
Data-Efficient Generalization of Robot Skills with Contextual Policy Search
Andras Gabor Kupcsik

Department of Electrical and Computer Engineering, National University of Singapore
kupcsik@nus.edu.sg

Marc Peter Deisenroth and Jan Peters and Gerhard Neumann
Intelligent Autonomous Systems Lab, Technische Unversität Darmstadt

marc@ias.tu-darmstadt.de, peters@ias.tu-darmstadt.de, neumann@ias.tu-darmstadt.de

Abstract

In robotics, controllers make the robot solve a task within a
specific context. The context can describe the objectives of
the robot or physical properties of the environment and is al-
ways specified before task execution. To generalize the con-
troller to multiple contexts, we follow a hierarchical approach
for policy learning: A lower-level policy controls the robot for
a given context and an upper-level policy generalizes among
contexts. Current approaches for learning such upper-level
policies are based on model-free policy search, which require
an excessive number of interactions of the robot with its en-
vironment. More data-efficient policy search approaches are
model based but, thus far, without the capability of learning
hierarchical policies. We propose a new model-based policy
search approach that can also learn contextual upper-level
policies. Our approach is based on learning probabilistic for-
ward models for long-term predictions. Using these predic-
tions, we use information-theoretic insights to improve the
upper-level policy. Our method achieves a substantial im-
provement in learning speed compared to existing methods
on simulated and real robotic tasks.

Introduction
Policy search seeks a parameter vector ω of a parametrized
policy π that yields high expected long-term reward Rω
and has been successfully applied to learning movement
skills (Peters and Schaal 2008; Theodorou et al. 2010;
Kohl and Stone 2003; Kormushev et al. 2010). In this pa-
per, we consider the contextual policy search scenario where
policies are generalized to multiple contexts. The context
specifies task variables that are specified before task exe-
cution but are relevant for determining the controller for the
task. For example, the context might contain the objectives
of the robot, such as a target location of the end-effector, or
properties of the environment such as a mass to lift. In our
hierarchical approach to contextual policy search, a lower-
level control policy π(u|x;ω) computes the control signals
u for the robot given the state x of the robot. The lower-level
policy with parameters ω is applied in a specific context s,
e.g., throwing a ball to a particular location. To generalize
the movement to multiple contexts si, e.g., throwing a ball to
different locations, we learn an upper-level policy π(ω|si)

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that selects the parameter vector ω of the lower-level pol-
icy for a given context si. A graphical model of contextual
policy search is given in Fig. 1.

Figure 1: Hierarchical
graphical model for
contextual policy search.
The upper-level policy
uses the context s to
select the parameters of
the lower-level policy
π(u|x;ω), which itself
is used to generate the
controls ut for the robot.

Policy search methods
are divided into model-free
(Williams 1992; Peters and
Schaal 2008; Kober and
Peters 2010) and model-
based (Bagnell and Schnei-
der 2001; Abbeel et al.
2006; Deisenroth and Ras-
mussen 2011) approaches.
Model-free policy search
methods update the policy
by executing roll-outs on
the real system and col-
lecting the corresponding
rewards. Model-free policy

search does not need an elaborate model of the robot’s dy-
namics and they do not suffer from optimization bias as
much as model-based methods. Model-free methods have
been applied to contextual policy search (Kober et al. 2010;
Neumann 2011). However, model-free policy search re-
quires an excessive number interactions with the robot,
which is often impracticable without informative prior
knowledge. In contrast, model-based approaches learn a for-
ward model of the robot and its environment (Deisenroth
et al. 2011; Bagnell and Schneider 2001; Schneider 1997;
Atkeson and Santamarı́a 1997) and use the model to predict
the long term rewards. The policy is updated solely on these
predictions, which makes them sensitive to model errors, po-
tentially leading to poor performance of the learned policies
(Atkeson and Santamarı́a 1997). One solution to alleviate
this problem is to represent the uncertainty of the learned
model itself by using probabilistic models (Schneider 1997;
Deisenroth et al. 2011). Model-based approaches use data
efficiently but they are restricted in the usable policy class.
They can be used for learning a single parameter vector ω of
the lower-level policy, but they cannot learn an upper-level
policy to generalize to multiple contexts.

