
Reward Weighted Regression with Sample Reuse
for Direct Policy Search in Reinforcement Learning 1

Hirotaka Hachiya†, Jan Peters‡ and Masashi Sugiyama†
†Tokyo Institute of Technology, Tokyo, 152-8552, Japan.
‡Max-Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany.

Keywords: reinforcement learning, EM-based policy search, data reuse, adaptive

importance sampling, importance-weighted cross-validation, robot control

Abstract

Direct policy search is a promising reinforcement learning framework in particular for

controlling continuous, high-dimensional systems. Policy search often requires a large

number of samples for obtaining a stable policy update estimator. However, this is pro-

hibitive when the sampling cost is expensive. In this paper, we extend an expectation-

maximization based policy search method so that previously collected samples can be

efficiently reused. The usefulness of the proposed method, called Reward-weighted Re-

gression with sample Reuse (R3), is demonstrated through robot learning experiments.

1 Introduction

Policy search is an important tool for solving real-world Markov decision problems

online. However, many data samples are usually required for obtaining good control

policies. In practice, the cost of collecting rollout data is often prohibitively expensive

and too time-consuming for real-world problems where thousands of trials would re-

quire weeks or months of experiments. For example, when a robot learns how to hit

1This paper is an extended version of our earlier conference paper (Hachiya et al., 2009b).

a ball in baseball or tennis, robot engineers need to let the robot hit a ball hundreds of

times for obtaining reliable policy improvement; then this policy update steps need to

be repeated many times for finally obtaining a good policy. In this procedure, robot

engineers need to spend long time to “nurse” the vulnerable robot through frequent me-

chanical maintenance. As in many other real-world reinforcement learning problems, it

is therefore highly important to reduce the number of training samples generated by the

physical system and instead re-use them efficiently in future updates.

A lot of efforts have been made to reuse previously collected samples, in particular

in the context of value function approximation. A basic technique for sample reuse is

to use importance sampling (Sutton & Barto, 1998) for which the bias is canceled out

asymptotically. However, a naive use of importance sampling significantly increases the

variance of estimators and, therefore, it becomes highly unstable. To mitigate this prob-

lem, the per-decision importance-weighting technique has been introduced for variance

reduction (Precup et al., 2000). This technique efficiently makes use of a property

of Markov decision processes and eliminates irrelevant terms in the importance sam-

pling identity. However, the obtained estimator still tends to be unstable and, thus, the

importance-sampling paradigm has not been in active use in real-world reinforcement

learning tasks yet.

For more significant variance reduction, adaptive importance sampling techniques

have been applied to reinforcement learning recently (Uchibe & Doya, 2004; Wawrzyn-

ski, 2009). The idea of adaptive importance sampling is to trade the variance reduction

with a slight bias increase by introducing an ‘adaptation’ parameter. However, its per-

formance heavily depends on the choice of the adaptation parameter and the optimal

parameter values tend to change through the process of learning. Thus, manually se-

lecting a fixed value of the adaptation parameter is not favorable. In order to optimally

select the adaptation parameter, importance-weighted cross-validation (Sugiyama et al.,

2007) was introduced into value function approximation to tune the adaptive parameter

so as to minimize the estimated approximation error (Hachiya et al., 2009a).

Due to the above efforts, reinforcement learning methods based on value function

approximation can now successfully reuse previously collected samples in a stable man-

ner. However, it is not easy to deal with continuous actions in the value function based

policy iteration framework; the direct policy search approach is more suitable for learn-

2

ing control policies with continuous actions, e.g., the policy gradientmethod (Williams,

1992; Sutton et al., 2000), the natural policy gradient method (Kakade, 2002; Peters

et al., 2005) and policy search by expectation-maximization (Dayan & Hinton, 1997;

Peters & Schaal, 2007). Reusing data samples is even more urgent in policy search

approaches as small policy updating steps can result into under-utilization of the data.

While plain importance sampling techniques have also been employed in direct pol-

icy search, they were shown to be unstable (Shelton, 2001; Peshkin & Shelton, 2002).

For stabilization purposes, heuristic techniques are often used in practice, e.g., sam-

ples with smaller importance weights are not used for learning (Uchibe & Doya, 2004;

Kober & Peters, 2008). However, to the best of our knowledge, systematic treatment of

instability issues in policy search with sample reuse is still an open research topic.

The purpose of this paper is to propose a new framework for systematically ad-

dressing the instability problems in direct policy search. In particular, we combine

policy search by expectation-maximization (Dayan & Hinton, 1997; Peters & Schaal,

2007) with covariate shift adaptation (Shimodaira, 2000; Sugiyama & Müller, 2005;

Sugiyama et al., 2007), which is a statistical learning paradigm under non-stationarity.

Within this new framework, we develop an efficient data-reuse algorithm for direct

policy learning. The effectiveness of the proposed method, called Reward-weighted

Regression with sample Reuse (R3), is demonstrated by simulated robot-control experi-

ments.

The rest of this paper is organized as follows. In Section 2, we formulate the policy

search problem in reinforcement learning, and review the reward weighted regression

method and importance sampling techniques. In Section 3, we describe our proposed

method, R3, which allows us to efficiently reuse previously collected samples in the

reward weighted regression framework. Experimental results are reported in Section 4,

demonstrating the effectiveness of the R3 algorithm in robot control tasks such as one-

dimensional ball-balancing, robot-arm ball-balancing, and Acrobot swing-up. Finally,

we conclude in Section 5 by summarizing our contributions and describing future work.

3

2 Policy Search Framework

We consider the standard reinforcement learning framework in which an agent inter-

acts with the environment modeled as a Markov decision problem. In this section, we

review how the Markov decision problem is solved using policy search by expectation-

maximization (Dayan & Hinton, 1997); for Gaussian models, this results in the reward-

weighted regression (RWR) algorithm (Peters & Schaal, 2007).

2.1 Markov Decision Problem

Let us consider a Markov decision problem specified by (S,A, PT, PI, R, γ), where S

is a set of (continuous) states, A is a set of (continuous) actions, PT(s�|s, a)(> 0) is the

transition probability-density from state s to next state s� when action a is taken, PI(s)

(> 0) is the probability density of the initial state, R(s, a, s�) (≥ 0) is an immediate

reward for transition from s to s� by taking action a, and γ (∈ (0, 1]) is the discount

factor for future rewards. Let π(a|s; θ) (> 0) be a stochastic policy with parameter θ,

which represents the conditional probability density of taking action a given state s.

Let us denote an episode of the agent’s experience by

d ≡ (s1, a1, s2, a2, . . . , sN , aN , sN+1),

where s1 is an initial state selected following PI(s1), an is an action chosen in state sn

following π(an|sn; θ), sn+1 is a state visited after taking action an in state sn following

PT(sn+1|sn, an), and N is the number of steps in the episode. The probability density

P (d; θ) of an episode d occurring is given by

P (d; θ) ≡ PI(s1)
N�

n=1

π(an|sn; θ)PT(sn+1|sn, an). (1)

LetR(d) be the return (i.e., the sum of discounted rewards) along episode d:

R(d) ≡
N�

n=1

γn−1R(sn, an, sn+1).

The expected return is denoted by J(θ):

J(θ) ≡
�

R(d)P (d; θ)dd.

4

Note that the expected return is regarded as a function of parameter θ since the proba-

bility density of episodes occurring depends on it.

The goal of reinforcement learning is to find the optimal policy θ∗ that maximizes

the expected return J(θ):

θ∗ ≡ arg max
„

J(θ). (2)

2.2 Policy Search by Expectation-Maximization

Directly maximizing J(θ) is hard since J(θ) usually contains high non-linearity. The

basic idea of policy search by expectation-maximization (EM) is to iteratively update

the policy parameter θ by maximizing a lower bound of the expected return (Dempster

et al., 1977).

Let θL be the current policy parameter, where the subscript L indicates the iteration

number. By assuming that return R(d) is nonnegative, Jensen’s inequality (Bishop,

2006) yields the following lower bound of the log-expected return (see Appendix A for

details):

log J(θ) ≥
� R(d)P (d; θL)

J(θL)
log

P (d; θ)

P (d; θL)
dd + log J(θL) ≡ log JL(θ).

In the EM approach, the parameter θ is iteratively updated by maximizing the lower

bound JL(θ):

θL+1 ≡ arg max
„

JL(θ). (3)

Since log JL(θL) = log J(θL), the lower bound JL(θ) is tight (i.e., the lower bound

touches the target function) at θL. Thus monotone non-decrease of the expected return

is guaranteed:

J(θL+1) ≥ J(θL).

This update is iterated until convergence (see Figure 1).

