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Abstract
Efficient skill acquisition is crucial for creating versatile robots. One intuitive way to teach a

robot new tricks is to enable it to match its behavior to a teacher’s demonstration of the task at

hand. This approach is known as imitation learning. Classical methods of imitation learning suffer

substantially when the actions (i.e., motor commands, torques or forces) of the teacher are not

observed and the body of the teacher differs substantially, e.g., in the actuation (which is known

as the correspondence problem). Addressing these drawbacks, we propose to train a robot-specific

controller that directly matches robot trajectories with observed ones. We present a novel and

robust probabilistic model-based approach for solving the trajectory matching problem via policy

search. We learn a probabilistic model of the system, which allows mental rehearsal of the current

controller by making predictions about future state distributions. These internal simulations allow

us to improve the current controller without continuously interacting with the real system, which

results in a reduced interaction time. Using long-term predictions from this learned model, we train

robot-specific controllers that reproduce the expert’s distribution of demonstrations without having

observed his motor commands. We demonstrate that our method reaches a higher learning speed

than trial-and-error based learning systems with manually generated reward functions. The power

of the resulting approach is shown by imitating human behavior using a tendon-driven, compliant

robotic arm with complex dynamics.
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1 Introduction
Programming robots to perform complex tasks is difficult with classical methods for instructing

robots such as textual or GUI-driven programming techniques [Biggs and Macdonald, 2003].

These methods require a large amount of work for programming a single task and transfer to

new environments may often be difficult. Especially for programming versatile robots, where fast

learning of new tasks in changing environments is necessary, these methods are often impractica-

ble.

Imitation learning (IL) is an approach to solve such skill acquisition problems in an elegant way:

The teacher’s demonstration of a task is recorded and subsequently learning algorithms transfer the

task to a robot [Argall et al., 2009, Atkeson and Schaal, 1997]. Especially for tasks that humans

can perform well, this approach is often easier and more comfortable for transferring skills than

classical programming methods. Another advantage is that if robot movements resemble human

movements, they will be accepted more easily by humans, which, from a psychological point

of view, is desirable when integrating robots into our environment (e.g., for domestic robots).

Research in the field of IL devised techniques which differ in the way the demonstrations are

provided (e.g., motion capture [Ude et al., 2004], physical interaction [Ben Amor et al., 2009]),

the level at which the imitation happens (e.g., at the symbolic [Zöllner et al., 2004] or trajectory

level [Calinon et al., 2007]), whether they use a system model, and whether/how they employ

reward functions for the task.

The transfer of a skill through imitation learning limits the performance of the robot to the

skill of the teacher that provided the demonstration. Reinforcement Learning (RL) is a common

technique to improve skills after applying imitation learning. RL [Sutton and Barto, 1998] is an

approach, where a task-specific reward function is maximized. RL has been successfully used in

robotics applications for learning the ball-in-a-cup game [Kober and Peters, 2010] and flying a

helicopter [Ng et al., 2003]. However, a major difficulty in RL is engineering of a suitable reward

function for more complex tasks.

Inverse Reinforcement Learning (IRL) is a form of imitation learning that addresses the problem

of automatically extracting a reward function from demonstrations of a task [Ng and Russell, 2000,

Boularias et al., 2011]. Hence, it is suited for tasks where the hand-crafted definition of a suitable

reward function is difficult (e.g., Parking Lot Navigation [Abbeel et al., 2008]). Drawbacks of IRL

are that the performance of most methods rely on feature selection which can strongly bias the

performance.
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Figure 1.1: The BioRob™ is a compliant, biomechanically-inspired robot manipulator with drive ca-
bles and springs, which represent tendons and their elasticity. We evaluate our imitation
learning approach on this system by imitating human demonstrations. Classical control
approaches based on rigid body dynamics are unrealistic for this robot because they omit
the cable-driven properties and the elasticity of the tendons. Therefore, we learn a forward
model of the robot’s dynamics, which we use for internal simulations to learn a policy.

Another classic form of imitation learning is Behavioral Cloning (BC). In BC, the behavior of a

skilled human is recorded and, subsequently, an induction algorithm is executed over the traces of

the behavior [Bain and Sammut, 1999]. In classical BC, the objective of cloning observed expert

demonstrations is defined as a supervised learning problem. This problem is solved by learning a

regression function from observed states to actions, i.e., a policy. An impressive early application

of BC was the autonomous vehicle ALVINN [Pomerleau, 1989] which learned a neural-network

policy for driving a car from recorded state-action training pairs of a human driver. Advantages of

BC are the straightforward application and the clean-up effect, i.e., the smoothing of noisy imper-

fect demonstrations. However, BC is not robust to changes in the control task and the environment.

Therefore, it does not have strong performance guarantees.

One main difficulty in imitation learning is the correspondence problem [Nehaniv and Dauten-

hahn, 2002], i.e., that if the body of the teacher and the robot differ an adequate mapping of the

teacher’s demonstrations to the robot is non-trivial. The correspondence problem can occur in

many different forms. One form is due to different anatomies between the teacher and the robot.

As consequence, some demonstrated positions of the teacher may not be reachable for the robot.

