
Model-based Imitation Learning by Probabilistic Trajectory Matching

Peter Englert1, Alexandros Paraschos1, Jan Peters1,2, Marc Peter Deisenroth1

Abstract— One of the most elegant ways of teaching new
skills to robots is to provide demonstrations of a task and
let the robot imitate this behavior. Such imitation learning is
a non-trivial task: Different anatomies of robot and teacher,
and reduced robustness towards changes in the control task
are two major difficulties in imitation learning. We present
an imitation-learning approach to efficiently learn a task from
expert demonstrations. Instead of finding policies indirectly,
either via state-action mappings (behavioral cloning), or cost
function learning (inverse reinforcement learning), our goal is
to find policies directly such that predicted trajectories match
observed ones. To achieve this aim, we model the trajectory
of the teacher and the predicted robot trajectory by means
of probability distributions. We match these distributions by
minimizing their Kullback-Leibler divergence. In this paper,
we propose to learn probabilistic forward models to compute
a probability distribution over trajectories. We compare our
approach to model-based reinforcement learning methods with
hand-crafted cost functions. Finally, we evaluate our method
with experiments on a real compliant robot.

I. INTRODUCTION

Instructing robots to perform complex tasks is essential
for using them in industrial or daily life situations. Classical
methods of instructing robots are programming methods like
offline programming with simulated systems [13] or online
programming through teach-in [7]. However, these methods
suffer from the large amount of work needed for teaching a
single task and the difficulty of transferring programs to new
environments without starting from scratch.

For complex tasks, it is often impractical to program
robot behavior by hand. Thus, imitation learning aims at
transferring skills from a teacher via demonstrations to a
robot [4], [2]. Providing human demonstrations and letting
the robot imitate this behavior is often easier than manually
programming controllers. Research in the field of imitation
learning has led to a variety of different techniques. They
differ in the way the demonstrations are provided (e.g.,
motion capture [28], kinesthetic teaching [8]), the level at
which imitation happens (e.g., at the symbolic [29] or the
trajectory level [9]), whether they use a system model, and
whether/how they employ reward functions for the task.

A common technique to improve the results of imitation
learning is Reinforcement Learning (RL). In RL, a task-
specific reward function is defined, which is maximized
[27]. Often the results of imitation learning are used as
an initialization to RL. This approach was used to make

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007–2013)
under grant agreement #270327.
1 Dept. of Computer Science, Technische Universität Darmstadt, Germany.
2 Max Planck Institute for Intelligent Systems, Tübingen, Germany.
{englert |paraschos |peters |marc}@ias.tu-darmstadt.de

Fig. 1. The BioRobTM is a compliant, biomechanically-inspired robot
manipulator with drive cables and springs, which represent tendons and
their elasticity.

a robot learn the ball-in-a-cup game, where the learning
was initialized by human demonstrations [14]. However, a
major difficulty in RL is the definition of a suitable reward
function for more complex tasks, e.g., when performing a
tennis stroke.

Inverse Reinforcement Learning (IRL) addresses the prob-
lem of hand-crafting task-specific reward functions [19]. IRL
automatically extracts a reward function from demonstrated
behavior, which is subsequently used in an RL framework
for policy learning. Hence, IRL is suited for tasks where it
is difficult to provide a reward function by hand, e.g, flying
acrobatic helicopter maneuvers [1], [18]. A drawback of IRL
is that the performance relies on feature selection, which can
strongly bias the performance [19].

One of the classic forms of imitation learning is Behavioral
Cloning (BC). In BC, the behavior of a skilled human
is recorded and, subsequently, an induction algorithm is
executed over the traces of the behavior [6]. In classical
BC, the objective is to match observed expert trajectories
and robot trajectories indirectly by learning a regression
function from observed states to actions, i.e., a policy. An
impressive early application of BC was the autonomous
vehicle ALVINN [21]. It learned a neural-network policy for
driving a car from recorded state-action training pairs of a
human driver. BC is straightforwardly applicable and leads to
a clean-up effect, i.e., the smoothing of noisy demonstrations.
However, BC is not robust to changes in the control task and
cannot provide strong performance guarantees. Moreover,
BC suffers severely from the correspondence problem [17],
where a direct mapping between the different anatomies of
teacher and robot is non-trivial, e.g., if the human demon-
strations exceed the torque limits of the robot’s motors.

