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Abstract—Many real-world tasks require fast planning  are included. Two different catching strategies are redliz
of highly dynamic movements for their execution in real-  the static catch, where the end-effector reaches the target
time. The success often hinges on quickly finding one of yaiactory and stops, and the dynamic catch, where the end-
the few plans that can achieve the task at all. A further - -
challenge is to quickly find a plan which optimizes a desired effe_ctqr CatCh?S the target with some velocity in orde_r to
cost. In this paper, we will discuss this problem in the ~Mminimize the impact. As an example for a cost function,
context of catching small flying targets efficiently. This ca  the energy is chosen, which brings the dynamics of the
be formulated as a non-linear optimization problem where  gystem clearly into play.
the desired trajectory is encoded by an adequate parametric As the task of catching a moving target implies hard time
representation. The optimizer generates an energy-optinia ) ; . .
trajectory by efficiently using the robot kinematic redundancy conSFralnts, a me_thod is developed to obtain the c_)pt_lmal
while taking into account maximal joint motion, collision  Solutions in real-time. To ensure that the local optimizer
avoidance and local minima. To enable the resulting method starts with a good initial solution, globally optimal solu-
to work in real-time, examples of the global planner are tions are pre-computed offline for different initial target
generalized using nearest neighbour approaches, Support yaieciories. In this paper, we evaluate several different

Vector Machines and Gaussian process regression, which hes t ina th initial soluti tarti -
are compared in this context. Evaluations indicate that the ~aPProacnes to using these initial solutions as startingtpol

presented method is highly efficient in complex tasks such as for the local search procedure. The first approach is to use
ball-catching. look-up tables for determining good starting parameters,
e.g., using different versions df-nearest neighbours [18]
|. INTRODUCTION with k € {1, ..., 4}, while non-parametric methods such as

The robot catching task can be seen as a simple poinfupport Vector Regression (SVR) [19], [20] and Gaussian
to-point control problem, solvable with inverse kinematic Process regression (GPR) [14], are evaluated as alteesativ
and interpolation in real-time [1]. If the solutions want to With improved generalization. These approaches basically
be in some way improved, then the task becomes a compldovide mappings between the three parameters which de-
optimal control problem. This paper presents a carefufcribe the target trajectory and the optimization pararsete
analysis and empirical evaluation of the issues involved inwhich describe the optimal solution.
nonlinear optimization for solving the catching task in an The paper is then structured as follows: the rest of
optimal way in real-time. A robot manipulator is consideredSection | presents a literature survey and the problem
to accomplish the task and it is assumed that its endstatement, while Section Il describes the formulation of
effector is always successful in grasping the target. Outhe optimization problem and Section Il the method for
focus is on the motion needed to reach the grasping poirolving the catching task in real-time. Section IV analyses
on the target trajectory. the results and Section V includes a discussion and the

There are several key issues of interest: firstly, Optimaponclusions. The adopted notation is such that all vector
solutions for the given problem can rarely be obtainedduantities are written in bold and are expressed in the
by running the optimization algorithm on line, as it is inertial frame of reference.
f:omputationally too expensive and, due_ to local minima,A_ Related Work
it may not even converge to a good solution. Secondly, the
optimization method should allow for realistic problems to  Theé minimum energy problem for a non-redundant
be addressed, which requires treating important conssrain® DOF manipulator executing point-to-point maneuvers in
on the movement such as collision avoidance and maxim&onfiguration space was treated in [2], including collision
velocities. avoidance. The resulting constrained boundary value prob-

The optimal real-time planning problem is first for- Iem_was solved with direct single shooting.In [3] simillar
mulated as a parametric nonlinear optimization problemMinimum energy problems were addressed, where direct
The joint positions are parameterized in time using acollocatlon_and m_dlr_ect_optlmlzatlon were used mste_ad.
representation such as B-splines or trapezoidal function? [4], motion optimization was addressed for the kick
Inequality box constraints on joint position, velocity and Motion of a humanoid robot, while also minimizing the

actuation torque, as well as collision avoidance condsain €Nergy. In [5], trajectory optimization was also used to
solve robot motion tasks, however defined in Cartesian
R. Lampariello, C. Castellini and G. Hirzinger are with thestitute ~ Space rather than in configuration space.
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B. Problem statement

