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Abstract— Despite intensive efforts, no significant benefit of
rehabilitation robotics in post-stroke motor-recovery has yet
been demonstrated in large-scale clinical trials. The present
work is based on the premise that future advances in reha-
bilitation robotics require an enhanced understanding of the
neural processes involved in motor learning after stroke. We
present a system that combines a Barret WAMTMseven degree-
of-freedom robot arm with neurophysiological recordings for
the purpose of studying post-stroke motor learning. We used
this system to conduct a pilot study on motor learning during
reaching movements with two stroke patients. Preliminary
results indicate that pre-trial brain activity in ipsilesional
sensorimotor areas may be a neural correlate of the current
state of motor learning. These results are discussed in terms
of their relevance for future rehabilitation strategies that com-
bine rehabilitation robotics with real-time analyses of neuro-
physiological recordings.

I. INTRODUCTION

In 2011, about 795,000 people in the United States ex-
perienced a stroke [1]. It is one of the leading causes of
adult disabilities, with about 80% of patients being affected
by motor impairment [2]. Even after six months of intense
rehabilitation efforts about 50% of patients still show motor
impairments [3]. To improve their quality of life, and reduce
dependency on others, novel rehabilitation strategies need to
be explored.

Multiple approaches exist to improve rehabilitation: Bi-
lateral training [4], constraint-induced movement therapy
(CIMT) [5], EMG biofeedback [6], electrostimulation [7],
and mental practice [8]. In recent years, several robotic sys-
tems for stroke-rehabilitation have been presented, including
MIT-Manus [9], ARM Guide [10], MIME [11], ARMin II
[12], Lokomat [13, 14], Hocoma [15], and Bi-Manu-Track
[16]. Although using robotics in stroke neurorehabilitation
allows standardized and individually tailored training pro-
tocols, this form of therapy seems not to be superior to
conventional manual high-intensity physical therapy [17].
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Tübingen, Germany

This work was supported by the Bundesministerium für Bildung und
Forschung (BMBF, Förderzeichen 01GQ0831), Deutsche Forschungsge-
meinschaft (DFG), European Research Council (ERC), Werner Reichardt
Centre for Integrative Neuroscience (CIN) at the University of Tübingen
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Fig. 1: Subject wearing an EEG-cap while being attached to
the seven DoF Barrett WAM arm.

The present work is based on the premise that future
advances in rehabilitation robotics require an enhanced
understanding of the neural correlates of motor learning.
Identifying such correlates may yield helpful insight into
processes of brain plasticity during therapy, which could
be used to evaluate a therapy’s success and adapt current
rehabilitation strategies. In particular, the combination of
rehabilitation robotics with brain-computer interfaces (BCIs)
may facilitate a real-time adaptation of the robotic system
to the patient’s needs, e.g., by optimizing factors such as
task-difficulty [18–20].

In the present paper, we describe a novel system developed
for this purpose. The system combines a seven degree-of-
freedom (DoF) robot arm with an EEG-based BCI-system
(cf. Figure 1). We present results of a pilot study, in which we
used this system to study the neurophysiological correlates
of motor learning during reaching movements in two stroke
patients. Initial results suggest that pre-trial bandpower in
contralesional sensorimotor areas may be a neural correlate
of motor learning.

The structure of this paper is as follows. We provide
a detailed description of the system in Section II, and
present the pilot study in Section III. We conclude this
paper by discussing the relevance of our results for future
rehabilitation strategies that combine rehabilitation robotics
with real-time analyses of neurophysiological recordings.



II. BRAIN-ROBOT INTERFACE SETUP

The following section describes a system developed to
understand and support rehabilitation processes after stroke
by combining rehabilitation robotics with real-time analysis
of neurophysiological recordings. The system (Figure 2)
consists of:

(i) A seven DoF Barrett WAMTMrobot arm: The mounting
position of the seven DoF robot arm, resembling that
of a human arm (cf. Figure 1), enables a broad range
of movement tasks.

(ii) An attachment to connect the human arm to the robot:
The attachment consists of two parts attached to the
subject’s lower arm, which results in a direct transmis-
sion of force from the subject’s arm to the robot and
vice versa (cf. Figure 1). The attachment incorporates
a magnetic link, which releases the subject in case of a
movement beyond the subject’s body constraints or in
case movements are too rapid. In order to increase com-
fort while still maintaining data accuracy, the subject’s
arm rests on cellular rubber and is fixed in position
with VelcroTM.