In this paper, we introduce Gaussian Process Relative En-
tropy Policy Search (GPREPS), a new model-based contex-
tual policy search method that can learn upper-level policies
π(ω|s) with a small number of robot interactions. GPREPS

learns Gaussian Process (GP) forward models and uses sam-
pling for long-term predictions. An information-theoretic
policy update step is used to improve the upper-level pol-
icy π(ω|s). The policy updates are based on the REPS algo-
rithm (Peters et al. 2010). We applied GPREPS to learning
a simulated throwing task with a 4-link robot arm and to
a simulated and real-robot hockey task with a 7-link robot
arm. Both tasks were learned using two orders of magnitude
fewer interactions compared to previous model-free REPS,
while yielding policies of higher quality.

Episodic Contextual Policy Learning
Contextual policy search (Kober and Peters 2010; Neumann
2011) aims to adapt the parameters ω of a lower-level pol-
icy to the current context s. An upper-level policy π(ω|s)
chooses parameters ω that maximize the expected reward

J = Es,ω[Rsω] =
∑

s,ω
µ(s)π(ω|s)Rsω,

where µ(s) is the distribution over the contexts and

Rsω = Eτ [r(τ , s)|s,ω] =
∫
τ

p(τ |s,ω)r(τ , s), (1)

is the expected reward of the whole episode when us-
ing parameters ω in context s. In (1), τ denotes a trajec-
tory, p(τ |s,ω) a trajectory distribution, and r(τ , s) a user-
specified reward function. The trajectory distribution might
still depend on the context s, which can also describe en-
vironmental variables. After choosing the parameter vec-
tor ω at the beginning of an episode, the lower-level pol-
icy π(u|x;ω) determines the controls u during the episode
based on the state x of the robot.

In the following, we briefly introduce the model-free
episodic REPS algorithm for contextual policy search.

Contextual Episodic REPS
The key insight of REPS (Peters et al. 2010) is to bound the
difference between two subsequent trajectory distributions
in the policy update step to avoid overly aggressive policy
update steps. In REPS, the policy update step directly results
from bounding the relative entropy between the new and the
previous trajectory distribution.

In the episodic contextual setting, the context s and the
parameter ω uniquely determine the trajectory distribution
(Daniel et al. 2012). For this reason, the trajectory distribu-
tion can be abstracted as joint distribution over the parame-
ter vector ω and the context s, i.e., p(s,ω) = p(s)π(ω|s).
REPS optimizes over this joint distribution p(s,ω) of con-
texts and parameters ω to maximize the expected reward

J =
∑

s,ω
p(s,ω)Rsω, (2)

with respect to p while bounding the relative entropy to the
previously observed distribution q(s,ω), i.e.,

ε ≥
∑

s,ω
p(s,ω) log

p(s,ω)

q(s,ω)
. (3)

As the context distribution p(s) =
∑
ω p(s,ω) is specified

by the learning problem and given by µ(s), the constraints
∀s : p(s) = µ(s)

need to be added to the REPS optimization problem.
To fulfill these constraints also for continuous or high-

dimensional discrete state spaces, REPS matches feature av-
erages instead of single probability values, i.e.,∑

s
p(s)φ(s) = φ̂, (4)

where φ(s) is a feature vector describing the context and
φ̂ is the feature vector averaged over all observed contexts.
The REPS optimization problem for the episodic contex-
tual policy search is defined as maximizing (2) with respect
to p under the constraints (3) and (4). It can be solved by
the method of Lagrange multipliers and minimizing the dual
function g of the optimization problem (Daniel et al. 2012).
REPS yields the closed-form solution

p(s,ω) ∝ q(s,ω) exp
(Rsω−V (s)

η

)
(5)

to (2) where V (s) = θTφ(s) is a value function (Peters et
al. 2010). The parameters η and θ are Lagrangian multipliers
used for the constraints (3) and (4), respectively. These pa-
rameters are found by optimizing the dual function g(η,θ).
The function V (s) emerges from the feature constraint in
(4) and depends linearly on the features φ(s) of the context.
It serves as context dependent baseline which is subtracted
from the reward signal.