The addressed problem is to develop a motion planner
for catching a flying target, whose rotational motion is
irrelevant (small, spherical, e.g., a ball), by means of a
7 DoF robot manipulator with rotational joints and rigid
links. The test-bed is a simulation model of the DLR light-
weight robot, shown in Fig. 1. It is assumed that the hand
closing movement is always successful in grasping the
target. Joint friction and elasticity are neglected. Thgaa
trajectory is assumed to be determined by a vision system
(e.g., see [1]). The initial configuration of the robot is fixe
Trajectories should be found which bring the end-effector
into an orientation suitable for grasping, i.e. such that th
target velocity vector is at some predefined angle to it. The
interception point is also determined by the motion planner
These requirements result in three equality constraints on
the end-effector position and two equality constraints on
the end-effector orientation. Due to the fact that the LBR
Fig. 1. The DLR ball-catching scenario with the ball-trageg prediction robot has seven joints, a redundancy of degree two for
trace, the LBR robot in catching configuration and a zoomegigture  the end configuration follows. The trajectory’s duratioman
of the hand, with the inertial and end-effector frames shown final configuration are open parameters determined by the

optimizer.

The starting point of the target trajectory in Cartesian
for e.g. in [2] and [3], in that: firstly, the final robot config- space is fixed. Its distance from the robot base is approx. 5
uration is not given; secondly, the final time is not fixed,; meters. Hence, with the speed resulting from this distance
thirdly, there is a high kinematic redundancy resultingriro (and from limitations on throwing height due to the room
using a 7 DoF robot and for the given task. The firstceiling and throwing velocity), the flight time will be
point adds a set of nonlinear equality constraints, whileapproximately one second.
the second and third add complexity, due to a resulting
increase in local minima. These issues are also found in
the problem dealt with in [4], where however local minima
are not addressed. Collocation was not considered here as itThe motion planning problem at hand contains a known
requires a larger number of optimization parameters and igbstacle regiorO and a configuration spad@ of dimen-
hence less suited for real-time application. In [7] a simila sionsC(@) C R, with n = 7 and wheref is the vector
formulation of the nonlinear optimization problem is salve of robot joint positions. The time interval is unbounded:
in a real-time setting, with a parallel multi start searckd an ¢ — [0, 00). The robot system is fully actuated and therefore
a low-dimensional search space. subject to a bounded action € ", which is related to
dhe system stat@, é] by the state transition equation and
wherer is the vector of robot joint torques.
h The nonlinear optimization problem can then be formu-

Il. FORMULATION OF THE CONSTRAINED
OPTIMIZATION PROBLEM

Despite all the work on robot catching, e.g., as reviewe
in [6], we have not found a methodological approach in
the literature as we present here. As comparison, it is wort
noting that humans perform catching movements as smoofAted as follows:

point-to-point trajectories with bell-shaped velocityfiles min T(0(t), 7(t),tf) (1)
and zero boundary velocities and accelerations [6]. t7,0(t)
In the learning literature, the generalization of trajecto subject to

ries has been suggested, for e.g., in [15], [16] and [17]. M(8) 6(t) + C(6,0)6(t) + g(8) = T, 2)
These approaches are complementary to the setup pre-

sented in this paper but differ significantly in scope and h(tf,6(t)) <0, 3)
functionality. Their aim_ was t.he generalization of trajec- h con(ts, 8(t)) <0, (4)
tories through regression which is only a necessary step

for our aim to make nonlinear optimal control approaches g(r(ts), 9“(ts)) =0, (5)
feasible in real-time. They use artificial data [16] or kines 0(0) = 0in, 6(0) = 0, 6(t7) = 0. ©6)

thetically recorded data [15] [17] which cover only a small

space of the range of possible movements and cannétr 0 < t < ¢y and wheret; is the final time,I' is a
generalize beyond these. Here, we try to find a large set qgdredefined cost functiorh are inequality box constraints
globally optimal plans, generalize among them and ensuref type xmin < x(t) < Xmax fOr x = {0,9,7} and
continued optimality by local optimization. h¢o are collision avoidance constraints. Eqn. (2) express



