
Spectral Learning of
Hidden Markov Models
Spektrales Lernen von Hidden Markov Modellen
Bachelor-Thesis von Thomas Hesse aus Frankfurt am Main
März 2014



Spectral Learning of Hidden Markov Models
Spektrales Lernen von Hidden Markov Modellen

Vorgelegte Bachelor-Thesis von Thomas Hesse aus Frankfurt am Main

1. Gutachten: Prof. Dr. Jan Peters
2. Gutachten: Dr. Heni Ben Amor
3. Gutachten: Dr. Gerhard Neumann

Tag der Einreichung:

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-38340
URL: http://tuprints.ulb.tu-darmstadt.de/id/eprint/3834

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung – Keine kommerzielle Nutzung – Keine Bearbeitung 2.0 Deutschland
http://creativecommons.org/licenses/by-nc-nd/2.0/de/



Erklärung zur Bachelor-Thesis

Hiermit versichere ich, die vorliegende Bachelor-Thesis ohne Hilfe Dritter und nur mit den angege-
benen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen entnommen wurden,
sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prü-
fungsbehörde vorgelegen.
In der abgegebenen Thesis stimmen die schriftliche und elektronische Fassung überein.

Darmstadt, den 4. März 2014

(Thomas Hesse)

Thesis Statement

I herewith formally declare that I have written the submitted thesis independently. I did not use any
outside support except for the quoted literature and other sources mentioned in the paper. I clearly
marked and separately listed all of the literature and all of the other sources which I employed when
producing this academic work, either literally or in content. This thesis has not been handed in or
published before in the same or similar form.
In the submitted thesis the written copies and the electronic version are identical in content.

Darmstadt, March 4, 2014

(Thomas Hesse)



Abstract
The Hidden Markov Model is the most fundamental model of partially observable uncontrolled systems in Machine
Learning. The state of the art over the last years was the Baum-Welch algorithm which derives from the Expectation Max-
imization algorithm. However, this algorithm is very computationally intensive and is only guaranteed to find a locally
optimal solution. An alternative algorithm to the Baum-Welch algorithm is the so called Spectral Learning algorithm.
This algorithm uses spectral methods to exploit the hidden relations between successive observable output. The Spectral
Learning algorithm does not learn the Hidden Markov Model (HMM) directly for this purpose but rather a transformed
spectral model based on an observable representation. Finding a global solution is guaranteed by the algorithm. Spectral
Learning works best in sceanrios with a lot of data. This work evaluates Spectral Learning by learning a grid world
modeled by a HMM. The grid world is supposed to be an abstract highway. We successfully modeled the driving behavior
of a car driver in this grid world. Finally, we successfully imitated one learned behavior for a scenario that is common for
the behavior to imitate.

Zusammenfassung
Das Hidden Markov Model ist ein fundamentales Modell für teilweise beobachtbare und unkontrollierte Systeme in Ma-
chine Learning. Der Stand der Technik der letzten Jahre ist der Baum-Welch Algorithmus gewesen, welcher sich von
dem Expectation Maximization Algorithmus ableitet. Dieser Algorithmus ist jedoch sehr rechenintensiv und garantiert
keine globale Lösung, da er nur gegen lokale Lösungen konvergiert. Eine Alternative zu dem Baum-Welch Algorithmus
ist der sogenannte Spectral Learning Algorithmus. Dieser benutzt spektrale Methoden um die versteckten Relationen
zwischen aufeinanderfolgenden Ausgaben zu identifizieren. Der Spectral Learning Algorithmus lernt für diesen Zweck
nicht das echte Hidden Markov Modell, sondern eine transformierte Darstellung des eigentlichen Hidden Markov Modell.
Außerdem ist es garantiert eine globale Lösung zu finden. Spektrales Lernen kommt am besten zum Einsatz in Szenari-
en in denen viele Daten vorliegen. In dieser Arbeit wird untersucht wie sich der Spectral Learning Algorithmus für das
Lernen einer Gitterwelt verhält. Hierbei wird die Gitterwelt als abstraktes System für eine Autobahn angenommen. An-
schließend wurde erfolgreich versucht mehrere Fahrverhalten eines Autofahrers in diesem abstraktem System zu lernen.
Schlussendlich wurde erfolgreich eines der gelernten Verhalten in einem dafür passendem Szenario imitiert.

i



Acknowledgments
Foremost, I would like to express my sincere gratitude to my first supervisor Dr. Heni Ben Amor who supported me
passionately and motivated me. I would also like to thank my co-supervisor Dr. Gerhard Neumann for all the time he
spent giving me advices and input on my work. Your advices have been priceless.

A special thanks to professor Jan Peters for giving me the opportunity to work on a highly interesting and actual research
topic.

At this point, I also want to thank my family who made this study possible to me. Words cannot express my gratefulness.
At the end I want to thank all my friends who supported and incited me during the time writing this thesis.

ii





Contents

1 Introduction 1
1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Hidden Markov Model 3
2.1 The Expectation Maximization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Formal Defintion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Example on Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Baum-Welch Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Example on Baum-Welch Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Spectral Learning of Hidden Markov Model 10
3.1 Observable Operator Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Observable Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 The Core of Spectral Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Outline of Spectral Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Example on Spectral Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Experiment and Result 17

5 Conclusion and Future Work 21

Bibliography 22

iii



Figures and Tables

List of Figures

2.1 A basic Hidden Markov Model with the initial state π and two hidden states h1 and h2 which can emit two
discrete observation symbols v1 or v2 each. The transitions between the hidden states are visualized by
the solid line and the emission of observable symbols are visualized by the dashed lines. . . . . . . . . . . . . 4

2.2 A Trellis diagram of a generic Hidden Markov Model (HMM) representation. This diagram gives an intu-
ition of the mechanics of HMMs over time series. Observable symbols v t are generated by the O matrices
after each transition of hidden states ht done with the T matrix. The dotted line in the Trellis diagram
visually seperates the hidden states ht from the observations x t . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 A concrete HMM with two states h0 and h1 which can emit three discrete observation symbols v0, v1 or v2. 6
2.4 Evaluation of the Baum-Welch algorithm for three different sample sequence lengths. The Kullback-Leibler

divergence (KL) on the y-axis is plotted against the number of hidden states used for learning on the x-axis. 9

3.1 Computation of the first empirical moment, the p̂1 vector, by counting the observable symbols v ∈ V from
the observation sequence for t = 1, . . . , t f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Computation of the second empirical moment, the P̂2,1 matrix, by counting the observable symbols v ∈ V
from the observation sequence for t = 1, . . . , t f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Computation of the third empirical moment, the P̂3,x ,1 tensor, by counting the observable symbols v ∈ V
from the observation sequence for t = 1, . . . , t f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Evaluation of the Baum-Welch algorithm for three different sample sequence lengths. The KL on the y-axis
is plotted against the number of hidden states used for learning on the x-axis. . . . . . . . . . . . . . . . . . . . 15

4.1 The grid environment of the experiment setup showing each of its elements that define the various ob-
servable symbols given by the various permutations of the elements. The white field is defined as the
controlled car, the gray fields are foreign cars and the black fields are the street. . . . . . . . . . . . . . . . . . 17

4.2 The observable sequence we want to predict successfully with Spectral Learning. . . . . . . . . . . . . . . . . . 17
4.3 The two evaluated actions {right, down} starting from the initial position depicted in Figure 4.1. . . . . . . . 18
4.4 All evaluated actions {up, right, left, down} during the second run. . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 All evaluated actions {right, down, left} during the third run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

List of Tables

2.1 Transition and observation probabilities for a simple example of a Hidden Markov Model . . . . . . . . . . . 6
2.2 Resulting permutated hidden state sequence H and its joint probabilities p (H, X ) and normalized proba-

bilities p (H|X ) of the particular Hidden Markov Model for the given action sequence X= (3, 1,2). . . . . . . 7
2.3 Resulting marginal probabilities of each hidden state in time step t = 0,1, 2 in the particular Hidden