2.3 Reward-Weighted Regression

Let us employ the Gaussian policy model defined as

π(a|s; θ) = π(a|s; k,σ) ≡ 1

σ
√

2π
exp

�
−(a− k�φ(s))2

2σ2

�
, (4)

5

)(θJ

θL
θ 1+Lθ 2+Lθ

)(1 θ+L
J

)(θ
L
J

Figure 1: Illustration of policy-parameter update in EM-based policy search. The policy

parameter θ is updated iteratively by maximizing lower bounds JL(θ). The lower bound

JL(θ) touches J(θ) at θL.

a)(sφkΤ

),;|(σπ ksa

Figure 2: Illustration of the Gaussian policy model. k�φ(s) is the mean and σ is the

standard deviation of the Gaussian function.

where φ(s) ≡ (φ1(s),φ2(s), . . . , φB(s))� are fixed basis functions, B is the number

of basis functions, and θ = (k�,σ)� (k ∈ RB and σ > 0) are policy parameters (see

Figure 2).

This model allows us to deal with one-dimensional action a and multi-dimensional

state vector s—multi-dimensional action vectors may be handled by concatenating one-

dimensional models. Note that the Gaussian policy model can be seen as a linear func-

tion (with respect to the parameter k) contaminated by Gaussian noise εwith mean zero

and standard deviation σ:

a = k�φ(s) + ε.

The maximizer θL+1 = (k�L+1,σL+1)� of the lower bound log JL(θ) can be analytically

6

obtained (see Appendix B for details) as

kL+1=

��
R(d)P (d; θL)

1

N

N�

n=1

φ(sn)φ(sn)�dd

�−1

×
��

R(d)P (d; θL)
1

N

N�

n=1

anφ(sn)dd

�
,

σ2
L+1=

��
R(d)P (d; θL)dd

�−1
��

R(d)P (d; θL)
1

N

N�

n=1

(an − kL+1
�φ(sn))2dd

�
.

EM-based policy search for Gaussian models is called reward-weighted regression (Pe-

ters & Schaal, 2007).

2.4 Learning from Episodic Data Samples

Suppose a dataset consisting of M episodes with N steps is available for each RWR

iteration, where episodic samples at the Lth iteration are generated as follows. Ini-

tially, the agent starts from a randomly selected state s1 following the initial-state

probability density PI(s1) and chooses an action based on the policy π(an|sn; θL).

Then the agent makes a transition following PT(sn+1|sn, an) and receives a reward

rn (= R(sn, an, sn+1)). This transition is repeated N times for M episodes—hence,

the training dataDL gathered at the Lth iteration is expressed asDL ≡ {dL
m}M

m=1, where

each episodic sample dL
m consists of a set of 4-tuple elements as

dL
m ≡ {(sL

m,n, aL
m,n, rL

m,n, sL
m,n+1)}N

n=1.

Thus the RWR solution θL+1 ≡ (k�L+1,σL+1)� can be approximated using the Lth

training data DL as �θL+1 ≡ (�k
�
L+1, �σL+1)�, where

�kL+1 =

�
1

M

M�

m=1

R(dL
m)

1

N

N�

n=1

φ(sL
m,n)φ(sL

m,n)
�
�−1

×
�

1

M

M�

m=1

R(dL
m)

1

N

N�

n=1

aL
m,nφ(sL

m,n)

�
,

�σ2
L+1 =

�
1

M

M�

m=1

R(dL
m)

�−1�
1

M

M�

m=1

R(dL
m)

1

N

N�

n=1

(aL
m,n − �k

�
L+1φ(sL

m,n))2

�
.

(5)

Since the expectation is simply replaced by the sample average, the above solution may

be consistent, i.e., as the number of episodesM goes to infinity, the solution converges

7

to the optimal value in probability. A pseudo code of RWR using episodic data samples

is summarized in Figure 3.

2.5 Importance Sampling

When the cost for gathering rollout samples is high, the number M of episodes should

be kept small. As a result, the next policy parameter �θL+1 suggested by RWR may not

be sufficiently accurate. In order to improve the estimation accuracy, we may reuse the

samples collected at the previous iterations {Dl}L
l=1.

If the policies remain unchanged by the RWR updates, just using Eq.(5) gives a

consistent estimator. This estimator is denoted by �θ
NIW

L+1 ≡ (�k
NIW

L+1
�, �σNIW

L+1)�, where

�k
NIW

L+1 =

�
1

L

L�

l=1

1

M

M�

m=1

R(dl
m)

1

N

N�

n=1

φ(sl
m,n)φ(sl

m,n)�
�−1

×
�

1

L

L�

l=1

1

M

M�

m=1

R(dl
m)

1

N

N�

n=1

al
m,nφ(sl

m,n)

�
,

(�σNIW
L+1)2 =

�
1

L

L�

l=1

1

M

M�

m=1

R(dl
m)

�−1

×
�

1

L

L�

l=1

1

M

M�

m=1

R(dl
m)

1

N

N�

n=1

�
al

m,n − �k
NIW

L+1
�φ(sl

m,n)
�2

�
.

(6)

The superscript ‘NIW’ stands for ‘No Importance Weight’. However, since policies are

updated in each RWR iteration, {Dl}L
l=1 generally follow different distributions induced

by different policies and, therefore, the naive use of Eq.(5) will result in an inconsistent

estimator.

Importance sampling (Bishop, 2006) can be used for coping with this problem. The

basic idea of importance sampling is to weight the samples drawn from a different

distribution to match the target distribution. More specifically, from i.i.d. (independent

and identically distributed) samples {dm}M
m=1 following P (d; θl), the expectation of a

function g(d) over another probability density function P (d; θL) can be estimated in a

consistent manner by the importance-weighted average:

1

M

M�

m=1

g(dm)
P (dm; θL)

P (dm; θl)
M→∞−→ E

P (d;„l)

�
g(d)

P (d; θL)

P (d; θl)

�

=

�
g(d)

P (d; θL)

P (d; θl)
P (d; θl)dd = E

P (d;„L)
[g(d)] .

8

✓

✒

✏

✑

Algorithm 2.1: RWR(l,M,N,φ, �θ1, �)

//l Number of iterations

//M Number of episodes collected at each iteration

//N Number of steps in each episode

//φ Basis functions, φ(s) = (φ1(s),φ2(s), . . . , φB(s))�

//�θ1 Initial policy parameter, �θ1 = (�k
�
1 , �σ1)�

//� Stopping criterion

L ← 0

repeat

L ← L + 1

// Collect data samples using current policy π

DL ← DATASAMPLING(�θL,M,N)

// Update policy parameter �θL using episodic data DL

�kL+1 ←
�

1
M

M�

m=1

R(dL
m)

1
N

N�

n=1

φ(sL
m,n)φ(sL

m,n)�
�−1

×
�

1
M

M�

m=1

R(dL
m)

1
N

N�

n=1

aL
m,nφ(sL

m,n)

�

�σ2
L+1 ←

�
1
M

M�

m=1

R(dL
m)

�−1 �
1
M

M�

m=1

R(dL
m)

1
N

N�

n=1

(aL
m,n − �k

�
L+1φ(sL

m,n))2
�

�θL+1 ← (�k
�
L+1, �σL+1)

until ��θL+1 − �θL� ≤ �

return (�θL+1)

Figure 3: Pseudo code of reward-weighted regression using episodic data samples. By

the DATASAMPLING function, data samples (M episodes and N steps) are collected

following current policy π(a|s; �θL).

9

The ratio of two densities P (d; θL)/P (d; θl) is called the importance weight for an

episode d.

2.6 Episodic Importance Sampling in RWR

This importance sampling technique can be employed in RWR for obtaining a consis-

tent estimator �θ
EIW

L+1 ≡ (�k
EIW

L+1
�, �σEIW

L+1)�, where

�k
EIW

L+1 =

�
1

L

L�

l=1

1

M

M�

m=1

R(dl
m)wL,l(d

l
m)

1

N

N�

n=1

φ(sl
m,n)φ(sl

m,n)
�
�−1

×
�

1

L

L�

l=1

1

M

M�

m=1

R(dl
m)wL,l(d

l
m)

1

N

N�

n=1

al
m,nφ(sl

m,n)

�
,

(�σEIW
L+1)2 =

�
1

L

L�

l=1

1

M

M�

m=1

R(dl
m)wL,l(d

l
m)

�−1

×
�

1

L

L�

l=1

1

M

M�

m=1

R(dl
m)wL,l(d

l
m)

1

N

N�

n=1

�
al

m,n − �k
EIW

L+1
�φ(sl

m,n)
�2

�
.

(7)

Here, wL,l(d) denotes the importance weight defined by

wL,l(d) ≡ P (d; θL)

P (d; θl)
.