Learning Upper-Level Policies
The optimization defined by the REPS algorithm is only per-
formed on a discrete set of samples D = {s[i],ω[i],R[i]

sω},
i = 1, . . . , N . The resulting probabilities p[i] ∝
exp

(
R[i]

sω−V (s[i])
η

)
of these samples are used to weight the

samples. Note that the distribution q(s,ω) can be skipped
from the weighting as we already sampled from q(s,ω). The
upper-level policy π(ω|s) is subsequently learned by per-
forming a weighted maximum-likelihood estimate for the
parameters ω of the policy. In our experiments, we use a
linear-Gaussian model to represent the upper-level policy
π(ω|s), i.e.,

π(ω|s) = N (ω|a+As,Σ). (6)

In this example, the parameters of the upper-level policy are
given as {a,A,Σ}.

The sample-based implementation of REPS can be prob-
lematic if the variance of the reward is high as the expected
rewardRsω is approximated by a single roll-out. The subse-
quent exponential weighting of the reward can lead to risk-
seeking policies.

Exploiting Reward Models as Prior Knowledge
The reward function r(τ , s) is typically specified by the user
and is assumed known. If the outcome τ of an experiment is
independent of the context variables, the reward model can
easily generate additional samples for the policy update. In
this case, we can use the outcome τ [i] to evaluate the reward
R[j]
sω = r(τ [i], s[j]) for multiple contexts s[j] instead of just

for a single context s[i]. For example, if the context speci-
fies a desired target for throwing a ball, we can use the ball
trajectory to evaluate the reward for multiple targets.

GPREPS Algorithm
Input: relative entropy bound ε, initial policy π(ω|s),
number of iterations K.
for k = 1, . . . ,K

Collect Data:
Observe context s[i] ∼ µ(s), i = 1, . . . , N
Execute policy with ω[i] ∼ π(ω|s[i])

Train forward models, estimate µ̂(s)
for j = 1, . . . ,M

Predict Rewards:
Draw context s[j] ∼ µ̂(s)
Draw lower-level parameters ω[j] ∼ π(ω|s[j])
Predict L trajectories τ [l]

j |s[j],ω[j]

ComputeR[j]
sω =

∑
l r(τ

[l]
j , s

[j])/L
end
Update Policy:

Optimize dual function:
[η,θ] = argminη′,θ′g(η′,θ′)

Calculate sample weighting:

p[j] ∝ exp
(
R[j]

sω−V (s[j])
η

)
, j = 1, . . . ,M

Update policy π(ω|s) with weighted ML
end
Output: policy π(ω|s)

Table 1: In each iteration, we generate N trajectories on
the real system and update our data set for learning forward
models. Based on the updated forward model, we create M
artificial samples and predict their corresponding rewards.
These artificial samples are subsequently used for optimiz-
ing the dual function g(η,θ) updating the upper-level policy
by weighted maximum likelihood estimates.

Gaussian Process REPS
In our approach, we enhance the model-free REPS algo-
rithm with learned probabilistic forward models to increase
the data efficiency and the learning speed. The GPREPS al-
gorithm is summarized in Tab. 1. With data from the real
robot, we learn the reward function and forward models
of the robot. Moreover, we estimate a distribution µ̂(s)
over the contexts, such that we can easily generate new
context samples s[j]. Subsequently, we sample a parame-
ter vector ω[j] and use the learned probabilistic forward
models to sample L trajectories τ [l]

j for the given context-
parameter pair. Finally, we obtain additional artificial sam-
ples (s[j],ω[j],R[j]

sω), whereR[j]
sω =

∑
l r(τ

[l]
j , s

[j])/L, that
are used for updating the policy. The learned forward mod-
els are implemented as GPs. The most relevant parameter
GPREPS is the relative-entropy bound ε that scales the ex-
ploration of the algorithm. Small values ε encourage con-
tinuing exploration and allow for collecting more data to
improve the forward models. Large ε causes increasingly
greedy policy updates.