Markov Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 The Kullback-Leibler divergence for each run and each learned HMM. The HMMs were learned with the

Baum-Welch algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 The probability for the sequence (3,1, 2) with the Kullback-Leibler divergence of each learned Spectral
Hidden Markov Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 The probability for the sequence (3,1, 2) with the Kullback-Leibler divergence of each learned Spectral
Hidden Markov Model learned from more data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 The joint probability and normalized probability from the first run. . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 The joint probability and normalized probability from the second run. . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 The joint probability and normalized probability from the third run. . . . . . . . . . . . . . . . . . . . . . . . . . 19

iv



Abbreviations, Symbols and Operators

List of Abbreviations

CCA Canonical Correlation Analysis

EM Expectation Maximization

HMM Hidden Markov Model

i.i.d. independently and identically distributed

IL Imitation Learning

KL Kullback-Leibler divergence

ML Machine Learning

MP Markov Process

NLP natural language processing

OOM Observable Operator Model

PSR Predictive State Representation

Spectral HMM Spectral Hidden Markov Model

SVD Singular Value Decomposition

List of Symbols

Notation Description

1 the all ones vector

V set of emissions of a HMM

π the initial state distribution vector of a HMM

O the observation matrix of a HMM

π the stationary state distribution vector of a HMM

λ describes a HMM as a system λ assembled by T, O and π

T the transition matrix of a HMM

H set of hidden states of a HMM

X sequence of observations which occurs when executing a HMM λ

θ parameters of a probability distribution

s2 the size of the emission set V

s1 the size of the hidden state set H

bt belief state to time t of the Spectral Hidden Markov Model (Spectral HMM)

Bx spectral canonical basis for each observation symbol in the subspace of the Spectral HMM

b1 initial belief state of the Spectral HMM

v



b∞ multiplcative neutral element for the belief states of the Spectral HMM

p1 probalitiy vector of singletons formed by the given observation sequence

p̂1 empirical probalitiy vector of singletons formed by the given observation sequence

P2,1 probalitiy matrix of pairs formed by the given observation sequence

P̂2,1 empirical probalitiy matrix of pairs formed by the given observation sequence

P3,x ,1 probalitiy tensor of triples formed by the given observation sequence

P̂3,x ,1 empirical probalitiy tensor of triples formed by the given observation sequence

U orthonormal basis won by SVD(P2,1) that preserves state dynamics
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1 Introduction
Our world is determined by discrete and continuous signals of different nature. These signals of real world processes pro-
duce an observable output which can be measured and used to generate a signal model. Once such a model is extracted,
we can change its parameters, enhance the observed signal values, or perform other kinds of signal modifications. One
broad class of signal models are the statistical signal models where the signal is assumed to be a stochastic process [2].
An example for a statistical signal model is the Hidden Markov Model. Hidden Markov Models have been applied to a
wide range of applications, e.g. in speech recognition, natural language processing and genomic sequence modeling [3].
They are a fundamental tool for modeling stochastic systems that obey the Markov property. As most other signal models,
HMMs depend on a set of parameters that need to be determined based on the observed data [2, 4]. Typically, this is
realized using supervised learning. First, training data is recorded from the system at hand. Given this training data, a
machine learning method is used to automatically determine the HMM parameters that produce a similar behavior as
observed in the training data. A good parameterization of the HMM leads to an accurate signal model that can be used
to analyse and emulate the system at hand, while a bad parameterization leads to a poor model that does not properly
reflect the behavior of the system.

Training a HMM is generally done using the Expectation Maximization (EM) algorithm, which maximizes the lower
bound of the log likelihood of the training data [4, 5]. However, the EM algorithm for HMMs suffers from two ma-
jor drawbacks [5]. EM-based training is an iterative and computationally expensive method that requires a substantial
number of iterations to converge. In addition, since it is only a local method, it is prone to getting stuck in local op-
tima. Proper initialization before training or repeated execution of training is therefore in practice needed when using
HMMs. A solution to these problems has recently been proposed through the introduction of Spectral Learning methods
for HMMs [3]. Spectral Learning uses methods from linear algebra to extract the parameters of an HMM from training
data. Since many of the used methods have global convergence guarantees, the learned HMMs will most likely have a
better performance than those learned using EM. Addtionally, it was shown that spectral approaches are particularly well
suited for problems with many observations [3, 6]. These results have made Spectral Learning a viable and promising
alternative to traditional EM-based training.

1.1 Related Work

The Spectral Learning algorithm composes from two different ideas. The first idea is called subspace identification and
is located in the field of system theory [7]. The subspace identification was used in the seventies to identify a state
space model from impulse responses, i.e. markov parameters. In general, subspace identification algorithms are used to
identify input-state-output models. To do so, they learn the linear relation between hidden states and observable output.
Spectral Learning exploits this idea of finding the linear relationship between hidden states and observable output data
to learn an alternative representation for HMMs. This step of Spectral Learning is based on the tensor decomposition
of the defined tensor moments for the HMM [8]. To do so, spectral methods are used on a correlation matrix. This
matrix contains correlation information about past and future observations. This method is very similiar to the idea of
Canonical Correlation Analysis (CCA) proposed by [9]. However, subspace identification algorithms are used to learn
linear dynamical systems such as Kalman Filters and assume additive noise therefore.

The second idea that is fundamental to HMMs are the Observable Operator Models (OOMs). As Spectral Learning cannot
directly estimate the latent states of HMMs, the OOM is used to compute all necessary probabilities directly in the space of
observable symbols. However, Predictive State Representations (PSRs) can model HMMs and OOMs are HMMs. Hence,
they are applicable to additive noise models [6, 1, 3]. There are also latent tree models that can be used in conjunction
with the Spectral Learning algorithm [10]. The latent tree models behave very similiar to the HMMs in the context of
Spectral Learning. Spectral HMMs have also been extended to a continuous setting. This idea is called Hilbert Space
Embeddings of HMMs [11] and allows HMMs to infer in continuous space with the Spectral Learning algorithm proposed
by [3]. Likewise the discrete case, the original HMM parameters do not need to be restored for the continuous case [11].

1



1.2 Outline

Chapter 2 introduces the Expectation Maximization (EM) algorithm, the Hidden Markov Model (HMM) and conluding
from these definitions the Baum-Welch algorithm. The EM algorithm is introduced because it is the state of the art of
Imitation Learning (IL) in Machine Learning (ML) for learning the parameters of a model. The chosen model in this work
is the HMM and hence it is introduced together with the EM algorithm for HMMs, called the Baum-Welch algorithm.

Chapter 3 introduces the Spectral Learning algorithm. The Spectral Learning algorithm is introduced for HMMs in
particular. Hence, this chapter is based on the definition of the HMM.

Chapter 4 extends Chapter 3 by using the presented spectral algorithm and evaluating results in the context of an
experiment.

Chapter 5 summarizes the results of this work and provides an outlook for future work on the topic on Spectral Learning.
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2 Hidden Markov Model
The Hidden Markov Model (HMM) is a widely used statistical tool for modeling discrete time series. The theory behind
HMMs are that they consist out of hidden states internally. Hence, the hidden states cannot be seen from outside but we
can see the observations generated from the hidden states. In the following, an insight at how to use HMMs according
to [12] is given. There are three main goals in [12] to acheive with Hidden Markov Models:

1. Given an observation sequence, what is the probability of an optimal observation sequence?

2. Given an observation sequence, what are the hidden states that produced that observable sequence?

3. Given an observation sequence, what HMM does fit the given observation sequence best?

We will have a closer look at the goals of the three issues for which a solution with Hidden Markov Models is needed. In
the oncoming chapters, an introduction to the Hidden Markov Model, the Expectation Maximization (EM) algorithm and
the Baum-Welch algorithm is given as well as there are examples for basic understanding of these mechanisms.