In this paper, we propose a novel approach to imitation
learning by probabilistic trajectory matching. The key idea
is to find a robot-specific policy such that the observed
expert trajectories and the predicted robot trajectories match.
We propose to learn the policy not as a mapping from

demonstrated states to demonstrated actions, but rather as a
function from robot states to robot-specific actions, with the
sole goal of matching demonstrated and robot trajectories.

To predict the robot’s trajectories, we propose to learn a
forward model. To be robust to model errors, our learned for-
ward model is a probability distribution over forward models
and implemented as a probabilistic non-parametric Gaussian
process (GP) [24]. The GP takes uncertainties about the
learned robot dynamics into account and reduces typical
problems of learned models, such as model errors [25],
[3] and potentially unrealistic assumptions (e.g., rigid body
dynamics), typically made in parametric forward models.

Throughout this paper, we use the following notation:
States are denoted by x ∈ RD and actions as u ∈ RE ,
respectively. Furthermore, a trajectory as τ comprises a
sequence of states x0, . . . ,xT for a fixed time horizon T .
The policy π maps a state x to a corresponding action u.

In the context of imitation learning, our objective is to
find a policy π, such that the robot’s predicted trajectory
τπ matches the observed expert trajectory τ exp. We use
probability distributions over trajectories for representing
both the demonstrated trajectories and the predicted trajec-
tory. Probability distributions over trajectories allows us to
represent both the uncertainty about the robot’s dynamics and
the variability of the demonstrations in a principled way.

As a similarity measure between these distributions we
use the Kullback-Leibler (KL) divergence [26]. Hence, our
objective is to find a policy π∗ with

π∗ ∈ argminπ KL
(
p(τ exp)||p(τπ)

)
, (1)

where p(τπ) is the predicted robot trajectory distribution and
p(τ exp) is the observed expert trajectory distribution.

II. TRAJECTORY MATCHING

Our goal is to imitate the expert’s behavior by minimizing
the KL divergence between the distribution p(τ exp) over
demonstrated trajectories and the predicted trajectory distri-
bution p(τπ) of the robot when executing a policy π, see
Eq. (1). In this section, we show that minimizing the KL
divergence between these two trajectory distributions induces
a natural cost function, that can be used by any RL algorithm
to learn policies.

The KL divergence is a difference measure between two
probability distributions. For continuous probability distribu-
tions p(x) and q(x) the KL divergence is defined as

KL
(
p(x)||q(x)

)
=

∫
p(x) log

p(x)

q(x)
dx. (2)

For the special case of two Gaussian distributions p(x) ∼
N (x|µ0,Σ0) and q(x) ∼ N (x|µ1,Σ1), the KL divergence
is given by the closed-form expression

KL (p||q) = 1
2 log

∣∣Σ−11 Σ0

∣∣ (3)

+ 1
2 tr
(
Σ−11

(
(µ0−µ1)(µ0−µ1)

>+Σ0−Σ1

))
.

A. Trajectory Representation

We assume that a distribution over trajectories p(τ) =
p(x1, . . . ,xT) is approximated by a Gaussian N (µτ ,Στ)
and factorizes according to

p(τ) ≈
∏T

t=1
p(xt) =

∏T

t=1
N (xt|µt,Σt) . (4)

The factorizing assumption implies that Στ is block di-
agonal without cross-correlations among states at differ-
ent time steps. An illustration of such a trajectory repre-
sentation is shown in Fig. 2. We assume that an expert

1 5 10 15

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time step t

S
ta

te
 x

Teacher demonstrations

Estimated distribution

Fig. 2. Teacher demonstrations (blue
lines) and estimated expert trajectory
distribution (red graph).

provides n trajectories to
the imitation learner. We
consider the case that
a demonstrated trajectory
τ exp
i consists of a se-

quence of states xit for
each time step t =
1, . . . , T , with a fixed
time horizon T . The mean
and covariance matrix of
the marginals are com-
puted as unbiased estimates