We use the observed trajectories from the real system
solely to update the learned forward models but not for eval-
uating expected rewards. Hence, GPREPS avoids the typical

problem of the model-free REPS approach of high variance
in the rewards. GPREPS is well suited for our sample-based
prediction of expected rewards as several artificial samples
(s[j],ω[j]) can be evaluated in parallel.

Learning GP Forward Models
We learn forward models to predict the trajectory τ given
the context s and the lower-level policy parameters ω. We
learn a forward model that is given by yt+1 = f(yt,ut)+ε,
where y = [x, b] is composed of the state of the robot and
the state of the environment b, for instance the position of a
ball. The vector ε denotes zero-mean Gaussian noise. In or-
der to simplify the learning task, we decompose the forward
model f into simpler models, which are easier to learn. To
do so, we exploit prior structural knowledge of how the robot
interacts with its environment. For example, for throwing a
ball, we use the prior knowledge that the initial state b of
the ball is a function of the state x of the robot at the time
point tr when releasing the ball. We use a separate forward
model to predict the initial state b of the ball from the robot
state x at time point tr and a forward model for predicting
the free dynamics h(bt) of the ball which is independent of
the robot’s state xt, t > tr.

Our learned models are implemented as probabilistic non-
parametric Gaussian processes, which are trained using the
standard approach of evidence maximization (Rasmussen
and Williams 2006). As training data, we use data collected
from interacting with the real robot. As a GP captures un-
certainty about the learned model itself, averaging out this
uncertainty reduces the effect of model errors and results in
robust policy updates (Deisenroth and Rasmussen 2011). To
reduce the computational demands of learning the GP mod-
els, we use sparse GP models with pseudo inputs (Snelson
and Ghahramani 2006).

Trajectory and Reward Predictions
Using the learned GP forward model, we need to predict the
expected reward

Rsω =

∫
τ

p̂(τ |ω, s)r(τ , s)dτ (7)

for a given parameter vector ω executed in context s. The
probability p̂(τ |ω, s) of a trajectory is now estimated using
learned forward models. Our approach to predicting trajec-
tories is based on sampling. To predict a trajectory, we iter-
ate the following procedure: First, we compute the GP pre-
dictive distribution p(xt+1|x[l]

t ,u
[l]
t) for a given state-action

pair x[l]
t ,u

[l]
t . The next state x[l]

t+1 in trajectory τ [l] is sub-
sequently drawn from this distribution. To estimate the ex-
pected reward Rsω [j] in (7) for a given context-parameter
pair (s[j],ω[j]), we use several trajectories τ [j,l]. For each
sample trajectory τ [j,l], a reward r(τ [j,l], s[j]) is obtained.
Averaging over these rewards yields an estimate of Rsω [j].
Reducing the variance of this estimate requires many sam-
ples. However, sampling can be easily parallelized. In the
limit of infinitely many samples, this estimate is unbiased.

As alternative to sampling-based predictions, determin-
istic inference methods, such as moment matching, can

be used. For instance, the PILCO policy search frame-
work (Deisenroth and Rasmussen 2011) approximates the
expectation given in (7) analytically by moment match-
ing (Deisenroth et al. 2012). In particular, PILCO approx-
imates the state distributions p(xt) at each time step by
Gaussians. Due to this approximation, the predictions of the
expected trajectory reward Rsω can be biased. While mo-
ment matching allows for closed-form predictions, the pol-
icy class and the reward models are restricted due to the
computational constraints.

In our experiments, we could obtain 300 sample trajecto-
ries within the same computation time of a single prediction
of the deterministic inference algorithm. The accuracy of the
deterministic inference is usually met after obtaining around
100 sample trajectories. Using a massive parallel hardware
(e.g., a GPU), we obtained 7000 trajectories with the same
amount of computation time.

Results
We evaluated our data-efficient contextual policy search
method on a context-free comparison task and two contex-
tual motor skill learning tasks. As the lower-level policy
needs to scale to anthropomorphic robotics, we implement
them using the Dynamic Movement Primitive (Ijspeert and
Schaal 2003) approach, which we will now briefly review.