Another form of the correspondence problem are different dynamics properties between teacher

and robot. For example, the robots often have torque limits that cannot reach the same velocity as

the teacher. Classical behavioral cloning is very sensitive to the correspondence problem because

it directly maps recorded states to recorded actions without taking the anatomy and physics of the

robot into account.
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In this thesis, we propose a novel probabilistic model-based imitation learning approach that

addresses the correspondence problem and allows robots to efficiently acquire new behaviors from

expert demonstrations [Englert et al., 2013]. The key idea is to directly match the state trajectory

of the robot with the teacher’s demonstration. Instead of finding a mapping from states to demon-

strated actions, as done in classical behavioral cloning, we learn a robot-specific controller such

that the corresponding robot trajectory matches the demonstrated trajectory. This approach is no

longer a straight forward supervised learning problem. However, it gives us the advantage that we

do not need to record the actions of the expert demonstrations, which gives us the ability to choose

from a wider range of demonstration methods (e.g., motion capture). Furthermore, we can use the

same teacher demonstrations for teaching multiple different robots.

Our approach exploits a forward model of the robot’s dynamics, which allows us to generate

predictions of the trajectory when applying the current controller. Using these simulations instead

of sampling real robot trajectories reduces the interaction time with the robot. Such data efficient

learning saves experimental time and reduces the number of repairs. In the absence of a good

model, we propose to learn a forward model using a probabilistic non-parametric Gaussian pro-

cess [Rasmussen and Williams, 2006]. Learning a forward model is especially suited for robots,

where it is difficult to model the robot’s dynamics with classical control approaches (e.g., the

BioRob™, see Figure 1.1). By using therefore a probabilistic model allows us to take uncertainty

about the robot’s dynamics into account, which reduces model errors [Schneider, 1997, Atkeson

and Santamaría, 1997] that especially occur when only a few samples and no informative prior

knowledge is available. Furthermore, we do not need to make potentially unrealistic assumptions

(e.g., about rigid body dynamics or friction) which are typically made when learning parametric

forward models in robotics.

The rest of the thesis is structured as follows: In Chapter 2 we present our problem state-

ment and provide some background on probabilistic model learning. In Chapter 3 we describe

our model-based imitation learning approach, where we use RL methods to learn IL policies. In

Chapter 4, we demonstrate the viability of our approach on both simulated and real robot experi-

ments. In the latter case, we successfully learn forward models and controllers for the compliant,

biomechanically-inspired manipulator shown in Figure 1.1.
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2 Problem Statement and Background
Throughout this thesis, we use the following notation. We denote states by x ∈ RD and actions by

u ∈ RE , respectively. Furthermore, we define a trajectory τ as a sequence of states x 0, x 1, . . . , x T

for a fixed time horizon T . Our goal is to learn a state-feedback policy π such that u = π(x ,θ )
with policy parameters θ .

2.1 Problem Statement

As input to our learning algorithm, we assume that the teacher provides n trajectories τi from

which the robot should imitate the demonstrated behavior. We use probability distributions over

trajectories to represent the expert demonstrations by p(τexp) and the robot predictions by p(τπ),
respectively. We put the robot at a start position that is sampled from an initial distribution p(x 0).
Our objective is to find a policy π such that the robot’s distribution over predicted trajectories

p(τπ) matches the distribution over demonstrated trajectories p(τexp). Using probability distri-

butions over trajectories allows us to represent uncertainty of the robot’s dynamics in a principled

way. Furthermore, we can model the variability of the demonstrated trajectories (i.e., a transporting

task requires at the pick up position of the object a much higher accuracy, and hence the variance

of the demonstrations is smaller there than at other positions).

As a similarity measure between these distributions p(τexp) and p(τπ), we use the Kullback-

Leibler (KL) divergence [Solomon, 1959]. Hence, our imitation learning objective is to find a

policy such that

π∗ ∈ argmin
π

KL
�

p(τexp)||p(τπ)
�

, (2.1)

where p(τexp) is the distribution over the observed demonstrated trajectories and p(τπ) is the

distribution over the predicted trajectories. We create p(τπ) with the internal model of the robot.

2.2 Background on Learning Probabilistic Forward Models

We learn a forward model of the robot’s dynamics for doing internal simulations, which is related

to the concept that humans rely on internal models for planning, control and learning of their

dynamics behavior [Wolpert et al., 1995]. A forward model f maps a state x t−1 and action u t−1
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Figure 2.1: Learning a probabilistic forward model with Gaussian processes. The x-axis represents
state-action input pairs (x t−1, ut−1) of the model and the y-axis represents the predicted
next state x t . The black plus points denote the training data and the grey shaded area
represents two times the standard deviation. It can be seen, that in the region around the
training points, our predictions are more certain than at inputs further away. The red line
shows a test input for which our model returns the predicted mean and variance.

of the system to the next state x t . In our case, we assume that x t = f (x t−1, u t−1) + ε where

ε ∼N (0,Σε) is i.i.d. Gaussian noise with Σε = diag([σ2
1 . . .σ2

D]). Such a model represents the

transition dynamics of a robot.

We represent the model by a Gaussian Process (GP), i.e., a probability distribution over models.