µ̂exp
t = 1

n

∑n

i=1
xit, Σ̂

exp
t = 1

n−1

∑n

i=1
(xit−µ̂

exp
t)(xit−µ̂

exp
t)>,

respectively, where xit is the state at time t of the ith expert
trajectory. This yields an approximate Gaussian distribution
p(τ exp) = N (µexp,Σexp) over the expert trajectories with

µexp = [µ̂exp
1 , µ̂exp

2 , . . . , µ̂exp
T]> (5)

and Σexp= diag(Σ̂
exp
1 , Σ̂

exp
2 , . . . , Σ̂

exp
T). (6)

The trajectory factorization in Eq. (4) simplifies the KL
divergence in Eq. (2) as it suffices to sum up the KL
divergences of the marginal distributions p(xt), q(xt), i.e.,

KL
(
p(τ)||q(τ)

)
=
∑T

t=1
KL
(
p(xt)||q(xt)

)
. (7)

Since the marginals p(xt) and q(xt) are approximated by
Gaussians, the KL divergence in Eq. (7) can be evaluated in
closed-form using Eq. (3).

B. Natural Cost Function

Matching the predicted trajectory of the current policy
p(τπ) with the expert trajectory distribution p(τ exp) via
minimizing the KL divergence induces a natural cost function
in a standard RL context: Eq. (7) shows that matching two
factorized distributions by means of the KL divergence leads
to an additive objective function. More specifically, for the
trajectory distributions p(τ exp) and p(τπ), we aim to find a
policy π that minimizes the objective

JπIL=KL
(
p(τ exp)||p(τπ)

)
=
∑T

t=1
KL
(
p(xexp

t)||p(xπt)
)
. (8)

For finding a policy that minimizes JπIL in Eq. (8), we can use
standard RL methods: Our objective in Eq. (8) corresponds
to an RL long-term cost of the form

JπRL =
∑T

t=1
c(xt) (9)

Algorithm 1 PILCO
1: init: Apply random control signals and record data
2: repeat
3: Learn probabilistic forward model (GP)
4: Policy Search
5: repeat
6: Approximate inference for policy evaluation
7: Gradient-based policy improvement dJπ(θ)/dθ
8: Update parameter θ
9: until convergence return θ?

10: Set π? ← π(θ?)
11: Apply π? to system and record data
12: until task learned

with an immediate cost c(xt) = KL
(
p(xexp

t)||p(xπt)
)
.

Since the KL divergence between trajectory distributions
in Eq. (7) corresponds to a RL long-term cost function,
see Eq. (9), we can apply RL algorithms to find optimal
policies. In principle, any algorithm that can approximate
trajectories is suitable. For instance, model-free methods
based on trajectory sampling [27], [20] or model-based RL
algorithms that learn forward models of the robot, and,
subsequently, use them for predictions [12], [5], [23], [11],
are suitable. In this paper, we use a policy search method
with learned probabilistic forward models to minimize the
KL divergence KL

(
p(τ exp)||p(τπ)

)
.

III. IMITATION LEARNING VIA POLICY SEARCH

For performing policy search, we use the PILCO (proba-
bilistic inference for learning control) framework [10], which
learns policies data efficiently. An outline of PILCO is given
in Algorithm 1.

The objective in policy search is to find policy parameters
θ of a policy π that minimize the long-term cost in Eq. (9).
PILCO possesses two key ingredients to find good policy pa-
rameters: 1) learning of a probabilistic forward model of the
robot dynamics with a GP; 2) analytic long-term predictions
and policy gradients ∂JπRL/∂θ. PILCO explicitly accounts for
the uncertainty about the unknown dynamics function long-
term predictions and controller learning. Hence, learning is
relatively robust to modeling errors.

RL algorithms require an immediate cost function c in
Eq. (9), the specification of which can be very cumbersome:
For complex tasks it is non-trivial to find a suitable function
that allows learning the task properly. However, in the
imitation-learning context of this paper, a natural RL cost
function c is induced by matching trajectory distributions by
minimizing the KL divergence between them, see Eq. (9).
We will exploit this natural cost function in the following to
find imitation-learning policies.