Dynamic Movement Primitives
To parametrize the lower-level policy we use an exten-
sion (Kober et al. 2010) to Dynamic Movement Primitives
(DMPs). A DMP is a spring-damper system that is modu-
lated by a forcing function f(z;v) = Φ(z)Tv. The variable
z is the phase of the movement. The parameters v specify
the shape of the movement and can be learned by imitation.
The final position and velocity of the DMP can be adapted
by changing additional hyper-parameters yf and ẏf of the
DMP. The execution speed of the movement is determined
by the time constant τ . For a more detailed description of
the DMP framework we refer to (Kober et al. 2010).

After obtaining a desired trajectory through the DMPs,
the trajectory is followed by a feedback controller, i.e., the
lower-level control policy.

4-Link Pendulum Balancing Task
In the following, we consider the task of balancing a 4-link
planar pendulum. The objective was to learn a linear con-
trol policy that was move a 4-link pendulum to the desired
upright position from randomly distributed starting angles
around the upright position. The 4-link pendulum had a to-
tal length of 2m and a mass of 70kg. We used a quadratic
reward function r(x) = −xTQx for each time step.

We compared the performance of GPREPS to the PILCO
algorithm (Deisenroth et al. 2011), the state-of-the-art
model-based policy search method. As PILCO cannot be ap-
plied to the contextual policy search setting, we used only
a single context. We initialized both PILCO and GPREPS
with 6s of real experience using a random policy. With
GREPS we use 400 artificial samples, each with 10 sam-
ple trajectories. We also learned policies with the model-free

Required Experience
Reward limit PILCO GPREPS REPS

-100 10.18s 10.68s 1425s
-10 11.46s 20.52s 2300s
-1.5 12.18s 38.50s 4075s

Table 2: Required experience to achieve reward limits for
a 4-link balancing problem. Higher rewards require better
policies.

version of REPS (Peters et al. 2010). Tab. 2 shows the re-
quired amount of experience for achieving several reward
limits. The model-based methods quickly found stable con-
trollers, while REPS required two orders of magnitude more
trials until convergence.

Ball-Throwing Task
In the ball-throwing task, we consider the problem of con-
textual policy search. The goal of the 4-DOF planar robot
was to hit a randomly placed target at position s with a ball.
Here s is a two-dimensional coordinate, which also defines
the context of the task. The x and y-dimensional coordi-
nates vary between 5m–15m and between 0m–4m from
the robot base. Our 4-DOF robot coarsely modeled a human
and had an ankle, knee, hip and shoulder joint. The lengths
of the links were given by l = [0.5, 0.5, 1.0, 1.0]m and the
masses bym = [17.5, 17.5, 26.5, 8.5] kg.

In this experiment, we used GPREPS to find DMP param-
eters for throwing a ball to multiple targets while maintain-
ing balance. The reward function was defined as

r(τ , s)=−min
t
||bt−s||2−c1

∑
t
fc(xt)−c2

∑
t
uTt Hut.

The first term punishes minimum distance of the ball to the
target s. The second term describes a punishment term to
prevent the robot from falling over. The last term favors
energy-efficient movements.

As lower-level controllers, we used DMPs with 10 basis
functions per joint. We modified the shape parameters but
fixed the final position and velocity of the DMP to be the
upright position and zero velocity. In addition, the lower-
level policy also contained the release time tr of the ball
as a free parameter, resulting in a 41-dimensional parameter
vector ω.

GPREPS learned a forward model consisting of three
components: the dynamics model of the robot, the free dy-
namics of the ball, and the model of how the robot’s state
influences the initial position and velocity of the ball at the
given release time tr. These models were used to predict ball
trajectories for a given parameter ω.

