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Abstract— Inverse dynamics model learning is crucial for
modern robots where analytic models cannot capture the com-
plex dynamics of compliant actuators, elasticities, mechanical
inaccuracies, frictional effects or sensor noise. However, such
models are highly nonlinear and millions of samples are needed
to encode a large number of motor skills. Thus, current state
of the art model learning approaches like Gaussian Processes
or LWPR which scale exponentially with the data cannot be
applied. In this work, we developed an inverse dynamics model
learning approach based on a long-short-term-memory (LSTM)
network with a time complexity of O(n). We evaluated the
approach on a KUKA LWR arm that was used in object
manipulation skills with various loads. In a comparison to
Gaussian Processes we show that LSTM networks achieve
better prediction performances and that they can be trained
on large datasets with more than 100, 000 samples in a few
seconds. Moreover, due to the small training batch size of, e.g.,
128 samples, the network can be continuously improved in life-
long learning scenarios.

I. INTRODUCTION

In robotics, predictions based on dynamics models are
essential for control, object manipulation or planning [13],
[20]. However, for modern robots with its dozens of compli-
ant actuators and thousands of noisy tactile or visual sensors,
these models have to be learned because of unmodeled
effects like manufacturing uncertainties, sensory noise or any
form of unmodeled dynamics in presence of contacts [3]. The
challenge is that even small model inaccuracies can result in
catastrophic behavior [21] and for learning a rich repertoire
of versatile skills millions of samples in high dimensional
observational spaces need to be processed [23].

Gaussian Processes (GPs) [26], [19] are state of the art
regression techniques to learn such model. They are widely
used in machine learning because their hyper parameters can
be optimized through maximizing the marginal likelihood
and thus, it requires little effort to adapt the model to new
datasets or problem domains. However, the main limitation
of GPs is that the computational complexity scales exponen-
tially in O(n3) due to the need to invert a n × n kernel
matrix.

To reduce this computational demands local approxima-
tions based on sparse GPs [17], mixture of experts ap-
proaches [24], [18], drifting GPs [12], or based on local
partitions of the data [14] were proposed. However, also these
local approximations scale quadratically with the number of
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samples, i.e., in O(n2) and are thus limited to few thousand
samples [14].

Local approximations like the locally weighted regression
approach [25] or even simpler lazy learning approaches
like locally weighted regression would scale linear with the
number of samples in O(n). However, tuning the often large
number of hyper parameters, i.e., the Gaussian bandwidth
parameters of many local models can be as challenging as
the original model learning task.

We developed in this work an inverse dynamics model
learning approach based on a recurrent neural network with
a time complexity of O(N). To learn from long time se-
ries data we utilized gating mechanism in Long-short-term-
memory (LSTM) networks [8], [22]. We demonstrate how
LSTMs can learn the dynamics model of a torque controlled
robot arm and compare the state of the art approach GPs.
The model-based LSTM controller achieves superior pre-
diction performances and scales linearly with the number
of data samples. These results can be exploited in neural
model-based control approaches that can learn from high-
dimensional visual and tactile data.
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Fig. 1. Illustration of four snap shots of the investigated manipulation task.
The robot had to push the flask that was filled with 200, 300, or 400 ml of
liquid. The goal of this work is to predict the joint torques which depend
on the fill level given joint angles, velocities and accelerations.

II. METHODS

We start with a problem definition for learning inverse dy-
namics models and subsequently discuss Gaussian Processes



(GPs) and Long-short-term-memory (LSTM) networks im-
plementations.

A. Problem Definition

We denote the vectors for joint angles, for joint velocities
and for joint accelerations by q, q̇, q̈, respectively. For a
robot with d joints these vectors are of the dimension Rd× 1.
Using these definitions the general inverse dynamics model
of a robot is given by

τ = M(q)q̈ + h(q, q̇) + ε(q, q̇, q̈) , (1)

where τ denotes the unknown joint torques which we want
to learn. The inertia matrix is denoted by M(q) and the term
h(q, q̇) combines effects of Coriolis and centripetal forces,
friction and of gravitational forces, i.e.,

h(q, q̇) = C(q, q̇) + fr(q̇) + g(q) .

All unmodeled dynamics such as elasticities in the mechan-
ical designs, model parameter inaccuracies in the masses or
inertiae, vibrational effects, Stribeck friction, couplings and
sensor noise are modeled by the term ε(q, q̇, q̈) in Eq. 1.