the state transition equation of the robot. The functionsC. Equality constraints
g(r(ty), ¢°(ty)) are five equality constraints on the final
end-effector statfr®, ¢ (see Section 1I-C). Finally, Eq. (6)

expresses boundary conditions on position, wifiés the the target at some point on the trajectory. A distinction is

given initial conﬂgurle}non, and on veloglty. More.detan.s © introduced between the static and the dynamic catches.
the boundary conditions on acceleration and jerk will be ) . .
1) Static catch:In this case, the end-effector arrives at

given in Section IlI-A. h , . ith 4 veloci 4 th i
In the following sections we will address the formula- € grasping point with zero end velocity and the equality
constraint is formulated as follows:

tions of the cost function, of the inequalitity constraints
and of the equality constraints. ré(ts, p) — rtarget(tf) =0, 9)

A. Cost function d°(ts,p) — ¢ ty)) =0, (10)

The chosen cost function is the mechanical energy. Th'%vherere is the end-effector position vector, computed at

is a classical choice to improve the energy consumptio ' . - target : . -
of the given system (note that the LBR has a very higr?he final timet _—p(N), r . 's the given target posm_on

- . A vector at the final timeg ¢ are the two angles which
efficiency in energy dissipation, there_fore we neglected th describe the direction of the -z axis of the end-effector
latter). It a_llsp adds a strong dynamics-dependent elemenéee Fig. 1) ands %t are the two angles which describe
to_the optlr_nlzatlon problem, as opposed, for example, t he direction of the target velocity vector, also computed
minimum distance.

The mechanical energy is computed here as foIIowém the final time. These constraints are nonlinear in the
(similarly to [2] and [3])- parameterp .and reduce the open .DoFs from 7 to 2.
y _ 2) [t)yn_?hrrllkc]: ctatch::nt:]hls C<;:jlse1;f mtorder to r(_—:‘d?ﬁe the
T A2 e impact with the target, the end-effector moves in the same
Lenergy(p) = / (T2 (®) 0)" + [Mmowor 6(®)]dt, (7) dirzction as the tar%et. This effect can be achieved by im-
where the first term is the integral of the power for aP0SiNg xtra equality constraints on the end-effector-posi
robot model which neglects the joint motor inertias and thdion and orientation, of the type expressed in Egs. (9),(10)
second term represents the motor kinetic energy, which i§Ne first constraint was imposed at a timg = ¢y — A,
of comparable size to the first (not included in [2] and [3]). for At < {; as

Additional equality constraints are required on the final
end-effector position and orientation, in order for it toehe

The SymbOIJmowr ~ qiaqulNl’ Y J"N") egpre_sses an r®(tmid, P) — I'target(tinterceptTarge) =0, (12)
(n x n) diagonal matrix with elements whos# diagonal are

element is the™ motor inertia./; multiplied by thei™ gear 60° (tmid, P) — ¢ **(tinterceptrarget = 0. (12)
reduction ratioN;. The value off@%®tand ¢%tin Egs. (11), (12) is taken at a
B. |nequa|ity constraints time ﬁinterceptTargel: tf —k/’mid Af, for k/’mid < 1. Note that the

The bounds of he box consraints ae gven b he ro£61S O ot sle b rave a et a e trget due o
design specifications, e.g., due to joint limits and maximal _ y ; q Y
was imposed at a timgniq 2 = ¢ty —At/2, half way between

joint velocities. Further constraints arise from the cidin the first extr nstraint and the final constraint point
avoidance both with the environment and of the robot with' ¢ ">t €xtra constraint a € final constraint points.