Since a GP is a consistent, non-parametric method, we can avoid to specify a restrictive parametric

model. Instead, a posterior distribution over the underlying function f is inferred directly from

the data, while the uncertainty about this estimate is represented as well. As training inputs to the

GP, we use state-action pairs (x t−1, u t−1) and as targets the next state x t . Such a GP represents

one-step transitions in the form

p(x t |x t−1, u t−1) = N (x t |µt ,Σt) (2.2)

with µt = E f [ f (x t−1, u t−1)] = m f (x t−1, u t−1), (2.3)

Σt = var f [ f (x t−1, u t−1)] = σ
2
f (x t−1, u t−1), (2.4)

where m f is the mean and σ2
f the variance of f . An example of such a model is visualized in

Figure 2.1.

A GP can be completely specified by a mean function and a covariance function. The mean

function allows to incorporate prior knowledge about f and the covariance function defines the
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nearness or similarity between inputs. We use a prior mean function m ≡ 0 and a squared expo-

nential covariance function plus noise covariance

k(x̃ p, x̃ q) = α
2 exp

�

−1
2
(x̃ p− x̃ q)

>Λ−1(x̃ p− x̃ q)
�

+δpqσ
2
ε, (2.5)

with inputs of the form x̃ = [x>, u>]>. The parameter α2 is the signal variance, Λ =
diag([l2

1 , . . . , l2
D]) is a matrix with the squared length-scales, and δpq is the Kronecker symbol,

which is 1 when p = q, and 0 otherwise.

The posterior predictive distribution at a test input x̃ ? is given by the mean and variance

m f (x̃ ?) = k>? K−1y , (2.6)

σ2
f (x̃ ?) = k??− k>? K−1k? (2.7)

with k? := k(X̃ , x̃ ?), k?? := k(x̃ ?, x̃ ?), Gram matrix K with Ki j = k(x̃ i, x̃ j), and training inputs

X̃ = [x̃ 1, . . . , x̃ n] with corresponding targets y = [y1, . . . , yn]>. Equations (2.2)–(2.7) are used

to simulate the system for a single time-step and map the current state-action pair (x t−1, u t−1)
onto a probability distribution over the next state x t (see Figure 2.1).
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3 Model-based Imitation Learning by

Probabilistic Trajectory Matching
Our goal is to imitate the expert’s behavior by finding a policyπ∗ that minimizes the KL divergence

between the distribution p(τexp) over demonstrated trajectories and the distribution p(τπ) over

predicted trajectories when executing a policy π, see Equation (2.1).

The KL divergence is a difference measure between two probability distributions and is defined

for continuous distributions p(x ) and q(x ) as

KL
�

p(x )||q(x )
�

=

∫

p(x ) log
p(x )
q(x )

dx . (3.1)

For the special case of two Gaussian distributions p(x ) ∼ N (x |µ0,Σ0) and q(x ) ∼
N (x |µ1,Σ1), the KL divergence has the closed form expression

KL
�

p||q
�

= 1
2

log
�

�Σ−1
1 Σ0

�

�+ 1
2
tr
�

Σ−1
1

�

(µ0−µ1)(µ0−µ1)
>+Σ0−Σ1

��

. (3.2)

We use the KL divergence for our imitation learning approach as a difference measure between

probability distributions over trajectories.

3.1 Trajectory Representation

We approximate the distribution over trajectories p(τ) = p(x 0, . . . , x T ) by a Gaussian

N (µτ,Στ) that factorizes according to

p(τ)≈
T
∏

t=1

p(x t) =
T
∏

t=1

N (µt ,Σt) . (3.3)

This assumption implies that Στ ∈ RT D×T D is block diagonal without cross-correlations among

states at different time steps. In the following paragraphs, we describe how we compute the prob-

ability distributions over trajectories p(τexp) and p(τπ) for our objective in Equation (2.1).
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Figure 3.1: Estimation of a Gaussian distribution p(τexp) over trajectories (red shaded graph) from
multiple expert demonstrations (blue dotted lines).

3.1.1 Estimation of a Distribution over Expert Trajectories

The demonstrations of the teacher are converted such that they are time-aligned, i.e., each trajectory

τi consists of a sequence of T states. The mean and covariance matrix of the marginals p(x t) are

computed as unbiased estimates p(x t)≈N (µ̂
exp
t , Σ̂exp

t ), where

µ̂
exp
t =

1

n

n
∑

i=1

x i
t , Σ̂exp

t =
1

n− 1

n
∑

i=1

(x i
t−µ̂

exp
t )(x

i
t−µ̂

exp
t )

>. (3.4)

In Equation (3.4), x i
t is the state after t time steps of the ith demonstrated expert trajectory. This

estimation yields an approximate Gaussian distribution over the expert trajectories

p(τexp) =N (µ̂exp, Σ̂exp) =N






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






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exp
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µ̂
exp
2
...

µ̂
exp
T
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


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



,















Σ̂exp
1 0 . . . 0

0 Σ̂exp
2

...
... . . . 0

0 . . . 0 Σ̂exp
T





























, (3.5)

with a block diagonal covariance matrix Σ̂exp. An illustration of such a trajectory representation

is shown in Figure 3.1. Using Gaussian probability distributions as a representation for the expert

demonstrations gives us two advantages: 1) we can exploit the clean-up effect, which washes
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Figure 3.2: Predicting with Gaussian processes at uncertain inputs [Deisenroth and Rasmussen,
2011]. The upper left panel shows the function f ∼ GP and the bottom panel shows
the Gaussian input distribution p(x t−1, u t−1) =N (µ̃t−1, Σ̃t−1). The upper right panel
shows the exact prediction p(x t) shaded in red, which cannot be computed analytically.
Therefore, we use exact moment matching to approximate this distribution with a Gaus-
sianN (µt ,Σt), which is drawn as a blue line in the upper right panel.

out shaky demonstrations and produces smoother trajectories; 2) we are able to make specific

positions more important by representing them with lower variances (e.g., the state at time step 13

in Figure 3.1).