The superscript ‘EIW’ stands for ‘Episodic Importance Weight’. According to

Eq.(1), the two probability densities P (d; θL) and P (d; θl) both contain PI(s1) and

{PT(sn+1|sn, an)}N
n=1, which are often unknown. However, since they cancel out in

the importance weight, we can compute the importance weight without the knowledge

of PI(s) and PT(s�|s, a) as

wL,l(d) =

�N
n=1 π(an|sn; θL)

�N
n=1 π(an|sn; θl)

.

Although the importance-weighted estimator �θ
EIW

L+1 is guaranteed to be consistent, it

tends to have a larger variance (Shimodaira, 2000; Sugiyama &Müller, 2005; Sugiyama

et al., 2007). Therefore, the importance-weighted estimator tends to be unstable when

the number of episodesM is rather small.

10

3 Adaptive Importance Sampling for Stable Policy

Search

In this section, we propose a new policy search method called Reward-weighted Re-

gression with sample Reuse (R3) for effective sample reuse.

3.1 Per-Decision Importance-Weight

In Precup et al. (2000), a more effective importance weighting technique called the per-

decision importance-weight (PIW) method was proposed. A crucial observation in PIW

is that the reward at the nth step does not depend on future state-action transitions after

the nth step. Then an episodic importance weight can be decomposed into stepwise

importance weights. For instance, the expected return J(θL) can be expressed (see

Appendix C for details) as

J(θL) =

� � N�

n=1

γn−1rn

�
wL,l(d)P (d; θl)dd =

� � N�

n=1

γn−1rnw
n
L,l(d)

�
P (d; θl)dd,

where wn
L,l(d) is an n-step importance weight defined as

wn
L,l(d) =

�n
n�=1 π(an�|sn� ; θL)�n
n�=1 π(an� |sn� ; θl)

.

Here, we apply the PIW idea to episodic importance sampling in RWR and develop

a more stable algorithm. The policy update formula in the sample-reuse RWR contains

nested sums over N steps. For example, ifR(d) is expanded in Eq.(7), we have

N�

n=1

N�

n�=1

γn−1rnφ(sn�)φ(sn�).

The summand γn−1rnφ(sn�)φ(sn�) does not depend on future state-action pairs after the

�nth step, where

�n ≡ max(n, n�).

Thus, the episodic importance weight for γn−1rnφ(sn�)φ(sn�) can be simplified to the

11

stepwise importance weights. Then Eq.(7) is simplified without loss of generality as

�k
PIW

L+1 =

�
1

L

L�

l=1

1

M

M�

m=1

1

N

� N�

n=1

N�

n�=1

γn−1rnφ(sl
m,n�)φ(sl

m,n�)
�
wen

L,l(d
l
m)

��−1

×
�

1

L

L�

l=1

1

M

M�

m=1

1

N

� N�

n=1

N�

n�=1

γn−1rnal
m,n�φ(sl

m,n�)wen
L,l(d

l
m)

��
,

(�σPIW
L+1)2 =

�
1

L

L�

l=1

1

M

M�

m=1

� N�

n=1

γn−1rnwn
L,l(d

l
m)

��−1

×
�

1

L

L�

l=1

1

M

M�

m=1

1

N

� N�

n=1

N�

n�=1

γn−1rn

�
al

m,n� − �k
PIW

L+1
�φ(sl

m,n�)
�2

wen
L,l(d

l
m)

��
.

(8)

This PIW estimator �θ
PIW

L+1 ≡ (�k
PIW

L+1
�, �σPIW

L+1)� is consistent and potentially more stable

than the plain EIW estimator �θ
EIW

L+1 .

3.2 Adaptive Importance Weight

To more actively control the stability of the PIW estimator, we propose to use adaptive

importance weighting—an importance weight wen
L,l(d) is ‘flattened’ by flattening pa-

rameter ν (∈ [0, 1]) as
�
wen

L,l(d)
�ν , i.e., the νth power of the importance weight. Then

we have �θ
AIW

L+1 ≡ (�k
AIW

L+1
�, �σAIW

L+1)�, where

�k
AIW

L+1 =

�
1

L

L�

l=1

1

M

M�

m=1

1

N

�
N�

n=1

N�

n�=1

γn−1rnφ(sl
m,n�)φ(sl

m,n�)
� �

wen
L,l(d

l
m)

�ν

��−1

×
�

1

L

L�

l=1

1

M

M�

m=1

1

N

�
N�

n=1

N�

n�=1

γn−1rnal
m,n�φ(sl

m,n�)
�
wen

L,l(d
l
m)

�ν

��
,

(�σAIW
L+1)2 =

�
1

L

L�

l=1

1

M

M�

m=1

�
N�

n=1

γn−1rn

�
wn

L,l(d
l
m)

�ν

��−1

×
�

1

L

L�

l=1

1

M

M�

m=1

1

N

�
N�

n=1

N�

n�=1

γn−1rn

�
al

m,n� − �k
AIW

L+1
�φ(sl

m,n�)
�2 �

wen
L,l(d

l
m)

�ν

��
.

(9)

‘AIW’ stands for ‘Adaptive Importance Weight’. When ν = 0, AIW is reduced to NIW.

Therefore, it is relatively stable, but is not consistent. On the other hand, when ν = 1,

AIW is reduced to PIW. Therefore, it is consistent, but is rather unstable. In practice,

an intermediate ν often produces a better estimator. Note that the value of the flattening

parameter can be different for each Dl. However, for simplicity, we employ a single

common value ν.

12

3.3 Automatic Selection of Flattening Parameter

The flattening parameter allows us to control the trade-off between consistency and

stability. Here, we show how the value of the flattening parameter can be optimally

chosen using data samples.

The goal of policy search is to find the optimal policy that maximizes the expected

return J(θ). Therefore, the optimal flattening parameter value ν∗L at the Lth iteration is

given by

ν∗L ≡ arg max
ν

J(�θ
AIW

L+1 (ν)). (10)

Directly obtaining ν∗L requires to compute the expected return J(�θ
AIW

L+1 (ν)) for each can-

didate of ν. To this end, we need to collect data samples following π(a|s; �θ
AIW

L+1 (ν)) for

each ν, which is prohibitively expensive. In order to reuse samples generated by pre-

vious policies, we propose to use a variation of cross-validation based on importance-

weighted cross-validation (IWCV) (Sugiyama et al., 2007).

The basic idea of IWCV is to split the training dataset D1:L ≡ {Dl}L
l=1 into an

‘estimation part’ and a ‘validation part’. Then the policy parameter �θ
AIW

L+1 (ν) is learned

from the estimation part and its expected return J(�θ
AIW

(ν)) is approximated using the

importance-weighted loss for the validation part. As we pointed out in Section 2.6,

importance weighting tends to be unstable when the number M of episodes is small.

So we use per-decision importance weighting for cross-validation. Below, we explain

in more detail how we apply IWCV to the selection of the flattening parameter ν in the

current context.

Let us divide the training datasetD1:L = {Dl}L
l=1 intoK disjoint subsets {D1:L

k }K
k=1

of the same size2, where each D1:L
k contains M/K episodic samples from every Dl.

Let �θ
AIW

L+1,k(ν) be the policy parameter learned from {D1:L
k� }k� �=k (i.e., without D1:L

k) by

AIW estimation. We estimate the expected return of �θ
AIW

L+1,k(ν) using the PIW estimator

from D1:L
k as

�Jk
IWCV(�θ

AIW

L+1,k(ν)) ≡ 1

η

�

dl∈D1:L
k

N�

n=1

γn−1rl
nw

n
L,l(d

l), (11)

where η is a normalization constant. An ordinary choice of η would be η = LM/K,

2For simplicity, we assume that M is divisible by K, i.e., M/K is an integer. We use K = 5 in the

experiments.

13

but we use a ‘stable’ variant η ≡
�

dl∈D1:L
k

wn
L,l(d

l) (Precup et al., 2000).

The above procedure is repeated for all k = 1, 2, . . . , K and the average score is

computed:

�JIWCV(�θ
AIW

L+1 (ν)) ≡ 1

K

K�

k=1

�Jk
IWCV(�θ

AIW

L+1,k(ν)).

This is the K-fold IWCV estimate of J(�θ
AIW

L+1 (ν)), which was shown to be almost un-

biased (Sugiyama et al., 2007).

We compute this K-fold IWCV score for each candidate value of the flattening

parameter ν and choose the one that maximizes the IWCV score:

�νIWCV ≡ arg max
ν

�JIWCV(�θ
AIW

L+1 (ν)).

This IWCV scheme can also be used for choosing the basis functions φ(s) in the Gaus-

sian policy model (4).

Note that when the importance weights wen
L,l are all one (i.e., no importance weight-

ing), the above IWCV procedure is reduced to the ordinary CV procedure. The use of

IWCV is essential here since the target policy π(a|s; �θ
AIW

L+1 (ν)) is usually different from

the previous policies used for collecting the data samples D1:L, so the expected return

estimated using ordinary CV, �JCV(�θ
AIW

L+1 (ν)), would be heavily biased.