itself. To detect collision and to formulate the collision
avoidance problem within a nonlinear programming con- !l- EFFICIENT MOTION PLANNING IN REAL-TIME

text, bodies are represented here as convex polytopes. FOI ) this section the methods to solve the optimization and

this purpose, these bodies consist of capsules to represgpg learning problems described above are addressed.
the robot links and the end-effector, and of a box to

represent an obstacle in the robot workspace (Note th
a capsule is similar to a normal cylinder except that it ha
half-sphere caps at its ends.). For these types of bodies, Two parameterizations can be chosen for the joint states:
it is possible to efficiently compute, in case of collision, a classical trapezoidal function and an order-4 B-spline.
the penetration depth as the minimal length of translatiorBoth are described below. The order-4 B-spline was chosen
needed to separate them. in order to allow for smoothness up to the third derivative.
The collision avoidance problem can be formulatedThe trapezoidal function was used to provide further means
straightforwardly as a set of inequality constraints in theof comparison between low and high dimensional param-
optimization problem: eterization spaces.
®) 1) Order 4 B-spline: We choose periodic uniform B-
splines for their particularly compact matrix form. For
where the functionD(i) constitutes a minimum distance N vertices,nseg = N — 3 segments of lengthtseg =
between two bodies or a penetration depth, if the twa /(N — 3) result. It follows that for the internal time
bodies intersect. The scalatco is the number of body of the i" segmentu(t) = t/tseg— (i — 1) tseg Such that
pairs in the given problem. 0 < u < 1, the computation of the uniform B-spline and

?. Parameterization of the trajectories

D@GE) > 0.0, 1 < i < meon,



derivatives is given by (as in [10]) 0 = 0(t,p) with p C R", for N optimization parameters,

si(w) B, as described in Section IlI-A. T_h_e control forces are thgn
éi(u) 1 Bii computeql from the statg transition _Eq. (2). The_ NPL is
si(u) | = EC(U) A Bi s for 1 <i<ngeg (13) splved with the Seque_ntlal Quadratic Programming algo-
() Bivs rithm from the MOPS library [9].

To compute the penetration depth between two bodies,
where B; represents thé" vertex, A is a constant matrix the ODE library was used [8]. The library allows represent-
andC'(u) the matrix of basis functions. Furthermore, theseing objects as boxes or capsules. Each pair of intersecting
matrices are invertible, so that they can be used to satisfgbjects is treated separately and penetration depth can be

the boundary conditions. These are given by evaluated for each pair straightforwardly.
50(0) Oin sn-3(1) Poy, D. Efficient Initialization of the Local Planner
5’..0(8) = 8 , ‘.S.N’g(i) = 8 . (14) The optimization method presented in Section III-C
‘.S.Q(O> _ .‘?.N*?’( 1) _ cannot be used on-line, since it takes a prohibitively long
5(0) Pio sn-3(1) Pi¢; time to converge (only 60 milliseconds are available on-

line for the computation) and is likely to get stuck into
local minima. It is therefore paramount to choose a good
initial guess of the N parameter values depending on
the estimated velocity of the moving object, and to do it
uickly. In order to do that, we generate offline a set of
%nitial velocity, parameter values) pairs that we use as a
training set several machine learning regression methods
are then compared in order to determine a map from

2(3 lCIalssu_:aI triﬁezifal \{[el_(l)c:cry]/ prof;}le:‘l’hej tragss't the estimated velocity to the optimization parameters: k-
zoidal velocity profile [11], entails three phases: a ¢ a Nearest Neighboursk{NN) with k = 1,2, 3,4%, Support

agcelerat|on phase_, a cruise velocity and constant dece_le\pector Machines (SVM) and Gaussian Process Regression
ation phase. The first and last phases have the same ti

. . . PR). The input space has dimensidr(the estimated

duration and the same gragllent modulgs,.see Fig. (2). values of the object velocity) and the output spaceéVis
Two parameters determine the proﬂlg. and Tt; = the number of parameters.

o(ty). It f°"2WS that ¢, = ;f —h andﬁo - = 1) k-Nearest Neighbour Regressio& k-NN [18] is a
(":O — )/ (¢ —ty1). Note thatiy = 0. The computation simple local linear approximator of a function given a set
of the profile is thus straightforward. The_ qpt|m|zat|on of known (sample target) pairs (the training set):
problem containg x 2 parameters for the = 7 joint states
and 1 parameter for the end timg, in all 15 parameters. k-NN(x) = Z at;