To find policy parameters θ such that the predicted tra-
jectory distribution matches the observed expert trajectory
distribution, PILCO minimizes the cost function in Eq. (8)
by means of gradient-based optimization. For this purpose,
PILCO computes the derivatives of JπIL with respect to the

policy parameters θ

dJπIL
dθ

=
∑T

t=1

(
∂KL
∂µπt

dµπt
dθ

+
∂KL
∂Σπ

t

dΣπ
t

dθ

)
. (10)

The partial derivatives of the KL divergence with respect
to the mean µπt and the covariance Σπ

t of the predicted
state distribution at time t can be computed analytically from
Eq. (3). The derivatives of the mean µπt and covariance Σπ

t

with respect to θ can be found in [10].
Instead of initializing the model randomly (see Alg. 1), it

is also possible to initialize the model with recorded state-
action pairs to increase convergence speed. All derivatives
in Eq. (10) are computed analytically, which allows for fast
gradient-based optimization methods, e.g., BFGS.

So far, we tacitly assumed that the predicted trajectories
τπ are given. In the following sections, we describe how we
compute them. First, we learn a probabilistic forward model
with GPs. Subsequently, we detail how PILCO computes
distributions over long-term trajectories, which are required
to imitate the behavior of the demonstrations via minimizing
the KL divergence in Eq. (8).

A. Learning a Probabilistic Forward Model

A forward model maps a state xt−1 and action ut−1 of
the system to the next state xt = f(xt−1,ut−1). Such a
model can be used to represent the transition dynamics of a
robot. We represent the model by a probability distribution
over models and implemented as a GP. Since a GP is a
consistent, non-parametric method, it is not necessary to
specify restrictive parametric models. Instead, the “shape”
of the underlying function f is inferred directly from the
data, while the uncertainty about this estimate is represented
appropriately as well. As training inputs to the GP we used
state-action pairs (xt−1,ut−1) and as targets the differences
of the states ∆t = xt − xt−1 + ε where ε ∼ N (0,Σε) is
i.i.d. Gaussian noise with Σε = diag([σ2

1 . . .σ
2
D]). This GP

represents one-step predictions in the form

p(xt|xt−1,ut−1) = N (xt|µt,Σt) (11)
with µt = xt−1 + Ef [∆t], (12)

Σt = varf [∆t]. (13)

We use a prior mean function m ≡ 0 and a squared
exponential covariance function plus noise covariance

k(x̃p, x̃q) = α2 exp
(
− 1

2 (x̃p−x̃q)
TΛ−1(x̃p−x̃q)

)
+ δpqσ

2
ε ,

with inputs of the form x̃ = [x>,u>]>. The parameter α2 is
the signal variance, Λ = diag([l21, . . . , l

2
D]) is a matrix with

the squared length-scales, δpq is the Kronecker symbol which
is 1 when p = q, and 0 otherwise. The posterior predictive
distribution of a deterministic test input x̃? is given by the
mean and variance

mf (x̃?) = Ef [∆?] = k
T
? (K + σ2

εI)
−1y, (14)

σ2
f (x̃?) = varf [∆?] = k?? − kT? (K + σ2

εI)
−1k? ,(15)

where k? := k(X̃, x̃?), k?? := k(x̃?, x̃?), Gram matrix K
with Kij = k(x̃i, x̃j), training inputs X̃ = [x̃1, . . . , x̃n],

Fig. 3. Swing-up steps of the double-pendulum from the initial to the final
configuration. The double pendulum is mounted fixed on the ground and
consists of two actuated joints (black circles) and two links (grey bars).

and corresponding targets y = [∆1, . . . ,∆n]
>. Eqs. (11)–

(15) are used to map the current state-action pair (xt,ut)
onto a probability distribution over the next state xt+1.