3.1.2 Predicting a Distribution over Robot Trajectories

We use the learned GP forward model described in Section 2.2 for iteratively predicting the state

distributions p(x 1), . . . , p(x T ) for a given policy π and an initial state distribution p(x 0). These

long-term predictions are the marginal distributions of p(τπ). Note that even for a given input

(x , u), the GP’s prediction is a probability distribution given by Equations (2.6)–(2.7). Iteratively

computing the predictions p(x 1), . . . , p(x T ), therefore, requires to predict with Gaussian pro-

cesses at uncertain inputs [Quiñonero-Candela et al., 2003]. The mapping of an uncertain input

p(x t−1, u t−1) =N (µ̃t−1, Σ̃t−1) through a GP is visualized in Figure 3.2. The input distribution

is shown as blue line in the bottom of Figure 3.2 and the GP is shown in the top left of Figure 3.2.

The exact predictive distribution p(x t) is visualized in the top right of Figure 3.2 as red shaded

region. As that this distribution is analytically intractable, we approximate it by a Gaussian, which

is shown as blue line in the top right of Figure 3.2.
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Computing p(x t) for an uncertain input p(x t−1, u t−1) requires integrating out both the uncer-

tainty about the state-action pair x̃ t−1 and the posterior uncertainty about the function f ∼ GP

according to

p(x t) =

∫∫

p( f (x̃ t−1)|x̃ t−1)p(x̃ t−1)d f d x̃ t−1. (3.6)

The transition probability p( f (x̃ t−1)|x̃ t−1) is the posterior GP predictive distribution given in

Equations (2.6)–(2.7). However, computing the exact distribution p(x t) in Equation (3.6) is ana-

lytically intractable. Therefore, we use exact moment matching and approximate this distribution

by a Gaussian as p(x t) ≈ N (µt ,Σt). The mean is computed (using the law of total expectation

and Equation (2.6)) by

µt = E[ f (x̃ t−1)] = Ex
�

E f [ f (x̃ t−1)|x̃ t−1]
� (2.3)
= Ex

�

m f (x̃ t−1)
�

(3.7)

=

∫

m f (x̃ t−1)N (x̃ t−1|µ̃t−1, Σ̃t−1)d x̃ t−1 (3.8)

(2.6)
=

∫

k(x̃ t−1, X̃)N (x̃ t−1|µ̃t−1, Σ̃t−1)d x̃ t−1K−1y = β>q

with β = K−1y and q = [q1, · · · , qn]>. Using Equation (2.5), the entries of q are given by

qi =

∫

k(x̃ t−1, x̃ i)N (x̃ t−1|µ̃t−1, Σ̃t−1)d x̃ t−1 (3.9)

= α2|Σ̃t−1Λ
−1+ I |−

1
2 exp(−1

2
ν>i (Σ̃t−1+Λ)

−1ν i), (3.10)

where we used ν i := x̃ i − µ̃t−1. The predictive covariance matrix Σt can be derived similarly.

The entries of the covariance matrix Σt ∈ RD×D for the target dimension a, b = 1, . . . , D are

σ2
ab = β

>
a (Q− q aq>b )β b +δab(α

2
a − tr(K−1)Q). (3.11)

In Equation (3.11), the entries Q i j of Q ∈ Rn×n are given by

Q i j =α
2
aα

2
b

�

�(Λ−1
a +Λ

−1
b )Σ̃t + I

�

�

− 1
2 × exp

�

−1
2
(x̃ i − x̃ j)

>(Λa +Λb)
−1(x̃ i − x̃ j)

�

× exp
�

−1
2
(ẑ i j − µ̃t−1)

>×
�

(Λ−1
a +Λ

−1
b )
−1+ Σ̃t−1

�−1(ẑ i j − µ̃t−1)
�

(3.12)
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with

ẑ i j = Λb(Λa +Λb)
−1 x̃ i +Λa(Λa +Λb)

−1 x̃ j (3.13)

where i, j = 1, . . . , n. For a detailed derivation of these results, see [Deisenroth and Rasmussen,

2011].

The GP predictions at uncertain inputs from Equations (3.7)–(3.13) allow the system to itera-

tively predict the long-term outcome of a control strategy π for a given distribution of the start

state x 0, which results in a probability distribution over trajectories p(τπ).

3.2 Natural Cost Function

The trajectory factorization in Equation (3.3) simplifies the KL divergence in Equation (3.1) as it

suffices to sum up the KL divergences of the marginal distributions p(x exp
t ), p(xπt ) and we obtain

the imitation learning objective function

JπIL(θ ) = KL
�

p(τexp)||p(τπ)
�

=
T
∑

t=1

KL
�

p(x exp
t )||p(x

π
t )
�

. (3.14)

Here, we used the trajectory representations from Section 3.1 and Equation (3.1). Since the

marginals are approximated by Gaussians, the KL divergence in Equation (3.14) can be evalu-

ated in closed-form by applying Equation (3.2).

