
Latent Space Reinforcement
Learning
Selbstverstärkendes Lernen in latenten Vektorräumen
Bachelor-Thesis von Kevin Sebastian Luck aus Hannoversch Münden
Mai 2014

Latent Space Reinforcement Learning
Selbstverstärkendes Lernen in latenten Vektorräumen

Vorgelegte Bachelor-Thesis von Kevin Sebastian Luck aus Hannoversch Münden

1. Gutachten: Prof. Dr. Jan Peters
2. Gutachten: Dr. Heni Ben Amor
3. Gutachten: Dr. Gerhard Neumann

Tag der Einreichung:

Please cite this document with:
URN: urn:nbn:de:tuda-tuprints-38321
URL: http://tuprints.ulb.tu-darmstadt.de/id/eprint/3832

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

This puplication is licensed under the following Creative Commons License:
Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/

In memory of Cornelia Lutz

Erklärung zur Bachelor-Thesis

Hiermit versichere ich, die vorliegende Bachelor-Thesis ohne Hilfe Dritter und nur mit den ange-
gebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen entnommen
wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder ähnlicher Form noch
keiner Prüfungsbehörde vorgelegen.
In der abgegebenen Thesis stimmen die schriftliche und elektronische Fassung überein.

Darmstadt, den 6. Mai 2014

(Kevin S. Luck)

Thesis Statement

I herewith formally declare that I have written the submitted thesis independently. I did not use
any outside support except for the quoted literature and other sources mentioned in the paper.
I clearly marked and separately listed all of the literature and all of the other sources which I
employed when producing this academic work, either literally or in content. This thesis has not
been handed in or published before in the same or similar form.
In the submitted thesis the written copies and the electronic version are identical in content.

Darmstadt, May 6, 2014

(Kevin S. Luck)

Abstract
Often we have to handle high dimensional spaces if we want to learn motor skills for robots. In policy search
tasks we have to find several parameters to learn a desired movement. This high dimensionality in parameters
can be challenging for reinforcement algorithms, since more samples for finding an optimal solution are needed
with every additional dimension. On the other hand, if the robot has a high number of actuators, an inherent
correlation between these can be found for a specific motor task, which we can exploit for a faster convergence.
One possibility is to use techniques to reduce the dimensionality of the space, which is used as a pre-processing
step or as an independent process in most applications. In this thesis we present a novel algorithm which combines
the theory of policy search and probabilistic dimensionality reduction to uncover the hidden structure of high
dimensional action spaces. Evaluations on an inverse kinematics task indicate that the presented algorithm is able
to outperform the reference algorithms PoWER and CMA-ES, especially in high dimensional spaces. Furthermore
we evaluate our algorithm on a real-world task. In this task, a NAO robot learns to lift his leg while keeping
balance. The issue of collecting samples for learning on a real robot in such a task, which is often very time and
cost consuming, is considered in here by using a small number of samples in each iteration.

Zusammenfassung
Versucht man für Roboter Bewegungsabläufe mithilfe von Verstärkendem Lernen, dem sogenannten Reinforcement
Learning, zu lernen, muss man sich häufig mit hochdimensionalen Räumen auseinandersetzen. So hat beispiels-
weise bereits der NAO Roboter 26 Freiheitsgrade, hier Gelenkwinkel, mithilfer derer eine Bewegung umgesetzt
werden kann. Zusätzlich kommen bei Policy Search Problemen noch Parameter für sog. Features hinzu, welche
beispielsweise Gauss-Kurven sein können, die abhängig von der Zeit sind. Versuchen wir nun einen Bewegungs-
ablauf zu erlernen, erreichen wir mit steigender Zahl der einzelnen Bewegungen relativ schnell eine sehr hohe
Anzahl an Parametern aus der die Bewegungen abgeleitet werden. Diese Parameter müssen für einen optimalen
Bewegungsablauf geschätzt werden und spannen einen hochdimensionalen Raum auf.

In hochdimensionalen Räumen, in denen die einzelnen (Gelenk-) Konfigurationen als Punkte liegen, kann man
jedoch oft Unterräume finden, die eine stark reduzierte Anzahl an Dimensionen aufweisen. Die Dimensionsachsen
dieser niedrig dimensionalen Räume kodieren hier Korrelationen zwischen den verschiedenen Parametern, wobei
wir unser Augenmerk auf Korrelationen zwischen den Aktoren, z.B. Gelenke, legen werden. Ein intuitives Beispiel
für solche Korrelationen sind z.B. Bewegungen einer (menschlichen) Hand, bei der die Gelenke der Finger oftmals
in Abhängigkeit zueinander stehen.

In dieser Abschlussarbeit wird ein neuartiger Policy Search Algorithmus vorgestellt, der die versteckte latente
Struktur in einem solchen hochdimensionalen Parameterraum ausnutzt und damit Reinforcement Learning und
Dimensionsreduktion in einer Theorie vereint. Im Gegensatz zu früheren Ansätzen wird hierbei die Dimensions-
reduktion nicht als ein Vorverarbeitungsschritt oder als ein unabhängiger Prozess eingesetzt, sondern direkt im
Lernalgorithmus durchgeführt. Wie die durchgeführten Evaluationen mit einer Aufgabe der inversen Kinematik
zeigen, kann insbesondere bei einer hohen Anzahl an Gelenkwinkel der vorgestellte Algorithmus eine deutlich
bessere Konvergenz in Richtung eines optimalen Ergebnisses vorweisen als die zur Referenz verwendeten Algorith-
men PoWER und CMA-ES. Weiterhin wird die Möglichkeit der Anwendung in realen Lern-Szenarien anhand eines
Experiments mit einem NAO Roboter aufgezeigt, bei dem der Roboter die Fähigkeit erwerben soll, auf einem Bein
zu stehen. In beiden Evaluationen wurde der normalerweise begrenzten Möglichkeit zur Erzeugung von Testläufen
auf Robotern Rechnung getragen, indem eine möglichst kleine Anzahl an Testläufen pro Iteration gewählt wurde.

i

Acknowledgements
First, I want to thank my supervisor Heni Ben Amor, who gave me the opportunity and the freedom to work on
the topic of this thesis and to develop my ideas. Especially for the transatlantic supervising, which was sometimes
difficult but beneficial in the end.
I would also like to thank Gerhard Neumann, who was open for mathematical discussions all the time and has
given me plenty of ideas for the future.
I owe the idea for the Lift-One-Leg Task on the NAO Robot to Erik Berger, who helped me with the simulation tool
and did the physically test runs on the NAO robot in Freiberg.
Jan Peters for establishing my first contact to Heni when I was new to the group.
My two colleagues Hongh Linh Thai and especially Thomas Hesse, for all the discussions late in the night, when
we had to work in the office to solve our problems for the deadlines. Actually, the name of the PePPCEr Algorithm
can be traced back to one of this conversations with Thomas.
Furthermore I gratefully acknowledge the many helpful suggestions of Annemarie Arnold, Judith Bönnighausen,
Inga Schmidt and Wolfgang Heenes during the preparation of this thesis.
And all my friends, my family and especially my sister Susan, that they have let me work in solitude and privacy in
the past months with my formulas.

ii

Contents

1. Introduction 1
1.1. Motivation . 2
1.2. Outline . 2

2. Foundation 3
2.1. Matrix Variate Normal Distributions . 3
2.2. Expectation Maximization . 4
2.3. Dimensionality Reduction with Probabilistic Principal Component Analysis 5
2.4. Policy Search . 5
2.5. The Reinforcement Learning Framework of PoWER . 6

3. Reinforcement Learning in Spaces with Low Intrinsic Dimensionality 9
3.1. Using the PoWER Framework for Estimating Policies with Latent Variables 9
3.2. Low Dimensional and Stochastic Policy Models . 9
3.3. Linear Model Properties . 10
3.4. Expectation and Maximization of the Parameters . 11

3.4.1. Expectation . 11
3.4.2. Maximization . 11
3.4.3. Complete Algorithm . 14

3.5. Diagonal Matrix Extension . 14

4. Experiments 17
4.1. Learning Inverse Kinematics . 17
4.2. Learning to Stand on One Leg . 18
4.3. Experimental Intuition . 20

5. Conclusion and Future Work 23

Bibliography 24

A. Appendix 27
A.1. Derivatives of Scalar Forms . 27
A.2. Marginalization Rule . 27

iii

Figures

List of Figures

1.1. Two different and common used approaches to use dimensionality reduction techniques in policy
search. 1

1.2. The presented approach combines dimensionality reduction and policy search in one method. 2

4.2. The rows represent the Gaussians and the columns the specific time step. The values of the Gaussians
are normalized for each time step. 17

4.1. A robot arm with 8 DOF in a 2D Tracking Task. These movements were learned with PePPCEr within
1000 iterations and have an error near zero. The red circle is the desired trajectory of the end-effector. 17

4.3. Comparison between PePPCEr , PoWER and CMA-ES on the inverse kinematic task with a 26-linked
robot arm. In each iteration we generated 50 parameterized joint configurations and used the 25
best samples. Every Algorithm was performed with 30 trials and plotted with his mean. 18

4.4. Different comparisons between PePPCEr and one algorithm from Fig. 4.3, each algorithm result
plotted with its mean and variance. 19

4.5. The final poses of two extreme solutions learned by the PePPCEr Algorithm, which are still stable. . . . 19
4.6. Two different policies for standing on one leg learned using latent space policy search. The

PePPCEr algorithm needed only 100 executions for the first policy. 20
4.7. The results of the first five iterations of Policy 5 learned by the PePPCEr Algorithm 20
4.8. The resulting poses after 1, 5, 10 and 15 iterations with the PePPCEr Algorithm. Each row is one

independent trial. 21
4.9. The sixth Bukin function. 21
4.10.The PePPCEr Algorithm performed on the sixth Bukin function. The red star is the current mean in the

given iteration and the black line the principal component. Both are calculated from five samples,
given by the white crosses. The global minima of the Bukin function is given by the red dot. 22

iv

Abbreviations, Symbols and Operators

List of Abbreviations

CMA-ES Covariance Matrix Adaption Evolution Strategy

DOF degrees-of-freedom

EM Expectation Maximization

KL Kullback-Leibler

ML Machine Learning

MLE Maximum Likelihood Estimation

PCA Principle Component Analysis

p.d.f. probability density function

PePPEr ’Policy Search with Probabilistic Principle Component
Exploration in the Action Space’