3.4 Algorithm

So far, we introduced the AIW method to control the stability of policy-parameter up-

date, and IWCV to automatically choose the flattening parameter based on the estimated

expected return. Here we show how these two methods are combined and implemented

in a single algorithm. We call the proposed method Reward weighted Regression with

sample Reuse (R3). Figure 4 depicts the pseudo code of R3.

In each iteration (L = 1, 2, . . .), episodic data samples DL are collected following

the current policy π(a|s; θAIW
L), the flattening parameter is chosen so as to maximize

the expected return �JIWCV(ν) estimated by IWCV using {Dl}L
l=1, and then the policy

parameter is updated by Eq.(9) using {Dl}L
l=1.

14

✓

✒

✏

✑

Algorithm 3.1: R3(K,M,N,φ, �θ
AIW
1 , �)

//K Number of folds

//M Number of episodes collected at each iteration

//N Number of steps in each episode

//φ Basis functions, φ(s) = (φ1(s),φ2(s), . . . , φB(s))�

//�θ
AIW
1 Initial policy parameter, �θ

AIW
1 = (�k

AIW
1

�, �σAIW
1)�

//� Stopping criterion

L ← 0

repeat

L ← L + 1

// Collect data samples (M episodes and N steps) using current policy π(a|s; �θ
AIW
L)

DL ← DATASAMPLING(�θ
AIW
L ,M, N)

// Choose flattening parameter �νIWCV that maximizes �JIWCV(ν)

for ν ← 0, 0.1, . . . , 1

for k ← 1, 2, . . . , K

// Learn parameter �θ
AIW
L+1,k fromK − 1 groups of data samples {D1:L

k� }k� �=k

�θ
AIW
L+1,k ← POLICYPARAMETERUPDATE({D1:L

k� }k� �=k, ν, φ)

// Estimate expected return from kth group of data samples {D1:L
k� }k�=k

�Jk
IWCV(�θ

AIW
L+1,k(ν)) = 1

η

�
dl∈D1:L

k

�N
n=1 γn−1rl

nwn
L,l(d

l)

// Compute the mean of expected return
�JIWCV(�θ

AIW
L+1 (ν)) ← 1

K

�K
k=1

�Jk
IWCV(�θ

AIW
L+1,k(ν))

�νIWCV ← arg max
ν

�JIWCV(�θ
AIW
L+1 (ν))

// Update policy parameter �θ
AIW
L by Eq.(9)

�θ
AIW
L+1 ← POLICYPARAMETERUPDATE({Dl}L

l=1, �νIWCV,φ)

until ��θL+1 − �θL� ≤ �

return (�θL+1)

Figure 4: Pseudo code of the proposed R3 method (Reward-weighted Regression with

sample Reuse). By the DATASAMPLING function, data samples (M episodes and N

steps) are collected following current policy π(a|s; �θ
AIW

L). By the POLICYPARAME-

TERUPDATE function, policy parameters are updated using datasets {Dl}L
l=1, flattening

parameter �νIWCV, and basis functions φ by Eq.(9).

15

α

x&

x

Figure 5: Illustration of one-dimensional ball-balancing simulation. The goal is to

control the angle α of the seesaw so that the ball is moved to and kept at the middle of

the seesaw.

4 Experiments

In this section, we evaluate the performance of the proposed method through experi-

ments.

4.1 Numerical Examples

First, we illustrate how the proposed method behaves on a one-dimensional ball-

balancing simulation illustrated in Figure 5.

The goal is to control the angle of the seesaw so that the ball is brought to the middle

of the seesaw. The action space A consists of the angle α (∈ (−π/4,π/4)) [rad] of the

seesaw, which is one-dimensional and continuous. The state space S is also continuous

and a state vector s = (x, ẋ)� consists of the position x [m] of the ball on the seesaw

(the middle of the seesaw is the origin and the left/right side of the origin corresponds

the negative/positive direction), and the velocity ẋ [m/s] of the ball (moving to the

left/right corresponds to the negative/positive velocity).

The position x and velocity ẋ are modeled by the following equations:

xt+1 = xt + ẋt+1∆t,

ẋt+1 = ẋt + ∆t

�
− f

m
ẋt − 9.8 sin(at)

�
,

where f = 0.01 is the friction coefficient,m = 3 [kg] is the mass of the ball, at [rad] is

the action chosen at time t, and∆t = 0.05 [s] is the duration of a time step. We assume

that if an action at is chosen, the seesaw angle will be adjusted to the desired angle in a

16

single time-step (this simulation is for illustration purposes; more realistic experiments

will be shown in Section 4.2).

The reward function R(s, a, s�) is a bell-shaped function defined as

R(s, a, s�) = exp

�
−x�2 + 0.5ẋ�2 + 0.1a2

2

�
.

This reward function indicates that the agent will receive the maximum reward (i.e.,

one) when the ball stops at the middle of the seesaw (s = 0 and a = 0). We use 10

Gaussian kernels as basis functions φ(s) of the Gaussian policy model (4):

φb(s) = exp

�
−�s− cb�2

2σ2
basis

�
, (12)

where cb is a randomly located kernel center and σbasis = 1 is the Gaussian width.

The initial policy-parameter �θ
AIW

1 is set randomly as �k
AIW

1 = (β1, β2, . . . , β10)�

and �σAIW
1 = 0.5, where β1, β2, . . . , β10 are independently drawn from the uniform dis-

tribution on [−0.2, 0.2]. At every iteration, the agent collects samples DL following the

current policy π(a|s; �θ
AIW

L), and then the policy parameter �θ
AIW

L is updated using all

samples {Dl}L
l=1. This is repeated for 50 iterations.

Our original motivation for introducing R3 was to reduce the number of samples for

saving the sampling cost. To investigate this, we set the number of episodes and the

number of steps to small values: M = 5 and N = 20. The discount factor is set to

γ = 0.99.

First, let us illustrate how the flattening parameter ν influences the policy-parameter

update. For this purpose, we compute the expected return for the estimated parameter
�θ

AIW

10 (ν) and �θ
AIW

40 (ν) at the 10th and 40th iterations from 50 test episodic data. Fig-

ure 6(a) depicts J(�θ
AIW

10 (ν)) and J(�θ
AIW

40 (ν)) averaged over 50 trials as a function of

the flattening parameter. The graph overall shows that as the iteration progresses from

10th to 40th, the average expected returns become larger and neither NIW (ν = 0) nor

PIW (ν = 1) is the best—intermediate values of ν (say, 0.1 ≤ ν ≤ 0.2) perform better

than NIW and PIW on average. Thus, given that ν is chosen optimally, AIW can out-

perform PIW and NIW. Note that, although the amount of performance improvement

over PIW and NIW gained by tuning the flattening parameter in AIW seems subtle in

this one-iteration simulation, accumulation of this small gain over iterations can cause

significant performance improvement as will be demonstrated below.

17

0 0.2 0.4 0.6 0.8 1
3

3.5

4

4.5

5

5.5

6

6.5

Flattening parameter

Ex
pe

ct
ed

 re
tu

rn

L=10
L=40

(a) True expected return

0 0.2 0.4 0.6 0.8 10.8

1

1.2

1.4

1.6

1.8

2

Flattening parameter

Ex
pe

ct
ed

 re
tu

rn

(b) 5-fold IWCV estimate

Figure 6: True expected return J(�θ
AIW

L+1 (ν)) and its 5-fold IWCV estimate
�JIWCV(�θ

AIW

L+1 (ν)) averaged over 50 trials as a function of the flattening parameter ν

in the one-dimensional ball-balancing task. The error bars indicate 1/10 of standard

deviation.

Next, we illustrate how IWCV behaves. Figure 6(b) depicts the expected re-

turns estimated by 5-fold IWCV at the 10th and 40th iterations, �JIWCV(�θ
AIW

10 (ν)) and
�JIWCV(�θ

AIW

40 (ν)), averaged over 50 trials. We can only access {Dl}10
l=1 and {Dl}40

l=1

in IWCV, which are collected through iterations. Thus, the total number of episodes

used in IWCV is only 50 and 200 at the 10th and 40th iterations, respectively. The

graph shows that IWCV well captures the trends of the true expected return for both

cases (L = 10 and 40). Note that the orders of magnitude of the values in Figure 6(a)

and Figure 6(b) are different due to the normalization constant η (see Eq. (11)) which is

computed by the sum of importance weights. However, this does not cause a problem in

model selection as long as relative profiles of the curves are similar, which is achieved

well in this experiment.