B. Search for the global optimum i€l

The optimization problem presented in Section II iswherely is the set of the indices of the x;s which have
strongly limited by local mimima (see Section IV-B for minimum Euclidean distance fromin the chosen training
examples). To overcome this problem, we run the optiS€t.ti is the target value associatedstp and, in our case,
mization for a given target trajectory for 100 times, using
different initial guesses for the starting parametersseho o = —-
with the following procedure: a robot configuratighis Yier, 1% = xill
defined randomly, within the range of allowed values; a(This particular choice of the;s is called Inverse-distance-
trajectory is determined as a straight line between theveightedk-NN.) Notice thatl-NN is equivalent to a look-
given initial and the randomly defined configuration, by up table, that is, probably the simplest way of solving this
algebraic computations of the B-spline parameters; thesgroblem.
latter parameters are taken as initial guess. Subsequently 2) Support Vector RegressiorBupport Vector Regres-
the starting parameters which yield the best optimizatiorsion [19], [20] builds a map between an input space and an
result of the 100 trials is taken as global optimium. output space as a weigthed sum of basic functions induced
by the a-priori choice of &ernel In our case we have
chosen, as is rather customary, a Gaussian kernel, so that
the solution to the problem is

The optimization problem described above is solved as a
nonlinear programming problem (NPL), by satisfying the N
equality and inequality constraints at a finite number of SVM(x) = Zo‘iG(Xi’J)
k via points. The proposed optimization method is based =t
on direct single shooting, with parameterization of the 1We initially determined that no relevant advantage wasiobthwith
system independent states in time, as for e.g. in [2], i.ek > 4.

where p;, are the parameters for the jerk at time= 0,
Po;, are the parameters for the joint positions gng

are the parameters for the jerk at time= ¢¢. Note that
of the 8 boundary conditions, 5 are predefined, includin
zero velocities and accelerations. It was chosen not to s
the initial and final jerk to zero, as it would significantly
reduce the family of curves available to the optimization.

[Ix — x|~

C. Offline method for the local constrained optimization
problem



and 1I-C, thus adjusting any small discrepancy between

3 B-spline N=43 - [ enorgy = 0-142°9 —8 the _trajecto_ry which results from the initial guess and the
250 Trapezoidal - 02753 Zz desired trajectory.
2l oo o The issue of collision avoidance in real-time was how-

ever not addressed here. It may be assumed that training
points representing collision-free solutions would beeagen
ated with conservative sizes of the representative poggop
in the problem at hand. This way, the likelihood of a
collision occurring due to on-line trajectory correctiass
minimal and the resulting inequality constraints may well
be handled in a sufficient computational run time (a colli-
sion detection function call was measured to Bst0~"
seconds). In order to investigate this issue a relevantfset o
5 T 0 o5 a5 o o7 training data must be generated for a case with potential
Time [sec] collisions, e.g. with an obstacle in the workspace.
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Fig. 2. Robot joint velocity profiles for a static catch: Blisp IV. A NALY.SIS OF_RE_SUL_TS )
(solid/dashdot) and trapezoidal (dashed/dashdot) psastewn. Velocity The proposed method is applied in simulation for the ball

imi th th ini i . . . . . .
limit shown for theG™ and 7™ joints. A comparison between the cost catching scenario, shown in Fig. 1. Following are detailed
obtained with the two trajectory parameterizations is asen. . .

examples to demonstrate its effectiveness.

where N is the number of samples in the training set,A. Catching a flying target: static and dynamic catch

G(p,0) is a Gaussian function with mean valye and As also hinted by the theory (see [11]), the best energy
covariances2, and thea;s are determined by solving ,niimal solutions were found to be those with non-zero
a regularised quadratic optimization problem in which 8;ccelerations at the boundaries. We however chose to set
quantity calledC' must be fixed a prioriC,o have been iham to zero, to avoid large jerk values.
found in an initial round of experiments via cross-validati When comparing the cotenergy defined in Eq. (7), for
and grld-segrch. . ) different number of parameters, very little improvement

3) Gaussian Process RegressioBaussian Process Re- ¢oyid be found. Parameterizations wit=43, 71 and 141
gressio_n [14]is als_o a probabili;tic method to approximatgyere compared, resulting in 6, 10 and 20 parameters per
a functional mapping. To predict a poist. we evaluate  giate respectively. A sensible number férwas then taken
the conditional mean of a Gaussian process model, give, pe 43. A comparison with the trapezoidal parameteri-

by zation reveals that, for the cost functididnergy the loss
can be very pronounced: for the example in Fig. 2 the
Fx) = kT (K +0,2D) 'y =k a, (15) difference was found to be 48%.