PL Policy Learning

PoWER ’Policy learning by Weighting Exploration with the
Returns’

PPCA Probabilistic Principal Component Analysis

RL Reinforcement Learning

List of Symbols

Notation Description

a a single action

a the action vector

ε a normal distributed (isotropic) exploration

E a matrix variate normal distributed exploration

φ the feature vector

I the identity matrix

v

Z the latent matrix which contains different latent vectors

z the latent vector or variable

W the basis transformation matrix from the latent subspace into original

µ the mean vector of a probability distribution

M the mean matrix of a probability distribution

D diagonal covariance matrix of a probability distribution

σ2 variance of a probability distribution

θ a set of parameters

r a single reward for one step

s the current state

τ a trajectory

0 a matrix or vector which only contains zeros

List of Operators

Notation Description Operator

det the determinant of a matrix det (·)

diag delivers the diagonal matrix of a matrix diag (·)

IE the expactation operator, it will be used if the context is clear IE [·]

IEx the expectation in respect of a random variable x IEx [·]

IEx |y the expectation in respect of a random variable x conditioned on y IEx |y [·]

⊗ the kronecker product of two matrices A and B A⊗B

KL Kullback-Leibler divergence KL (· ‖ ·)

L the likelihood function L (·)

L the lower bound of a likelihood Lθ (·)

N (multivariate) normal distribution with mean µ and covariance Σ N
�

µ,Σ
�

Np,n
matrix variate normal distribution with mean matrix M and
covariance matrix Σ

Np,n (M,Σ)

∼ the random variable x is distributed with distribution N x ∼N

π stochastic policy π (·|·)

p the probability of x (conditioned on y) p(x|y)

Qπt the weightening based on the reward Qπt
�

st ,a
�

trace delivers the trace of a matrix trace (·)

vec the vectorization of a matrix vec (·)

var the variance operator var (·)

cov the covariance operator cov (·, ·)

vi

1 Introduction
Closely related to artificial intelligence is the vision of fully autonomous robots, that can perform tasks without
the help or supervision of humans. A core component of this autonomous behavior is the ability of the robot to
improve itself during the execution of tasks based on a reward. Developing algorithmic approaches that realize
such learning abilities is the goal of the reinforcement learning (RL) community. Reinforcement learning has been
applied to a broad field of applications in recent years including helicopter flight [1], robot table tennis [2], or
quadruped locomotion [3].

An instance of RL-based techniques is policy search. Policy search methods try to find a policy π, which maximizes
the expected long-term reward. In the case of a parameterized policy, i.e. linear Gaussian Models or Dynamic
Motor Primitives [4], we have to determine several parameters for each degree-of-freedom. Thus, there is a
strong connection between the number of parameters and degrees-of-freedom of a robot, which results in high
dimensional parameter spaces in most real world tasks.

Admittedly, high dimensional parameter spaces often introduce problems, namely the curse of dimensionality [5].
With every new dimension, more trials need to be made to determine an optimal policy with policy search. This is
due to the reinforcement learning nature of policy search, where we have to explore the parameter space to find
improvements for the policy. In case of a naïve approach we need exponentially more samples. Furthermore, the
simulation or the real trial on a robot is very time consuming and costly. Hence, we want to minimize the number
of trials.

This gap between efficiency in terms of the number of trials and the effort for exploration in high dimensional
spaces can be closed by the usage of dimensionality reduction techniques. The idea behind such techniques is the
assumption that there are correlations between the axes of the high dimensional space such that the valid parameter
vectors lie on a low dimensional manifold. A well-known method for finding low dimensional manifolds this is the
Principle Component Analysis (PCA) [6] and its probabilistic version the Probabilistic Principal Component Analysis
(PPCA) [7]. For example, by using PCA we can find such a manifold with 8 dimensions for the human hand, which
has around 23 degrees-of-freedom (DOF). Solving optimization problems on this manifold is significantly easier
than on the original high dimensional space.

High dimensional
parameter space

Dimensionality
Reduction

Low dimensional
parameter space

Policy Search

(a) Pre-processing step

High dimensional
parameter space

Policy Search Dimensionality
Reduction

Low dimensional
parameter space

(b) Independent process

Figure 1.1.: Two different and common used approaches to use dimensionality reduction techniques in policy
search.

However, in current applications these techniques are usually used as a pre-processing step (see Fig. 1.1(a)),
before reinforcement learning or as an independent process (see Fig. 1.1(b)): In [8], Deisenroth et al. projected
the original 25-dimensional training inputs onto an 8-dimensional latent space for predicting a walking gait for a
biped robot. For the approach presented in [9], Reduced Rank Regression was used to identify a low dimensional

1

subspace, which was used for learning on the real robot. In a similar manner, Bitzer et al. [10] used user-provided
training data to learn a latent space with linear as well as nonlinear dimensionality reduction for robot learning.

However, this use of dimensionality reduction has serious limitations. First, using dimensionality reduction as
a pre-processing step requires a significantly large training set of solutions for an accurate approximation of the
assumed manifold. Often, such a large training set is not available or requires human demonstrations. Furthermore,
we have to deal with the problem that if the latent space is chosen wrongly for the given task, the reinforcement
algorithm may not be able to find a satisfying solution since it is not possible to change the parameters of the latent
space anymore. Moreover, if we use human demonstrations, e.g., recorded joint configurations, we may have to
deal with over-fitting if we assume a one-to-one mapping between the human and the robot body and hence neglect
the correspondence problem [11]. On the other hand, using the dimensionality reduction as an independent process
can decrease the possible learning efficiency if we are not using the reward information for the identification of the
subspace. Furthermore it is debatable how to consider the dimensionality reduction in the policy model such that
overfitting does not occur while learning in the low dimensional subspace. This can be a problem if we use only
the low dimensional manifold for sampling such that the following adaptions of the manifold would depend on the
initialization.

1.1 Motivation

High dimensional
parameter space

Dim. Reduction
and

Policy Search

Figure 1.2.: The presented approach com-
bines dimensionality reduction
and policy search in one method.

The issues described naturally lead to the question, whether it is
possible to merge the idea of policy search and dimensionality re-
duction to one technique. This is the main question which shall
be answered by this thesis. Our aim is to find a theory, based
on Expectation Maximization (EM) policy search, which allows us
to develop a reinforcement learning algorithm able to find a la-
tent space to perform a directed exploration. Thus the samples,
which are used for policy search, lie on the manifold created by
the previous samples with the highest reward.

This means that the dimensionality reduction is no longer a pre-
processing step or done independently (see Fig. 1.2). Thus our
policy search algorithm would be able to find a satisfying policy
and a low dimensional manifold together in one process. The abil-
ity to find such a latent space online is satisfying the constraint
that in the most cases we do not have a training set of possible
solutions for initializations and that we are uncertain about the
integrity of our current samples with respect to the representation of the possible manifold. Additionally, we will
be able to use the rewards in a direct way for suggesting the latent space.

1.2 Outline

The first chapter of this thesis will describe the required mathematical foundations and starts with a short intro-
duction into the matrix variate normal distributions and EM algorithm. Subsequently, the theory behind PPCA will
be highlighted, which serves as the main idea for the dimensionality reduction technique used later in this thesis
and is based on EM. The discussion of the reinforcement learning framework of PoWER follows an overview of
policy search from a probabilistic point of view and will be the basis of our theory for latent space reinforcement
learning. The derivation of this theory is given in the second chapter, where the PePPCEr Algorithm is introduced.
The chapter is closed with a diagonal matrix extension for the PePPCEr Algorithm. In the fourth chapter, we evalu-
ate the introduced algorithm on a toy task where we need to learn inverse kinematics of a high-dimensional robot.
Subsequently, we present the results for a real-world task on a NAO robot with the application of the PePPCEr Al-
gorithm. The goal was to let the robot lift one leg without loosing balance. This thesis is closed with a conclusion
and a short description of potential future work.

Parts of this thesis were submitted on the International Conference on Intelligent Robots and Systems (IROS) 2014
under the title Latent Space Policy Search for Robotics [12].

2

2 Foundation

2.1 Matrix Variate Normal Distributions

In this section we introduce matrix variate normal distributions such that we are able to use them for the formula-
tion of the PePPCEr Algorithm later on. Furthermore, the use of them leads to an elegant way for the solve of several
expectations that occur while using the EM algorithm.

The standard normal distribution N
�

µ,σ2
�

, given by the probability density function (p.d.f.)

f (x) =
�

2πσ2
�− 1

2 exp
n

−
�

2σ2
�−1 �

x −µ
�2
o

, (2.1)

can be extended to vectors and is then called the multivariate normal distribution. The p.d.f. for a vector x ∈Rn is
given by

f (x) = (2π)−
n
2 det (Σ)−

1
2 exp

�

−
1

2

�

x−µ
�

Σ−1 �x−µ
�T
�

(2.2)

with a mean vector µ ∈Rn and a covariance matrix Σ ∈Rn×n, which is symmetric and positive definite. We denote
this distribution N

�

µ,Σ
�

. Now let us assume, that we have a set of p samples x1,x2, . . . ,xp, each vector sampled from
such a multivariate normal distribution N

�

µ,Σ
�

. If we organize this sample set as a matrix like

�

x1,x2, . . . ,xp
�T
=























x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
...

xp1 xp2 · · · xpn























(2.3)

it is possible to regard this as one random matrix instead of several multivariate samples. Furthermore, it is possible
to describe a distribution based on random matrices like a multivariate distribution. In fact the theory of matrix
variate distributions can be traced back to multivariate distributions.

The following definitions and theorems are taken from [13], where the interested reader can find the proofs and
a deeper discussion of the theory of matrix variate distributions.

To introduce the matrix variate normal distribution, we need first the definitions of the Kronecker product
between two matrices and the vectorization of a matrix.

Definition 1 Given two matrices A ∈Rm×n and B ∈Rp×q the Kronecker product A⊗B is defined by

A⊗B=





















a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
...