Finally, we illustrate how R3 performs. Figure 7 depicts the expected returns av-

eraged over 50 trials as a function of the number of iterations. The expected return at

each trial is computed from 50 test episodic data for this evaluation. We compare seven

scenarios: episodic REINFORCE (Williams, 1992; Peters & Schaal, 2006) with learn-

ing rate 0.1 or 0.3, ordinary RWR (no sample-reuse), sample-reuse RWR with fixed

18

5 10 15 20 25 30 35 40 45 50

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Iteration

E
xp

e
ct

e
d

 r
e

tu
rn

REINFORCE learning rate=0.005
REINFORCE learning rate=0.1
RWR No−reuse

RWR Reuse ν=0

RWR Reuse ν=0.5

RWR Reuse ν=1

R
3 (ν=νIWCV)^

Figure 7: The expected returns averaged over 50 trials as a function of iterations in

the one-dimensional ball-balancing task. We compare seven scenarios: episodic REIN-

FORCE with learning rate 0.005 or 0.1, ordinary RWR (no sample-reuse), sample-reuse

RWR with fixed flattening parameter values: ν = 0 (NIW), ν = 0.5, or ν = 1 (PIW),

and R3 where ν ∈ {0, 0.1, 0.2, . . . , 1} is adaptively chosen by 5-fold IWCV at each

iteration. The symbol ‘◦’ indicates the fact that the method is the best or comparable

to the best one in terms of the expected return by the t-test at the significance level 5%,

performed at every 10 iterations. The error bars indicate 1/10 of standard deviation.

flattening parameter values: ν = 0 (NIW), ν = 0.5, or ν = 1 (PIW), and R3 where

ν ∈ {0, 0.1, 0.2, . . . , 1} is adaptively chosen by 5-fold IWCV at each iteration. The

graph shows that R3 outperforms REINFORCE, ordinary RWR, and all other sample-

reuse RWR schemes with fixed flattening parameter values.

The performance of REINFORCE depends on the learning rate; when the learning

rate is 0.005, policies are improved in a stable way. However, the speed of policy

improvement tends to be slow since the amount of policy update at each step is rather

small. when the learning rate is 0.1, policy improvement tends to be unstable since

the number of data samples collected at each iteration is too small (M = 5) to take

a large policy-update step in each iteration. Similarly, the policy update tends to be

19

10 20 30 40 500

0.2

0.4

0.6

0.8

1

Iteration

Fl
at

te
ni

ng
 p

ar
am

et
er

(a) Flattening parameter value

10 20 30 40 501

1.5

2

2.5

3

3.5

4

4.5

5

Iteration

Ex
pe

ct
ed

 re
tu

rn

(b) Expected return

Figure 8: An example of the behavior of the flattening parameter values in R3 and its

corresponding expected return as a function of iterations in the one-dimensional ball-

balancing task.

unstable for no-sample-reuse RWR. Consequently, the performance of updated policies

is saturated after the 22nd iteration. When ν is fixed to 0 (NIW) or 0.5 through sample-

reuse RWR iterations, the performance is improved in a stable manner without decay

unlike ordinary RWR. However, the speed of performance improvement tends to be

slower than R3. When ν is fixed to 1 (PIW), the performance is not much improved

over iterations. This indicates that the instability of the estimators severely degrades

the performance. Furthermore, increasing the total number of episodes as the iteration

progresses does not contribute to the performance improvement since the number of

episodic samples taken from the same policy is still kept small (only M = 5). On

the other hand, the proposed R3 method achieves stable and fast policy improvement

throughout iterations by adaptively turning the flattening parameter using IWCV. As a

result, the performance of R3 is significantly better than the other methods (the symbol

‘◦’ indicates the fact that the corresponding method is the best or comparable to the best

one in terms of the mean performance by the t-test at the significance level 5%).

Figure 8(a) and Figure 8(b) depict an example of the flattening parameter value used

in the R3 iterations and its corresponding expected return. The graphs show that the

value of the flattening parameter is rather large and changes strongly in earlier iterations.

On the other hand, once the expected return converges (at around the 25th iteration), the

20

5 10 15 20 25 30 35 40 45 50
−2

−1

0

1

2

3

4

5

6

7

Iteration

A
ve

ra
g

e
d

 v
ar

ia
n

ce
 o

f
p

o
lic

ie
s

(l
o

g
 s

ca
le

)

RWR Reuse ν=0 (NIW)

RWR Reuse ν=1 (PIW)

R
3
 (ν=ν

IWCV
)^

Figure 9: Averaged variance of the mean �k
�
Lφ(s) of learned Gaussian policy over 50

trials as a function of iterations—the variance computed at each state is averaged over

the set of states s = (x, ẋ)� ∈ {−5,−4.5, . . . , 4.5, 5}× {−5,−4.5, . . . , 4.5, 5}.

20 40 60 80 100

2

3

4

5

6

7

8

9

10

Number of episodes

E
xp

e
ct

e
d

 r
e

tu
rn

RWR Reuse ν=0 (NIW)

RWR Reuse ν=1 (PIW)

R
3 (ν=νIWCV)^

Figure 10: The expected returns at the 20th iteration averaged over 50 trials as a function

of the number of episodes in the one-dimensional ball-balancing task. We consider

three sample-reuse RWR for performance comparison: sample reuse RWR with fixed

ν = 0, 1, and R3 where ν is chosen by IWCV. The symbol ‘◦’ indicates the fact that the

method is the best or comparable to the best one in terms of the expected return by the

t-test at the significance level 5%. The error bars indicate 1/10 of standard deviation.

21

flattening parameter value decreases to a lower value, 0.1, and tends to be stable. This

would be a natural outcome because after the policy converges, the amount of policy

update usually becomes small. Then data samples collected after convergence have

similar distributions and, thus, can be used without importance weights.

Figure 9 depicts the variance of the mean �k
�
Lφ(s) of the Gaussian policy model

over 50 trials as a function of iterations—the variance at each state s = (x, ẋ)� ∈

{−5,−4.5, . . . , 4.5, 5} × {−5,−4.5, . . . , 4.5, 5} is computed and is averaged over all

states.

The graph shows that the variance of learned policies by PIW increases significantly

in the beginning of the learning process (from the 4th to 9th iteration) compared to

NIW and R3—the variance of PIW is about 500000 and 2600 times larger than the

variance of NIW and R3 at the 20th iteration, respectively. This indicates that policy

update by PIW is unstable, i.e., policies are strongly changed due to the numerical

instability of importance weights. On the other hand, policy update by NIW is highly

stable because importance weights are not used. However, the direction of policy update

may not be appropriate due to the inconsistency of NIW policy update. Indeed, the

performance of policies learned by NIW is not largely improved over iterations (see

Figure 7). The variance of learned policies by R3 is in between the ones of PIW and

NIW. This indicates that the consistency of PIW is slightly compromised to obtain more

stable policies by adjusting flattening parameter in R3. As a result, the performance of

resulting policies is largely improved over iterations (see Figure 7).

Finally, we investigate how the number M of episodes affects the performance of

sample-reuse RWR methods. Figure 10 depicts the expected return at the 20th iteration

as a function of the number M of episodes. The graph shows that the performance of

PIW (ν is fixed to 1) gradually improves as the number of episodes increases. This

indicates that the consistent property of the PIW estimator tends to take effect as the

number of episodes increases. However, a huge number of episodes would be necessary

to make PIW competitive to other methods. The performance of NIW (ν is fixed to 0) is

saturated afterM reaches 10. This indicates that the inconsistent nature of NIW cannot

be overcome just by increasing the number M of episodes. On the other hand, our

proposed method R3 tends to perform better as the numberM increases. We conjecture

that the flattening parameter ν selected by IWCV can be more stable and previously

22

roll
x

roll
α

(a) The angle of wrist

pitchx

pitchα

(b) The angle of elbow

Figure 11: Realistic ball-balancing task using a Barrett WAMTM arm simulator. Two

joints of the robots are controlled so as to keep the ball in the middle of the tray.

collected data can be used more efficiently when the numberM of episodes is large.

4.2 Robot-arm Ball-balancing Task

Next, we evaluate the performance of our proposed method R3 in more challenging

problems, i.e., a ball-balancing task using a Barrett WAMTM robot arm and an Acrobot

swing-up task.

We employ the Simulation Laboratory (SL) simulator (Schaal, 2009) for the ball-

balancing experiment, which is known to be highly realistic. The 7-degree-of-freedom

Barrett WAMTM arm is mounted on the ceiling upside down and is equipped with a

circular tray (the radius is 0.24 [m]) at the end-effector (see Figure 11). The goal is

to control the joints of the robot so that the ball is brought to the middle of the tray,

similarly to the toy ball-balancing task in Section 4.1. However, unlike before, the

angle of the tray cannot be directly controlled; this is a typical restriction in the real

joint-motion planning based on the feedback from the environment (e.g., the state of

the ball). Thus, achieving the goal is much harder than the toy setup.