2.1 The Expectation Maximization Algorithm

Since HMMs are the most fundamental models used for learning in partially observable systems [12], we use them here
for the explanation of algorithms that were used prior to Spectral Learning. Basically this chapter focuses on giving an
insight on how learning algorithms prior to Spectral Learning were used to learn the parameterization of a model. To
start with, we will have a look at the general form of the EM algorithm according to [4]. In our case the EM algorithm in
conjunction with the HMM will be shown later after the definition of the HMM.

Assume a data set X where values Z are missing. The data set X is then assumed to be the observable sequence and the
data set Z is assumed to be the hidden sequence. Furthermore, let the set of parameters of a model be defined by θ . Our
goal now is to compute the new parameter set of the model. The EM algorithm [4] starts with an initial guess for the
parameters denoted by θ old. From the definitions above follow the log likelihood function

ln
�

p (X |θ )
	

= ln

¨
∫

Z

p (X , Z |θ ) dZ

«

. (2.1)

The goal of the EM algorithm is to maximize the log likelihood, more precisely the marginal log likelihood, given by the
Equation 2.1 with respect to the parameters θ . This problem is hard due to non-convex optimization on the lower bound
of the log likelihood. The EM algorithm is split into two steps. The E-step is used to estimate the distribution of the
hidden state and the M-step is used to estimate the new parameters of the model. The first step of the EM algorithm is
the expectation step or E-step. We estimate the posterior distribution for the hidden data set Z defined as

p
�

Z
�

�X ,θ old
�

. (2.2)

The expectation of the marginal log likelihood in Equation 2.1 can be found with the posterior distribution in Equation 2.2
and is denoted as Q

�

θ ,θ old
�

given by

Q
�

θ ,θ old
�

=

∫

Z

p
�

Z
�

�X ,θ old
�

· ln
�

p (X , Z |θ )
	

dZ . (2.3)

The posterior distribution of the hidden data set was used in Equation 2.3 because the marginal distribution of the
hidden set p (Z) can be chosen freely. To explain why the marginal distribution of the hidden data set is replaced by the
posterior distribution of the hidden data set, let us further introduce the Kullback-Leibler divergence for this purpose. The
Kullback-Leibler divergence is used to measure the distance between two probability distributions. For two probability
distributions p and q, the Kullback-Leibler divergence is defined as

KL
�

p‖q
�

=−
∫

x

p (x) · ln
�

q (x)
p (x)

�

d x (2.4)
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where p is the true distribution and q is the estimated distribution. Furthermore it holds that KL
�

p‖q
�

6= KL
�

q‖ p
�

and
KL
�

p‖q
�

≥ 0 with the equality if p(x) = q(x). Assuming that KL
�

p (Z)‖ p
�

Z
�

�X ,θ old
��

= 0, the marginal probability
of the hidden data set can be replaced by the posterior distribution of the hidden data set. By doing so, we just shift the
bound as can be verified by [4]. The decomposition is explained detailed in [4]. Afterwards, the results of the E-step are
used for the maximization step or M-step of the EM algorithm. The M-step is the second step of the EM algorithm that
follows after the E-step. The new parameters θ new are estimated in the M-step of the EM algorithm.

θ new = argmax
θ

¦

Q
�

θ ,θ old
�©

= argmax
θ

¨
∫

Z

p
�

Z
�

�X ,θ old
�

· ln
�

p (X , Z |θ )
	

dZ

«

with Equation 2.3
(2.5)

The argmax operator in the M-step is evaluated using the derivative with respect to the parameters θ and setting the
derivative to zero. The obtained new parameters θ new are then set to θ old at the end of the current iteration for the next
iteration, thus θ old = θ new at the end of the current iteration. The E-step, M-step and update of the new parameters
define one recursion for the EM algorithm. The EM algorithm iterates until convergence, i.e. until the difference of the
log likelihood falls below a lower bound ε. Important attributes of the EM algorithm are that the algorithm does not
have any guarantees on finding a good solution and only converges locally. Hence the EM algorithm is a non convex
optimization problem.

2.2 Formal Defintion

To introduced the Hidden Markov Model (HMM), important variables for the definition of a HMM are explained similiar
to [12] with a slightly different notation in this work. Primarily the Hidden Markov Model is introduced as a state based
graph and after that, time series will be added to the process so that the HMM unfolds over time. This explanation should
give a good overview of what a HMM is and how it works.

h1 h2

π

v1 v2

Figure 2.1: A basic Hidden Markov Model with the initial state π and two hidden states h1 and h2 which can emit two
discrete observation symbols v1 or v2 each. The transitions between the hidden states are visualized by the
solid line and the emission of observable symbols are visualized by the dashed lines.

A particular visual representations of a HMM is depicted in Figure 2.1. There are hidden states denoted as hi ∈ H
for i = 1, 2, . . . , s1 where s1 describes the length of the hidden state set H. The Figure 2.1 shows two hidden states
transitions to themselves and Figure 2.1 also shows the observable symbols, the so called emissions that can be observed
over time. These observable symbols are denoted with v j ∈ V for j = 1, 2, . . . , s2 where s2 describes the length of
the observable symbol set V . At last π describes the initial state distribution from which the first initial state h0 is
independently and identically distributed (i.i.d.) sampled defined as the marginal probability

[π]i = p
�

hi
�

. (2.6)

Now, let us define the matrix quantities T and O which derive from the hidden state set H and the observable symbol
set V . The T and O matrices can be understood as a linear operator for the transition between hidden states ht and
observable symbols v t over time. The T matrix is defined as

[T] j,i = p
�

h j

�

�hi

�

(2.7)
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and describes the probability distribution of the transitions between each hidden states. Similiar, the O matrix is defined
as

[O]k, j = p
�

vk

�

�h j

�

(2.8)

and represents the probability distribution to sample an observable symbol from a hidden state. The columns of the
transition matrix T and the observation matrix O should always sum up to 1 because these matrices and vector are
probability distributions. Now, a HMM can be defined as a three tupel λ where

λ= (T, O, π)

given Equations 2.6, 2.7 and 2.8. This Hidden Markov Model λ obeys the following Markov Condition.

MARKOV CONDITION.
The hidden state of time step t is only dependent on the last hidden state and not on the whole history, thus

∀t : p
�

ht

�

�h1:t−1
�

= p
�

ht

�

�ht−1
�

. (2.9)

Likewise it must hold for the observable symbols that the observation probability of time step t only depends on the
hidden state of time step t. This behavior means that

∀t : p
�

v t

�

�ht
�

.

where b j(vk) is the probability to emit an observable symbol vk in state h j , both to time t where k = 1, 2, . . . , s2. The
variables which describe the Hidden Markov Model are listed below as a short overview.

• T ∈ Rs1×s1 is the matrix of state transition probabilities and is used to make transitions between hidden states of a
HMM

• O ∈ Rs2×s1 is the observation probability matrix and produces observations from a given hidden state

• π= (π1 π2 . . .πs1
)
>

is the initial state distribution

• H = {h1, h2, . . . , hs1
} is a distinct set of hidden states of the Markov Process (MP)

• V = {1,2, . . . , s2} is the set of possible observations (these observation symbols are often also called emissions)

• s1 is the size of the set H (i.e. the amount of hidden states)

• s2 is the size of the set V

The simplified notation {1, 2, . . . , s2} of the observation symbols comes without loss of generality as suggested in [12]
and will therefore be used throughout. The number could easily map to an actual observable symbol. This mapping of
observations to numbers should be kept in mind for the various following examples on Hidden Markov Models.

Another intuitive way of understanding a HMM is to look at the HMM over time. To do so, the HMM is unfolded into a
Trellis diagram.