The policy π(ω|s) was initialized such that it was ex-
pected to throw the ball approximately 5m without main-
taining balance, which led to high penalties. Fig. 2 shows the
learned motion sequence for two different targets. GPREPS
learned to accurately hit the target for a wide range of
different targets. The displacement for targets above s =
[13, 3]m could raise up to 0.5m, otherwise the maximal er-
ror was smaller than 10 cm. The policy chose different DMP

−1 0 1
0

1

2

3

x [m]

y
[m

]

5 8 11 14
0

1

2

3

4

x [m]

y
[m

]
−1 0 1

0

1

2

3

x [m]

y
[m

]

5 8 11 14
0

1

2

3

4

x [m]
y

[m
]

Figure 2: Throwing motion sequence. The robot releases the
ball after the specified release time and hits different targets
with high accuracy.

evaluations

re
w

ar
d

101 102 103

-8000

-6000

-4000

-2000

0

GPREPS
REPS (GP direct)
REPS
REPS (extra context)

Figure 3: Learning curves for the ball-throwing problem.
The shaded regions represent the standard deviation of the
rewards over 20 independent trials. GPREPS converged af-
ter 30–40 interactions with the environment, while REPS re-
quired ≥ 5000 interactions. Using the reward model to gen-
erate additional samples for REPS led to better final policies,
but could not compete with GPREPS in terms of learning
speed. Learning the direct reward model Rsω = f(s,ω)
yielded faster learning than model-free REPS, but the qual-
ity of the final policy is limited.

parametrizations and release times for different target posi-
tions. To illustrate this effect we show two target positions
s1 = [6, 1.1]m, s2 = [14.5, 1.2]m in Fig. 2. For the target
farther away the robot showed a more distinctive throwing
movement and released the ball slightly later.

The learning curves for REPS and GPREPS are shown in
Fig. 3. In addition, we evaluated REPS using the known re-
ward model r(τ, s) to generate additional samples with ran-
domly sampled contexts s[i] as described previously. We de-
note these experiments as extra context. We also evaluated
REPS when learning the expected reward model directly
Rsω = f(s,ω) as a function of the context and parameters
ω with a GP (GP direct). Using the learned reward model
we evaluate artificial samples (s[i],ω[i]). Fig. 3 shows that
REPS converged to a good solution after 5000 episodes in
most cases. In a few instances, however, we observed pre-
mature convergence resulting in suboptimal performance.
The performance of REPS could be improved by using ex-

Figure 4: KUKA lightweight arm shooting hockey pucks.

tra samples generated with the known reward model (extra
context). In this case, REPS always converged to good solu-
tions. For GPREPS, we sampled ten trajectories initially to
obtain a confident GP model. We evaluated only one sam-
ple after each policy update and subsequently updated the
learned forward models. We used 500 additional samples
and 20 sample trajectories per sample for each policy update.
GPREPS converged to a good solution in all cases after 30–
40 real evaluations. In contrast, while directly learningRsω
also resulted in an improved learning speed, we observed
a highly varying, on average lower quality in the resulting
policies (GP direct). This result confirms our intuition that
decomposing the forward model into multiple components
simplifies the learning task.

Robot Hockey with Simulated Environment
In this task, the KUKA lightweight robot arm was equipped
with a racket, see Fig. 4, and had to learn shooting hockey
pucks. The objective was to make a target puck move a spec-
ified distance. Since the target puck was out of reach, it could
only be moved indirectly by shooting a second hockey puck
at the target puck. The initial location [bx, by]

T of the target
puck was varied in both dimensions as well as the distance
d∗ the target puck had to be shoot. Consequently, the context
was given by s = [bx, by, d

∗]T . The simulated robot task is
depicted in Fig. 5.

We obtained the shape parameters v of the DMP by imita-
tion learning and kept them fixed during learning. The learn-
ing algorithms had to adapt the final positions yf , velocities
ẏf and the time scaling parameter τ of the DMPs, resulting
in a 15-dimensional lower-level policy parameter ω. The re-
ward function was the negative minimum squared distance
of the robot’s puck to the target puck during a play. In ad-
dition, we penalized the squared difference between the de-
sired travel distance and the distance the target puck actually
moved. We chose the position of the target puck to be within
0.5m from its initial position, i.e., [2, 1]m from the robot’s
base. The desired distance to move the target puck ranged
between 0m and 1m.