For the off-line computations, the number of via points
wherek. is a kernel vector evaluated on the query pointwas set tok = 500. All runs were first performed with an
and training inputsK is the kernel matrixy is the target accuracy ofl0~® and in a second iteration with accuracy
vector ands,,2 is the noise variance. The open parameterg—'2 (a first iteration is completed when the optimization
of a GP model are optimized using the available datais run once with a given initial guess; a second iteration is a
To make GPR feasible for a real-time application, wenew run of the optimization with the initial guess given by
compute the prediction vectar off-line (this includes the result of the first iteration). No more than two iteragon
an expensive matrix inversion) and then during predictiorwere performed.
only the covariance vectdk, with the pre-computed is In the solutions for the static grasp, one can distinctively
evaluated. see that the velocity constraints play an important role.
For example, in Fig. 2, the bottom curve evidently meets
a constraint at -1.75 rad/sec. Solutions often resemble the

In the real-time setting, an initial guess for the optimizedparabolic profile described by the theory [11]. However,
robot trajectory parameters is first computed for the targetlue to the inequality constraints and the complex nonlinear
trajectory at hand, by means of the chosen learning methambot kinematics, the parabolic profiles are often distbrte
(bewteen those described in Section 111-D). Subsequenthand sometimes not even recognizable.
based on this initial guess, the motion planner is run on- The implementation of the collision avoidance was ap-
line to compute a successful robot trajectory. For this onplied to the self-collision of the robot and to the collision
line version of the motion planner, no cost function iswith an obstacle in the robot workspace. The resulting
optimized, and the number of via points is greatly reducedpumber of body pairs was optimized to.o = 16 for the
such that the computational time for its execution is suffi-eight bodies. However self-collision was found to never
ciently short. The on-line planner however still satisfies t occur, after the minimization of the cost function and
equality and inequality constraints defined in SectiorB II- for the given initial configuration. When introducing the

E. Real-time implementation



Robot end-effector and target trajectories in Cartesian space Example problem 1
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Fig. 3. Example of a dynamic catch. Top: end-effector (sbligk) and Fig. 4. Histograms showing the found solutions for two exk®mmf
target (dotted red) trajectories; four equal time intesvahown (¢ = a static catch, attempted each 100 times with a random bduimitéal
t{,...). Bottom: Robot joint velocity profiles with saturation lits at guess: the different found solutions show the presenceaaf lminima.
1.75 rad/sec. and same four time intervals shotyn={ t$, ...).

TABLE |
Obstacle Of dlmen8|ons [0.2, 0_2’ 4] meters at a pOSItloﬁ-WO END CONFIGURATIONS FOR A STATIC CATCH EXAMPLE SHOWING
Xobst = (1.6, —1.1,0), giving rise to collisions, the planner TWO LOCAL MINIMA
successfully found collision-free trajectories, whilenini
mizing the energy cost function. In doing so, the capsule 6(ty) [deg] | T[] |

representing the end-effector and the box representing the| -129 | -24 | 152 | -21 | 33 | 47| 131 | 0.14
obstacle may be in contact, but without overlapping, fora | -56 | 93 | 68 | 59 | -81 | 38 | 72 | 0.44
substantial portion of the motion.

Fig. 2 shows an example of a static grasp, for which thecan be distinguished clearly due to their different final
velocity at the timet = ¢y, when the end-effector meets configurations. As an example, two end configurations for
the target, is zero. Fig. 3 instead shows an example ithe top case of Fig. 4 are shown in table I.
which the robot meets the target with a non-zero velocity.