Markov Process:

Observations:

h0 h1
T

h2
T . . .T

ht
T

x0

O

x1

O

x2

O

. . . x t

O

time t

Figure 2.2: A Trellis diagram of a generic Hidden Markov Model (HMM) representation. This diagram gives an intuition of
the mechanics of HMMs over time series. Observable symbols v t are generated by the O matrices after each
transition of hidden states ht done with the T matrix. The dotted line in the Trellis diagram visually seperates
the hidden states ht from the observations x t .
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2.3 Example on Hidden Markov Model

In this section, we want to give an example for a more fundamental understanding of HMMs for further proceeding in
this work. The particular example is visualized in Figure 2.3.

h0

0.7

h1

0.3

0.4

0.6

π

0.6 0.4

v0

0.1

0.7
v10.4 0.2

v2
0.5

0.1

Figure 2.3: A concrete HMM with two states h0 and h1 which can emit three discrete observation symbols v0, v1 or v2.

Assuming a HMM similiar to the one in Figure 2.1 with the following transition, observation and initial state probability
distributions

T=







0.7 0.4

0.3 0.6






O=













0.1 0.7

0.4 0.2

0.5 0.1













π=







0.6

0.4






(2.10)

where the columns should always sum up to 1 since this is a probability distribution.
For the purpose of this example we consider the following model. The given data for learning is a sequence containing
weather information at different days. The days in this model represent the different time steps t of the HMM. We also
define a set of actions {walk, shop, clean} and recall the simplified notation from Section 2.2 for observable symbols.
Therefore we map the observable symbols to walk = 1, shop = 2 and clean = 3. The problem state of this task is now
to guess the most likeli sequence of weather based on an input sequence of actions. Thus to compute the probability
whether it was a sunny day or a rainy day for a given action or a sequence of actions. The probability of observing an
action in a specific weather situation are summarized in Table 2.1. The hidden states represent the weather here.

rainy sunny

rainy 0.7 0.4

sunny 0.3 0.6

rainy sunny

walk 0.1 0.7

shop 0.4 0.2

clean 0.5 0.1

Table 2.1: Transition and observation probabilities for a simple example of a Hidden Markov Model

Lets assume the observation sequence X = (3, 1,2) and let S and R denote the hidden states for sunny and rainy. The
joint probability distribution for a complete data sequence given the parameters θ = (π,T,O) of the HMM can generally
be computed as

p
�

x1:t f
, h1:t f

�

�

�θ
�

= π
�

h0

�

�π
�

·







t f −1
∏

t=1

p
�

ht+1

�

�ht ,T
�






·







t f −1
∏

t=0

p
�

x t

�

�ht ,O
�






(2.11)
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where t f is the final time and describes the length of the sequence. The probability for a permutated sequence, e.g. RSR,
will be computed detailed for better understanding. Using Equation 2.11, we get

p (3, 1,2 , R, S, R) = π (R) · p (3, R) · p (S, R) · p (1, S) · p (R, S) · p (2, R)

= 0.6 · 0.5 · 0.3 · 0.7 · 0.4 · 0.4

= 0.01008.

(2.12)

The probabilities of the other permutations of sequences are computed similiarly. For calculation of those, the matrices
in Equation 2.10 were used which are summarized in Table 2.1. And hence this will not be computed detailed anymore.
These probabilities of the different hidden state sequences H are listed in Table 2.2. The normalized values are the
conditional probabilities that sum up to one in contrast to the computed joint probabilities that lack the normalization.
The values were simply normalized by divison with the sum of the joint probabilities.

H RRR RRS RSS RSR SRS SRR SSR SSS

p (H, X ) 0.00588 0.00126 0.00756 0.01008 0.000168 0.000784 0.001344 0.001008

p (H|X ) 0.209372 0.044865 0.269192 0.358923 0.005982 0.027916 0.047856 0.035892

Table 2.2: Resulting permutated hidden state sequence H and its joint probabilities p (H, X ) and normalized probabilities
p (H|X ) of the particular Hidden Markov Model for the given action sequence X= (3,1, 2).

Now, we are able to compute the conditional probability of the hidden state sequence of each time step t = 0, 1,2.
The marginal probability of the hidden states R and S of each time step t is computed by the sum of the conditional
probabilities as shown in Table 2.2 starting with the corresponding hidden state sequence of each time step t. As a result,
the marginal probabilities for the hidden states R and S in each time step t of the sequence are obtained. The results of
this procedure are listed in the Table 2.3. With the given results from Table 2.3, we can see the most likeli choice for that
sequence in this example. The most likeli hidden state sequence is RSR given Table 2.2 and Table 2.3.

time step t0 t1 t2

p(R) 0.882352 0.288135 0.644067

p(S) 0.117648 0.711865 0.355933

Table 2.3: Resulting marginal probabilities of each hidden state in time step t = 0,1, 2 in the particular Hidden Markov
Model.

2.4 Baum-Welch Algorithm

The Baum-Welch algorithm is the EM algorithm variant for HMMs with a modified E-step of the original EM algorithm
[4]. Recall the definition of the EM algorithm from Section 2.1 and the definition of the HMM from Section 2.2. Likewise
the EM algorithm, the Baum-Welch algorithm tries to maximize the log likelihood function in HMMs [4]. Let us start with
the definition of an initial parameter set of the HMM defined by θ old and assume an observable data set X with some
missing values which we assume to be the hidden data set Z. Now, we can find the posterior distribution of the hidden
data set defined by

p
�

Z
�

�X ,θ old
�

, (2.13)

instead of using the marginal probability distribution by minimizing the KL. We already applied this trick in Section 2.1.
Prior to Equation 2.3 of Section 2.1, we reformulate the expected complete-data log likelihood as

Q
�

θ ,θ old
�

=
∑

Z

p
�

Z
�

�X ,θ old
�

· ln
�

p (X , Z |θ )
	

. (2.14)

For further proceeding, we introduce the marginal posterior distribution of a hidden variable and joint posterior distribu-
tion of two successive hidden variables denoted as γ

�

zn
�

given by Equation 2.15 and ξ
�

zn−1, zn
�

given by Equation 2.16
respectively [4]. The marginal posterior distribution of a hidden variable is defined as

γ
�

zn
�

= p
�

zn

�

�X ,θ old
�

(2.15)
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and the joint posterior distribution of two succesive hidden variables is defined as

ξ
�

zn−1, zn
�

= p
�

zn−1, zn

�

�X ,θ old
�

. (2.16)

The marginal posterior distribution of a hidden variable and the joint posterior distribution of two successive hidden
variables are estimated in the E-step of the Baum-Welch algorithm and are estimated very efficiently using the forward-
backward algorithm [4]. It holds that the expectation for Equation 2.15 and Equation 2.16 sums up to 1 for all hidden
variables and successive hidden variables. Now we want to use the joint probability distribution of the complete data
given by Equation 2.11 in Section 2.3 in conjunction with the marginal posterior distribution of a hidden variable in
Equation 2.15 and the joint posterior distribution of two successive hidden variables in Equation 2.16. For this purpose,
we extend the marginal probability zn and joint probabilities zn−1, zn to a conditional probability form znk and zn−1, j , znk.
The sum of the conditional probability always sums up to 1. We plug the Equations 2.15, 2.16 and 2.11 into Equation 2.14
and receive

Q
�

θ ,θ old
�

=
∑

k

γ
�

z1k
�

· ln
�

p
�

z1k
��

+
∑

n

∑

j

∑

k

ξ
�

zn−1, j , znk

�

· ln
�

p
�

zn j

�

�zn−1,k

��

+
∑

n

∑

k

γ
�

znk
�

· ln
�

p
�

xn

�

�zk
�

�

.
(2.17)

The Equation 2.17 is then maximizied in the M-step of the Baum-Welch algorithm [4]. From this point, we can proceed
with the Baum-Welch algorithm starting as in Equation 2.5. To do so, we use the argmax operator again to maximize the
log likelihood function for the HMM. We do this by deriving Equation 2.17 with respect to the parameters θ and setting
the derivative to zero. We then solve this equation for θ and set them, i.e. θ new = θ old .