Matching the predicted trajectory of the current policy with the expert trajectory via minimizing

the KL divergence induces a natural cost function in a standard RL context: Equation (3.14) shows

that matching two factorized distributions by means of the KL divergence leads to an additive

objective function. Therefore, with c(x t) = KL
�

p(x exp
t )||p(xπt )

�

, we can use reinforcement

learning methods to minimize Equation (3.14) since the IL objective JπIL corresponds to a RL

long-term cost JπRL of the form

JπRL(θ ) =
T
∑

t=1

c(x t) =
T
∑

t=1

KL
�

p(x exp
t )||p(x

π
t )
�

=
T
∑

t=1

KL
�

N (µ̂exp
t , Σ̂exp

t )||N (µ
π
t ,Σπt )

�

.

(3.15)

In Equation (3.15), we used our assumption that trajectories are represented by Gaussian distribu-

tions with block-diagonal covariance matrices.

Since KL
�

p(x exp
t )||p(xπt )

�

corresponds to a RL long-term cost function, we can apply RL

algorithms to find optimal policies. In principle, any algorithm that can approximate trajectories of
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Algorithm 1 Probabilistic Model-based Imitation Learning
input: n expert trajectories τi of a task
init: Estimate expert distribution over trajectories p(τexp) (see Section 3.1.1)

Record state-action pairs of the robot (e.g., through applying random control signals)
repeat

Learn probabilistic forward model (GP) for predicting p(τπ) (see Section 2.2)
Learn policy parameters θ ? ∈ argminθ KL

�

p(τexp)||p(τπ)
�

(see Section 3.3)
Apply π(θ ?) to system and record data

until task learned

the current policy π is suitable. For instance, model-free methods based on sampling trajectories

directly from the robot [Sutton and Barto, 1998,Peters et al., 2010] or model-based RL algorithms

that learn forward models of the robot and, subsequently, use them for predictions [Doya, 2000,Ng

and Jordan, 2000,Bagnell and Schneider, 2001,Deisenroth et al., 2011], are suitable. In this thesis,

we use a policy search method with learned probabilistic forward models to minimize the KL

divergence KL
�

p(τexp)||p(τπ)
�

.

3.3 Policy Learning

We use the probabilistic inference for learning control (PILCO) framework [Deisenroth and Ras-

mussen, 2011] as RL method and adapt it to imitation learning for matching trajectories (an

overview of our method is given in Algorithm 1). Our objective is to find policy parameters θ

of a policy π that minimize the long-term cost in Equation (3.15). To find policy parameters θ

such that the distribution over the predicted trajectory matches the distribution over the expert tra-

jectory, we minimize our cost function in (3.14) by means of gradient-based optimization. The

gradient of our cost function with respect to the policy parameters θ is

dJπIL
dθ
=

T
∑

t=1

�

∂KL

∂ µπt

dµπt
dθ
+
∂KL

∂Σπt

dΣπt
dθ

�

, (3.16)

where we require the partial derivatives of the KL divergence with respect to the mean µπt and the

covariance Σπt of the predicted state distribution at time t . The partial derivatives are given by

∂KL

∂ µπt
= −(Σπt )

−1(µ̂exp
t −µ

π
t ), (3.17)

∂KL

∂Σπt
= 1

2
(Σπt )

−1− 1
2
(Σπt )

−1
�

(Σπt )
−1+ (µ̂exp

t −µ
π
t )(µ̂

exp
t −µ

π
t )
>
�

(Σπt )
−1 . (3.18)
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The derivatives of the mean µπt and covariance Σπt with respect to θ are the same as in the regular

case [Deisenroth and Rasmussen, 2011]. All the derivatives in Equation (3.16) can be computed

analytically and allow the use of fast gradient-based optimization methods such as CG or BFGS.

With the KL divergence as difference measure between the estimated expert distribution p(τexp)
over trajectories and the predictive distribution p(τπ) over trajectories, we have formulated model-

based imitation learning as a reinforcement learning problem. Thereby the KL divergence serves

as an induced natural cost function. The analytic gradients of the loss function allow us to use

gradient-based policy search methods. Therefore, we introduced all ingredients for performing

probabilistic model-based imitation learning (see Algorithm 1) and solving the problem defined in

Equation (2.1).
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4 Experimental Results
In the following experiments, we demonstrate the performance of our model-based imitation learn-

ing approach in different experiments. First, we learn a swing up task for a simulated double pen-

dulum. Second, we imitate demonstrations provided via kinesthetic teaching with a tendon-driven

real BioRob™ with a complex internal dynamics.

4.1 Controller Parametrization

In the following experiments, we use a non-linear Radial Basis Function (RBF) network with

axis-aligned Gaussian features φ as controller. This policy can be written as

π̃(x ,θ ) =
m
∑

i=1

wiφi(x ) with (4.1)

φi(x ) = exp
�

− 1
2
(x − c i)

>Γ−1(x − c i)
�

, (4.2)

weights wi , centers c i , and length scales γi of each dimension in Γ = diag(γ2
1,γ2

2, . . . ,γ2
D). For

taking the action limits umax into account, we squash the policy π̃ through a sinusoidal function to

obtain the torque-restricted policy

π(x ,θ ) = umax sin
�

π̃(x ,θ )
�

. (4.3)

Therefore, we can already take the robot’s limitations during planning into account, which restricts

the policy to the mechanically possible range.