GPREPS first learned a forward model to predict the ini-
tial position and velocity of the first puck after contact with
the racket and a travel distance of 20 cm. Subsequently,
GPREPS learned the free dynamics model of both pucks and
the contact model of the pucks. Based on the position and
velocities of the pucks before contact, the velocities of both

Figure 5: Robot hockey task. The robot shot a puck at the
target puck to make the target puck move for a specified dis-
tance. Both, the initial location of the target puck [bx, by]

T

and the desired distance d∗ to move the puck were varied.
The context was s = [bx, by, d

∗]. The learned skill for two
different contexts s is shown, where the robot learned to (in-
directly) place the target puck at the desired distance.

evaluations

re
w

ar
d

101 102 103 104

-0.6

-0.4

-0.2

0

GPREPS
REPS
REPS (GP direct)
CRKR

Figure 6: Learning curves on the robot hockey task.
GPREPS was able to learn the task within 120 interactions
with the environment, while the model-free version of REPS
was not able to find high-quality solutions.

pucks were predicted after contact with the learned model.
With GPREPS we used 500 parameter samples, each with
20 sample trajectories.

We compared GPREPS to directly predicting the reward
Rsω , model-free REPS and CrKR (Kober et al. 2010), a
state-of-the-art model-free contextual policy search method.
The resulting learning curves are shown in Fig. 6. GPREPS
learns to accurately hit the second puck within 50 interac-
tions with the environment, while to learn the whole task
around 120 evaluations were needed. The model-free ver-
sion of REPS needed approximately 10000 interactions. Di-
rectly predicting the rewards resulted in faster convergence
but the resulting policies still showed a poor performance
(GP direct). CrKR used a kernel-based representation of the
policy. For a fair comparison, we used a linear kernel for
CrKR. The results show that CrKR could not compete with
model-free REPS. We believe the reason for the worse per-
formance of CrKR lies in its uncorrelated exploration strat-
egy.

evaluations

re
w

a
rd

50 55 60 65 70 75 80

-0.15

-0.1

-0.05

GPREPS

Figure 7: GPREPS learning curve on the real robot arm.

The learned movement is shown in Fig. 5 for two different
contexts. After 120 evaluations, GPREPS placed the target
puck accurately at the desired distance with a displacement
error ≤ 5 cm.

Robot Hockey with Real Environment
Finally, we evaluated the performance of GPREPS on the
hockey task using a real KUKA lightweight arm, see Fig. 4.
A Kinect sensor was used to track the position of the two
pucks at a frame rate of 30Hz. We smoothed the trajectories
in a pre-processing step with a Butterworth filter and sub-
sequently learned the GP models. The desired distance to
move the target puck ranged between 0 m and 0.6 m.

The learning curve of GPREPS for the real robot is shown
in Fig. 7, which shows that the robot clearly improved its ini-
tial policy within a small number of real robot experiments.

Conclusion
We presented GPREPS, a novel model-based contextual pol-
icy search algorithm. GPREPS learns hierarchical policies
and is based on information-theoretic policy updates. More-
over, GPREPS exploits learned probabilistic forward mod-
els of the robot and its environment to predict expected re-
wards. For evaluating the expected reward, GPREPS sam-
ples trajectories using the learned models. Unlike determin-
istic inference methods used in state-of-the art approaches
for policy evaluation, trajectory sampling is easily paralleliz-
able and does not limit the policy class or reward model.

We demonstrated that for learning high-quality contex-
tual policies, GPREPS exploits the learned forward mod-
els to significantly reduce the required amount of experience
from the real robot compared to state-of-the-art model-free
contextual policy search approaches. The increased data ef-
ficiency makes GPREPS applicable to learning contextual
policies in real-robot tasks. Since existing model-based pol-
icy search methods cannot be applied to the contextual setup,
GPREPS opens the door to many new applications of model-
based policy search.

Acknowledgments
The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement n◦
270327.