...

am1B am2B · · · amnB





















∈Rmp×nq.

Definition 2 Given a matrix
�

a1,a2, . . . ,an
�

= A ∈Rm×n, the vectorization of this matrix vec (A) is defined by

vec (A) =















a1

...

an















∈Rnm.

3

Now we can use the definition of the multivariate normal distribution to extend it to the matrix variate normal
distributions.

Definition 3 We call a random matrix X ∈Rp×n distributed with a matrix variate distribution Np,n (M,Σ⊗Ψ), specified
by the mean matrix M ∈Rp×n and the covariance matrix Σ⊗Ψ with positive definite matrices Σ ∈Rp×p and Ψ ∈Rn×n, if
vec
�

XT
�

∼N
�

vec
�

MT
�

,Σ⊗Ψ
�

holds.

In the case that Σ and Ψ are positive semidefinite matrices, an alternative definition has to be used which can
be found in [13]. To distinguish between the multivariate normal distribution and the matrix variate distribution
we will write X ∼ Np,n (M,Σ⊗Ψ) in the case of matrix variate normal distributions for random matrices X ∈ Rp×n.
Furthermore it is worthwhile to see that in addition to the given definition above a random matrix X is called matrix
variate distributed with Np,n (M,Σ⊗Ψ) if we have vec (X)∼N (vec (M) ,Ψ⊗Σ) under the described conditions.

Theorem 1 Let X be a random matrix distributed with X∼Np,n (M,Σ⊗Ψ), then the p.d.f. is defined by

f (X) = (2π)−
np
2 det (Σ)−

n
2 det (Ψ)−

p
2 exp

�

−
1

2
trace

�

Σ−1 (X−M)Ψ−1 (X−M)T
�

�

The proof for this theorem can be found in [13, Thm. 2.2.1]. In this thesis, we will also need the following theorem
for the matrix variate second order expectation.

Theorem 2 Given a random matrix X ∼ Np,n (M,Σ⊗Ψ) with X ∈ Rp×n, where the distribution is specified by the mean
matrix M ∈Rp×n and the covariance with Σ ∈Rp×p and Ψ ∈Rn×n. For the expectation of the term XTAX with a matrix
A ∈Rp×p we can find that

IE
�

XTAX
�

= trace
�

ΣAT
�

Ψ +MTAM.

This theorem simplifies various steps in the later proofs, as there is no need to consider each dimension of an action
vector independently with the theory of multivariate normal distributions.

2.2 Expectation Maximization

In this section a short introduction is given into the Expectation Maximization (EM) algorithm based on the intro-
duced notations which will follow closely [14, pp.450] and [1, pp.43]. The EM algorithm is used to determine the
maximum likelihood solution of a stochastic model with latent variables, which are here denoted by z. Let a data
set be given by A=

�

a1,a2, . . .aT
�

then the goal of EM is to maximize the probability of the likelihood

pθ (A) =
T
∏

t=1

pθ
�

at
�

=
T
∏

t=1

∫

Z
pθ
�

at ,z
�

dz, (2.4)

where we assume independent and identically distributed data points at . The distribution is determined by the
parameters given by θ. Instead of the maximization of Eq. 2.4 we can maximize the log-likelihood given by

ln pθ (A) =
T
∑

t=1

ln

∫

Z
pθ
�

at ,z
�

dz, (2.5)

because the logarithm is a monotonically increasing function and so the maximum of pθ (A) is the same as for
lnpθ (A). Solving this equation for the parameters is difficult, while the logarithm is inside of the sum. Introducing
the distribution q (Z) and using the identity pθ (A) =

pθ(A,Z)
pθ(Z|A)

we get that

ln pθ (A) =

∫

Z
q (Z) ln pθ (A)dZ=

∫

Z
q (Z) ln

q (Z)pθ (A,Z)
q (Z)pθ (Z|A)

dZ

=

∫

Z
q (Z) ln

pθ (A,Z)
q (Z)

dZ−
∫

Z
q (Z) ln

pθ (Z|A)
q (Z)

dZ

= Lθ

�

q
�

+ KL
�

q (Z) ‖ pθ (Z|A)
�

(2.6)

4

holds (the verification can be found in [14, p.451]). The Kullback-Leibler (KL) divergence has the property that
KL
�

q ‖ p
�

≥ 0 and KL
�

q ‖ p
�

= 0 if, and only if, the distributions q and p are equal. With this property we can now
argue that the term Lθ

�

q
�

is a lower bound of lnpθ (A). The two iterative steps of the EM algorithm is first to
minimize the KL divergence by setting it to zero and then to maximize the lower bound Lθ

�

q
�

, to increase the
probability of the data set pθ (A).

To minimize the term KL
�

q (Z) ‖ pθ (Z|A)
�

in the expectation step with respect to the old parameters, we have
to update the distribution q (Z) which means to equal q (Z) and pθ (Z|A). Therefore the KL divergence is zero and
lnpθ (A) = Lθ

�

q
�

. Now, in the maximization step, we can estimate the new parameters with

θnew = argmax
θ

Lθ

�

q
�

= argmax
θ

∫

Z
q (Z) ln pθ (A,Z)dZ−

∫

Z
q (Z) ln q (Z)dZ

= argmax
θ

IEq(Z)
�

lnpθ (A,Z)
�

+ const= argmax
θ

Qθ

�

q
�

+ const
(2.7)

where we can drop the constant term. From the expectation step we can now be substitute q (Z) with pθ (Z|A) and
so the estimation of the new parameters can be done with Maximum Likelihood Estimation (MLE). Because the
KL divergence can only be positive or zero, we can be sure that this maximization of the lower bound leads to an
increase of the probability ln pθ (A) or at least to the same probability as before. This is due to the fact that we chose
the KL divergence to be zero before maximization.

2.3 Dimensionality Reduction with Probabilistic Principal Component Analysis

A standard technique to handle high dimensional spaces is Principle Component Analysis (PCA) [6] which is able
to find a low dimensional subspace for a data set. This method has become popular in a broad field of applications
where spaces with the above described property have to be handled, i.e., meteorology [15], medicine [16] or face
recognition [17]. A good example for the application of PCA is grasping in robotics. The human hand has around
25 DOF, so each hand configuration lies in a 25 dimensional space. But it has been found that about 7 dimension
retain enough information to represent each hand configuration with only a small amount of information loss [18].
In this section, a brief overview of the probabilistic version of PCA is given. For the standard PCA we refer the
reader to [19].

In contrast to PCA, where we assume to have the full data set, the Probabilistic Principal Component Analysis
(PPCA) [7] is able to model the uncertainty in the case of missing data. Furthermore, the PPCA is formulated as a
sampling technique from the low dimensional into the high dimensional space.

Assume a d-dimensional data point x ∈ Rd in a high dimensional space, we can find a linear Gaussian model

x=Wz+µ+ ε (2.8)

where the low dimensional latent variable z ∈ Rn is Gaussian distributed according to p (z) = N (0, I). This latent
variable is projected with the transformation matrix W ∈ Rd×n into the high dimensional space. The columns of
W span the low-dimensional subspace, but these basis vectors do not have to be orthogonal to each other like in
PCA. The mean of this low dimensional subspace is given by the vector µ ∈ Rd . To model the uncertainty about the
missing data, the isotropic error term ε ∈ Rd is used with the Gaussian distribution p (ε) = N

�

0,σ2I
�

. This isotropic
error leads to a noise added to the principle components, in contrast to PCA where these projections would lie
directly on them. So the resulting Gaussian distribution of Eq. 2.8 is given by

p (x) =N
�

µ,WWT +σ2I
�

. (2.9)

As our model contains latent variables, the parameters W,σ2 and µ can be determined for the maximization of the
probability p (X) with the iterative EM algorithm.

Because the ability to project samples from the manifold to the high dimensional space, PPCA seems to be ideal
to be used as underlying theoretical foundation for the exploration method in our desired latent space RL method.

2.4 Policy Search

Most tasks for a robot can be formulated as a policy search problem. The goal of policy search is to find a control
policy π

�

st , t
�

that provides an action at ∈ A for every given state st ∈ S and time t of the system. The execution of

5

this action on the robot results in a new state st+1 and a reward rt
�

st ,at
�

. Instead of a deterministic policy we will
use a stochastic policy πθ

�

at |st , t
�

given as a conditional probability distribution with parameters θ. Furthermore,
we assume that the policy is linear in the form of at = Mθφ

�

st , t
�

where the matrix Mθ depends on the given
parameters and the time t. The feature vector φ

�

st , t
�

=
�

φ1
�

st , t
�

,φ2
�

st , t
�

, . . . ,φp
�

st , t
�

�T contains basis functions
φ1,φ2, . . . ,φp which depend on the current time and the state. Examples for such features are time-dependent
Gaussians.The goal of policy search is to determine the parameters θ s.t. the expected return

J (θ) = IEpθ(τ) [R (τ)] =

∫

T
pθ (τ)R (τ) dτ (2.10)

is maximized. This expectation integrates over all possible trajectories τ, given by the set T. The trajectories are
given by the sequence of states and actions τ=

�

s1:T+1,a1:T
�

. The reward of each trajectory is given by R (τ), which
we assume to be the accumulated immediate rewards rt with

R (τ) =
T
∑

t=1

rt
�

st ,at
�

+ rT+1
�

sT
�

, (2.11)

where the reward rT+1 denotes the final reward for reaching the state sT+1. For the probability of a trajectory, we
assume the Markov property and so we get

pθ (τ) = p
�

s1
�

T
∏

t=1

p
�

st+1|st ,at
�

πθ
�

at |st , t
�

. (2.12)

On the right side of the term we can find our policy that is to be determined, while the state probabilities on the
left side will disappear in Eq. 2.14 later on.