(iii) A real-time EEG system: We use an actiCAP electrode
cap with up to 128 electrodes in combination with a
QuickAmp amplifier (Brain Products, Gilching, Ger-
many) for this system. The signals are acquired from
the amplifier using BCI2000 [21] and processed in real-
time by the additional module BCPy2000 [22]. The
information extracted from the neural signals can then
be used to control the robot, e.g., for giving haptic
feedback to the patient, or to adapt study parameters
such as task difficulty in real-time.

(iv) Visual and auditory feedback: While sensorimotor feed-
back is a critical component for motor learning, several
studies have demonstrated the additional value of visual
or auditory feedback [23–25]. For this reason, the
system was further equipped with the capability to
provide visual and auditory feedback in a continuous
manner.

The robot can (directly) interact in several ways with the
patient:

Passive: The system can be used to accurately track
the position and velocity of the human arm during a task
(cf. Section III), allowing synchronized analysis of neural
signals and the state of the subject’s arm. The robot uses
gravity compensation to avoid burdening the subject with its
own weight.

Supportive: Severely affected stroke patients often struggle
with compensating gravity during movement of their arm.
The robot can be used to compensate gravity for its own
weight as well as for the weight of the subject’s arm,
facilitating movement. Furthermore, the robot can help the
subject to follow a certain trajectory, e.g., if the subject’s arm
drifts away, the robot can gently lead it back to the desired
trajectory.

Interfering: The robot arm can be used to perturb the
subjects’ movements, e.g., by force fields. This interference

Fig. 2: Visualisation of the components of the system.

can be dynamically modulated by the subject’s current state-
of-mind, as measured by the real-time EEG system.

Autonomous: The robot can be used to apply external
movements to the human arm, while the system enables us
to simultaneously analyse their neural correlates.

Depending on information extracted from the neural sig-
nals, these modes can be dynamically adapted to the subject’s
current mental state.

In contrast to most other applications of robotics in stroke
therapy, our system enables studying the neural correlates
of motor learning after stroke. The interaction of the parts
of our system opens up a number of possibilites, which are
discussed further in Section IV.

III. NEURAL CORRELATES OF MOTOR
LEARNING IN STROKE

In this section, we present preliminary results on neural
correlates of motor learning in stroke, based on experimental
EEG data from two patients. We first describe the subjects,
the study design, the recorded data, and the data analysis
procedure. We then present empirical evidence that in the
two stroke patients pre-trial power of the EEG in the µ (8–
14 Hz) and β-ranges (20–45 Hz), originating primarily in
sensorimotor areas, predicts the time-to-target of 3D reaching
movements on a trial-to-trial basis.

A. Subjects
Two stroke patients and six heathy control subjects partic-

ipated in the present study. All controls (3 male, 3 female),
recruited from the local student body (mean age 29.5±4.5),
were right-handed and thus conducted the experiment with
their right arm. One stroke patient (AO - female, 27 years
old) had suffered a left-hemispheric stroke with a right-sided
hemiparesis, aphasia and right-sided hemianopsia eleven
years previously. In spite of extensive rehabilitation, she
retained significant motor impairment of her right arm, which
she used in this study to perform the reaching movements.
The other patient (GS - male, 73 years old) had suffered
a left-hemispheric stroke four years previously, with right-
sided hemiparesis and aphasia. Lysis reduced the right-
sided hemiparesis but led to left cerebellar bleeding resulting
in left-sided hemiataxia and dysarthrophonia. Therefore he
performed the reaching movements with his left arm. Pro-
prioceptive feedback was intact in both patients.
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Fig. 3: Different phases of visual feedback shown to the subject. The blue ball represents the current position of the end-
effector. The bar at the top of the screen, as well as the poles of the balls, provide information on the depth of the balls. (a)
The yellow ball represents the target during movement preparation. (b) The target’s color switches to green, the subject is
instructed to begin the reaching movement. (c) The target was reached, the current target disappears and the initial position
appears as new target.