4.2 Double Pendulum

The double pendulum consists of two links and two actuated joints and is mounted on the

ground. The system states consisted of joint positions and velocities x = [q1, q2, q̇1, q̇2]>; the

motor torques served as actions u = [u1, u2]>. The task was to swing up and balance the double

pendulum at the inverted position, see Figure 4.1. Each link had a mass m= 0.5kg and the motor

torques were limited to the range [−3,3]Nm. We used a low sampling frequency of 10 Hz, a
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q2

q1

Figure 4.1: Joint angles of the double pendulum (left) and a sequence of positions during the upswing
and balancing of the double pendulum (right).

total prediction horizon of T = 2.5 s, and 100 basis functions φ for the RBF network in Equa-

tions (4.1)–(4.2). The distribution p(τexp) over expert trajectories was based on five successful

demonstrations of the task and created according to Section 3.1.1.

4.2.1 Comparison to Reinforcement Learning

To qualitatively evaluate learning success, we compared our proposed model-based IL approach

with reinforcement learning. Unlike our IL approach, which matches trajectories by minimizing

the KL divergence, reinforcement learning requires a hand-crafted cost function, where we chose

the reasonable common cost function

c(x ) = 1− exp(−||x − x target||2/σ2
c ) (4.4)

with the target state x target and the width scale σ2
c . As algorithm, we used the same PILCO ap-

proach as in our imitation learning framework [Deisenroth and Rasmussen, 2011]. The average

success rate as a function of required data is visualized in Figure 4.2. A run was considered suc-

cessful, when the double pendulum performed the swing-up and balanced in the inverted position.

The success rate is given in percent and averaged over ten independent runs of the algorithms. The

shaded red graph represents PILCO’s learning speed and reaches a success rate of 95 % after about

50 s of robot interactions. The performance of the model-based IL algorithm with random initial-

izations is visualized as the solid blue graph, and reaches a similar success rate after 35s only. The

green dotted line shows also the performance of the model-based IL algorithm, but with an infor-

mative initialization of the dynamics model using two expert trajectories. This version achieved

the best performance and reached a success rate of around 95% after only 15s of experience,

which included the two expert trajectories. These results show that the Kullback-Leibler diver-
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Figure 4.2: Average success rate for solving the double pendulum swing-up task as a function of
required data the robot effectively used for learning. The shaded red graph shows the
success rate of a learned controller with the hand-crafted reward function from Equa-
tion (4.4). The solid blue line shows the performance of the model-based IL approach
described in Section 3. Both methods were initialized with a random rollout, hence they
start at 2.5 s. The dashed green graph shows the performance of the model-based IL
approach, albeit with two expert trajectories as initialization of the dynamics model. We
also count these two trajectories as used experience. Thus, the green graph starts at 5 s.
All methods are very data efficient and need less than a minute of experience to learn the
task.

gence is an appropriate measure for matching trajectory distributions in the context of imitation

learning. Furthermore, the integration of expert demonstrations into a cost function can substan-

tially boost the performance in comparison to hand-crafted cost functions. This performance boost

can be explained by the fact that the method with the hand-crafted cost function initially needs to

explore good trajectories leading to the desired configuration. Our imitation learning variant in-

stead has information about the desired trajectories through the expert’s trajectory distribution and,

hence, does not rely on excessive exploration. A further speedup can be achieved by initializing

the dynamics model learning with informative trajectories, instead of the random initialization, see

Figure 4.2.

4.2.2 Addressing the Correspondence Problem

The classical behavioral cloning approach suffers severely from the correspondence problem as it

directly uses recorded actions, which makes it sensitive to changes in the body dynamics. Addi-
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Figure 4.3: The upper photo series shows a kinesthetic demonstration by an expert where just the
states are recorded and the lower photos show the movement with the learned controller
after the fourth iteration of our approach.

tionally, it restricts the ways how the demonstrations can be recorded. Our approach is more robust

to such issues as we train robot-specific controllers. This property gives us the ability to change

attributes of the robot (i.e., adding a weight to the robot’s end effector) where we are still able to

learn. In our experiments with the double pendulum, we have used for generating the demonstra-

tion trajectories a robot with different mass values. Instead of the mass 0.5kg of each link that

the robot had which we used for learning, we generated expert trajectories from a robot which

had a mass of 0.8kg for the first and 0.6 kg for the second link. In such a case, classical behav-

ioral cloning fails because the recorded state-actions pairs do not correspond to the robot behavior

with the changed attributes. Our approach can still learn a controller as we search for a controller

that takes the different attributes during learning into account. Unfortunately, our approach is not

robust to all kind of correspondence problems, particularly if the required control commands for

imitating the teacher exceed the control limits of the robot. In this case, we can not imitate the

teacher, however we may often still be able to find a half-way decent solution.