The value of the parameters defined in Section 1I-C wa$- Comparing machine learning methods

chosen by manual tuning to b&t = 0.45 and kmia = A training data set was first generated for the static catch
0.08 respectively (these may be added as optimizatioproblem with the B-splines parameterization. The three
parameters at a later stage). The velocity of the end-effect target velocity vector components were first sampled at
between timesi{ and ¢y is 5% of the target velocity. regular intervals from a range of values for which catching
The reduction of the impact with the target was howeveispjutions may exist. For each point, the global optimum
strongly limited by the joint velocity constraints, which was sought, as described in Section 1lI-B, to produce a
can be seen in the bottom graph to be met for most of therst coarse grid. The boundaries of this grid were then
motion. In the top figuret} is approximately coincident expanded until no more solutions were found. More mid-

With Zmig. points of the grid were then also computed with the initial
. i guess taken from the coarse grid, to produce a finer grid, of
B. Global Optimality of Solutions sufficient fineness for the subsequent learning process. The

Fig. 4 shows two typical histograms, for two exampleresulting data set containg25 (sample, target) pairs, with
static catching problems. We repeated the runs 100 times spacing in the target velocity space of [0.17,0.25,0.125]
for each problem, as described in Section IlI-B. Them/s in the range [-2,-6],[2,5],[2.5,5.5] m/s.
histograms include all the successful runs, for which all The total computation time of the data set on an Intel
equality and inequality constraints were satisfied. It isXxeon CPU W3520 2.67GHz machine is in the order of
evident that local minima exist, as shown by the differentmagnitude of100 hours, which makes it unfeasible for
found solutions in each problem. Also note that in bothonline optimization. It is also desirable to find a method
cases, only a small percentage of the 100 runs convergechich works with fewer samples, at the same time keeping
to a solution, which gives clear evidence of the stronga reasonable error rate. In order to analyze this trade-off
dependence of the convergence on a good initial guess (feéach method described in Section 1lI-D is trained ®n
the dynamic catch this dependence is expected to be evarts consisting 000, 700, 500, 300, 100 pairs drawn from
stronger). the original dataset, chosen in order to be geometrically

After inspection, it was found that the highly nonlinear uniformly spaced. Each method is then tested on the
robot kinematics is likely to cause the local minima, whichsamples not used for training.



TABLE Il TABLE Il
AVERAGE COST INCREASH%) W.R.T. GLOBAL MINIMUM COST FOR RUNS BELOW60MS (%) FOR EACH METHOD AND TRAINING SET SIZE
EACH METHOD AND TRAINING SET SIZE

98 | 302 | 504 | 700 | 900 | 1825

98 | 302 | 504 | 700 | 900 | 1825 I-NN | 91| 95 | 94 | 94 | 95 96
1-NN | 187 | 113 | 112 | 103 | 93 46 2-NN | 93| 94 | 95 | 94 | 96 94
2-NN | 118 | 57 | 56 | 71 | 63 29 3-NN | 94| 95 | 95 | 95 | 96 95
3-NN | 105| 55 | 52 | 58 | 53 23 4NN | 93| 96 | 95 | 95 | 96 96
4-NN | 99 | 50 | 41 | 57 | 46 26 SVM | 93| 94 | 94 | 95 | 95 95
SVM | 92 | 51 | 41 | 36 | 30 21 GPR | 93| 94 | 93 | 90 | 89 31
GPR | 94 | 36 | 33 | 21 | 19 11

the energy consumption increases; aléeNN perform
better ag: is increased; SVM is better and GPR is the best.
Figure 5 shows the results. The chosen error measure ffthe main requirementis to spare energy then, GPR should
the ratio of the Mean-Squared-Error obtained for each tesiye ysed since it will increase the energy consumption
ing set and the variance of the target trajectory parameteyn|y py 11% with 1825 samples. When the training set is
values for the same test set. reduced t8 samples though, their performance becomes
First of all, by considering all panels together, one carsimilar to that of SVM.
see that the error rates are similar inter-joint. For exanpl  consider now Table IlI: all methods keep the required
the joint parameters1 — 36, corresponding to joint #6, are time at an acceptably low value. Here however, GPR suffers
consistently harder to guess than, say, parameters30,  from a decrease in performance as the training set becomes

corresponding to joint #5. This diversity depends on thgarger, keeping the pace in ondt% of the cases when the
setup and the geometry of the catching movement. SeGsgt is full (1825 samples).

