = q\C(xt) corresponds to the filter dis-
tribution p(xt|z1:t). Moreover, the cavity distribution q\M(xt) corresponds to the time update
p(xt|z1:t−1). In the backward sweep, the marginal q(xt) is the smoothing distribution p(xt|Z),
incorporating the measurements of the entire time series. The mean and covariance of Z̃C can be
interpreted as the mean and covariance of the time update p(xt+1|z1:t).
Updating the moments of the posterior q(xt) via the derivatives of the log-partition function recovers
exactly the standard Gaussian EP updates in dynamical systems described by Qi and Minka [13].
For example, when incorporating an updated measurement message, the moments in (5) can also be
written as µt = µ

\M
t +K(zt − µ\Mz ) and Σt = Σ

\M
t −KΣ

zx\M
t , respectively, where Σ

xz\M
t =

cov[x
\M
t , z

\M
t ] and K = Σ

xz\M
t (Σ\Mz )−1. Here, µ\Mz = E[g(xt)] and Σ\Mz = cov[g(xt)], where

xt ∼ q\M(xt). Similarly, the updated moments of q(xt) with a new backward message via (5)
correspond to the updates [13] µt = µ

\C
t +L(µt+1−µ\Ct+1) and Σt = ΣC

t +L(Σt+1−Σ
\C
t+1)L

>,
where L = cov[x

\C
t ,x

\C
t+1](Σ

\C
t+1)

−1. Here, we defined µ\Ct+1 = E[h(xt)] and Σ
\C
t+1 = cov[h(xt)],

where xt ∼ q\C(xt).
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Table 1: Performance comparison on the synthetic data set. Lower values are better.

EKS EP-EKS GPEKS EP-GPEKS GPADS EP-GPADS
NLLx −2.04± 0.07 −2.17± 0.04 −1.67± 0.22 −1.87± 0.14 + 1.67± 0.37 −1.91± 0.10
MAEx 0.03± 2.0× 10−3 0.03± 2.0× 10−3 0.04± 4.6× 10−2 0.04± 4.6× 10−2 1.79± 0.21 0.04± 4× 10−3

NLLz −0.69± 0.11 −0.73± 0.11 −0.75± 0.08 −0.81± 0.07 1.93± 0.28 −0.77± 0.07

The iterative message-passing algorithm in Alg. 1 provides an EP-based generalization and a uni-
fying view of existing approaches for smoothing in dynamical systems, e.g., (Extended/Unscented/
Cubature) Kalman smoothing and the corresponding GPDS smoothers [5]. Computing the messages
via the derivatives of the approximate log-partition functions log Z̃i recovers not only standard EP
updates in dynamical systems [13], but also the standard Kalman smoothing updates [1].

Using any prediction method (e.g., unscented transformation, linearization), we can compute Gaus-
sian approximations of (8). This influences the computation of log Z̃i and its derivatives with respect
to the moments of the cavity distribution, see (9)–(10). Hence, our message-passing formulation is
also general as it includes all conceivable Gaussian filters/smoothers in (GP)DSs, solely depending
on the prediction technique used.

4 Experimental Results

We evaluated our proposed EP-based message passing algorithm on three data sets: a synthetic data
set, a low-dimensional simulated mechanical system with control inputs, and a high-dimensional
motion-capture data set. We compared to existing state-of-the-art forward-backward smoothers in
GPDSs, specifically the GPEKS [8], which is based on the expected linearization of the GP models,
and the GPADS [5], which uses moment-matching. We refer to our EP generalizations of these
methods as EP-GPEKS and EP-GPADS.

In all our experiments, we evaluated the inference methods using test sequences of measurements
Z = [z1, . . . ,zT ]. We report the negative log-likelihood of predicted measurements using the
observed test sequence (NLLz). Whenever available, we also compared the inferred posterior dis-
tribution q(X) ≈ p(X|Z) of the latent states with the underlying ground truth using the average
negative log-likelihood (NLLx) and Mean Absolute Errors (MAEx). We terminated EP after 100
iterations or when the average norms of the differences of the means and covariances of q(X) in
two subsequent EP iterations were smaller than 10−6.