The goal of this work is to learn such inverse dynamics
models in Eq. 1 including all effects of the unmodeled
dynamics. We formulate this learning problem as a standard
regression task. Given some input vector x the goal is to
learn the function

y = f(x) + ζ : R3d× 1 7→ Rd× 1 , (2)

where y = τ and x = [qT , q̇T , q̈T ]T . The variable ζ
denotes zero mean Gaussian noise with a standard deviation
of σy .

Using a dataset D = 〈xt,yt〉t=1,...,n of n input-output
pairs, we evaluate the trained models by computing the error

MSE =
1

dn

d∑
j=1

n∑
t=1

(
ŷ
[j]
t − ỹ

[j]
t

)2
, (3)

where ŷ = [ŷ[1], ..., ŷ[d]]T denotes the true label and ỹ the
model prediction.

In the following two subsections we will discuss how
Gaussian Processes (GPs) and how Long-short-term-memory
(LSTM) networks can be used to learn this mapping.

B. Inverse Dynamics Model Learning with Gaussian Pro-
cesses

Gaussian Processes (GPs) are state of the art model learn-
ing or regression approaches [26], [19] that were successfully
used for learning inverse dynamics models in robotic appli-
cations [14], [3]. For comprehensive discussions we refer
to [21], [13]. Here we briefly discuss them as we will use
them for a comparison in our experiments.

GPs represent a distribution over inverse dynamics models
in Eq. 2 of the form f ∼ GP(m, k). This representation
is fully defined by the mean m and the covariance k. We
chose as covariance function a Matérn kernel [11]. It is
a generalization of the squared-exponential kernel that has
an additional parameter ν which controls the smoothness

of the resulting function. The smoothing parameter can be
beneficial for learning local models.We used Matérn kernels
with ν = 5 / 2 that are defined by

k(xp,xq) = σ2 1

2ν−1 Γ(ν)
Aν Hν A+ σ2

y δpq ,

where Γ is the gamma function, A = (2
√
ν||xp − xq||) /l

and Hν is a modified Bessel function [2]. The length-scale
parameter of the kernel is denoted by σ, the variance of the
latent function is denoted by σ and δpq is the Kronecker delta
function (which is one if p = q and zero otherwise). Note
that for ν = 1/2 the Matérn kernel implements the squared-
exponential kernel. In our experiments we optimized the
hyper parameters θ = [σ, l, σy] by maximizing the marginal
likelihood [19].

Computing Predictions: Given a test sample x∗ the pre-
dictive distribution is defined by

p(ỹ|D,x∗,θ) = N (µGP , σGP ) , (4)

with µGP = kT∗ K
−1y and σGP = k∗∗ − kT∗ K−1 k∗. The

matrix entries in K are Kpq = k(xp,xq), the scalar k∗∗ =
k(x,x), and k∗ = k(X,x∗) with X = [x1, ...,xn].

C. Inverse Dynamics Model Learning with LSTM Networks

Long-short-term-memory (LSTM) networks are popular
recurrent neural networks for modeling long time series [9].
Special gating mechanisms were added to classical recurrent
neural networks to avoid the vanishing gradient problem in
back propagation through time [8], [22]. In this subsection,
we will give a short introduction to LSTMs and discuss
the model with respect to inverse dynamics model learning
problems.

In the following, subscripts will be used like in the
previous subsections to index samples like in the dataset
D = 〈xt,yt〉 at time t. However, in addition superscripts are
introduced to denote the layer l = 1, ..., L, where the output
at the last layer hLt = ỹt is used to compute the prediction
error, e.g. by evaluating Eq. 3. The input to the first layer
is denoted by al=1

t = xt and the next layer’s input is set to
the prediction of the previous layer, i.e., al+1

t = hlt.
At layer l a LSTM network is fully defined by the

equations

ilt = σ(W l
xi a

l
t + W l

hi h
l
t−1 + bli) ,

f lt = σ(W l
xf a

l
t + W l

hf h
l
t−1 + blf ) ,

clt = f lt � clt−1 + ilt � tanh(W l
xca

l
t +W l

hch
l
t−1 + blc) ,

olt = σ(W l
xo a

l
t + W l

ho h
l
t−1 + blo) ,

hlt = olt � σ(clt) ,

where the vectors i,f and o denote the input, the forget
and the output gate, and c represents the memory cell of the
network. The symbol σ( . ) denotes the sigmoid function and
� is the Hadamard or element-wise product.