To simplify the problem, we control only two joints: the wrist angle αroll and the

elbow angle αpitch. All the remaining joints are fixed. Control of the wrist and elbow

angles would roughly correspond to changing the roll and pitch angles of the tray, but

not directly.

23

Robot armaa &,

αα &,

τ+
−

3R

r,s

PD controller
trajectory trackingtrajectory planning

Figure 12: The block diagram of the Barrett WAMTM robot-arm control system for ball

balancing. The control system has two feedback loops, i.e., joint-trajectory planning by

R3 and trajectory tracking by a high-gain proportional-derivative (PD) controller.

We design two separate control subsystems, each of which is in charge of roll-

and pitch-angle control. Each subsystem has its own policy parameter θ∗, state space

S∗, and action space A∗, where ‘*’ corresponds to ‘roll’ or ‘pitch’. The state space

S∗ is continuous and consists of (x∗, ẋ∗), where x∗ [m] is the position of the ball on

the tray along each axis and ẋ∗ [m/s] is the velocity of the ball. The action space A∗ is

continuous and corresponds to the target angle of the joint a∗ [rad]. The reward function

is defined as

R∗(s∗, a∗, s
�
∗) = exp

�
−5(x�∗)

2 + (ẋ�∗)
2 + a2

∗
2(0.24/2)2

�
,

where the number 0.24 in the denominator comes from the radius of the tray (i.e., 0.24

[m]).

Below, we explain how the control system is designed in more detail. As illustrated

in Figure 12, our control system has two feedback loops for trajectory planning using

an R3 controller and trajectory tracking using a high-gain proportional-derivative (PD)

controller (Siciliano & Khatib, 2008). The R3 controller outputs the target joint-angle

obtained by current policy π(a|s; θL) at every 0.2 [s]. 9 Gaussian kernels are used

as basis functions φ(s) (see Eq.(12)) with the kernel centers {cb}9
b=1 located over the

state-space at

(x∗, ẋ∗) ∈ {(−0.2,−0.4), (−0.2, 0), (−0.1, 0.4),

(0,−0.4), (0, 0), (0, 0.4),

(0.1,−0.4), (0.2, 0), (0.2, 0.4)}.

The Gaussian width is set to σbasis = 0.1. Based on the discrete-time target angles

obtained by R3, the desired joint-trajectory in the continuous time domain is linearly

24

interpolated as

an,t,∗ = an,∗ + t ȧn,∗,

where t is the time from the last output an,∗ of R3 at the nth step. ȧn,∗ is the angular

velocity computed by

ȧn,∗ =
an,∗ − an−1,∗

0.2
,

where a0,∗ is the initial angle of a joint. The angular velocity is assumed to be constant

during the cycle of trajectory planning (i.e., 0.2 [s]).

On the other hand, the PD controller converts desired joint-trajectories to motor

torques as

τ n,t = kp(an,t −αn,t)
� + kd(ȧn − α̇n,t)

�,

where τ is the 2-dimensional vector consisting of the torque applied to the wrist

and elbow joints. a = (apitch, aroll)� and ȧ = (ȧpitch, ȧroll)� are the 2-dimensional

vectors consisting of the desired angles and velocities. α = (αpitch,αroll)� and

α̇ = (α̇pitch, α̇roll)� are the 2-dimensional vectors consisting of the current joint-angle

and velocities. kp and kd are the 2-dimensional vectors consisting of the proportional

and derivative gains, respectively. Since the control cycle of the Barrett WAMTM arm is

0.002 [s], the PD controller is applied 100 times (i.e., t = 0.002, 0.004, . . . , 0.198, 0.2)

in each R3 cycle.

Figure 13 depicts a desired trajectory of the wrist joint generated by a random policy

and an actual trajectory obtained using the high-gain PD controller described above.

The graph shows that the desired trajectory is followed by the robot reasonably well.

The policy parameter θL is learned through the R3 iterations. The initial policy

parameters θ1 = (k�1 ,σ1)� are set manually as

k∗ = (−0.5,−0.5, 0,−0.5, 0, 0, 0, 0, 0),

and σ∗ = 0.1 so that various pairs of state and action can be safely explored in the first

iteration. The initial position of the ball is randomly selected as x∗ ∈ [−0.05, 0.05] and

the angle of elbow αpitch is offset by π
2 . The dataset collected in each iteration consists

of 10 episodes with 20 steps. The duration of an episode is 4 [s] and the sampling cycle

by R3 is 0.2 [s].

We consider three scenarios here: sample reuse with fixed ν = 0 (NIW), ν = 1

(PIW), and the proposed R3 (ν is chosen by IWCV from {0, 0.25, 0.5, 0.75, 1} at every

25

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2−0.05

0

0.05

0.1

0.15

0.2

Time [s]

An
gl

e
[ra

d]

Desired trajectory
Actual trajectory

(a) Trajectory of angle

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2−1.5

−1

−0.5

0

0.5

1

Time [s]

An
gu

la
r v

el
oc

ity
 [r

ad
/s

]

(b) Trajectory of angular velocity

Figure 13: An example of desired and actual trajectories of the wrist joint in the realistic

ball-balancing task. The target joint-angle is determined by a random policy at every

0.2 [s], and then a linearly-interpolated angle and constant velocity are tracked using

the proportional-derivative (PD) controller in the cycle of 0.002 [s].

iteration). The discount factor is set to γ = 0.99. Figure 14 depicts the averaged ex-

pected return over 10 trials as a function of the number of RWR iterations. The expected

return at each trial is computed from 20 test episodic data for this evaluation. The graph

shows that R3 nicely improves the performance over iterations. On the other hand, the

performance using fixed ν = 0 is saturated after the 3rd iteration. The performance

using fixed ν = 1 was improved much in the beginning but suddenly goes down at 5th

iteration. This shows that large change of policies would cause the severe instability of

sample reuse with fixed ν = 1.

Figure 15 depicts examples of trajectories of the wrist angle αroll, the elbow angle

αpitch, resulting ball movement x∗, and reward r∗, when following policies learned by

NIW (ν = 0) and R3 (ν is chosen by IWCV) at the 10th iteration. When following

the policy learned by NIW, the ball goes through the middle of the tray (xroll, xpitch) =

(0, 0). On the other hand, the policy learned by R3 successfully guides the ball to the

middle of the tray along the roll axis though the movement along the pitch axis is almost

the same as NIW.

26

2 4 6 8 10

9

10

11

12

13

14

15

16

17

Iteration

E
xp

e
ct

e
d

 r
e

tu
rn

Reuse ν=0 (NIW)

Reuse ν=1 (PIW)

R 3 (ν=ν
IWCV

)^

Figure 14: The performance of learned policies when ν = 0 (NIW), ν = 1 (PIW),

and ν is chosen by IWCV (R3) in ball balancing using a simulated Barrett WAMTM

arm system. The performance is measured by the return averaged over 10 trials. The

symbol ‘◦’ indicates the fact that the method is the best or comparable to the best one

in terms of the expected return by the t-test at the significance level 5%, performed at

every iteration. The error bars indicate 1/10 of standard deviation.

4.3 Acrobot Swing-up Task

We next evaluate our proposed method on a highly nonlinear control problem of Ac-

robot swing-up using a simulator based on open dynamics engine (Smith, 2005).

The Acrobot is a well-known under-actuated robotic systemwhere among two joints

(shoulder and elbow), only the elbow joint can be controlled; the shoulder joint freely

rotates in response to external forces such as inertia force and gravity. The robot is set

upside down as illustrated in Figure 16(a). The goal is to control the elbow joint so

that the entire body is swung up to the top. This task is known to be very hard because

the non-actuated shoulder joint has to be controlled indirectly through the manipulation

of the elbow joint, and the system dynamics of each joint is highly nonlinear (Spong,

1995). The detailed settings of the robot are described in Figure 16(b) and Table 1.

27

0 1 2 3 4−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time [s]

An
gl

e
α

ro
ll [r

ad
]

0 1 2 3 41.4

1.45

1.5

1.55

1.6

1.65

1.7

Time [s]

An
gl

e
α

pi
tc

h [r
ad

]

0 1 2 3 4−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time [s]

Po
si

tio
n

of
 b

al
l x

* [m
]

Pitch
Roll
Middle of tray

0 1 2 3 40

0.2

0.4

0.6

0.8

1

Time [s]

R
ew

ar
d

r *

(a) NIW (ν = 0)

0 1 2 3 4−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time [s]

An
gl

e
α

ro
ll [r

ad
]

0 1 2 3 41.4

1.45

1.5

1.55

1.6

1.65

1.7

Time [s]

An
gl

e
α

pi
tc

h [r
ad

]

0 1 2 3 4−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time [s]

Po
si

tio
n

of
 b

al
l x

* [m
]

Pitch
Roll
Middle of tray

0 1 2 3 40

0.2

0.4

0.6

0.8

1

Time [s]

R
ew

ar
d

r *

(b) R3 (ν is chosen by IWCV)

Figure 15: Typical examples of trajectories of the wrist angle αroll, the elbow angle

αpitch, resulting ball movement x∗, and reward r∗, when following policies learned by

NIW (ν = 0) and R3 (ν is chosen by IWCV) at the 10th RWR iteration in the realistic

ball-balancing task.