2.5 The Reinforcement Learning Framework of PoWER

Policy Search methods, which are based on EM, formalize the problem statement as an inference problem with
latent variables. In order to do so, the rewards have to be transformed into (improper) probability distributions
such that each binary reward event is an (unnormalized) probability. In the case of a reward signal where a small
number is good and a large bad, this can be easily done by using the exponential function with

rt
�

st ,at
�

= exp
¦

−λr′t
�

st ,at
�

©

, (2.13)

where r′t
�

st ,at
�

is the actual reward and λ a (temperature) parameter to adjust the exponential function. Here the
exponential function ensures that the reward rt is non-negative. From now on we will assume that our reward rt

is such a transformed reward. With EM we can now find a lower bound of the expected return from Eq. (2.10),
which is, according to Kober and Peters [20], given by

Lθold
(θ) =

∫

T
pθold

(τ)R (τ) ln pθ (τ) dτ

= IEpθold
(τ)





T
∑

t=1

lnπθ
�

at |st , t
�

!

R (τ)





= IEpθold
(τ)





T
∑

t=1

Qπ
�

st ,at , t
�

lnπθ
�

at |st , t
�



 ,

(2.14)

where θold are the old parameters and θ the new ones,which we have to determine with Maximum Likelihood
Estimation (MLE). The trajectories are here the latent variables while the rewars be the observations. The function
Qπ
�

st ,at , t
�

is defined as the state-action value function given by

Qπ
�

st ,a, t
�

= IE





T
∑

t̃=t

r t̃
�

s t̃ ,a t̃
�

|st = s,at = a



 . (2.15)

6

We can estimate Qπ
�

st ,a, t
�

by a single rollout with

Qπ
�

si
t ,a

i
t , t
�

≈
T
∑

t̃=t

r i
t̃ (2.16)

where i denotes the index of the rollout. For the sake of simplicity, we will write Qπt instead of Qπ
�

st ,a, t
�

. An
advantage of this approach is, that we can obtain the parameters by weighted MLE update and so there is no need
for a user-specific learning rate, which can be a crucial parameter in policy gradient algorithms [21]. The policy
πθ
�

at |st , t
�

can be modelled as a linear Gaussian model. Such policies are, for example, used in the ’Policy learning
by Weighting Exploration with the Returns’ (PoWER) algorithm [20].

In the stochastic policy of PoWER, given by at =
�

m+ εt
�Tφ (s, t) for each dimension of the control action, a

Gaussian noise εt ∼ N (0,Σ) is added to the current solution m ∈Rd . The use of Eq. (2.14) leads to the update rule
for PoWER given by

mt+1 =mt +

T
∑

t=1

B
�

st , t
�

Qπt

!−1

·

T
∑

t=1

B
�

st , t
�

εtQ
π
t

!

(2.17)

with B
�

st , t
�

= φ
�

st , t
�

φ
�

st , t
�T
�

φ
�

st , t
�TΣφ

�

st , t
�

�−1
. In the case of a non-static Σ, a similar update rule for Σ

can be found in [20]. With the current framework we are not able to introduce latent variables in our stochastic
policy so far. With these latent variables we would be able to use a (stochastic) linear model of a low dimensional
subspace for the exploration in policy search. This extension, which is the main contribution of this thesis, will be
discussed in the next chapter.

7

3 Reinforcement Learning in Spaces with Low
Intrinsic Dimensionality

3.1 Using the PoWER Framework for Estimating Policies with Latent Variables

The EM framework of PoWER, given in Eq. (2.14), in association with weighted MLE can be exploited for the
use of stochastic policies with latent variables. In spirit of the common notations, z is used for latent variables
and Z ∈ Rm×n for latent matrices. Furthermore, for a consistent notation, πθ

�

at |st , t
�

is written as pθ
�

at |st , t
�

.
In order to add latent variables into the policy , we make use of the marginalization rule (see [14]) and define
pθ
�

at |st , t
�

=
∫

Z pθ
�

at ,z|st , t
�

dz. If EM is applied a new lower bound for Eq. (2.14) can be found with

Lθold
(θ) = IEpθold

(τ)





T
∑

t=1

Qπ
�

st ,at , t
�

ln

∫

Z
pθ
�

at ,z|st , t
�

dz





≥ IEpθold
(τ)





T
∑

t=1

Qπ
�

st ,at , t
�

IEq(z|at ,st)
�

lnpθ
�

at ,z|st , t
��





= L′θold,q (θ) ,

(3.1)

where the distribution

q
�

z|at , st
�

=
pθold

�

at ,z|st , t
�

pθold

�

a|st , t
� (3.2)

is given by the posterior distribution pθold

�

z|at , st
�

of the latent variables. It is worth to recognize that we have
applied EM twice in this lower bound. First to derive the policy update by weighted MLE and second, to update the
joint distribution pθ

�

at ,z|st , t
�

. This lower bound can be used for any latent variable model for stochastic policies.
In the next sections, a model for the stochastic policy, which uses latent variables, to perform dimensionality
reduction will be discussed.

3.2 Low Dimensional and Stochastic Policy Models

If we investigate the PoWER algorithm, we notice that this algorithms handles each dimension of the action space
separately. But this seems only reasonable if we have to fulfill a task where the actions, i.e. the angles of a robot
arm or hand, are independent for each time step. The fact is, that in reality we have a lot of dependencies between
actions for the most common tasks, however this dependencies may not be obvious. In our algorithm, we want
to take advantage of this hidden structure in the action space for a faster reinforcement learning in policy search
tasks. Since we assume that we start learning without any knowledge or already sampled configurations, we have
to learn the structure of this hidden space online. With the described exploitation for latent variables in Eq.(3.1)
we are able to learn the properties of the hidden subspace and the optimal policy for the robot with one unified
algorithm. Revisiting the model of PPCA given by

x=Wz+µ+ ε, (3.3)

where the axes of the low dimensional subspace are given by the columns of W, we can find a stochastic policy for
uncovering a hidden structure in the action space. This stochastic policy can be found with

a=
�

WZT +M+ E
�

φ =W
�

ZTφ
�

+Mφ + Eφ, (3.4)

and the random matrices E ∼ Nd,p
�

0,σ2I
�

and ZT ∼ Nn,p (0, I), while M ∈ Rd×p is the mean matrix. From now on
we will use d for the number of dimensions of the high dimensional action space, n for the number of the low

9

dimensional space and p for the number of parameters respectively the size of the feature vector φ ∈ Rp. As
was mentioned before we will write φ instead of φ

�

st , t
�

for simplification, while keeping the dependencies in
mind. Now let us take a closer look at the matrices and their intuition: Like in PPCA the matrix W ∈ Rd×n is a
linear transformation from the hidden subspace into the high dimensional action space. The term

�

ZTφ
�

, which
corresponds to a low dimensional action vector, can be seen as the representation of the high dimensional action
in the subspace, whose mean action is given by Mφ. Finally, the term Eφ encodes the uncertainty as an isotropic
noise. In a later section, we will introduce a generalization of this model where this term is modelled by a diagonal
covariance matrix where we use one parameter per action dimension. In terms of policy search, we can see the
term W

�

ZTφ
�

as an directed exploration noise and Eφ as an undirected exploration noise. The parameters for this
model are W,M and σ2.

3.3 Linear Model Properties

In this section we investigate the properties of the probability distributions which arise as a result from the above
given model. The expectation of our model in Eq. (3.3) can be found with

IE [a] = IE
�

W
�

ZTφ
�

+Mφ + Eφ
�

= IE
�

W
�

ZTφ
��

︸ ︷︷ ︸

=0

+Mφ + IE
�

Eφ
�

︸ ︷︷ ︸

=0

=Mφ

(3.5)

while the covariance of the model can be written as

cov (a) = IE
h

��

W
�

ZTφ
�

+Mφ + Eφ
�

− IE [a]
���

W
�

ZTφ
�

+Mφ + Eφ
�

− IE [a]
�T
i

= IE
h

�

W
�

ZTφ
�

+ Eφ
��

W
�

ZTφ
�

+ Eφ
�T
i

= IE
�

WZTφφTZWT
�

+ IE
�

WZTφφTMT
�

︸ ︷︷ ︸

=0

+ IE
�

WZTφφTET
�

︸ ︷︷ ︸

=0

+ IE
�

EφφTZWT
�

︸ ︷︷ ︸

=0

+IE
�

EφφTET
�

= IE
�

WZTφφTZWT
�

+ IE
�

EφφTET
�

.

(3.6)

At this point, we have to use Thm. 2 for the expectation of matrix variate distribution. If we apply this theorem we
get

cov (a) = IE
�

WZTφφTZWT
�

+ IE
�

EφφTET
�

=W trace
�

φφT
�

I WT + trace
�

φφT
�

σ2I

= trace
�

φφT
��

WWT +σ2I
�

(3.7)

for the covariance of our linear model. Thus the distribution for a is given as

p (a) =N
�

Mφ, trace
�

φφT
��

WWT +σ2I
��

. (3.8)

If we revisit our model equation, we can find that our latent variables are given by the random matrix Z. At a
first glance, it seems obvious to use the distribution p (a|Z) as posterior distribution for EM. But in order to apply
Bayes theorem for Gaussian variables (see or Appendix A.2 or [14, p.93]) in an easy way, we need vectors as latent
variables instead of matrices. For this simplification, we can use the term ZTφ, whose result is a vector, as latent
variable. Hence we have to estimate the posterior distribution p

�

ZTφ|a
�

. For the properties of the distribution
p
�

ZTφ
�

, we can use the fact that IE
�

ZTφ
�

= 0 holds and so the covariance of this distribution is reduced to the term
IE
�

ZTφφTZ
�

, where Thm. 2 can be applied again and we get

p
�

ZTφ
�

=N
�

0, trace
�

φφT
�

I
�

(3.9)

as a multivariate normal distribution. Given the model Eq. and its distribution in (3.8) we can find that

p
�

a|ZTφ
�

=N
�

W
�

ZTφ
�

+Mφ,σ2trace
�

φφT
�

I
�

(3.10)

holds. With these distributions and Bayes theorem for Gaussian variables we can derivate the posterior distribution
with

p
�

ZTφ|a
�

=N
�

CWT �a−Mφ
�

,Cσ2trace
�

φφT
��

(3.11)

where C=
�

σ2I+WTW
�−1.

10

3.4 Expectation and Maximization of the Parameters

With the distributions given in the previous section, we can now define the expectation and the maximization steps.
Instead of the so far used notation IE pθold(Z

Tφ|a)
�

ZTφ
�

for the expectation of the latent variables , we will use the

notation IE ZTφ|a
�

ZTφ
�

.