We used a simple model implementation that neglects
recurrent connections from the memory cell to the gates [15]
or dropout implementations [7].
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Fig. 2. Hyper parameter optimization results using LSTMs. Shown are the training and the test error for variations of the number of hidden neurons
∈ {2, 5, 10, 15, 20}, the batch size ∈ {8, 16, 32, 64, 128, 256, 512} and the number of epochs ∈ {1, 10, 20, 50, 100} used during training. Bold numbers
mark the used parameter value. We also evaluated different numbers of layers, which is not shown as more than two layers did not lead to any improvement.

Computing Predictions: The hidden value or output of
LSTMs for inverse dynamics model learning is given by

ỹt = oLt � σ(cLt ) ,

where L denotes the number of layers in the LSTM network.
Implementation Details: All experiments were performed

using an efficient tensorflow [1] implementation of LSTM
networks. For the gradient based updates adaptive learning
rates were implemented [5]. Prior to our comparison to
Gaussian Processes we optimized the batch size, the number
of epochs and the number of layers using our real robot
dataset. These results are shown in Figure 2.

III. RESULTS

We evaluated the prediction performance and the compu-
tational times for training and for generating predictions on
two datasets. A synthetic dataset of one dimensional (d = 1)
sine, triangle and sawtooth functions is used to explore the
robustness to noise.
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Fig. 3. Training data of a synthetic time series prediction task. The left
panel shows the training data for the low noise condition with zero mean
Gaussian noise with a standard deviation of 0.01. In the right, a standard
deviation of 0.1 was used.

In a dynamics model learning task using a torque con-
trolled robot arm of KUKA, we evaluated the prediction
performances and the required computational time for gen-
erating online predictions. The first five joints (d = 5)
of the arm were used which results in a 15 dimensional
input space, i.e., positions, velocities and accelerations. The
five dimensional torque vectors are treated as unknowns.
All results show average statistics over 20 cross validation
experiments.

Note that we optimized the model parameters of the LSTM
network on the real robot dataset. The results for the optimal
batch size, the number of epochs and the number of layers
are shown in Figure 2.

A. On the effect of noise on the prediction accuracy

TABLE I
MEAN SQUARED ERRORS OF THE PREDICTIONS ON THE SYNTHETIC DATASET FOR

ADDITIVE ZERO MEAN GAUSSIAN NOISE WITH A STANDARD DEVIATION OF 0.01

(LOW NOISE) AND 0.1 (LARGE NOISE CONDITION). THE ± SYMBOL DENOTES THE

STANDARD DEVIATION OVER 20 EXPERIMENTS.

Naive GPs LSTMs
low noise 0.264 ± 0.084 0.030 ± 0.011 0.010 ± 0.004
large noise 0.310 ± 0.078 0.086 ± 0.016 0.075 ± 0.014

We generated two synthetic datasets with additive zero
mean Gaussian noise (with σ = {0.01,0.1}) to test the
robustness of the regression techniques to noise. The data
is illustrated in Figure 3 and shows an overlay of three
functions, i.e., a sine, a triangle and sawtooth function.

With increasing noise level, the mean squared error of
the model’s predictions increased. In both conditions, LSTM
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Fig. 4. Comparison of regression models on the synthetic time series
prediction task. In the box, prediction results for eight consecutive time
steps at phase π/2 are shown. The dark solid line denotes the ground truth
target values.

networks outperform GPs. These results are shown in Ta-
ble I. In Figure 4, we additionally illustrate some example
predictions.

We also compared to a naive approach which simply
computes the output based on the sum of the current state and
the current velocity. This approach fails to compute accurate
predictions at the turning points of the functions, which is
shown in the inlay in Figure 4.

B. On the benefit of memory models for sequential data
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Fig. 5. Comparison of regression models on sequential and non-sequential
real-robot data, where we eliminated all temporal correlations through
random permutations. While there is no significant difference in the GP
results, the LSTM network can exploit temporal correlations in the data,
i.e, the robot joint angle, the velocity and the acceleration trajectories.