4.3 Imitation Learning with a BioRob

In the following section, we evaluate the performance of our imitation learning approach on a real

robot. We use the biomechanically-inspired compliant BioRob™ [Lens et al., 2010] to learn a fast

ball hitting movement, which we demonstrated via kinesthetic teaching. We describe first the robot

hardware and the experimental setup, and afterwards we detail model and controller learning.
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4.3.1 Hardware Description

The BioRob™ (see Figure 1.1) is a compliant, light-weight robotic arm, capable of achieving high

accelerations. Its design tries to place the servo motors close to the torso, minimizing the inertia

of the links and enable the end-effector to move with high velocities. Experimental results have

shown Cartesian velocities of the end-effector of up to 6.88 m/s [Lens, 2012]. The BioRob X4

is equipped with an end-effector module that increases the total number of degree of freedom to

five. The torque is transferred from the motor to the joints via a system of pulleys, drive cables,

and springs, which, in the biologically-inspired context, represent tendons and their elasticity. In

terms of safety, decoupling the joint and motor inertia protects the items in the robot’s workspace

and the motor gearboxes in the event of collisions. While the BioRob’s design has advantages over

traditional approaches, it has the disadvantage that controlling such a compliant system is a highly

challenging task.

Classical control approaches that consider only the rigid body dynamics of the system, are un-

realistic for controlling the robot, as they omit the cable-driven properties, such as the elasticity of

the tendons, the cable slacking effects, stiction, and the energy stored in the cable springs. Linear

control approaches suffer even worse form the actuator dynamics. As a result, both forward and

inverse dynamics models are not sufficiently accurate for classical control, and the robot fails to

follow desired trajectories not even approximately. Moreover, if the control torques are not suffi-

ciently smooth, oscillations close to the eigen-frequency occur. During the oscillations, the motors

hold the same position, while the joints, due to the kinematic decoupling from the motors, oscil-

late. These oscillations differ from the classical under-damped control systems, and, thus, damping

them is a non-trivial task.

4.3.2 Task Setup

We attached a table tennis racket to the end-effector of the robot and put a ball on a string hanging

down from the ceiling, see Figure 4.3. The shape of the racket alongside with the high velocities

produces a significant amount of drag, which is hard to model accurately, leading to substantial

errors in parametric models. Thus, learning a non-parametric GP forward model that extracts

useful information from data and, subsequently, learning control policies for solving the task, is

particularly promising for this compliant tendon-driven robot.

We used three joints of the BioRob™ for performing the task. The state x ∈ R6 was given by

three joint positions and velocities of the robot; the actions u ∈ R3 were given by the correspond-

ing motor torques. The applied motor commands to the robot are the outcome of the policy in

Equation (4.3) without any feedback component. We provided three demonstrations of the task
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Figure 4.4: Cross-validation of the frequency value fs. The frequency describes the number of sam-
ples taken per second. We model the robot’s forward dynamics by a Gaussian process
(Equations (2.2)–(2.4)). Therefore, it is important to select a good data sampling fre-
quency in order to model the relevant characteristic of the underlying forward dynamics.
We used the log-likelihood (Equation (4.5)) to measure the predictive power of the learned
model. The values are averaged over five different training/test folds and plotted with their
standard deviation.

via kinesthetic teaching, as shown in Figure 4.3, to create a distribution over expert trajectories.

Therefore, we took the robot by the hand and recorded the system states. The task was first to

move back and then to perform a fast up movement to hit the ball, see Figure 4.3.

4.3.3 Model Learning

An important parameter when learning models is the sampling frequency fs = 1/∆T where∆T is

the time difference between x t and x t−1 in our learned forward model, see Equations (2.2)–(2.4).

High frequencies result in increased computational time as the number of time steps for a given

prediction horizon increases. Moreover, changes in succeeding states can be too insignificant

to learn a robust model: Small changes increase the risk that important information about the

underlying function is filtered out.

For finding an appropriate sampling frequency fs, we used k-fold cross-validation with the log-

likelihood of our GP predictions. We divided the recorded data into k = 5 training/test folds and

computed for each fold the predictive log-likelihood with different fs values. The log-likelihood

for one fold is defined as

log p(y i|X , y−i) =−
1
2

log |Σi| −
D
2

log(2π)− 1
2
(y i −µi)

>Σ−1
i (y i −µi). (4.5)
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Figure 4.5: Results after learning the imitation of a task with the BioRob™ from kinesthetic teach-
ing. The figures above show the distribution p(τexp) over expert trajectories (shaded
blue area) and the distribution p(τπ) over predicted trajectories from the learned forward
model (green error bars). Both are plotted with two times the standard deviation. The red
dashed lines show some executed trajectories of the robot where we applied the learned
policy. There start state was sampled from the initial distribution p(x 0).

Here y−i denotes the training set without the test values y i of the current fold, D is the number

of test values and µi and Σi are the predicted mean and variance of the test inputs x i according

to Equations (2.6)–(2.7), respectively. Figure 4.4 shows the averaged log-likelihood over different

frequencies fs. These results show that a sampling frequency fs of around 10 Hz is most suited for

model learning. Higher fs values reach a lower predictive log-likelihood, which can be explained

either by the fact that either they fit to the measurement noise leading to overfitting or the signal-

to-noise ratio is very low.