4.1 Synthetic Data

We considered the nonlinear dynamical system

xt+1 = 4 sin(xt) + w , w ∼ N (0, 0.12) , zt = 4 sin(xt) + v , v ∼ N (0, 0.12) .

We used p(x1) = N (0, 1) as a prior on the initial latent state. We assumed access to the latent state
and trained the dynamics and measurement GPs using 30 randomly generated points, resulting in
a model with a substantial amount of posterior model uncertainty. The length of the test trajectory
used was T = 20 time steps.

Tab. 1 reports the quality of the inferred posterior distributions of the latent state trajectories using the
average NLLx, MAEx, and NLLz (with standard errors), averaged over 10 independent scenarios.
For this dataset, we also compared to the Extended Kalman Smoother (EKS) and an EP-iterated EKS
(EP-EKS). Both inference methods make use of the known transition and measurement mappings
h and g, respectively. Iterated forward-backward smoothing with EP (EP-EKS, EP-GPEKS, EP-
GPADS) improved the smoothing posteriors using a single sweep only (EKS, GPEKS, GPADS).
The GPADS performed poorly across all our evaluation criteria for two reasons: First, the GPs were
trained using few data points, resulting in posterior distributions with a high degree of uncertainty.
Second, predictive variances using moment-matching are generally conservative and increased the
uncertainty even further. This uncertainty caused the GPADS to quickly lose track of the period of
the state, as shown in Fig. 2(a). By iterating forward-backward smoothing using EP (EP-GPADS),
the posteriors p(xt|Z) were iteratively refined, and the latent state could be followed closely as
indicated by both the small blue error bars in Fig. 2(a) and all performance measures in Tab. 1. EP
smoothing typically required a small number of iterations for the inferred posterior distribution to
closely track the true state, Fig. 2(b). On average, EP required fewer than 10 iterations to converge
to a good solution in which the mean of the latent-state posterior closely matched the ground truth.
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Figure 2: (a) Posterior latent state distributions using EP-GPADS (blue) and the GPADS (gray). The
ground truth is shown in red (dashed). The GPADS quickly loses track of the period of the state
revealed by the large posterior uncertainty. EP with moment matching (EP-GPADS) in the GPDS
iteratively refines the GPADS posterior and can closely follow the true latent state trajectory. (b)
Average NLLx per data point in latent space with standard errors of the posterior state distributions
computed by the GPADS and the EP-GPADS as a function of EP iterations.

4.2 Pendulum Tracking

We considered a pendulum tracking problem to demonstrate GPDS inference in multidimen-
sional settings, as well as the ability to handle control inputs. The state x of the system is
given by the angle φ measured from being upright and the angular velocity φ̇. The pendulum
used has a mass of 1 kg and a length of 1m, and random torques u ∈ [−2, 2]Nm were ap-
plied for a duration 200ms (zero-order-hold control). The system noise covariance was set to
Σw = diag(0.32, 0.12). The state was measured indirectly by two bearings sensors with coordinates
(x1, y1) = (−2, 0) and (x2, y2) = (−0.5,−0.5), respectively, according to z = [z1, z2]

>+v , v ∼
N
(
0,diag(0.12, 0.052)

)
with zi = arctan

(
sinφ−yi
cosφ−xi

)
, i = 1, 2. We trained the GP models using 4

randomly generated trajectories of length T = 20 time steps, starting from an initial state distribu-
tion p(x1) = N (0,diag(π2/162, 0.52)) around the upright position. For testing, we generated 12
random trajectories starting from p(x1).

Table 2: Performance comparison on the pendulum-swing
data. Lower values are better.