28

(a) Simulator of Acrobot

!"#$#%&'()*+

!,

!-

!

!

"

"

.#"/',

.#"/'-

0)#"$',

1*2)3&4+56

0)#"$'-

1+&7)86
!

(b) Structure of Acrobot

Figure 16: Simulator used for the Acrobot control task based on open-dynamics engine.

The initial pose is set to the bottom equilibrium state. The goal of the task is to swing

the entire body up to the top equilibrium state by only controlling the elbow joint.

Parameters Values

Length of link 1 (l1) 0.3 [m]

Length of link 2 (l2) 0.6 [m]

Mass of link 1 (m1) 6.4 [kg]

Mass of link 2 (m2) 11.1 [kg]

Centroid of link 1 (c1) 0.15 [m]

Centroid of link 2 (c2) 0.3 [m]

Moment of inertia of link 1 (I1) 0.048

Moment of inertia of link 2 (I2) 0.33

Table 1: Parameter setting of the Acrobot swing-up problem.

The state space S is continuous and consists of s = (α1,α2, α̇1, α̇2)�, where α1 ∈

[−3/2π, 1/2π] [rad] and α2 ∈ [−4/5π, 4/5π] [rad] are the angles of the shoulder and

elbow joints, respectively, and α̇∗ [rad/s] is the angular velocity of each joint. The action

spaceA is continuous and corresponds to the target angle a [rad] of the elbow joint. The

29

reward function is defined as

R(s, a, s�) =
1

2
I1α̇

�
1
2 + m1gc1(1 + sin α�1),

where this corresponds to the sum of kinetic and potential energies of the link 1 to

evaluate the policy to swing up the entire body.

Similarly to the ball-balancing task, we design the feedback control system consist-

ing of R3 and the PD controllers. The R3 controller outputs the target angle a of the

elbow joint by current policy π(a|s,θL) at every 0.2 [s]. 135 Gaussian kernels with

width σbasis = 1 are used as basis functions with the kernel centers {cb}135
b=1 located over

the state space as

(α1,α2, α̇1, α̇2) ∈{−3/2π,−π,−π/2, 0,π/2}× {−π/2, 0,π/2}

× {−10, 0, 10}× {−10, 0, 10}.

Then, the PD controller converts the desired angle a to the torque τ applied to the

elbow joint at every 0.005 [s]; the gain parameters are set to kp = 100 and kd = 15,

respectively.

The initial state of the robot is set at the bottom equilibrium pose as s =

(−π/2, 0, 0, 0). The initial policy parameter �θ
AIW

1 is set randomly as �k
AIW

1 =

(β1, β2, . . . , β135)� and �σAIW
1 = 1, where β1, β2, . . . , β135 are independently drawn from

the uniform distribution on [−0.5, 0.5]. The dataset collected in each iteration consists

of 10 episodes with 30 steps; the duration of an episode is 6 [s] and the sampling cycle

by R3 is 0.2 [s].

We consider five scenarios here: sample reuse with fixed ν = 0 (NIW), ν = 1

(PIW), the proposed R3 (ν is chosen by IWCV from {0, 0.25, 0.5, 0.75, 1} at every

iteration), and energy-based Σ2 (Spong, 1995) with high gain parameters (kp = 100

and kd = 15), and with low gain parameters (kp = 50 and kd = 8) as baseline methods.

The discount factor is set to γ = 0.99. Figure 17 depicts the averaged expected return

over 10 trials as a function of the number of RWR iterations. The expected return at

each trial is computed from 20 test episodic data for this evaluation. The graph shows

that R3 nicely improves the performance over iterations. On the other hand, the speed

of performance improvement when ν is fixed to 0 tends to be slow. When ν is fixed

to 1, the performance is improved quickly in an initial stage, but its improvement is

30

5 10 15 20 25 30

60

80

100

120

140

160

180

Iteration

E
xp

e
ct

e
d

 r
e

tu
rn

Reuse ν=0 (NIW)

Reuse ν=1 (PIW)

R 3 (ν=ν
IWCV

)

Σ 2 (kp =100, kd =15)

Σ 2 (kp =50, kd =8)

^

Figure 17: The performance of policies learned by RWR with ν = 0 (NIW), ν = 1

(PIW), and ν chosen by IWCV (R3), and energy-based Σ2 with different gain parame-

ters as baseline methods in the Acrobot swing-up task. The performance is measured

by the return averaged over 10 trials. The symbol ‘◦’ indicates the fact that the method

is the best or comparable to the best one in terms of the expected return by the t-test at

the significance level 5%, performed at every iteration. The error bars indicate 1/10 of

standard deviation.

saturated after the 18th iteration due to the instability of policy update. The energy-

based Σ2 methods work well when gain parameters are adjusted well. However, good

gain parameters depend on the property of the robot in a highly complicated way.

Figure 18 depicts an example of motion learned by R3 (at the 20th iteration). The

images show that the arm is repeatedly swung to the top.

5 Conclusions

In real-world reinforcement learning problems, reducing the number of training samples

is highly important as the sampling costs are often much higher than the computational

cost. In this paper, we proposed a new framework of direct policy search for efficient

31

Time 0.01 [s] Time 0.15 [s] Time 0.30 [s] Time 0.45 [s] Time 0.60 [s]

Time 0.75 [s] Time 0.90 [s] Time 1.05 [s] Time 1.20 [s] Time 1.35 [s]

Time 1.50 [s] Time 1.65 [s] Time 1.80 [s] Time 1.95 [s] Time 2.10 [s]

Time 2.25 [s] Time 2.40 [s] Time 2.55 [s] Time 2.70 [s] Time 2.85 [s]

Time 3.00 [s] Time 3.15 [s] Time 3.30 [s] Time 3.45 [s] Time 3.60 [s]

Figure 18: An example of Acrobot motion learned by R3.

sample reuse. To overcome the instability problem caused by importance sampling, we

proposed to combine reward-weighted regression with adaptive importance sampling

techniques. The proposed method, called R3, was shown to work well in experiments.

The proposed idea of using importance sampling techniques in direct policy search

would be applicable to other policy search methods such as the policy gradient method

(Williams, 1992; Sutton et al., 2000), the natural policy gradient method (Kakade,

2002; Peters et al., 2005), and policy search by dynamic programming (Bagnell et al.,

2003). Extension along this line would be investigated in the future work.

32

We proposed to use an adaptive importance weighting technique in which the im-

portance weight is powered by a flattening parameter. However, our proposed data-

reuse framework is more general so that it can handle other types of stabilizing tech-

niques. For example, truncated importance weighting (TIW) is also a popular variant

in which importance weights larger than some threshold are rounded off to the thresh-

old value (Uchibe & Doya, 2004; Wawrzynski, 2009). To obtain a good performance

in data-reuse with TIW, the threshold parameter should be appropriately tuned. Our

proposed framework can automatically select the parameter value based on estimated

performances. Thus investigating the effect of the sample-reuse idea in other types of

importance-weighting techniques would be important future works.

For the selection of the flattening parameter, we proposed to use importance-

weighted cross validation (IWCV). However, as we pointed out in Section 2.6, the

importance sampling tends to be unstable when only a small number of data samples

following the same policy are available. Although we introduced an idea based on

per-decision importance-weight to stabilize the importance weight in the parameter se-

lection (see Section 3.1), IWCV still suffers from instability. Thus, developing a more

stable model selection procedure is an essential research direction, e.g., by introduc-

ing an additional adaptive importance weighting into the IWCV-based model selection

framework (cf. Sugiyama et al., 2004).

In the ball balancing experiment in Section 4.2, we concatenated two independent

Gaussian policy models (see Eq.(4)) to handle the two-dimensional action space. When

the synchronization of multiple actions is necessary to achieve the goal, one may em-

ploy the multivariate Gaussian density as a policy model:

πd(a|s; K, Σ) =
1

(2π)d/2|Σ|1/2
exp

�
− 1

2
(a−K�φ(s))�Σ−1(a−K�φ(s))

�
,

where d is the dimension of the action space, K is the B × d parameter matrix, and Σ

is the d × d covariance matrix. Similarly to the univariate Gaussian policy model, the

policy parameter θd
L+1 = (K�

L+1, ΣL+1)� may be updated analytically by maximizing

the lower bound log JL(θd). Thus, our proposed R3 framework would be naturally ex-

tended for multivariate Gaussian policy models, which needs to be further investigated

in the future work.