4.3.4 Controller Learning

For learning a BioRob controller we used the RBF network from Equation (4.3) with 80 basis

functions and selected a sampling frequency of 10 Hz for our GP forward model according to the

results of 4.2.1. We used earlier recorded state-action pairs from simple movements to initialize

our forward model, which corresponds to a total experience of 6 s. Our probabilistic IL approach

based on trajectory matching led to rapid learning. After the second attempt, the robot was already

able to hit the ball and to do a movement similar to the teacher’s. After the fourth trial, the robot

solved the task and could imitate the demonstrations reliable.

The predicted distribution p(τπ) over robot trajectories, the expert distribution p(τexp) over

demonstrated trajectories, and some executed trajectories after four learning iterations of our pro-

posed IL approach are visualized in Figure 4.5. The figure shows the positions of the three joints

that were used for the task. The trajectory prediction of the GP is shown as green error bars.

The blue shaded graph is the expert trajectory. Some executed trajectories of the robot where we
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Figure 4.6: Setup for the imitation learning experiments. The orange balls represent the three training
targets ηtrain

i . The blue rectangle indicates the regions of the test targets ηtest
j for our

learned controller to which we want to generalize.

applied the learned policy are shown as red dashed lines. The robot was able to imitate the demon-

strations in a robust manner from different starting positions, using a total of less than 30s of data

to learn both an accurate forward model and a robust controller.

4.3.5 Generalization to Multiple Targets

The policy that we learned for the previous experiments was able to imitate a single task. One

of the key challenges in imitation learning is the generalization to more complex tasks, where a

policy needs to be adaptable to changes in the environment (e.g., an object position).

For making the learned policy able to generalize to such changes, we incorporate our IL frame-

work into the multi target scenario [Deisenroth and Fox, 2011,Deisenroth et al., 2013]. Therefore,

we added target variables η as input to our policy π. The key idea is now that we train our

policy π(x ,θ ,η) on a small predefined set of training targets ηtrain
i . Then in the test phase we

expect to generalize to previously unseen, but related, test targets ηtest
i . The generalization ability

is achieved through the representation of the training targets as Gaussian distributions. Therefore,

the controller automatically learns the implicit similarity of the targets. For a detailed description

of this approach, we refer to [Deisenroth et al., 2013].

Our multiple target loss function is now defined as

JπMT(θ ,η)≈
1

M

M
∑

i=1

JπIL
�

θ ,ηtrain
i

�

=
1

M

M
∑

i=1

KL
�

p(τexp
i )||p(τ

π|ηtrain
i )

�

, (4.6)
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Figure 4.7: Evaluation of the imitation learning experiments with the BioRob™. The three white discs
show the training target locations. The color represents the minimum distance between
the ball position and the center of the table-tennis racket trajectory.

where we sum the loss function JπIL from Equation (2.1) over M training targets ηtrain
i . For each

training target we have to demonstrate one corresponding expert trajectory distribution p(τexp
i ).

Optimizing Equation (4.6) with Algorithm 1 allows us to learn a single policy, which is now an

explicit function of the target η.

We evaluated this multiple target imitation learning by extending the experiments from Sec-

tion 4.3.4 to variable ball positions in a 2D-plane. Therefore, we used the RBF network of

Equation (4.3) with 250 Gaussian basis functions, where the policy parameters comprised the

locations of the basis functions, their weights, and a shared diagonal covariance matrix, resulting

in approximately 2300 policy parameters.

A target was represented as a two-dimensional vector η ∈ R2 corresponding to the ball position

in Cartesian coordinates in an arbitrary reference frame within the hitting plane. As training targets

ηtrain
j , we defined hitting movements for three different ball positions (see Figure 4.6). For each

training target, an expert demonstrated two hitting movements via kinesthetic teaching. Our goal

was to learn a policy that a) learns to imitate three distinct expert demonstrations, and b) generalizes

from demonstrated behaviors to targets that were not demonstrated. In particular, these test targets

were to hit balls in a larger region around the training locations, indicated by the blue box in

Figure 4.6. Figure 4.7 shows the performance results as heatmap after 15 iterations of Algorithm 1.

The evaluation measure was the distance between the ball position and the center of the table-tennis
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racket. We computed this error in a regular 7x5 grid of the blue area in Figure 4.7. The distances

in the blue and cyan areas were sufficient to successfully hit the ball. We successfully generalized

demonstrations to new targets.
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5 Conclusion
In this thesis, we have presented a probabilistic model-based imitation learning approach which

enables robots to acquire new tricks through teacher demonstrations. The three key components of

our approach are: 1) the probabilistic modeling of the robot’s dynamics and the teacher’s demon-

strations, that allows us to take uncertainty appropriately into account; 2) the mental rehearsal of

the current controller with predictions of distributions over plausible trajectories guarantees data

efficient learning; 3) the search for robot-specific controllers that match the robot trajectory with

the expert trajectory, which enables us to use demonstration methods that do not record the actions

of the teacher. We have shown that matching trajectories with the Kullback-Leibler divergence as

similarity measure is equivalent to a reinforcement learning problem, where the similarity measure

serves as an induced immediate cost function. The experiments have shown that our approach

provides a fast learning and addresses the correspondence problem, which allows us to be robust

to changes in the task setup. Furthermore, we demonstrated the applicability of our approach to

real robots, where we used a compliant robot to imitate demonstrations provided by kinesthetic

teaching in a fast and robust manner.
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