B. Study Design

The subjects were attached with their arm to the robotic
system, as shown in Figure 1, and were placed approximately
1.5 meters in front of a computer screen. During each trial,
this screen displayed the current position of the robotic arm’s
end-effector as a blue ball and the target as a yellow or green
ball, depending on the current phase (Figure 3). The initial
position, in which the arm was hanging beside the body, was
chosen independently by each subject. Corresponding to the
subject’s initial arm position, this position was in the left-
or right hand corner of the screen. At the beginning of each
trial the subject was told to sit quietly and relax. No balls
were shown in this phase. After five seconds, a yellow ball
appeared at a randomized location (Figure 3a) and the current
position of the end-effector was shown. The subject was
instructed to prepare a 3D reaching movement to the position
indicated by the yellow ball during this phase. After another
2.5–4 seconds (randomly chosen from a uniform distribu-
tion), the yellow ball turned green (Figure 3b), instructing
the subject to initiate the reaching movement and bring the
blue ball in congruence with the green ball. During actual
movement, continuous visual feedback was provided about
the end-effector’s current position. A reaching movement
was considered complete when the subject moved the end-
effector within 1.5 cm of the target location, or if the subject
exceeded a ten seconds time limit. In either case, the green
target ball disappeared and was replaced by a green ball at the
initial position of the end-effector (Figure 3c). This prompted
the subject to return to their original arm position. When the
subject moved the end-effector to within 4 cm of the initial
position, the robot arm gently pulled the end-effector to it’s
precise starting position for the next trial.

Subjects performed blocks of 50 trials. In each trial, a
different target location was chosen from a sphere located
in front of the subject. In order to determine a range of
reachable targets, taking into consideration individual stroke-
related impairments, each subject determined the center and
radius of the sphere prior to initiation of the first trial by
moving their arm to multiple comfortable positions in front
of their body. In the current study, subjects chose radii

from 5–9 cm. Stroke patients performed three blocks with
brief intermissions of one minute. Healthy control subjects
performed four blocks each.

C. Experimental Data
During the reaching movements, a 120-channel EEG was

recorded at 1 kHz sampling rate, using active EEG elec-
trodes and a QuickAmp amplifier (BrainProducts, Gilching,
Germany). Electrodes were placed according to the 10-20
system, with Cz as the initial reference electrode. All data
were re-referenced to common average reference offline.

D. Data Analysis
To track each subject’s learning process over the course

of the experiment, we computed the time-to-target (TTT)
for each trial, i.e. the time required from the instruction
to initiate the movement to reaching the target. In order to
eliminate variations in TTT due to different target locations,
we divided the TTT of each trial by the distance of the
target from the initial position of the end-effector. In the six
healthy control subjects, we observed a continuous decline in
TTT over the course of the experiment, reflecting successful
motor-learning processes (Figure 4). Patient AO displayed a
similar learning process, although with substantially slower
movements (Figure 5). Patient GS also performed substan-
tially slower than healthy controls, but showed only minor
signs of successful task-learning (Figure 6). Furthermore, GS
showed signs of fatigue after 119 trials, resulting in a step-
wise increase in TTT. We thus included only the first 119
trials in the analysis of GS’s data.

In the following, we investigate whether TTT is correlated
on a trial-to-trial basis to pre-trial EEG, recorded in the five
seconds resting-period prior to presentation of the next target.
To do so, we high-pass filtered the recorded EEG at 3 Hz,
and separated the data into (ideally) statistically independent
components (ICs). This was done by first reducing the data
to 64 principal components and then running the SOBI-
algorithm [26]. We inspected each IC manually and rejected
those which were not of cortical origin (cf. [27]). Source
localization was performed for every remaining IC, using
a standardized head model and electrode locations with



minimum-norm estimation [28]. We then computed pre-trial
log-bandpower of each non-artifactual IC in three frequency
bands (using an FFT in conjunction with a Hanning window):
µ (8–14 Hz), low β (20–30 Hz), and high β (30–34 Hz).
These frequency bands are known to be related to motor
processes [29]. Finally, we correlated pre-trial bandpower
of every IC and every frequency band with TTT. Statisti-
cal significance of correlation was estimated by a random
permutation test with 10.000 iterations [30].

E. Experimental Results
Here, we report experimental results from the two stroke

patients only. In patient AO, we found two ICs for which
pre-trial bandpower in the µ-range displayed significant
negative correlations with TTT. Figure 7 shows the cortical
origins of the first IC, located primarily in right sensory
cortex. For this IC, we found a correlation of ρ = −0.27
between TTT and µ-bandpower (p = 0.009 with Bonferroni
correction). The second IC, in which we found a correlation
of ρ = −0.26 between TTT and µ-bandpower (p = 0.012
with Bonferroni correction), displays a clear focus in the
primary motor cortex of the right hemisphere. In patient
GS, we found one IC that displayed a marginally significant
positive correlation of bandpower in the high β-range with
TTT (ρ = +0.24, p = 0.095 with Bonferroni correction).
This IC showed a less clear focus than the ones in patient
AO, extending from left occipital cortex to left sensorimotor
cortex (Figure 9).