3.4.1 Expectation

In the expectation step of the EM algorithm, we have to estimate the parameters of the probability distribution
pθ
�

ZTφ|a
�

. To do so, we can use the old parameters θold from the previous EM iteration. We can directly estimate
this step, because we only need the expectation of this distribution, with

IE ZTφ|a
�

ZTφ
�

= CWT �a−Mφ
�

(3.12)

and

IE ZTφ|a

h

ZTφ
�

ZTφ
�T
i

= Cσ2trace
�

φφT
�

+ IE ZTφ|a
�

ZTφ
�

· IE ZTφ|a
�

ZTφ
�T (3.13)

with C=
�

σ2I+WTW
�−1 like above.

3.4.2 Maximization

Now we have to find the parameters for which we maximize the expected return. To do so, we have to maximize
our lower bound given in Eq. (3.1) which is equivalent to doing a weighted MLE for our parameters θ. The
parameters of our model are W,M and σ2 like mentioned in Sec. 3.2.

A common way to estimate the mean parameter, here M, is to do a MLE. Thus, M is given by

∂ lnp (a)
∂M

=
∂

∂M

�

−
1

2

�

a−Mφ
�T D−1 �a−Mφ

�

�

=
∂

∂M

�

−
1

2

�

−2aTD−1Mφ +φTMTD−1Mφ
�

�

A.1
===

�

−
1

2

�

−2D−1aφT +
∂φTMTD−1Mφ

∂M

��

A.2
===

�

−
1

2

�

−2D−1aφT + 2D−1MφφT
�

�

=
�

D−1
�

aφT −MφφT
��

(3.14)

where D =
�

trace
�

φφT
��

WWT +σ2I
��

= DT holds. In this derivatives we made use of given rules for matrix differ-
entiation at scalar forms, which can be found in the Appendix A.1. Now we can insert this result into the term

0= IEτ





T
∑

t=1

∂ ln p (a)Qπt
∂M



 (3.15)

which is the weighted MLE step and if we solve this equation for M we find

0= IEτ





T
∑

t=1

∂ lnp (a)Qπt
∂M





⇔0= IEτ





T
∑

t=1

D−1
�

aφT −MφφT
�

Qπt





⇔0=
�

WWT +σ2I
�−1 IEτ





T
∑

t=1

1

trace
�

φφT�
�

aφT −MφφT
�

Qπt





⇔M · IEτ





T
∑

t=1

1

trace
�

φφT�φφ
TQπt



= IEτ





T
∑

t=1

1

trace
�

φφT�aφTQπt





⇔M= IEτ





T
∑

t=1

1

trace
�

φφT�aφTQπt



 ·

IEτ





T
∑

t=1

1

trace
�

φφT�φφ
TQπt





!−1

.

(3.16)

11

For the maximization of W and σ2, we have to use our lower bound, where we can find for ln p (a,Z) that

∂ lnp
�

a,ZTφ
�

∂θnew
=

∂

∂θnew

�

lnp
�

a
�

�ZTφ
�

+ lnp
�

ZTφ
��

=
∂

∂θnew

�

ln

�

q

det
�

2πσ2trace
�

φφT� I
�

−1�

+

−
1

2σ2trace
�

φφT�
�

a−WZTφ −Mφ
�T �

a−WZTφ −Mφ
�

�

=
∂

∂θnew

�

−
d

2
ln
�

2πtrace
�

φφT
��

−
d

2
ln
�

σ2
�

−
1

2σ2trace
�

φφT�
�

a−WZTφ −Mφ
�T �

a−WZTφ −Mφ
�

�

(3.17)

holds if we differentiate this term w.r.t. one of the parameters. Doing so for the parameter W and using the
derivatives of the scalar forms we get

∂ lnp
�

a,ZTφ
�

∂W
3.17
====

∂

∂W

�

−
d

2
ln
�

2πtrace
�

φφT
��

−
d

2
ln
�

σ2
�

+

−
1

2σ2trace
�

φφT�
�

a−WZTφ −Mφ
�T �

a−WZTφ −Mφ
�

�

=
∂

∂W

�

−
1

2σ2trace
�

φφT�
�

a−WZTφ −Mφ
�T �

a−WZTφ −Mφ
�

�

=
∂

∂W

�

−
1

2σ2trace
�

φφT� ·

�

−aTWZTφ −φTZWTa+φTZWTWZTφ +φTZWTMφ +φTMTWZTφ
�

�

=
∂

∂W

�

−
1

2σ2trace
�

φφT�
�

−2aTWZTφ +φTZWTWZTφ + 2φTMTWZTφ
�

�

A.1
===−

1

2σ2trace
�

φφT�

�

−2a
�

ZTφ
�T
+
∂φTZWTWZTφ

∂W
+ 2Mφ

�

ZTφ
�T
�

A.2
===−

1

σ2trace
�

φφT�
�

−a
�

ZTφ
�T
+WZTφ

�

ZTφ
�T
+Mφ

�

ZTφ
�T
�

.

(3.18)

When we put this result into the weighted MLE for our lower bound we have

0= IEτ





T
∑

t=1

∂

∂W
IE ZTφ|a

�

lnp
�

a,ZTφ
��

Qπt





= IEτ





T
∑

t=1

IE ZTφ|a

�

−
1

σ2trace
�

φφT�
�

−a
�

ZTφ
�T
+WZTφ

�

ZTφ
�T
+Mφ

�

ZTφ
�T
�

�

Qπt





= IEτ





T
∑

t=1

IE ZTφ|a

�

1

trace
�

φφT�
�

a
�

ZTφ
�T
−Mφ

�

ZTφ
�T
�

�

Qπt



− IEτ





T
∑

t=1

IE ZTφ|a

�

1

trace
�

φφT�WZTφ
�

ZTφ
�T
�

Qπt





(3.19)

12

where we can eliminate σ2 because it does not depend on an index,i.e., it is a constant. Solving this equation for
W, results in the following update equation

IEτ





T
∑

t=1

IE ZTφ|a

�

1

trace
�

φφT�WZTφ
�

ZTφ
�T
�

Qπt



= IEτ





T
∑

t=1

IE ZTφ|a

�

1

trace
�

φφT�
�

a
�

ZTφ
�T
−Mφ

�

ZTφ
�T
�

�

Qπt





⇔W IEτ





T
∑

t=1

IE ZTφ|a

�

1

trace
�

φφT�ZTφ
�

ZTφ
�T
�

Qπt



= IEτ





T
∑

t=1

IE ZTφ|a

�

1

trace
�

φφT�
�

a
�

ZTφ
�T
−Mφ

�

ZTφ
�T
�

�

Qπt





⇔W= IEτ





T
∑

t=1

IE ZTφ|a

�

1

trace
�

φφT�
�

a
�

ZTφ
�T
−Mφ

�

ZTφ
�T
�

�

Qπt



 ·

IEτ





T
∑

t=1

IE ZTφ|a

�

1

trace
�

φφT�ZTφ
�

ZTφ
�T
�

Qπt





!−1

⇔W= IEτ





T
∑

t=1

1

trace
�

φφT�
�

aIE ZTφ|a
�

ZTφ
�T
−MφIE ZTφ|a

�

ZTφ
�T
�

Qπt



 ·

IEτ





T
∑

t=1

1

trace
�

φφT� IE ZTφ|a

h

ZTφ
�

ZTφ
�T
i

Qπt





!−1

⇔W= IEτ





T
∑

t=1

1

trace
�

φφT�
�

a−Mφ
�

IE ZTφ|a
�

ZTφ
�T

Qπt



 ·

IEτ





T
∑

t=1

1

trace
�

φφT� IE ZTφ|a

h

ZTφ
�

ZTφ
�T
i

Qπt





!−1

.

(3.20)
In an analogous manner, we can find the derivative w.r.t. σ2 with

∂ lnp
�

a,ZTφ
�

∂ σ2
3.17
====

∂

∂ σ2

�

−
d

2
ln
�

σ2
�

−
1

2σ2trace
�

φφT�
�

a−WZTφ −Mφ
�T �

a−WZTφ −Mφ
�

�

=−
d

2σ2 +
1

2
�

σ2
�2

trace
�

φφT�

�

a−WZTφ −Mφ
�T �

a−WZTφ −Mφ
�

(3.21)

and if we plug this result into the lower bound we get

0= IEτ





T
∑

t=1

∂

∂ σ2 IE ZTφ|a
�

lnp
�

a,ZTφ
��

Qπt





= IEτ







T
∑

t=1

IE ZTφ|a






−

d

2σ2 +
1

2
�

σ2
�2

trace
�

φφT�

�

a−WZTφ −Mφ
�T �

a−WZTφ −Mφ
�






Qπt







⇔ IEτ





T
∑

t=1

d

2σ2 Qπt



= IEτ







T
∑

t=1

IE ZTφ|a







1

2
�

σ2
�2

trace
�

φφT�

�

a−WZTφ −Mφ
�T �

a−WZTφ −Mφ
�






Qπt







⇔
d

2σ2 IEτ





T
∑

t=1

Qπt



=
1

2
�

σ2
�2 IEτ





T
∑

t=1

1

trace
�

φφT� IE ZTφ|a

h

�

a−WZTφ −Mφ
�T �

a−WZTφ −Mφ
�

i

Qπt





⇔ σ2IEτ





T
∑

t=1

Qπt



=
1

d
IEτ





T
∑

t=1

1

trace
�

φφT� IE ZTφ|a

h

�

a−WZTφ −Mφ
�T �

a−WZTφ −Mφ
�

i

Qπt





⇔ σ2IEτ





T
∑

t=1

Qπt



=
1

d
IEτ





T
∑

t=1

1

trace
�

φφT� IE ZTφ|a

h

�

a−Mφ
�T �a−Mφ

�

− 2
�

a−Mφ
�T WZTφ +φTZWTWZTφ

i

Qπt



 .