An important question is if models with memory like
LSTMs can capture and exploit temporal correlations in
the inverse dynamics model learning data. To test that we
compared the prediction performance of LSTMs trained on
the real robot sequential data with models trained on data
where we removed all temporal correlations through random
permutations. These results and a comparison to GPs are
shown in Figure 5. Obviously, GPs showed no significant
difference in the prediction error. However, LSTMs could
exploit the temporal correlations in the data.

C. Dynamics model learning for torque control

The predicted joint torques are highly nonlinear signals
which are shown for two arm reaching motions in Figure 8.

Both motions have a time horizon of about 4.1 seconds,
which is denoted by the vertical line.

The first panel in Figure 8 illustrates the mean squared
error of the predictions of GPs and LSTMs. The remaining
panels show predictions of GPs and LSTMs of all five joint
torques in the KUKA robot. From these predictions one can
see that already a small difference in the mean squared error,
i.e., GPs: 0.014±0.0006 and LSTMs: 0.005±0.002, results
in large deviations from the true joint torque signals.

For computing these results the GPs and the LSTM
networks were trained with 1000 samples. In Figure 6 we
illustrate the effect of the sample size on the prediction
performance. On small datasets with less than 1000 samples
GPs achieve better results. However, with increasing sam-
ple numbers LSTM networks outperform GPs. For 10, 000
samples optimizing the length-scale parameters of the GPs
was computationally intractable. Even more dramatically is
the computational benefit which is discussed in the next
subsection.
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Fig. 6. Comparison of the mean squared error of GPs and LSTMs for an
increasing number of data samples. The solid lines show the mean values
and the shaded areas denote the standard deviation over 10 runs. Note that
for 1000 samples a more detailed comparison is shown in Fig. 8.

D. On the effect of dataset size on the computational time

TABLE II
COMPUTATIONAL TIMES IN SECONDS ON THE REAL ROBOT DATASET WITH 1, 000,

10, 000, 50, 000 AND 100, 000 TRAINING SAMPLES. THE ± SYMBOL DENOTES

THE STANDARD DEVIATION OVER 10 EXPERIMENTS.

1k 10k 50k 100k
GPs 33.7 ± 3.9 3196 ± 355 9 104 (25h) —
LSTMs 2.9 ± 0.2 28.1 ± 0.6 141.1 ± 1.2 282.4 ± 2.8

Theoretically LSTM networks scale linearly with the
number of samples in O(n), while GPs scale exponentially
with O(n3). To test these theoretical time complexities, we
conducted a numerical evaluation using the real robot data.
The results of this comparison of GPs and LSTMs is shown
in Figure 7. For small datasets with up to 1000 samples
both approaches need similar resources, however with more
than 1000 samples GPs could not produce predictions in a
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Fig. 7. Comparison of the computational time of GPs and LSTMs for an
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reasonable amount of time, e.g., for 10, 000 samples, training
the GPs took more than 24 hours as shown in Table II.
LSTM networks in contrast could be trained in 28.1 seconds
and for learning from 112, 761 samples, training took 282.4
seconds. Note that for all evaluations a standard PC with 8
cores operating at 3.4 GHz and 16 GB ram was used.

IV. CONCLUSIONS

We demonstrated in this work that complex inverse dy-
namics models of a real robot arm can be learned in linear
time from large datasets with more than 100, 000 samples.
The prediction error of the used Long-short-term-memory
(LSTM) networks decreased exponentially with the number
of samples and even for small datasets we outperformed the
state of the art approach — Gaussian Processes (GPs).

A notable difference of the neural network predictions
compared to the ones of GPs is the nonexistence of a variance
or prediction uncertainty. In various approaches however,
it was shown that such variance estimates can be used to
improve a movement representation or to adjust the controller
stiffness, see for example [16], [4], [10]. Given the recent
investigations aiming at learning a predictive variance in deep
networks, e.g., by exploiting the stochasticity of the outputs
when using dropout [6], the LSTM model could be extended
which is part of future work.
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Fig. 8. Joint torque prediction results of GPs and LSTMs on a real robot test dataset. The first panel shows the mean squared error of both approaches
for 1000 training samples. The remaining panels show the predicted joint torques of all five joints of the KUKA LWR arm. The dark line denotes the
ground truth target values and the vertical line marks the end of one trial of robot arm reaching.