2.4.1 The Forward-Backward Algorithm

The forward-backward algorithm is used to obtain the marginal posterior of the hidden variables for conditional probabil-
ity in Equation 2.15 and the joint posterior of two successive hidden variables for conditional probability in Equation 2.16.
We will derive the formulars for the probabilities which can also be written as the sum of the conditional probabilities
[4]. The graph for the HMM can be represented as a tree [4] and therefore a two state message passing algorithm can
be used. Let X= {x1, . . . , xN} define our observable data set. It holds that

γ
�

zn
�

= p
�

zn

�

�X,θ old
�

=
p
�

X,θ old
�

�zn

�

· p
�

zn,θ old
�

p
�

X,θ old
� (2.18)

using Bayes’ theorem. Because θ old is fixed, we leave it out for simplicity of the equations. With the conditional indepen-
dence property and the product rule of probability, the Equation 2.18 decomposes into

γ
�

zn
�

=
p
�

x1, . . . , xn, zn
�

· p
�

xn+1, . . . , xN

�

�zn
�

p (X)
. (2.19)

Now let us define the forward propagation

α
�

zn
�

= p
�

x1, . . . , xn, zn
�

= p
�

xn

�

�zn
�

·
∑

zn−1

α
�

zn−1
�

· p
�

zn

�

�zn−1
� (2.20)

and the backward propagation

β
�

zn
�

= p
�

xn+1, . . . , xN
�

=
∑

zn+1

β
�

zn+1
�

· p
�

xn+1

�

�zn+1
�

· p
�

zn+1

�

�zn
� (2.21)

according to [4]. The forward propagation 2.20 and the backward propagation 2.21 are plugged into the Equation 2.19
which yields to

γ
�

zn
�

=
p
�

x1, . . . , xn, zn
�

· p
�

xn+1, . . . , xN

�

�zn
�

p (X)

=
α
�

zn
�

· β
�

zn
�

p (X)
=

α
�

zn
�

· β
�

zn
�

∑

zn
α
�

zn
�

· β
�

zn
� .

For the joint posterior distribution of two successive hidden variables follows similiarly [4]

ξ
�

zn−1, zn
�

= p
�

zn−1, zn

�

�X
�

=
α
�

zn−1
�

· p
�

xn

�

�zn
�

· p
�

zn

�

�zn−1
�

· β
�

zn
�

p (X)
=
α
�

zn−1
�

· p
�

xn

�

�zn
�

· p
�

zn

�

�zn−1
�

· β
�

zn
�

∑

zn
α
�

zn
�

· β
�

zn
�
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2.5 Example on Baum-Welch Algorithm

The Baum-Welch algorithm is the EM variant for learning a HMM as we learned in the former section. Hence, we want
to have a look how the Baum-Welch algorithm works in practice. The Section 2.3 showed how to compute the sequence
probability for a HMM analytically given the parameters of the HMM. However, typically we do not know the parameters
of a HMM, and hence, these parameters need to be learned. We use the same HMM from Section 2.3 to sample three
different observation sequences. The samples are drawn i.i.d. from the HMM that is found in Equation 2.10. Afterwards,
the Baum-Welch algorithm is used to learn the parameters of the HMM. Three test runs were made where the Baum-Welch
algorithm tried to learned the parameters of the HMM. The results of the three runs are depicted in Figure 2.4.

1 2 3 4 5 6 7

0.1

0.2

0.26

number of hidden states used for learning

K
u
llb

a
c
k
−

L
e
ib

le
r 

d
iv

e
rg

e
n
c
e

 

 sample sequence length = 10

sample sequence length = 100

sample sequence length = 1000

Figure 2.4: Evaluation of the Baum-Welch algorithm for three different sample sequence lengths. The KL on the y-axis is
plotted against the number of hidden states used for learning on the x-axis.

Seven different HMMs were learned for the three different runs. The results of the Kullback-Leibler divergence for the
each run and learned HMM are listed in the Table 2.4.

number of hidden states 1 2 3 4 5 6 7

KL for 10 samples 0.2467 0.1651 0.1307 0.1146 0.1096 0.09941 0.09242

KL for 100 samples 0.2123 0.1597 0.1283 0.119 0.09875 0.09108 0.08611

KL for 1000 samples 0.2279 0.1462 0.1295 0.1045 0.1003 0.1055 0.09211

Table 2.4: The Kullback-Leibler divergence for each run and each learned HMM. The HMMs were learned with the Baum-
Welch algorithm.

The best HMM is learned for a sample sequence of length 100 and is assumed to have 7 hidden states. Now we want
to use the best learned HMM to compute the probability of the observable sequence (3,1, 2) from the Section 2.3. The
probabilitiy for the observable sequence (3,1, 2) of the original HMM is 32.40% and the probability for the learned HMM
is 33.20%.
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3 Spectral Learning of Hidden Markov Model
An online Spectral Learning algorithm is proposed in this chapter which makes use of spectral methods such as the
Singular Value Decomposition (SVD). The Spectral Learning algorithm depends exclusively on observable sequences. The
algorithm is a so called one-shot method which uses linear algebra for the learning instead of iteratively approximating
the “true” parameters of the original model as shown in the Expectation Maximization (EM) algorithm.

3.1 Observable Operator Models

OOMs were firstly introduced by [1]. The name is influenced by the fact that the OOM transitions between the observable
states given only observations. Thus the observable operator is based on observations which also depends on the HMM.
It is defined as

A(x) = T · diag
�

Ox ,1, . . . ,Ox ,s1

�

(3.1)

such that the following holds

p
�

x t , . . . , x1
�

= 1> · A
�

x t
�

· . . . · A
�

x1
�

·π.

The OOM is used in this context here so that we do not have to represent the hidden state explicitly anymore. Hence, it
is used for the definition of the observable representation in Section 3.2.

3.2 Observable Representation

To start with, we use the just introduced OOMs so that we have a representation of the HMM that is directly learn-
able from observations, i.e. we do not need to know the transition model. The conditional independence property
of the HMM is important because it guarantees that the HMM fully describes the probability distribution of a sam-
pled sequence. The sampled sequences will be used to define an empirical estimate of the observable representa-
tion which we will denote with a hat. Let us also define t as the current time step and t f as the final time step,
i.e. the last time step, throughout this section. It is also required that the following condition holds for the HMM.

NON-DEGENERACY CONDITION.
The O and T matrices have full column rank and π > 0 element-wise.

This condition is needed to let the Spectral Learning algorithm seperate between an output distribution and a mixture of
output distributions. The observable representation itself is based on probabilities of singletons, pairs and triples where
these are only based on the given observations. These probabilities form the first three moments of the HMM. These form
the following vector p1, matrix P2,1 and matrices P3,x ,1 (or set of matrices). The vector of singletons is defined as follows

�

p1
�

i = p
�

x1 = i
�

= O ·π. (3.2)

The p1 vector describes the marginal probability of an observation in the observation sequence with p1 ∈ Rs2 . In addition
the matrix P2,1 ∈ Rs2×s2 consists out of the pairwise correlation of two successive observations. The matrix P2,1 is formed
as shown in Equation 3.3 and is defined as

�

P2,1

�

i, j
= p

�

x2 = i, x1 = j
�

= O · T · diag
�

π
�

·O>.
(3.3)

This matrix is also very important for the Spectral Learning algorithm since it has the meaning of the correlation between
future and past observations. This matrix will be of greater use in the Section 3.3 for the core step of the Spectral
Learning algorithm because it is used to identify a projection U between the subspace in which we define the observable
representation and our current space. The set of matrices P3,x ,1 ∈ Rs2×s2 is formed in Equation 3.4 and describes the
parametrized correlation of the previous observation and the successive observation for some given observation x t . We
may notice that the form of the P3,x ,1 set of matrices is very similiar to the form of the P2,1 matrix in Equation 3.3 except
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for the OOM (right before a new observation is generated). OOMs are used to generate an observable sequence or for
prediction. The OOMs used here were presented in Section 2.3.