(3.22)
The update equation for this parameter is given by

σ2 =
1

d
IEτ





T
∑

t=1

1

trace
�

φφT�
�

�

a−Mφ
�T �a−Mφ

�

− 2
�

a−Mφ
�T WIE ZTφ|a

�

ZTφ
�

+trace
�

IE ZTφ|a
�

ZTφφTZ
�

WTW
��

Qπt

�

IEτ





T
∑

t=1

Qπt





!−1

.

(3.23)

13

3.4.3 Complete Algorithm

With the results given above we can find the ’Policy Search with Probabilistic Principle Component Exploration in
the Action Space’ (PePPCEr) algorithm which can be found in Alg. 1. The initial parameters σ2

0,W0 and M0 can
either be chosen randomly or with a pre-analysis with PCA or PPCA. Furthermore, as an additional parameter, the
algorithm needs the number of latent dimension n as input. This number depends on the given (robot) system and
the task. A pre-analysis on a few samples may help to uncover this property of the hidden subspace. As already
mentioned, a feature vector φ

�

st , t
�

∈ Rp is needed. An example for this vector is given later in the experiment
section. The result of this algorithm is the matrix M which contains weights for the basis functions.

Input: Initialized parameters σ2
0,W0 and M0 and the number n of the low intrinsic dimension. The function φ

�

st , t
�

serves the basic functions as features.

repeat

Sampling:
for h=1:H do # Sample the H rollouts

for t=1:T do
ah

t =WiZ
Tφ +Miφ + Eφ with Z∼Np,n (0, I) and E∼Nd,p

�

0,σ2
iI
�

Execute action ah
t

Observe and store reward rt

�

st ,a
h
t

�

Calculate weights:

Qπ (s,a, t) = IE

�

T
∑

t̃=t
r t̃
�

s t̃ ,a t̃
�

|st = s,at = a

�

Expectation:

C=
�

σ2
iI+WT

i Wi

�−1

foreach ah
t do

IE ZTφ|ah
t

�

ZTφ
�

= CWT
i

�

ah
t −Miφ

�

IE ZTφ|ah
t

h

ZTφ
�

ZTφ
�T
i

= Cσ2
itrace

�

φφT�+ IE ZTφ|ah
t

�

ZTφ
�

· IE ZTφ|ah
t

�

ZTφ
�T

Maximization:

Mi+1 = IEτ

h

∑T
t=1 trace

�

φφT�−1 ah
tφ

TQπt
i�

IEτ

h

∑T
t=1 trace

�

φφT�−1
φφTQπt

i�−1

Wi+1 = IEτ

h

∑T
t=1 trace

�

φφT�−1 �ah
t −Mi+1φ

�

IE ZTφ|ah
t

�

ZTφ
�T Qπt

i

·
�

IEτ

h

∑T
t=1 trace

�

φφT�−1 IE ZTφ|ah
t

h

ZTφ
�

ZTφ
�T
i

Qπt
i�−1

σ2
i+1 = d−1IEτ

h

∑T
t=1 trace

�

φφT�−1
�

�

ah
t −Mi+1φ

�T �
ah

t −Mi+1φ
�

− 2
�

ah
t −Mi+1φ

�T
Wi+1IE ZTφ|ah

t

�

ZTφ
�

+trace
�

IE ZTφ|ah
t

�

ZTφφTZ
�

WT
i+1Wi+1

��

Qπt

�

�

IEτ

h

∑T
t=1 Qπt

i�−1

until Mi ≈Mi+1

Output: Policy M for the feature vector φ

Algorithm 1: Policy Search with Probabilistic Principle Component Exploration in the Action Space (PePPCEr)

3.5 Diagonal Matrix Extension

Revisiting the stochastic model of PePPCEr given by

a=
�

WZT +M+ E
�

φ =W
�

ZTφ
�

+Mφ + Eφ, (3.24)

14

we can find a slightly different model if we choose the covariance matrix of E as a diagonal matrix with several
parameters for each dimension in the action space. Thus we have E ∼Nd,p (0,D⊗I) with D ∈Rd,d as such a diagonal
covariance matrix with respect to the action space and the other distributions as before. For Eq. (3.7) we can now
find that

cov (a) = IE
�

WZTφφTZWT
�

+ IE
�

EφφTET
�

=W trace
�

φφT
�

I WT + trace
�

φφT
�

D

= trace
�

φφT
��

WWT +D
�

(3.25)

because of Thm. 2 and ET ∼Np,d (0, I⊗D). Therefore the property

p (a) =N
�

Mφ, trace
�

φφT
��

WWT +D
��

(3.26)

exists for the distribution of a a and we can find for ln p (a,Z) that

∂ lnp
�

a,ZTφ
�

∂θnew
=

∂

∂θnew

�

−
d

2
ln
�

2πtrace
�

φφT
��

−
1

2
lndet (D)

−
1

2trace
�

φφT�
�

a−WZTφ −Mφ
�T

D−1
�

a−WZTφ −Mφ
�

�

.

(3.27)

While the maximization term for M remains the same it is important to ensure that the maximization for W does
not depend on D and is still solvable. We can find that this is still true with

∂ ln p
�

a,ZTφ
�

∂W
3.27
====

∂

∂W

�

−
d

2
ln
�

2πtrace
�

φφT
��

−
1

2
lndet (D)+

−
1

2trace
�

φφT�
�

a−WZTφ −Mφ
�T

D−1
�

a−WZTφ −Mφ
�

�

=
∂

∂W

�

−
1

2σ2trace
�

φφT�
�

a−WZTφ −Mφ
�T

D−1
�

a−WZTφ −Mφ
�

�

=
∂

∂W

�

−
1

2σ2trace
�

φφT�
�

−2aTD−1WZTφ +φTZWTD−1WZTφ + 2φTMTD−1WZTφ
�

�

A.1
===−

1

2σ2trace
�

φφT�

�

−2D−1a
�

ZTφ
�T
+
∂φTZWTD−1WZTφ

∂W
+ 2D−1Mφ

�

ZTφ
�T
�

A.2
===−

1

σ2trace
�

φφT�
�

−D−1a
�

ZTφ
�T
+D−1WZTφ

�

ZTφ
�T
+D−1Mφ

�

ZTφ
�T
�

.

(3.28)

because the matrix derivations ensure that the matrix D can be found on the left side of each term and so Eq. 3.19
still holds.

Now we have to determine the maximization term of D. First we can find for the differentiation of ln p
�

a,ZTφ
�

w.r.t. D that

∂ lnp
�

a,ZTφ
�

∂D
3.27
====

∂

∂D

�

−
1

2
lndet (D)−

1

2trace
�

φφT�
�

a−WZTφ −Mφ
�T

D−1
�

a−WZTφ −Mφ
�

�

A.3
===−

1

2
D−1 −

∂

∂D

1

2trace
�

φφT�
�

a−WZTφ −Mφ
�T

D−1
�

a−WZTφ −Mφ
�

A.2
===−

1

2
D−1 +

1

2trace
�

φφT�D−1diag
n

�

a−WZTφ −Mφ
��

a−WZTφ −Mφ
�T
o

D−1

(3.29)

holds and if we plugging this result into the lower bound we get that

0= IEτ





T
∑

t=1

∂

∂D
IE ZTφ|a

�

lnp
�

a,ZTφ
��

Qπt





⇐⇒0= IEτ





T
∑

t=1

−
1

2
D−1Qπt +

T
∑

t=1

IE ZTφ|a

�

1

2trace
�

φφT�D−1diag
n

�

a−WZTφ −Mφ
��

a−WZTφ −Mφ
�T
o

D−1

�

Qπt





⇐⇒IEτ





T
∑

t=1

1

2
D−1Qπt



= IEτ





T
∑

t=1

IE ZTφ|a

�

1

2trace
�

φφT�D−1diag
n

�

a−WZTφ −Mφ
��

a−WZTφ −Mφ
�T
o

D−1

�

Qπt



 .

(3.30)

15

If we now multiply D from the left and the right side we find the maximization with

D= IEτ





T
∑

t=1

IE ZTφ|a

�

1

trace
�

φφT�diag
n

�

a−WZTφ −Mφ
��

a−WZTφ −Mφ
�T
o

�

Qπt



 ·

IEτ





T
∑

t=1

Qπt





!−1

D= IEτ





T
∑

t=1

1

trace
�

φφT�diag
n

�

a−Mφ
��

a−Mφ
�T −

�

a−Mφ
�

IE ZTφ|a
�

ZTφ
�T

W−WIE ZTφ|a
�

ZTφ
�

�

a−Mφ
�T+

WIE ZTφ|a

h

ZTφ
�

ZTφ
�T
i

WT
o

Qπt

�

·

IEτ





T
∑

t=1

Qπt





!−1

.

(3.31)

The resulting algorithm can be found in Alg. 2, where we can find the new update for the diagonal covariance
matrix and slightly different terms for the expectation step.

Input: Initialized parameters D0,W0 and M0 and the number n of the low intrinsic dimension. The function φ
�

st , t
�

serves the basic functions as features.

repeat

Sampling:
for h=1:H do # Sample the H rollouts

for t=1:T do
ah

t =WiZ
Tφ +Miφ + Eφ with Z∼Np,n (0, I) and E∼Nd,p

�

0,Di⊗I
�

Execute action ah
t

Observe and store reward rt

�

st ,a
h
t

�

Calculate weights:

Qπ (s,a, t) = IE

�

T
∑

t̃=t
r t̃
�

s t̃ ,a t̃
�

|st = s,at = a

�

Expectation:

C=
�

I+WT
i D−1

i Wi

�−1

foreach ah
t do

IE ZTφ|ah
t

�

ZTφ
�

= CWT
i D−1

i

�

ah
t −Miφ

�

IE ZTφ|ah
t

h

ZTφ
�

ZTφ
�T
i

= C · trace
�

φφT�+ IE ZTφ|ah
t

�

ZTφ
�

· IE ZTφ|ah
t

�

ZTφ
�T

Maximization:

Mi+1 = IEτ

h

∑T
t=1 trace

�

φφT�−1 ah
tφ

TQπt
i�

IEτ

h

∑T
t=1 trace

�

φφT�−1
φφTQπt

i�−1

Wi+1 = IEτ

h

∑T
t=1 trace

�

φφT�−1 �ah
t −Mi+1φ

�

IE ZTφ|ah
t

�

ZTφ
�T Qπt

i

·
�

IEτ

h

∑T
t=1 trace

�

φφT�−1 IE ZTφ|ah
t

h

ZTφ
�

ZTφ
�T
i

Qπt
i�−1

Di+1 = IEτ

h

∑T
t=1 trace

�

φφT�−1 diag
¦

�

a−Mi+1φ
��

a−Mi+1φ
�T − 2Wi+1IE ZTφ|a

�

ZTφ
��

a−Mi+1φ
�T+

Wi+1IE ZTφ|a

h

ZTφ
�

ZTφ
�T
i

WT
i+1

o

Qπt

�

·
�

IEτ

h

∑T
t=1 Qπt

i�−1

until Mi ≈Mi+1

Output: Policy M for the feature vector φ

Algorithm 2: Policy Search with Probabilistic Principle Component Exploration in the Action Space (PePPCEr)
with Diagonal Matrix Extension.