IV. DISCUSSION AND OUTLOOK

Our results indicate that pre-trial EEG in sensorimotor
areas may be a neural correlate of motor learning in stroke
patients. Obviously, tests with a larger patient population
are needed before general conclusions can be drawn. Fur-
thermore, patient GS did not demonstrate successful task-
learning (cf. Figure 6), casting doubt on whether the IC
in Figure 9 represents motor-learning processes or neural
correlates of motor variation. It is noteworthy, however,
that in both patients we found EEG signals in ipsilateral
sensorimotor areas to represent the current motor state. This
is in congruence with reports from neuroimaging studies
that stroke patients utilize the ipsilateral hemisphere for
compensating motor deficits [31, 32].

Source localization was performed with a standardized
head model and did not take into account the lesion’s
location, as no MRI scan data was available to us. One has
to keep in mind that using a standardized head model might
have distorted the source localization results.

In this pilot study we concentrated on analysing frequency
bands related to motor processes, but in further studies this
focus should be extended to delta and theta bands due to
their connection to neuroplasticity.

The novel brain-robot interface presented here combines
real-time analysis of neurophysiological recordings with a
seven DoF robot arm. In a pilot study, we have demonstrated
that the system can be used to study neural correlates of
motor-learning after stroke. In the following, we discuss how

Fig. 4: Mean and standard deviation of the changes in time-
to-target across the experimental session for the six healthy
control subjects.

Fig. 5: Time to target across trials for patient AO.

Fig. 6: Time to target across trials for patient GS.



Fig. 7: First IC of patient AO:
Pre-trial µ-power (8–14 Hz) in
right sensory cortex correlates with
time-to-target (ρ = −0.27, p =
0.009).

Fig. 8: Second IC of patient AO:
Pre-trial µ-power (8–14 Hz) in
right motor cortex correlates with
time-to-target (ρ = −0.26, p =
0.012).

Fig. 9: Patient GS: Pre-trial
β-power (30–45 Hz) in left
sensorimotor- and occipital cortex
correlates with time-to-target
(ρ = +0.24, p = 0.095).

the real-time capability of the system, not yet utilized in the
experimental work presented here, can be utilized for novel
stroke-rehabilitation strategies.

Direct brain-robot control: Based on BCI-technology, the
robot could be controlled or influenced by human thought
in real-time. First successful studies on this topic have been
conducted with stroke patients using only one DoF [33, 34].
In severely impaired patients, this approach may be used to
sychronize movement intent with execution by having the
robot carry out the movement inferred by the BCI. Prelim-
inary evidence suggests that this may support processes of
brain plasticity involved in motor-recovery [18, 35, 36].

Cognitive Monitoring during patient-robot interaction:
Cognitive Monitoring detects changes in the ongoing cog-
nitive user state by using standard measures for single-
trial EEG analysis or measures resulting from (passive) BCI
research (cf. [19]). Changes in cognitive state are valuable in-
formation for identifying processes occuring during human-
robot interaction. In particular, such changes can be used
to monitor the success of motor-learning and the impact of
therapy on the patient. The detectability of different aspects
of cognitive user state, like cognitive load [37], perception of
errors [38], the perceived loss of control [39], and vigilance
[40], has already been shown in general human-machine
systems [41], and may find applications in human-robot
interaction for stroke rehabilitation. For example, this infor-
mation could be fed back to the user via neurofeedback to
induce mental states beneficial to successful motor learning.
In a rehabilitation scenario involving a supportive human-
robot interaction, the degree of support provided by the
robot could be adapted to the difficulty currently perceived
by the patient. Another example would be the detection of
patterns in subjects’ behaviour which impair the learning
process. If such patterns can be detected reliably with a
BCI, the robot arm could support the patient by counteracting
the undesired movement patterns. From our perspective, the
approach of combining human-robot interaction with BCI

technology is highly promising. In comparison with direct
brain-robot control, we do not have to face the problem that
the available bitrate of current BCI-system is not sufficient to
control multiple degrees of freedom of a robot arm reliably.
The task of three dimensional steering of the robot arm can
be supported or performed by the robot itself, while being
optimized by information about the patient’s cognitive state.
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