�

P3,x ,1

�

i, j
= p

�

x3 = i, x2 = v , x1 = j
�

∀v ∈ V

= O · A(x) · T · diag
�

π
�

·O> ∀x ∈ X
(3.4)

There are multiple matrices given with P3,x ,1 which are put together as a third grade tensor matrix. We provide a
short introduction of the tensor product. An exhausting definition of the tensor product can be found in [8] which also
contributes to Spectral Learning. A real tensor of order d is denoted as a d-way array

�

Mi1,i2,...,id

�

of real numbers

i1 = i2 = . . .= id = n for a tensor M ∈
⊗d Rn in this context. The P3,x ,1 tensor of third grade is then written as

�

P3,x ,1

�

i,k, j
= p

�

x3 = i, x2 = k, x1 = j
�

=
�

O · A
�

xk
�

· T · diag
�

π
�

·O>
�

⊗ ek ∀x ∈ X
(3.5)

where ek is the k-th column vector of the canonical basis and the observation symbol vk is proportional to x2 in Equation
3.5. The next Section 3.3 focuses on how to obtain the unitary matrix U we use here and how to understand it. The
matrix U is the basis of the subspace obtained from the Singular Value Decomposition (SVD) of the matrix of pairs P2,1.
This matrix is needed to create the final observable representation in the form of belief states.

These belief states are defined in the following. Let us start with the initial belief state defined by the Equation 3.6. The
basic of of the formulation of an initial belief state is closely related to the HMM. We start from the initial belief state and
transition through the belief states as we would transition in a HMM.

b1 = U> · p1 = U> ·O ·π (3.6)

This initial belief state vector behaves similiar to the stationary state distribution from the HMM. In fact, [3] proofed
that this is only a linear relation. Furthermore there exists a canonical all ones vector of the observable representation
expressed as a belief transition state shown in Equation 3.7. This belief state behaves as the neutral element for multi-
plication in the subspace and sums up the rows of our current belief state. Note, that the observable representation is
defined and operates in the same subspace.

b∞
> = p1

> ·
�

U> · P2,1

�

+

= π> ·O> ·
�

U> · P2,1

�

+

= 1> · T · diag
�

π
�

·O> ·
�

U> · P2,1

�

+

= 1> ·
�

U> ·O
�−1
·
�

U> ·O
�

· T · diag
�

π
�

·O> ·
�

U> · P2,1

�

+

= 1> ·
�

U> ·O
�−1
·
�

U> · P2,1

�

·
�

U> · P2,1

�

+

= 1> ·
�

U> ·O
�−1

(3.7)

Now that we have an initial belief state b1 and the belief state b∞, we want to transition between observations in our
belief state. Hence, we define a tensor of canonical bases for the observations in Equation 3.8.

Bx =
�

U> · P3,x ,1

�

·
�

U> · P2,1

�

+

=
�

U> ·O · A(x) · T · diag
�

π
�

·O>
�

·
�

U> · P2,1

�

+

=
�

U> ·O
�

· A(x) · T · diag
�

π
�

·O> ·
�

U> · P2,1

�

+

=
�

U> ·O
�

· A(x) ·
�

U> ·O
�−1
·
�

U> ·O
�

· T · diag
�

π
�

·O> ·
�

U> · P2,1

�

+

=
�

U> ·O
�

· A(x) ·
�

U> ·O
�−1
·
�

U> · P2,1

�

·
�

U> · P2,1

�

+

=
�

U> ·O
�

· A(x) ·
�

U> ·O
�−1

(3.8)

The term
�

U> ·O
�

, e.g. given in Equation 3.8, cancels out with its inverse when multiplying the Bx matrices.

Finally, let us have a look how to estimate the moments of the HMM. In practice, we can obtain the empirical vector of
singletons p̂1 from Equation 3.2 as shown in Figure 3.1 where the occurence of each observation symbol v ∈ V is counted
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from the observation sequence X and normalized with the sum of all occurences of the observable symbols afterwards.
The beginning and the end of the sequence in Figure 3.1 is left out, just to give the idea on how to proceed on the given
sequence for the empirical singleton vector p̂1.

. . . x i−3 x i−2 x i−1 x i x i+1 x i+2 x i+3 . . .

. . . x i−3 x i−2 x i−1 x i x i+1 x i+2 x i+3 . . .

. . . x i−3 x i−2 x i−1 x i x i+1 x i+2 x i+3 . . .

Figure 3.1: Computation of the first empirical moment, the p̂1 vector, by counting the observable symbols v ∈ V from
the observation sequence for t = 1, . . . , t f .

Basically, the observation sequence X of length |X| will be splitted in |X| many observation sequences of length one in
Figure 3.1. It is very important to keep in mind that this presupposes that the observations were all drawn i.i.d. from
the same stationary state distribution π. In practive we remove the start of a sequence and assume that we start from
the stationary state distribution π. We could get poor results due to learning a mixture of distributions if we would not
delete the begin of a sequence. For completeness, we also show how to estimate the pairs and triples in Figure 3.2 and
Figure 3.3 respectively.

. . . x i−3 x i−2 x i−1 x i x i+1 x i+2 x i+3 . . .

. . . x i−3 x i−2 x i−1 x i x i+1 x i+2 x i+3 . . .

. . . x i−3 x i−2 x i−1 x i x i+1 x i+2 x i+3 . . .

Figure 3.2: Computation of the second empirical moment, the P̂2,1 matrix, by counting the observable symbols v ∈ V
from the observation sequence for t = 1, . . . , t f .

. . . x i−3 x i−2 x i−1 x i x i+1 x i+2 x i+3 . . .

. . . x i−3 x i−2 x i−1 x i x i+1 x i+2 x i+3 . . .

. . . x i−3 x i−2 x i−1 x i x i+1 x i+2 x i+3 . . .

Figure 3.3: Computation of the third empirical moment, the P̂3,x ,1 tensor, by counting the observable symbols v ∈ V from
the observation sequence for t = 1, . . . , t f .

With these empircal estimates, we are able to reformulate the belief states in an empirical context given the linear
projection Û.

3.3 The Core of Spectral Learning

The core of the Spectral Learning algorithm is the subspace identification [7] given by the Singular Value Decomposition
of the P2,1 matrix [3]. The idea of this is closely related to the Canonical Correlation Analysis (CCA) from [9] which
exploits the linear correlating relationship between multidimensional variables. The P2,1 matrix in Equation 3.3 has the
following structure

O · T · diag
�

π
�

·O>

which dissects into the parameters of the HMM, the observation matrix O at the left and its transpose at the right. The
foundation of Spectral Learning seeks a factorization that cancels out the hidden state in the middle. The basic idea is
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now to obtain an unitary correlation matrix of the observation that may be of lower dimension and preserves the state
dynamics of the original system. This unitary basis can be found via the thin SVD of the P2,1 matrix from Equation 3.3
such that the following invertibility condition holds. The SVD is given by the following equation

SV D
�

P2,1

�

= U ·D ·W∗ (3.9)

The unitary matrix U consists out of the non-zero left-singular vectors because then range (U) = range (O) such that the
invertibility condition holds as in [3].

INVERTIBILITY CONDITION.
The matrix

�

U> ·O
�

is invertible where U is found by the thin SVD of P2,1.

The correlation matrix P2,1 holds correlation information of two views in each matrix component. The thin SVD basically
tries to find a linear projection that mutually maximizes the correlation between two views. For this purpose, the OOMs
presented in Section 2.3 are used which are natural in the context of subspace identification [3].