16

4 Experiments
We conducted a set of experiments in order to compare PePPCEr to other existing algorithms for policy search. In
this chapter we will present the setups under which the experiments were carried out. Both results on simulation
and with a physical robot will be reported. All experiments were done with the Diagonal Matrix Extension for the
PePPCEr Algorithm.

4.1 Learning Inverse Kinematics

For the comparison of PePPCEr with other algorithms we set up an experiment with a simulated robot arm. The arm
has 26 hinge-joints and 27 segments, an example of such an arm for 8 joints can be found in Fig. 4.1. The goal is
to track a trajectory using the end-effector of the robot arm, which we choose to be an ellipse. This ellipse, which
is visible as a red circle in Fig. 4.1, follows the equation

f (t) =















cos (t · 0.15) + DOF − 2.5

sin (t · 0.15) · 1.5+ 2

0















, (4.1)

where 1 ≤ t ≤ 50 is the current time step and DOF the degrees-of-freedom of the robot arm.

G
a
u
s
s
ia

n

Time

5 10 15 20 25 30 35 40 45 50

2

4

6

8

10

12

14

16

18

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 4.2.: The rows represent the Gaussians and the columns
the specific time step. The values of the Gaussians
are normalized for each time step.

This forms an ellipse at the upper end of the
robot arm. In the start configuration all joints
were set to zero degree and the position of the
end-effector was (DOF, 0, 0)T since each segment
is one unit long.

For each of the 50 time steps, we have to learn
parameters to bring the end-effector to touch
the current point of this trajectory. In our case,
the parameters are weights for the summation of
Gaussian features, which depends on time. The
activations of these Gaussians can be found in
Fig. 4.2, where we can see that each Gaussian
has a variance of three and the distance between
two means is three time steps. To learn the in-
verse kinematics, we set the reward function to

rt
�

st ,at
�

= exp (−D) , (4.2)

Figure 4.1.: A robot arm with 8 DOF in a 2D Tracking Task. These movements were learned with PePPCEr within 1000
iterations and have an error near zero. The red circle is the desired trajectory of the end-effector.

17

Figure 4.3.: Comparison between PePPCEr , PoWER and CMA-ES on the inverse kinematic task with a 26-linked robot
arm. In each iteration we generated 50 parameterized joint configurations and used the 25 best sam-
ples. Every Algorithm was performed with 30 trials and plotted with his mean.

where D is the distance between the end-effector and the target at time step t and the executed action at . The state
of the system is not relevant in this function.

While our task space is only two dimensional, the robot arm meanwhile has 26 DOF which implies that we have
a high redundancy in our system. PePPCEr tries to uncover the latent structure of this 26-dimensional space by
determining the mean and the principal axes of this subspace, where each axis represents the co-articulation of
different links. Algorithms like PoWER are not able to identify these dependencies between the dimensions of the
actions. The Covariance Matrix Adaption Evolution Strategy (CMA-ES) Algorithm can find a full covariance matrix
for all parameters, but it will be slower than an Algorithm that has a strong exploration in the principal components
concerning tasks where only a few dimensions are relevant. We ran the explained setup with different policy search
algorithms, the results can be found in Fig. 4.3. We can see that after 19 iterations PePPCEr significantly outperforms
the different PoWER implementations and the CMA-ES Algorithm. For a better comparison between PePPCEr and
the different algorithms we show in Fig. 4.4 only PePPCEr and one other algorithm per graph. As mentioned above
we used 19 time-dependent Gaussians over 50 time steps (see Fig. 4.2 for an intuition) so we have to estimate 19
weights for one action dimension to approximate the desired trajectory. For 26 dimensions this results in a total
number of 494 parameters which have to be estimated for this task. The number of assumed latent dimensions for
the PePPCEr Algorithm was set to n = 11 in this evaluation. Furthermore we used the Diagonal Matrix Extension.
The algorithms runs 200 iterations and in each iteration 50 samples were created. From this set the 25 samples
with highest rewards were chosen for updating the specific parameters of the algorithms. This was performed to
have a better distinction between good and bad samples.

4.2 Learning to Stand on One Leg

To show that the PePPCEr Algorithm can be used in real-world tasks, we performed a learning task on
the NAO robot. Our reward function measured the height of the left leg and the head of the robot,
in order to learn to stand on one leg. This task requires the co-articulation of different body parts and
is often used in biomechanical studies on synergies and low-dimensional control in humans, such as in
[22]. Learning was performed in a physics-based simulator instead of the real robot, in order to pre-
vent damages of the robot and to automate the process. Because normally sampling on real robots is

18

(a) Comparison between PePPCEr and PoWER with a static
diagonal covariance matrix I · 15.

(b) Comparison between PePPCEr and CMA-ES, where the pa-
rameters of CMA-ES are automatically chosen.

(c) Comparison between PePPCEr and PoWER with a
diagonal covariance matrix, which is adapted in each
iteration.

(d) Comparison between PePPCEr and the PoWER with an adap-
tion of a full covariance matrix in each iteration.

Figure 4.4.: Different comparisons between PePPCEr and one algorithm from Fig. 4.3, each algorithm result plotted
with its mean and variance.

cost and time intensive, the goal was to use only a few samples in each iteration to learn a stable and
good policy. Thus, it is still possible to do learning directly on the robot, if no simulation is available.

Figure 4.5.: The final poses of two extreme solutions
learned by the PePPCEr Algorithm, which are
still stable.

In each iteration we executed 20 movements and
used the 5 best executions for learning. Each move-
ment consists of 5 time steps and was created by two
time-dependent Gaussian features, so we have 52 pa-
rameters to estimate due to the 26 DOF of the NAO
robot. As can be seen in Fig. 4.6 only a small number
of samples is needed to learn a stable and smooth so-
lution. Policy 1 was learned within 5 iterations, so 100
executions on the simulated robot in total.
In Policy 2 we used 600 samples in 30 iterations, which
results in a movement where the robot can lift the leg
even higher. Because of the stochastic nature of the
PePPCEr Algorithm, we can find very broad variations
of leg lifting movements, two extreme examples can
be found in Fig. 4.5. The shown movements seems ex-
treme, but they are still stable and smooth, so that we
can execute them on the real robot. Fig. 4.7 shows the
evolution of a policy during the policy search process.
Initially the leg is not lifted. However, after several iterations the algorithm identifies a stable lifting-up movement.
If we compare the results of the first iterations for different policies in Fig. 4.8 we can see that the found solutions
have a strong dependency on the result of the first iteration. This behaviour can be traced back to the fact that the
EM Algorithm is a local search algorithm. The results of Policy 4 are particularly insightful since in the solution,
which is found in the first iteration of this trial, lifts the right leg instead of the left one. Even if this was the only

19

Po
lic

y
 1

Po
lic

y
 2

Figure 4.6.: Two different policies for standing on one leg learned using latent space policy search. The PePPCEr al-
gorithm needed only 100 executions for the first policy.

(a) 1 iteration (b) 2 iterations (c) 3 iterations (d) 4 iterations (e) 5 iterations

Figure 4.7.: The results of the first five iterations of Policy 5 learned by the PePPCEr Algorithm

stable position found in the first iteration, the PePPCEr Algorithm is able to find a smooth and stable movement for
lifting the left leg within five iterations, therefore performing 100 executions.

4.3 Experimental Intuition

To give an intuition for the PePPCEr Algorithm, we performed and visualized a trial on an optimization task. The
test function was the sixth Bukin function [23], given by

f
�

x , y
�

= 100
p

|y − 0.01x2|+ 0.01|x + 10|, min f
�

x , y
�

= f (−10,1) = 0 (4.3)

as a minimization problem. This function has one global minima, but many local minima that lie all in a ridge,
which can be seen in Fig. 4.9, due to this the function models global optimization problem.

In the given plots in Fig. 4.10 we can see the solution and principal component for each iteration of the
PePPCEr Algorithm. For the sake of visibility, we show the principal component ten times larger. We can see
that after a few iterations the mean point reaches the ridge and the principal component lies in the direction of the
ridge as expected, because the five best samples lie along the ridge. Especially in the last 10 iterations, before the
global minima is reached, the principal component leads to a sampling along the ridge to reach the global minima.

20

(a) 1st iteration of policy 3 (b) 5th iter. of policy 3 (c) 10th iter. of policy 3 (d) 15th iter. of policy 3

(e) 1st iteration of policy 4 (f) 5th iter. of policy 4 (g) 10th iter. of policy 4 (h) 15th iter. of policy 4

(i) 1st iteration of policy 5 (j) 5th iter. of policy 5 (k) 10th iter. of policy 5 (l) 15th iter. of policy 5

(m) 1st iteration of policy 6 (n) 5th iter. of policy 6 (o) 10th iter. of policy 6 (p) 15th iter. of policy 6

Figure 4.8.: The resulting poses after 1, 5, 10 and 15 iterations with the PePPCEr Algorithm. Each row is one indepen-
dent trial.

−15

−10

−5

−5

0

5
0

100

200

300

Figure 4.9.: The sixth Bukin function.