In this paper, we focused on the case where rollout samples are collected following

33

the current policy. However, from the viewpoint of active learning (Sugiyama, 2006),

the best sampling policy would be different from the current policy. Following this idea,

an active learning method for better exploration has been developed in the framework of

least-squares policy iteration and shown to perform well (Akiyama et al., 2010). Thus,

developing active learning strategies in the framework of direct policy learning would

also be a promising future direction to be pursued.

We focused on the discrete-time formulation and linearly interpolated the learned

system for continuous-time robot control in Sections 4.2 and 4.3. Although this was

shown to perform reasonably well, it is an important challenge to extend the current

formulation so that continuous time systems can be directly handled. Further investiga-

tion along the line of Doya (2000) would be promising.

Acknowledgment

HH was supported by the FIRST program, and MS was supported by MEXT Grant-in-

Aid for Young Scientists (A) 20680007, SCAT, and AOARD.

References

Akiyama, T., Hachiya, H., & Sugiyama, M. (2010). Efficient exploration through ac-

tive learning for value function approximation in reinforcement learning. Neural

Networks, 23, 639–648.

Bagnell, J. A., Kakade, S., Ng, A. Y., & Schneider, J. (2003). Policy search by dynamic

programming. Neural Information Processing Systems 16 (pp. 831–838).

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Dayan, P., & Hinton, G. E. (1997). Using expectation-maximization for reinforcement

learning. Neural Computation, 9, 271–278.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society B, 39,

1–38.

34

Doya, K. (2000). Reinforcement learning in continuous time and space. Neural Com-

putation, 12, 219–245.

Hachiya, H., Akiyama, T., Sugiyama, M., & Peters, J. (2009a). Adaptive importance

sampling for value function approximation in off-policy reinforcement learning. Neu-

ral Networks, 22, 1399–1410.

Hachiya, H., Peters, J., & Sugiyama, M. (2009b). Efficient sample reuse in em-based

policy search. Proceedings of the 20th European Conference on Machine Learning

(pp. 469–484).

Kakade, S. (2002). A natural policy gradient. Neural Information Processing Systems

14 (pp. 1531–1538).

Kober, J., & Peters, J. (2008). Policy search for motor primitives in robotics. Neural

Information Processing Systems 21 (pp. 849–856).

Peshkin, L., & Shelton, C. R. (2002). Learning from scarce experience. Proceedings of

International Conference on Machine Learning (pp. 498–505).

Peters, J., & Schaal, S. (2006). Policy gradient methods for robotics. Proceedings of the

IEEE International Conference on Intelligent Robots and Systems (pp. 2219–2225).

Peters, J., & Schaal, S. (2007). Reinforcement learning by reward-weighted regres-

sion for operational space control. Proceedings of the International Conference on

Machine Learning (pp. 745–750).

Peters, J., Vijayakumar, S., & Schaal, S. (2005). Natural actor-critic. Proceedings of

the 16th European Conference on Machine Learning (pp. 280–291).

Precup, D., Sutton, R. S., & Singh, S. (2000). Eligibility traces for off-policy policy

evaluation. Proceedings of International Conference on Machine Learning (pp. 759–

766).

Schaal, S. (2009). The SL simulation and real-time control software package (Technical

Report). Computer Science and Neuroscience, University of Southern California.

35

Shelton, C. R. (2001). Policy improvement for POMDPs using normalized importance

sampling. Proceedings of Uncertainty in Artificial Intelligence (pp. 496–503).

Shimodaira, H. (2000). Improving predictive inference under covariate shift by weight-

ing the log-likelihood function. Journal of Statistical Planning and Inference, 90,

227–244.

Siciliano, B., & Khatib, O. (Eds.). (2008). Springer handbook of robotics. Springer.

Smith, R. (2005). Open dynamic engine. http://www.ode.org.

Spong, M. W. (1995). The swing up control problem for the acrobot. IEEE Controll

System Magazine, 49–55.

Sugiyama, M. (2006). Active learning in approximately linear regression based on con-

ditional expectation of generalization error. Journal of Machine Learning Research,

7, 141–166.

Sugiyama, M., Kawanabe, M., & Müller, K.-R. (2004). Trading variance reduction

with unbiasedness: The regularized subspace information criterion for robust model

selection in kernel regression. Neural Computation, 16, 1077–1104.

Sugiyama, M., Krauledat, M., & Müller, K.-R. (2007). Covariate shift adaptation by

importance weighted cross validation. Journal of Machine Learning Research, 8,

985–1005.

Sugiyama, M., & Müller, K.-R. (2005). Input-dependent estimation of generalization

error under covariate shift. Statistics & Decisions, 23, 249–279.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. The

MIT Press.

Sutton, R. S., McAllester, M., Singh, S., &Mansour, Y. (2000). Policy gradient methods

for reinforcement learning with function approximation. Neural Information Process-

ing Systems 12 (pp. 1057–1063).

Uchibe, E., & Doya, K. (2004). Competitive-cooperative-concurrent reinforcement

learning with importance sampling. Proceedings of International Conference on Sim-

ulation of Adaptive Behavior (pp. 287–296).

36

Wawrzynski, P. (2009). Real-time reinforcement learning by sequential actor-critics

and experience replay. Neural Networks, 22, 1484–1497.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connection-

ist reinforcement learning. Machine Learning, 8, 229–256.

A Derivation of Lower-Bound of Expected Return

Let us consider the log of the normalized expected return J(θ)/J(θL):

log
J(θ)

J(θL)
= log

� R(d)P (d; θ)

J(θL)
dd

= log

� R(d)P (d; θL)

J(θL)

P (d; θ)

P (d; θL)
dd.

By assuming R(d) to be non-negative and regarding R(d)P (d; θL)/J(θL) as a proba-

bility density function, Jensen’s inequality gives a lower-bound of the log normalized

expected return:

log
J(θ)

J(θL)
≥

� R(d)P (d; θL)

J(θL)
log

P (d; θ)

P (d; θL)
dd.

Then we obtain the lower bound of the log expected return as

log J(θ) ≥
� R(d)P (d; θL)

J(θL)
log

P (d; θ)

P (d; θL)
dd + log J(θL) ≡ log JL(θ).

B Derivation of Maximizer of Lower-Bound

The maximizer θL+1 of the lower bound log JL(θ) satisfies the following equation:

∂

∂θ
log JL(θ)

�����
„=„L+1

=

� R(d)P (d; θL)

J(θL)

∂

∂θ
log P (d; θ)

�����
„=„L+1

dd

=

� R(d)P (d; θL)

J(θL)

N�

n=1

∂

∂θ
log π(an|sn; θ)

�����
„=„L+1

dd = 0,

where we used Eq.(1). A useful property of the Gaussian policy model is that the

log-derivative of the policy model with respect to the parameters can be analytically

computed as
∂

∂k
log π(a|s; θ) =

a− k�φ(s)

σ2
φ(s),

∂

∂σ
log π(a|s; θ) =

(a− k�φ(s))2 − σ2

σ3
.

37

Then the maximizer θL+1 = (k�L+1,σL+1)� can be analytically obtained as

kL+1=

��
R(d)P (d; θL)

1

N

N�

n=1

φ(sn)φ(sn)�dd

�−1

×
��

R(d)P (d; θL)
1

N

N�

n=1

anφ(sn)dd

�
,

σ2
L+1=

��
R(d)P (d; θL)dd

�−1
��

R(d)P (d; θL)
1

N

N�

n=1

(an − kL+1
�φ(sn))2dd

�
.

C Derivation of Per-Decision Importance Weights

The expected return J(θL) can be expressed with stepwise importance weights wn
L,l(d)

as follows:

J(θL) =

� � N�

n=1

γn−1rn

�
P (d; θL)dd

=

� � N�

n=1

γn−1rn

�
wL,l(d)P (d; θl)dd

=

�
r1

P (d; θL)

P (d; θl)
P (d; θl)dd +

�
γr2

P (d; θL)

P (d; θl)
P (d; θl)dd + · · ·

=

���
r1

P (s1, a1, s2; θL)

P (s1, a1, s2; θl)
P (s1, a1, s2; θl)ds1da1ds2

+

�����
γr2

P (s1, a1, s2, a2, s3; θL)

P (s1, a1, s2, a2, s3; θl)
P (s1, a1, s2, a2, s3; θl)ds1da1ds2da2ds3 + · · ·

=

���
r1

π(a1|s1; θL)

π(a1|s1; θl)
P (s1, a1, s2; θl)ds1da1ds2

+

�����
γr2

π(a1|s1; θL)π(a2|s2; θL)

π(a1|s1; θl)π(a2|s2; θl)
P (s1, a1, s2, a2, s3; θl)ds1da1ds2da2ds3 + · · ·

=

� � N�

n=1

γn−1rnwn
L,l(d)

�
P (d; θl)dd.

38