Then, after definition of the observable representation from Equations 3.6, 3.7 and 3.8, we can estimate the belief
state update, the sequence probability and the conditional probability. The update of a belief state transitions between
observations in the belief space and is defined as

bt+1 =
Bx t
· bt

∑

x b∞> ·Bx · bt
(3.10)

The estimation of the probability of a sequence given the belief states from the observable representation is recursively
defined with the state update in Equation 3.10 as

p
�

x1, . . . , x t
�

= b∞
> ·Bx t

· . . . ·Bx 1
· b1

= 1> ·
�
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�−1
·
�

U> ·O
�

· A
�

x t
�

·
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U> ·O
�−1
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·
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U> ·O
�

· A
�

x1
�

·
�

U> ·O
�−1
·
�

U> ·O
�

·π

= 1> · A
�

x t
�

· . . . · A
�

x1
�

·π

(3.11)

where the normalization from Equation 3.10 is left out of each multiplication for visibility. The conditional probability
given the the belief states from the observable representation is defined as follows.

p
�

x t

�

�x1, . . . , x t−1
�

=
Bx t
· bt

∑

x b∞> ·Bx · bt
(3.12)

The belief states from the observable representation given by Equations 3.6, 3.7 and 3.8 and the unitary matrix U form
the Spectral HMM.

3.4 Outline of Spectral Learning

The Spectral Learning algorithm is an one-shot method that uses algebraic methods for learning. The algorithm uses an
alternative way of inference and does not rely on maximizing the (log) likelihood as the EM algorithm does. The method
used here is based on exploiting the latent structure between successive observations from future and past to form an ob-
servable representation. This approach is also related to the CCA from [9]. Here, in this context a Singular Value Decom-
position (SVD) is used to exploit the linear related latent structure. Spectral Learning then uses an alternative belief state
representation that implicitly contains information about the hidden states and is only based on observations and hance
called observable representation. The very basic idea is to exploit the latent structure via subspace identification from [7]
with a thin SVD. The thin SVD is used to obtain an orthonormal matrix which projects into the subspace. We need this sub-
space transformation because we assume that s2 > s1. For this exploitation of the latent structure the (thin) SVD is used
because the HMM only has low order state sequences. Thus the name of the Spectral Learning algorithm derives from the
inference procedure. According to the idea of subspace identification by [7], the matrix U spans a s2-by-r subspace base of
the correlation between past and future observations with r ≤ s2. From this point an observable representation is formed
as explained in Section 3.1. The observable representation is then used for predicting the probability of a sequence or the
conditional probability as shown in Section 3.2. This method is also proved to be consistent. The known downsides are

13



the formation of the inverse probability matrix of the hidden states and the empirical estimates which require a lot of data.

Data: observation triples (x1, x2, x3), reduced rank r
Result: Spectral Hidden Markov Model parameterized by the observable representation b1,b∞ and Bx
Step 1.

form empirical estimates p̂1, P̂2,1, P̂3,x ,1 of p1, P2,1, P3,x ,1 from input data

Step 2.
perform thin SVD of reduced rank r on P̂2,1 to obtain the matrix of left singular vectors corresponding to the
r-largest singular values denoted by Û

Step 3.
compute model parameters b1,b∞ and Bx from empirical estimates

Algorithm 1: Pseudocode of learning a Spectral Hidden Markov Model with the Spectral Learning algorithm.
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3.5 Example on Spectral Learning

In this section the Spectral Learning algorithm will be tested with the small toy example from Section 2.3. The Spectral
Learning algorithm for HMMs may look quite easy at a first glance but, in practice, is difficult to apply due to the many
assumptions we made on the HMM. The Section 3.5.1 will reveal advantages and disadvantages of the spectral algorithm
with an additional comparison to the Baum-Welch algorithm.

3.5.1 Positive and negative Examples

Lets consider the same setup for the HMM as in Section 2.3 for the correct use of the Spectral Learning algorithm.
The observation sequence that was used for learning the Spectral HMM is the same as the EM algorithm introduced in
Section 2.5. Thus, the Spectral Learning algorithm can be compared to the Baum-Welch algorithm for the particular
example. The spectral algorithm was executed three times where the dimension for the learned Spectral HMM was
reduced more in each run. The Kullback-Leibler divergence was computed to the true HMM for the resulting Spectral
HMMs of different dimensions. They are depicted in Figure 3.4.
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Figure 3.4: Evaluation of the Baum-Welch algorithm for three different sample sequence lengths. The KL on the y-axis is
plotted against the number of hidden states used for learning on the x-axis.

Before going into detail of the results from Figure 3.4, lets have a look at the computed probabilitiy sequence for (3,1, 2).
The results of the computed sequence probability with the corresponding KL are listed in the Table 3.1.

Spectral HMM dimension 1 2 3

sequence prob.: p(3,1, 2) 0.2917 0.4043 15.3359

KL(Spectral HMM||HMM) 0.006869 0.121128 3.445319

Table 3.1: The probability for the sequence (3, 1,2) with the Kullback-Leibler divergence of each learned Spectral Hidden
Markov Model.

Now we can see the major disadvantage of the Spectral Learning algorithm. We used 100 samples for learning and we
do not get a probabilitiy out of the sequence (3,1, 2) for the Spectral HMM which has no reduced dimension, i.e. of
dimension three. In such cases the Spectral HMM tends to produce values greater one or lower zero. We know that
in original HMM the non-degeneracy condition holds. Therefore, due to the problematic case is the sampled sequence
we used to learn. The unexpected behavior of the Spectral HMM appears because of the small amount of data used for
learning such a relative high dimensional Spectral HMM. Not enough data means that the original HMM may have not
reached its stationary distributed state and therefore is not ergodic. For this reason, we should consider longer sequences
from which we remove the start of the sequence which could be non ergodic.

We redo the example with two sequences of length 500 where the first 50 observations are clipped off of each sequence.
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The probabilitiy for the sequence (3, 1,2) and the KL for each Spectral HMM are listed in the Table 3.2. The results
indicate that there is a lot more data needed when learning a higher dimension of the Spectral HMM. We can also see
that more data results in better results and an increased stability of the Spectral Learning algorithm.

Spectral HMM dimension 1 2 3

sequence prob.: p(3, 1,2) 0.3175 0.3341 0.3163

KL(HMM||Spectral HMM) 0.000992 0.000965 2.620611

Table 3.2: The probability for the sequence (3, 1,2) with the Kullback-Leibler divergence of each learned Spectral Hidden
Markov Model learned from more data.

As an addition, [3] showed sample complexity bounds on the joint probability and conditional probability for a desired
accuracy of the Spectral HMM. The proofs can also be found there.
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4 Experiment and Result
The experiment of this work is based on discrete time series setting. The here observed environment is a 4-by-3 grid
world that is supposed to be a highway in an abstract sense. An observable symbol is one complete instance of this grid
to time step t. For this grid, the black fields indicate no occurence of cars and the gray fields indicate foreign cars, i.e.
cars that are not controlled by the player. The white field represents the own car that was controlled throughout the
process of gathering observable sequences. The whole grid environment is also shown in Figure 4.1. The goal of this
experiment is to learn two behaviors of the own car solely with the Spectral Learning algorithm. However, the Spectral
Learning algorithm should be able to seperate clearly between the two learned behaviors.

1 2 3

1
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4

Figure 4.1: The grid environment of the experi-
ment setup showing each of its el-
ements that define the various ob-
servable symbols given by the var-
ious permutations of the elements.
The white field is defined as the con-
trolled car, the gray fields are for-
eign cars and the black fields are the
street.