NLLx MAEx NLLz
GPEKS −0.35± 0.39 0.30± 0.02 −2.41± 0.047
EP-GPEKS −0.33± 0.44 0.31± 0.02 −2.39± 0.038
GPADS −0.80± 0.06 0.30± 0.02 −2.37± 0.042
EP-GPADS −0.85± 0.05 0.29± 0.02 −2.40± 0.037

Tab. 2 summarizes the performance
of the various inference methods.
Generally, the (EP-)GPADS per-
formed better than the (EP-)GPEKS
across all performance measures.
This indicates that the (EP-)GPEKS
suffered from overconfident posteri-
ors compared to (EP-)GPADS, which
is especially pronounced in the de-
grading NLLx values with increasing EP iterations and the relatively high standard errors. In about
20% of the test cases, the inference methods based on explicit linearization of the posterior mean
function (GPEKS and EP-GPEKS) ran into numerical problems typical of linearizations [5], i.e.,
overconfident posterior distributions that caused numerical problems. We excluded these runs from
the results in Tab. 2. The inference algorithms based on moment matching (GPADS and EP-GPADS)
were numerically stable as their predictions are typically more coherent due to conservative approx-
imations of moment matching.

4.3 Motion Capture Data

We considered motion capture data (from http://mocap.cs.cmu.edu/, subject 64) contain-
ing 10 trials of golf swings recorded at 120Hz, which we subsampled to 20Hz. After removing
observation dimensions with no variability we were left with observations zt ∈ R56, which were
then whitened as a pre-processing step. For trials 1–7 (403 data points), we used the GPDM [20]
to learn MAP estimates of the latent states xt ∈ R3. These estimated latent states and their corre-
sponding observations are used to train the GP models GPf and GPg . Trials 8–10 were used as test
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Figure 3: Latent space posterior distribution (95% confidence ellipsoids) of a test trajectory of the
golf-swing motion capture data. The further the ellipsoids are separated the faster the movement.

data without ground truth labels. The GPDM [20] focuses on learning a GPDS; we are interested in
good approximate inference in these models.

Fig. 3 shows the latent-state posterior distribution of a single test sequence (trial 10) obtained from
the EP-GPADS. The most significant prediction errors in observed space occurred in the region
corresponding to the yellow/red ellipsoids, which is a low-dimensional embedding of the motion
when the golf player hits the ball, i.e., the periods of high acceleration (poses 3–5).

Tab. 3 summarizes the results of inference on the golf data set in all test trials: Iterating forward-
backward smoothing by means of EP improved the inferred posterior distributions over the latent
states. The posterior distributions in latent space inferred by the EP-GPEKS were tighter than the
ones inferred by the EP-GPADS. The NLLz-values suffered a bit from this overconfidence, but the
predictive performance of the EP-GPADS and EP-GPEKS were similar. Generally, inference was
more difficult in areas with fast movements (poses 3–5 in Fig. 3) where training data were sparse.

Table 3: Average inference performance (NLLz , motion
capture data set). Lower values are better.

Test trial GPEKS EP-GPEKS GPADS EP-GPADS
Trial 8 14.20 13.82 14.28 14.09
Trial 9 15.63 14.71 15.19 14.84
Trial 10 26.68 25.73 25.64 25.42

The computational demand the two
inference methods for GPDSs we
presented is vastly different. High-
dimensional approximate inference
in the motion capture example using
moment matching (EP-GPADS) was
about two orders of magnitude slower
than approximate inference based on
linearization of the posterior GP mean (EP-GPEKS): For updating the posterior and the messages for
a single time slice, the EP-GPEKS required less than 0.5 s, the EP-GPADS took about 20 s. Hence,
numerical stability and more coherent posterior inference with the EP-GPADS trade off against
computational demands.

5 Conclusion
We have presented an approximate message passing algorithm based on EP for improved infer-
ence and Bayesian state estimation in GP dynamical systems. Our message-passing formulation
generalizes current inference methods in GPDSs to iterative forward-backward smoothing. This
generalization allows for improved predictions and comprises existing methods for inference in the
wider theory for dynamical systems as a special case. Our new inference approach makes the full
power of the GPDS model available for the study of complex time-series data. Future work includes
investigating alternatives to linearization and moment matching when computing messages, and the
more general problem of learning in Gaussian process dynamical systems.
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