However, we can see that in the first two iterations it may
be beneficial to use, in this case, both principal components
for the first few iterations. When the ridge is reached, it is
sufficient to use only one principal component for the ex-
ploration because of the almost linear structure of the ridge.
While the adding and removing of columns to the transfor-
mation matrix W is already possible between two iterations,
we need here a reasonable decision criterion for the number
of dimensions. This possibility of using different numbers of
principal components for various stages during an optimiza-
tion process may be a crucial feature for a faster convergence
and needs further investigations in the future.

21

−15 −10 −5
−5

0

5

(a) Initialisation

−15 −10 −5
−5

0

5

(b) 1st iteration

−15 −10 −5
−5

0

5

(c) 2nd iteration

−15 −10 −5
−5

0

5

(d) 3rd iteration

−15 −10 −5
−5

0

5

(e) 4th iteration

−15 −10 −5
−5

0

5

(f) 5th iteration

−15 −10 −5
−5

0

5

(g) 6th iteration

−15 −10 −5
−5

0

5

(h) 7th iteration

−15 −10 −5
−5

0

5

(i) 21th iteration

−15 −10 −5
−5

0

5

(j) 22th iteration

−15 −10 −5
−5

0

5

(k) 23th iteration

−15 −10 −5
−5

0

5

(l) 24th iteration

−15 −10 −5
−5

0

5

(m) 25th iteration

−15 −10 −5
−5

0

5

(n) 26th iteration

−15 −10 −5
−5

0

5

(o) 27th iteration

−15 −10 −5
−5

0

5

(p) 28th iteration

−15 −10 −5
−5

0

5

(q) 29th iteration

−15 −10 −5
−5

0

5

(r) 30th iteration

−15 −10 −5
−5

0

5

(s) 31th iteration

−15 −10 −5
−5

0

5

(t) 32th iteration

Figure 4.10.: The PePPCEr Algorithm performed on the sixth Bukin function. The red star is the current mean in the
given iteration and the black line the principal component. Both are calculated from five samples,
given by the white crosses. The global minima of the Bukin function is given by the red dot.

22

5 Conclusion and Future Work
In this thesis we presented a novel policy search algorithm for exploiting latent spaces in high dimensional action
spaces. We combined the techniques of policy search and dimensionality reduction in an algorithm instead of using
the dimensionality reduction as a pre-processing step.

The PePPCEr Algorithm was introduced with an isotropic undirected exploration and a diagonal matrix extension,
where we can determine a parameter for this exploration for each dimension. We showed with a evaluation on a
simulated and a real-world task that the property of the PePPCEr Algrothm, to uncover the hidden structure of a
latent subspace, is able to speed up the convergence to an optimal solution in the given robot tasks. This indicates
that our approach is suitable to do policy search for robots where we have a (high) redundancy in the actions and
can only use a small set of samples due to costs and time.

However, so far the PePPCEr algorithm is only able to uncover the latent space in the action space. Although
the algorithm is still better as the PoWER Algorithm with a full covariance matrix per action dimension, we want
to investigate the possibility to uncover latent spaces in the feature space too. This may not be reasonable for
time-dependent Gaussian features, but if we have to handle Dynamic Motor Primitives (i.e. see [4]) or feedback
features it is possible that with a growing number of features like this we can find such a low dimensional space.
This leads to the possibility to use a larger number of features, which can be a crucial feature for an online learning
or improving task.

Furthermore the problem to guess the number of dimensions of the latent space right for a maximal efficiency
of the PePPCEr Algorithm still exists. While it is possible to do this with a pre-analysis, we want do avoid this
and instead guess the number of needed dimensions while learning, because the algorithm allows to change the
dimensionality of the latent space while running.

A problem of the PoWER framework is to choose a right parameter for the transformed reward functions if we
use the exponential function. So we have to adjust this reward function exp

�

−λ · rt
�

with a parameter λ > 0 to get
a better distinction between good and bad samples. In contrast, the REPS [24] framework offers the possibility to
adjust this parameter dynamically in each iteration. Because the PePPCEr Algorithm can be used in any policy search
framework where we have a stochastic policy π

�

at , st
�

, we want to implement PePPCEr in the REPS Algorithm in
the future.

23

Bibliography
[1] A. Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, and E. Liang, “Autonomous inverted

helicopter flight via reinforcement learning,” in Proceedings of the International Symposium on Experimental
Robotics, 2004, pp. 363–372.

[2] K. Muelling, J. Kober, O. Kroemer, and J. Peters, “Learning to select and generalize striking movements in
robot table tennis,” International Journal of Robotics Research, no. 3, pp. 263–279, 2013.

[3] J. Zico Kolter and A. Y. Ng, “The stanford littledog: A learning and rapid replanning approach to quadruped
locomotion,” Int. J. Rob. Res., vol. 30, no. 2, pp. 150–174, Feb. 2011.

[4] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Learning movement primitives,” in Robotics Research.
Springer, 2005, pp. 561–572.

[5] R. E. Bellman, Adaptive Control Processes: A guided tour. Princeton University Press, 1961, ch. 5.16.

[6] K. Pearson, “Liii. on lines and planes of closest fit to systems of points in space,” The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science, vol. 2, no. 11, pp. 559–572, 1901.

[7] M. E. Tipping and C. M. Bishop, “Probabilistic principal component analysis,” Journal of the Royal Statistical
Society: Series B (Statistical Methodology), vol. 61, no. 3, pp. 611–622, 1999.

[8] M. P. Deisenroth, R. Calandra, A. Seyfarth, and J. Peters, “Toward fast policy search for learning legged
locomotion,” in IEEE/RSJ International Conference on Intelligent Systems and Robots, 2012.

[9] J. Z. Kolter and A. Y. Ng, “Learning omnidirectional path following using dimensionality reduction,” in in
Proceedings of Robotics: Science and Systems, 2007.

[10] S. Bitzer, M. Howard, and S. Vijayakumar, “Using dimensionality reduction to exploit constraints in rein-
forcement learning,” in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, Oct
2010, pp. 3219–3225.

[11] C. L. Nehaniv and K. Dautenhahn, “Imitation in animals and artifacts,” K. Dautenhahn and C. L. Nehaniv,
Eds. Cambridge, MA, USA: MIT Press, 2002, ch. The Correspondence Problem, pp. 41–61.

[12] K. S. Luck, G. Neumann, E. Berger, J. Peters, and H. B. Amor, “Latent space policy search for robotics,” 2014,
in review.

[13] A. K. Gupta and D. K. Nagar, Matrix variate distributions. CRC Press, 2000, vol. 104.

[14] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning. springer New York, 2006,
vol. 1.

[15] A. Hannachi, I. T. Jolliffe, and D. B. Stephenson, “Empirical orthogonal functions and related techniques in
atmospheric science: A review,” International Journal of Climatology, vol. 27, no. 9, pp. 1119–1152, 2007.
[Online]. Available: http://dx.doi.org/10.1002/joc.1499

[16] M. Khezri and M. Jahed, “An exploratory study to design a novel hand movement identification
system,” Computers in Biology and Medicine, vol. 39, no. 5, pp. 433 – 442, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0010482509000420

[17] B. Moghaddam and A. Pentland, “Probabilistic visual learning for object representation,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 19, no. 7, pp. 696–710, Jul 1997.

24

http://dx.doi.org/10.1002/joc.1499
http://www.sciencedirect.com/science/article/pii/S0010482509000420

[18] J. Lin, Y. Wu, and T. Huang, “Articulate hand motion capturing based on a monte carlo nelder-mead simplex
tracker,” in Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on, vol. 4,
2004, pp. 975–978 Vol.4.

[19] I. Jolliffe, Principal component analysis. Wiley Online Library, 2005.

[20] J. Kober and J. Peters, “Policy search for motor primitives in robotics,” Machine Learning, vol. 84, no. 1-2, pp.
171–203, 2011.

[21] J. Peters and S. Schaal, “Reinforcement learning of motor skills with policy gradients,” Neural networks,
vol. 21, no. 4, pp. 682–697, 2008.

[22] G. Torres-Oviedo and L. H. Ting, “Subject-specific muscle synergies in human balance control are consistent
across different biomechanical contexts,” Journal of neurophysiology, vol. 103, no. 6, pp. 3084–3098, 2010.

[23] A. Bukin, New Minimization Strategy For Non-Smooth Functions. Budker Institute of Nuclear Physics preprint
BUDKER-INP-1997-79, Novosibirsk, 1997.

[24] C. Daniel, G. Neumann, and J. Peters, “Hierarchical relative entropy policy search,” in Proceedings of the
International Conference on Artificial Intelligence and Statistics (AISTATS 2012), 2012.

25

A Appendix

A.1 Derivatives of Scalar Forms

The following derivatives with respect to matrices are given without any proof.

∂ aTXb

∂ X
= abT (A.1)

∂ bTXTDXc

∂ X
= DTXbcT +DXcbT (A.2)

If X is a diagonal matrix then we have
∂ lndet (X)

∂ X
= X−1 (A.3)

A.2 Marginalization Rule

This result is taken from [14, p. 93]:
If we have x given as a marginal normal distribution and y given x as a conditional normal distribution defined

by

p (x) =N
�

µ,Λ−1
�

(A.4)

p
�

y|x
�

=N
�

Ax+ b,L−1
�

(A.5)

we are able to determine the normal distribution x given y with

p
�

x|y
�

=N
�

Σ
�

ATL
�

y− b
�

+Λµ
�

,Σ
�

(A.6)

where Σ is defined by Σ=
�

Λ+ATLA
�−1.

27

	Introduction
	Motivation
	Outline

	Foundation
	Matrix Variate Normal Distributions
	Expectation Maximization
	Dimensionality Reduction with Probabilistic Principal Component Analysis
	Policy Search
	The Reinforcement Learning Framework of PoWER

	Reinforcement Learning in Spaces with Low Intrinsic Dimensionality
	Using the PoWER Framework for Estimating Policies with Latent Variables
	Low Dimensional and Stochastic Policy Models
	Linear Model Properties
	Expectation and Maximization of the Parameters
	Expectation
	Maximization
	Complete Algorithm

	Diagonal Matrix Extension

	Experiments
	Learning Inverse Kinematics
	Learning to Stand on One Leg
	Experimental Intuition

	Conclusion and Future Work
	Bibliography
	Appendix
	Derivatives of Scalar Forms
	Marginalization Rule