ondly, notice thatl-NN consistently shows a worse error

rate than all other methods. Evidently, something slightly V. DISCUSSION AND CONCLUSION

more complex than a simple look-up table is required, if |n this section the results of this work are briefly discuss
smaller training sets want to be used. Overall, GPR is th@nd final conclusions are given.

best method in most cases, and it is so consistently across

datasets for joints #2 (paramet&rg3), #4 (parameters9-  A. Discussion

25) and #7 (parameter$r-42). From the results presented in tables Il and lll it is evident
that for the on-line implementation a trade-off needs to be
made between average cost increase, computational time
Lastly, we implemented the methods described above iand number of training points. Particularly for the ball
the real-time simulation environment, for a more thoroughcatching task and with the LBR robot (and its joint velocity
evaluation. (We also show the performance obtained bijimits), the computational time sets a hard constraint ¥whic
each method trained on the full data setl825 samples; must be fulfilled at the expense of average loss in cost
this could not be done in the previous Section since ndunction. Noticeable improvement with respect to a 1 -NN
testing set is available in this case.) For each method, with 1825 training points can be seen, for e.g., with a 4-NN
firstly considered the optimizer convergence success ra@nd 500 points or a GPR and 300 points. The GPR also
(solved NPL problems / total trials), randomly choosinggives the best performance in terms of parameter prediction
900 target velocities within the feasible range. Essentiallyand cost increase, but at a higher computational cost. This
all methods performed equally well, with success rates beproblem is however only critical for tasks for which the
tween 95% and 98%. Surprisingly, decreasing the trainingomputational time is very limited. The method may turn
set size does not affect this performance index, indicatingdeal for tasks which allow more computational time during
that a relatively large error in prediction is tolerated. real-time performance, for which some degree of on-line
A rather different scenario appears when we turn tooptimization may even be possible.
stricter performance measures. Tables Il and Ill show, in The authors are aware of the fact that the presence of
turn, the average percentual cost increase with respect tmndiffentiable points in the penetration depth function,
the average global minimum cost, and the percentage ohay give rise to numerical problems for the gradient-
runs below60ms (again900 random target velocity values based optimization, which requireS? smooth objective
were generated). Note that the number of via points waand constraint functions in order to converge. However,
set tok = 10 and the optimization accuracy 1®—3. Also  the results found by the authors with a preliminary analysis
note that these run times are sufficient to accommodat®e implementing the ODE collision detection function (as
for multiple corrections of the target trajectory, which described in section 11-B) to a multitude of test cases with
may arise from new updates of the vision system (astatic obstacles in 2D, were positive. More mathematically
done in [7]). This was verified in the LBR ball-catching sound methods can be found in the literature (see [12],
simulation environment. [13]). Particularly in [13], this problem is partially scd
Consider Table II: clearly, as the training set is reducedby introducing a method to generate strictly convex hulls,

D. Real-time implementation
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Fig. 5. Comparison of Machine Learning methods for trainsegs of decreasing size.

for which the discontinuities only remain for the case of
deep penetrations. 2

As described in Section IlI-E, further work will aim at
establishing the speed of convergence of the on-line motion
planner in the presence of collisions. If this will introdua  [3!
critical time factor, the size of the representative pghge
will need to be made more conservative, clearly at the loss
of the cost function optimization (e.g., in order to avoid [4]
collision, the ball will be caught at a less optimal point of
its trajectory).

(5]

B. Conclusion

The problem of catching a small flying object was [6]
addressed using a nonlinear optimization framework. A
suitable parameterization was implemented with B-spline
and a comparison made to a more simple trapezoidal func-
tion. Evidence was given that much more efficient solutions
can be found with the former. The capability of handling
collision avoidance constraints was also demonstrated fqg]
the off-line generation of optimal solutions. Subsequgatl

—
el

methodology was described for searching global solutioné,lo]

thus overcoming the problem of local minima.

Finally different methods to provide the computation-
ally expensive optimal solutions on-line were applied to
the ball-catching problem in simulation. Due to the hard
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