The data was collected with the car that was controlled by the player,
i.e. the white field. In the following, we will try to correctly predict
a sequence of the aggressive behavior which is one of the learned
behaviors. The three step sequence predicted by the Spectral Learning
algorithm should look like Figure 4.2. Here the first, second and third
step is depicted in the Figures 4.2a, 4.2b and 4.2c respectively. The
initial environment depicted in Figure 4.1 was chosen because it is
supposed to trigger the aggressive behavior. The Spectral HMM was
trained for two big sets of passive behavior and three rather small
sets of aggressive behavior. The aggressive training sets had a length
of 569, 740 and 400 observations and the passive training sets both
had a length of 1950 observations. The behaviors are assumed to be a
latent substructure of the observations and ,thus, we should be able to
implicitly model by the Spectral Learning algorithm. The aggressive
behavior made the controlled car, i.e. the white field, to stay near the
upper left corner throughout and to overtake any car that blocks the
way to the upper left corner. The neutral or passive behavior forced
the controlled car to stay on the right lane throughout and to evade
cars coming from the top.
We clipped off 100 observations from the start of each sequence of the
training data to reach a stationary state distribution π as explained in
Chapter 3. The collected data was used to learn a Spectral HMM
with five dimensions. Such a low dimension was chosen to get clear
results on the choice of the action. If we learn the Spectral HMM in
a lower dimensional subspace, we have less variance in each dimension because the Spectral Learning algorithm picks
the subspace domains with the most information and with the least noise. After learning the Spectral HMM, it was used
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(a) The first most reason-
ably action of the ag-
gressive behavior.
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(b) The second most rea-
sonably action of the
aggressive behavior.

1 2 3

1

2

3

4

(c) The third most reason-
ably action of the ag-
gressive behavior.
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(d) The fourth most rea-
sonably action of the
aggressive behavior.

Figure 4.2: The observable sequence we want to predict successfully with Spectral Learning.
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to check for the most likeli action to perform given the joint probability of the current state and each possible action to
perform. We note here, that the Spectral HMM can only compute the joint probability for sequences that were passed to
the Spectral Learning algorithm. Therefore, we assume that the collected data for learning a five dimensional subspace
suffices as we will see in the evaluation. We start with the initial state shown in Figure 4.1 and denote it as x ini t . Each
executable action depicted in Figure 4.3 of the player car was performed. The most reasonably action should force the
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(a) The executed action
down.
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(b) The executed action
right.

Figure 4.3: The two evaluated actions {right, down} starting from the initial position depicted in Figure 4.1.

car to go left because the aggressive behavior is defined by moving the own car to the upper left to the position (3,1)
of the grid as shown in Figure 4.2d. The aggressive behavior also demands to overtake every car that is blocking the
way. We proceed now by computing the joint probability of the initial position x ini t depicted in Figure 4.1 with each
executable action. These actions are denoted as x11

depicted in Figure 4.3a and x12
depicted in Figure 4.3b. The results

of the joint probabilities p(x1i
, x ini t) from this first run are collected in the Table 4.1 where x1i

denotes each executable
action.

observation action probability normalized probability

x11
down 4.876107 · 10−16 0.0

x12
right 4.215054 · 10−9 1.0

Table 4.1: The joint probability and normalized probability from the first run.

After the first run, the position of the car was updated to the state x12
because this was chosen as the most reasonably

action. After this, we will evaluate all executable actions again starting from x12
with the same learned Spectral HMM.

The possible actions are depicted in the Figure 4.4. Again the most reasonably action according to the current state x12
would be the aggressive behavior depicted in Figure 4.4a because the car came from the left and now has the possibility
to overtake the other car. Please note, that this scenario occured very often while collecting the data for the aggressive
behavior. For testing purposes on our assumption, we calculated the joint probability of p

�

x2i
, x12

�

where x2i
are the

four actions depicted in Figure 4.4. The results of the joint probability for all four actions are listed in the Table 4.2.

observation action probability normalized probability

x21
up 6.877512 · 10−4 1.0

x22
right 9.333473 · 10−13 0.0

x23
down 7.070393 · 10−10 0.0

x24
left 9.704818 · 10−9 0.0

Table 4.2: The joint probability and normalized probability from the second run.

Now the controlled car cannot move up anymore because this was no allowed action. The car would now wait for the
other car to move down so that it should be able to move left according to the learned aggressive behavior. After the car
moved down, we start our last evaluation to find the last action from the set of executable actions depicted in Figure 4.5.
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(a) The executed action
up.

1 2 3

1

2

3

4

(b) The executed action
right.
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(c) The executed action
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(d) The executed action
left.

Figure 4.4: All evaluated actions {up, right, left, down} during the second run.

In this case, we would assume the action left denoted as x33
to be executed with the highest probability. This action
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(a) The executed action
right.
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(b) The executed action
down.
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(c) The executed action
left.

Figure 4.5: All evaluated actions {right, down, left} during the third run.

would match the aggressive behavior best which we want to imitate. The results of the joint probability p
�

x3i
, x21

�

of
each executable action denoted as x3i

respectively can be found in Table 4.3.

observation action probability normalized probability

x31
right 1.679045 · 10−3 0.0382

x32
down 3.728679 · 10−2 0.8483

x33
left 4.988087 · 10−3 0.1135

Table 4.3: The joint probability and normalized probability from the third run.

The most likeli action of the third run is to go downwards according to the Table 4.3. We will have a discussion on these
results in the next chapter.
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5 Conclusion and Future Work
We start with a discussion and a small recapof the results and continue with the conclusion of this work. In our experi-
ment, we tried to imitate one of two learned behaviors. The environment in Figure 4.1 provided was assumed to trigger
the desired behavior. Given our assumptions on this behavior, we formulated a possible outcome in Figure 4.2 of the de-
sired behavior and started to evaluate the most likeli actions in each scenario. We observed if the most likeli action would
match the most reasonably action. The experiment nearly succeeded. The assumption on the last action in Figure 4.2d
was violated. The discussion should reveal possible causes of why the last action in Figure 4.2d was violated. Before the
last action in Figure 4.2d was evaluated the controlled car waited for the environment to change due to constraints. The
controlled car, i.e. the white field, was not allowed to enter the top row and therefore had to wait to overtake the other
car. This change of environment could have led to a change in the behavior regarding the Markov Property. Another
possible source of the unexpected change in the behavior could be the repudiation of the non-degeneracy condition.
Hence, the Spectral Learning algorithm was not able to seperate between the two behaviors and learned a mixture of
the two behaviors, the aggressive driving behavior and passive driving behavior. The violation of the non-degeneracy
condition is the most likeli cause for this behavior still assuming that there was enough data used for learning.
However, the Spectral Learning algorithm was able to predict all the prior sequence according to our assumptions. The
results were learned with few dimensions to get very precise results. We can assume the results to be correct because
the Spectral Learning algorithm learns globally by infering with moment estimation of the HMM. The Spectral Learning
exploits the low rank structure of the HMM by assuming marginal independence. The low rank structure is exploited
using a SVD on the empirical second moment which encodes the correlation between past and future observations. For
learning the parameters of the HMM, we use OOMs as an observable factorization. By doing so, we can learn the pa-
rameters directly from observations but the downside is that we can get degenerated probabilities. The problem of the
degenerated probabilities come from the alternative observable representation which contains the inverse of an estimate
of a probability matrix. Thus if there is enough data for the Spectral Learning algorithm to learn, we get better empirical
estimations on the moments, i.e. the second moment. This effect leads to better results and more stability.

The Spectral Learning algorithm is in general a very powerful algorithm for Imitation Learning (IL) in Machine Learning
(ML). It is not only applicable to HMMs but also to latent tree models [10]. The current state of the art is to use Spectral
Learning as a preparation step for the EM or Baum-Welch algorithm when there is little data provided. Spectral Learning
looks very promising and is not limited to the time discrete case because HMMs can be extended to a continuous case
with Hilbert space embeddings [11]. There is left a lot of space for the work on Spectral Learning itself including the
relaxation of the very hard conditions of Spectral Learning and increased stability of the algorithm.
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