B. Trajectory Predictions

Based on the PILCO framework, we use the learned GP
forward model for iteratively predicting the state distributions
p(x1), . . . , p(xT) for a given policy π and an initial state dis-
tribution p(x0). These long-term predictions are the marginal
distributions of the distribution p(τπ) over predicted trajec-
tories. However, even for a given input (xt,ut), the GP’s
prediction is a probability distribution given by Eqs. (14)–
(15). Iteratively computing the predictions p(x1), . . . , p(xT),
therefore, requires to predict with GPs at uncertain inputs
[22]. The predicted distribution at an uncertain input x̃t−1 ∼
N (µt−1,Σt−1) requires integrating out both the uncertainty
about the state-action pair x̃t−1 and the posterior uncertainty
about the function f ∼ GP according to

p(∆t) =

∫∫
p(f(x̃t−1)|x̃t−1)p(x̃t−1)dfdx̃t−1. (16)

The transition probability p(f(x̃t−1)|x̃t−1) is the GP predic-
tive distribution given in Eqs. (14)–(15). Computing the exact
distribution p(∆t) in Eq. (16) is analytically intractable.
Therefore, we use exact moment matching to approximate
this distribution by a Gaussian as detailed in [10].

The GP predictions at uncertain inputs allow us to predict
the long-term outcome of a control strategy π for a distri-
bution p(x0) over start states, which results in the desired
probability distribution over a trajectory p(τπ).

With the predictive distribution p(τπ) over trajectories,
the formulation of model-based imitation learning as an RL
problem with a natural cost function induced by the KL
divergence, we introduced all ingredients for model-based
imitation learning via probabilistic trajectory matching.

IV. EXPERIMENTAL RESULTS

The performance of our imitation learning approach is
demonstrated by a simulated double-pendulum swing-up
task and a table-tennis hitting-task on a real compliant
BioRobTM (shown in Fig. 1).

A. Learning to Swing up a Double Pendulum

The double pendulum consists of two actuated joints and
two links. The states of the system were the joint positions

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Total experience used in s

A
v
e
ra

g
e
 s

u
c
c
e
s
s
 r

a
te

 i
n
 %

Imitation Learning

Reinforcement Learning

Fig. 4. Average success rate for solving the double-pendulum swing-up
task. The horizontal axis shows required amount of data the algorithms
effectively used for learning. The shaded red graph shows the success rate
of an RL controller with a hand-crafted reward function[10]. The solid blue
line shows the performance of our model-based imitation learning approach
from Sec. III. Imitation learning converged significantly faster.

and velocities x = [q1, q2, q̇1, q̇2]
>; the actions were the

motor torques u = [u1, u2]
>. The robot was mounted fixed

on the ground. The task was to swing-up and balance the
two links of the double pendulum as visualized in Fig. 3.

The motor torques at either of the joints were limited to the
range [−3, 3]Nm. To explicitly take these torque limits into
account during planning, we squashed a policy π̃ through a
sinusoidal to obtain a torque-restricted policy

π(x,θ) = umax sin(π̃(x,θ)). (17)

In this experiment, we used a nonlinear Radial Basis Func-
tion (RBF) network with axis-aligned Gaussian features φ to
represent π̃. This policy can be written as

π̃(x,θ) =
∑m

i=1
wiφi(x) with (18)

φi(x) = exp
(
− 1

2 (x− ci)
>Γ−1(x− ci)

)
(19)

with weights wi, centers ci, and length scales lj , such that
Λ = diag(l21, l

2
2, . . . , l

2
D). We learned the weights w and the

Gaussian features φ jointly. We used 100 basis functions φ in
the RBF network. Therefore, the policy parameters θ ∈ R816

were θ = {w,Λ, c}.
We chose a sampling frequency of 10Hz and a total pre-

diction horizon of T = 2.5 s. Five successful demonstrations
of the task were generated to create a distribution p(τ exp)
over expert trajectories according to Sec. II-A.

To qualitatively evaluate learning success, we compared
our proposed imitation learning approach with an RL base-
line. In particular, we used the data-efficient PILCO policy
search method [10], also summarized in Algorithm 1. Note
that PILCO required a hand-crafted cost function, whereas
our imitation-learning approach matches trajectories by min-
imizing KL divergences.