References
Abbeel, P.; Quigley, M.; and Ng, A. Y. 2006. Using Inaccu-
rate Models in Reinforcement Learning. In Proceedings of
the International Conference on Machine Learning.
Atkeson, C. G., and Santamarı́a, J. C. 1997. A Compar-
ison of Direct and Model-Based Reinforcement Learning.
In Proceedings of the International Conference on Robotics
and Automation.
Bagnell, J. A., and Schneider, J. G. 2001. Autonomous Heli-
copter Control using Reinforcement Learning Policy Search
Methods. In Proceedings of the International Conference on
Robotics and Automation.
Daniel, C.; Neumann, G.; and Peters, J. 2012. Hierarchical
Relative Entropy Policy Search. In International Conference
on Artificial Intelligence and Statistics.
Deisenroth, M. P., and Rasmussen, C. E. 2011. PILCO: A
Model-Based and Data-Efficient Approach to Policy Search.
In Proceedings of the International Conference on Machine
Learning.
Deisenroth, M. P.; Turner, R.; Huber, M.; Hanebeck, U. D.;
and Rasmussen, C. E. 2012. Robust Filtering and Smoothing
with Gaussian Processes. IEEE Transactions on Automatic
Control 57(7):1865–1871.
Deisenroth, M. P.; Rasmussen, C. E.; and Fox, D. 2011.
Learning to Control a Low-Cost Manipulator using Data-
Efficient Reinforcement Learning. In Robotics: Science &
Systems.
Ijspeert, A. J., and Schaal, S. 2003. Learning Attractor Land-
scapes for Learning Motor Primitives. In Advances in Neu-
ral Information Processing Systems.
Kober, J., and Peters, J. 2010. Policy Search for Motor
Primitives in Robotics. Machine Learning 1–33.
Kober, J.; Mülling, K.; Kroemer, O.; Lampert, C. H.;
Schölkopf, B.; and Peters, J. 2010. Movement Templates
for Learning of Hitting and Batting. In Proceedings of the
International Conference on Robotics and Automation.
Kober, J.; Oztop, E.; and Peters, J. 2010. Reinforcement
Learning to adjust Robot Movements to New Situations. In
Robotics: Science & Systems.
Kohl, N., and Stone, P. 2003. Policy Gradient Reinforce-
ment Learning for Fast Quadrupedal Locomotion. In Pro-
ceedings of the International Conference on Robotics and
Automation.
Kormushev, P.; Calinon, S.; and Caldwell, D. G. 2010.
Robot Motor Skill Coordination with EM-based Reinforce-
ment Learning. In Proceedings of the International Confer-
ence on Intelligent Robots and Systems.
Neumann, G. 2011. Variational Inference for Policy Search
in Changing Situations. In Proceedings of the International
Conference on Machine Learning.
Peters, J., and Schaal, S. 2008. Reinforcement Learning
of Motor Skills with Policy Gradients. Neural Networks
(4):682–97.
Peters, J.; Mülling, K.; and Altun, Y. 2010. Relative Entropy
Policy Search. In Proceedings of the National Conference
on Artificial Intelligence.

Rasmussen, C. E. and Williams, C. K. I. 2006. Gaussian
Processes for Machine Learning. MIT Press.
Schaal, S.; Peters, J.; Nakanishi, J.; and Ijspeert, A. J. 2003.
Learning Movement Primitives. In International Symposium
on Robotics Research.
Schneider, J. G. 1997. Exploiting Model Uncertainty Esti-
mates for Safe Dynamic Control Learning. In Advances in
Neural Information Processing Systems.
Snelson, E., and Ghahramani, Z. 2006. Sparse Gaussian
Processes using Pseudo-Inputs. In Advances in Neural In-
formation Processing Systems.
Theodorou, E.; Buchli, J.; and Schaal, S. 2010. Reinforce-
ment Learning of Motor Skills in High Dimensions: a Path
Integral Approach. In Proceedings of the International Con-
ference on Robotics and Automation.
Williams, R. J. 1992. Simple Statistical Gradient-Following
Algorithms for Connectionist Reinforcement Learning. Ma-
chine Learning 8:229–256.