The average success rate as a function of required data is
visualized in Fig. 4. We defined success when the double
pendulum performed the swing-up and balanced in the
inverted position. The success rate is given in percent and
averaged over 10 independent runs of the algorithms. The

shaded red graph represents PILCO’s learning speed and
reaches a success rate of 95% after about 50 s of robot inter-
actions. The performance of our imitation-learning algorithm
with random initializations is visualized as the blue solid line
and reaches a similar success rate after only 33 s only.

These results show that the KL divergence is an appro-
priate measure for matching trajectory distributions in the
context of imitation learning. The performance boost over
hand-crafted cost functions can be explained by the fact that
RL with the hand-crafted cost functions initially needs to
explore good trajectories leading to the desired configuration.
Imitation learning instead has information about the desired
trajectories through the expert’s demonstrations, and, hence,
does not rely on excessive exploration.

B. Learning a Ball Hitting Task with the BioRobTM

We used the biomechanically-inspired compliant
BioRobTM arm to learn a table-tennis hitting task from
demonstrations, see Fig. 1. In the following, we describe
first the robot hardware and experimental setup. After that
we detail controller learning.

1) Hardware Description: We evaluate the proposed ap-
proach on a real robotic platform, the BioRobTM [16]. The
BioRobTM is a compliant, light-weight robotic arm, capable
of achieving high accelerations. Its design places the servo
motors close to the torso, minimizing the inertia of the links
and enabling the end-effector to move with high velocities.
Experimental results have shown Cartesian velocities of the
end-effector of up to 6.88m/s [15]. Our BioRob X4, is
equipped with an end-effector module that increases the total
number of degree of freedom to 5. The torque is transferred
from the motor to the joints via a system of pulleys, drive
cables, and springs, which, in the biologically-inspired con-
text, represent tendons and their elasticity. In terms of safety,
decoupling the joint and motor inertia protects the items
in the robot’s workspace and the motor gearboxes in the
event of collisions. While the robot’s design has advantages
over the traditional approaches, controlling a dynamic and
compliant system is a highly challenging task.

Classical control approaches that consider only the rigid
body dynamics of the system are unrealistic for controlling
the robot, as they omit the cable-driven properties, such as
the elasticity of the tendons, cable slacking effects, stiction,
and the energy stored in the cable springs. As a result, the
accuracy of both the forward and inverse dynamics models
is insufficient to make the robot follow desired trajectories.
Moreover, if the torques are not smooth, oscillations close
to the eigen-frequency of the joints can occur. During the
oscillations, the motors may hold the same position while
the joints oscillate due to the kinematic decoupling from
the motors. Active damping is non-trivial, as the control
law has to incorporate both joint and motor positions, while
considering the unmodeled nonlinearities.

2) Experimental Set-up: We attached a table tennis racket
to the end-effector of the robot and put a ball on a string
hanging down from the ceiling, see Fig. 5. The shape of
the racket alongside with the high velocities produced a

Fig. 5. Table-tennis hitting task using the compliant BioRobTM. A
trajectory of the ball hitting task is shown where the start configuration
was the robot pointing downwards. The total time of the movement was
3.3 s. The blue spline shows the trajectory of the table-tennis racket; the
yellow spline shows the flight curve of the ball.

significant amount of drag, which is generally hard to model
accurately. Such undermodeling would lead to substantial
errors in parametric models. Thus, first learning a data-
driven non-parametric GP forward model, and, subsequently,
learning control policies for solving the ball-hitting task, is
particularly promising for this compliant system.

We used three joints of the BioRobTM for performing the
ball-hitting task. The state x ∈ R9 was given by three joint
positions, velocities, and motor positions of the BioRobTM;
the actions u ∈ R3 were the corresponding motor torques.

3) Controller Learning: To learn a BioRobTM controller
for the ball-hitting task, we parametrized the policy by means
of an RBF network as described in Eqs. (17)–(19). We
chose a policy representation with 60 basis functions and
a sampling frequency of 10Hz for the forward model. The
task of the robot was to hit a hanging ball with a racket
as visualized in Fig. 5. For creating the distributions of the
expert trajectory p(τ exp), we used three demonstrations via
tele-operation of the task; we also used them for initializing
the GP forward model. Our imitation-learning approach
based on trajectory matching led to rapid learning. From the
third trial onward, the BioRobTM reliably solved the ball-
hitting task.

The predicted and demonstrated trajectory distributions
along with some executed trajectories after 5 learning itera-
tions of our imitation-learning approach are shown in Fig. 6.
The figure shows the joint position, joint velocity, and motor
position of different joints. The black error bars represent the
distribution p(τ exp) of expert trajectories. The blue shaded
graph is the trajectory prediction p(τπ) of the GP model.
The red dotted lines are executed trajectories of the controller
from different starting positions. The executed rollouts of the
robot were close to the predicted and expert trajectories. The
robot robustly imitated the task with the learned controller
from different starting positions, using a total of ≤ 40 s of

0 0.5 1 1.5 2 2.5 3

−2

−1.5

−1

−0.5

Time [s]

J
o

in
t

2
 P

o
s
it
io

n
 [

ra
d

]

Predicted Trajectory

Expert Trajectory

Executed Trajectories

(a) Position of joint 2.

0 0.5 1 1.5 2 2.5 3

−1

0

1

2

Time [s]

J
o

in
t

4
 V

e
lo

c
it
y
 [

ra
d

/s
]

Predicted Trajectory

Expert Trajectory

Executed Trajectories

(b) Velocity of joint 4.

0 0.5 1 1.5 2 2.5 3

−2.5

−2

−1.5

−1

−0.5

Time [s]

J
o

in
t

2
 M

o
to

r
P

o
s
it
io

n
 [

ra
d

]

Predicted Trajectory

Expert Trajectory

Executed Trajectories

(c) Motor Position of joint 2.

Fig. 6. Learning results of the ball hitting task. The figure shows an example of (a) a joint position, (b) a joint velocity, and (c) a motor position of
different joints of the BioRobTM. The black error bar shows the distribution of the expert trajectory. The blue shaded graph is the distribution of the
predicted trajectory. Both are plotted with twice the standard deviation. The red dotted lines are executed trajectories of the BioRobTM with the learned
controller. There start state was sampled from the initial distribution p(x0).

data to learn both an accurate forward model and a good
controller for imitating demonstrated trajectories.

V. CONCLUSION

In this paper, we have presented a novel approach to
imitation learning that determines policies based on proba-
bilistically matching predicted trajectories with demonstrated
trajectories. Using the KL divergence for matching trajecto-
ries gives rise to a natural cost function that can be used by
RL algorithms to learn the corresponding policies. In this
paper, we used a sample-efficient policy search algorithm
based on learned probabilistic forward models to determine
the predicted trajectories. We have shown that our approach
to imitation learning can substantially speed up learning.
Moreover, we have demonstrated that our method is directly
applicable to learning models and policies for a highly
compliant robotic arm in only a few attempts.

REFERENCES

[1] P. Abbeel, A. Coates, M. Quigley, and A. Ng. An Application of
Reinforcement Learning to Aerobatic Helicopter Flight. In Advances
in Neural Information Processing Systems. 2007.

[2] B. Argall, S. Chernova, M. Veloso, and B. Browning. A Survey
of Robot Learning from Demonstration. Robotics and Autonomous
Systems, 2009.

[3] C. Atkeson and J. C. Santamarı́a. A Comparison of Direct and Model-
Based Reinforcement Learning. In Proceedings of the International
Conference on Robotics and Automation, 1997.

[4] C. Atkeson and S. Schaal. Robot Learning from Demonstration. In
Proceedings of the International Conference on Machine Learning,
1997.

[5] J. Bagnell and J. Schneider. Autonomous Helicopter Control using
Reinforcement Learning Policy Search Methods. In Proceedings of
the International Conference on Robotics and Automation, 2001.

[6] M. Bain and C. Sammut. A Framework for Behavioural Cloning.
Machine Intelligence, 15:103–129, 1999.

[7] G. Biggs and B. Macdonald. A Survey of Robot Programming
Systems. In Proceedings of the Australasian Conference on Robotics
and Automation, 2003.

[8] A. Billard, S. Calinon, and F. Guenter. Discriminative and Adaptive
Imitation in Uni-Manual and Bi-Manual Tasks. Robotics and Au-
tonomous Systems, 2006.

[9] S. Calinon, F. Guenter, and A. Billard. On Learning, Representing,
and Generalizing a Task in a Humanoid Robot. IEEE Transactions on
Systems, Man, and Cybernetics, 2007.

[10] M. Deisenroth and C. Rasmussen. PILCO: A Model-Based and Data-
Efficient Approach to Policy Search. Proceedings of the International
Conference on Machine Learning, 2011.

[11] M. Deisenroth, C. Rasmussen, and D. Fox. Learning to Control a
Low-Cost Manipulator using Data-Efficient Reinforcement Learning.
In Proceedings of Robotics: Science & Systems, 2011.

[12] K. Doya. Reinforcement Learning in Continuous Time and Space.
Neural Computation, 12(1):219–245, 2000.

[13] W. A. Gruver, C. T. Thompson, S. D. Chawla, and L. A. Schmitt.
CAD Off-line Programming for Robot Vision. Robotics, 1(2):77–87,
1985.

[14] J. Kober and J. Peters. Imitation and Reinforcement Learning. IEEE
Robotics & Automation Magazine, 17(2):55–62, 2010.

[15] T. Lens. Physical Human-Robot Interaction with a Lightweight,
Elastic Tendon Driven Robotic Arm: Modeling, Control, and Safety
Analysis. PhD thesis, TU Darmstadt, Department of Computer
Science, 2012.

[16] T. Lens, J. Kunz, O. v. Stryk, C. Trommer, and A. Karguth. BioRob-
Arm: A Quickly Deployable and Intrinsically Safe, Light-Weight
Robot Arm for Service Robotics Applications. International Sym-
posium on Robotics, 2010.

[17] C. Nehaniv and K. Dautenhahn. Imitation in Animals and Artifacts,
chapter The Correspondence Problem. MIT Press, 2002.

[18] A. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger,
and E. Liang. Autonomous Inverted Helicopter Flight via Reinforce-
ment Learning. In International Symposium on Experimental Robotics,
2004.

[19] A. Ng and S. Russell. Algorithms for Inverse Reinforcement Learning.
Proceedings of the International Conference on Machine Learning,
2000.

[20] J. Peters, K. Mülling, and Y. Altun. Relative Entropy Policy Search. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2010.

[21] D. Pomerleau. Alvinn: An Autonomous Land Vehicle in a Neural
Network. Advances in Neural Information Processing System, 1989.

[22] J. Quiñonero-Candela, A. Girard, J. Larsen, and C. Rasmussen.
Propagation of Uncertainty in Bayesian Kernel Models—Application
to Multiple-Step Ahead Forecasting. IEEE International Conference
on Acoustics, Speech and Signal Processing, 2003.

[23] T. Raiko and M. Tornio. Variational Bayesian Learning of Nonlinear
Hidden State-Space Models for Model Predictive Control. Neurocom-
puting, 2009.

[24] C. Rasmussen and C. Williams. Gaussian Processes for Machine
Learning. MIT Press, 2006.

[25] J. Schneider. Exploiting Model Uncertainty Estimates for Safe
Dynamic Control Learning. In Advances in Neural Information
Processing Systems. Morgan Kaufman Publishers, 1997.

[26] K. Solomon. Information Theory and Statistics. Wiley, New York,
1959.

[27] R. Sutton and A. Barto. Reinforcement Learning: An Introduction.
MIT Press, 1998.

[28] A. Ude, C. Atkeson, and M. Riley. Programming Full-Body Move-
ments for Humanoid Robots by Observation. Robotics and Au-
tonomous Systems, 2004.

[29] R. Zöllner, T. Asfour, and R. Dillmann. Programming by Demon-
stration: Dual-Arm Manipulation Tasks for Humanoid Robots. In
Proceedings of the International Conference on Intelligent Robots and
Systems, 2004.

